| /* |
| * Copyright (c) 2017, ARM Limited and Contributors. All rights reserved. |
| * |
| * SPDX-License-Identifier: BSD-3-Clause |
| */ |
| |
| #include <arch_helpers.h> |
| #include <assert.h> |
| #include <bl31.h> |
| #include <context_mgmt.h> |
| #include <debug.h> |
| #include <errno.h> |
| #include <platform.h> |
| #include <runtime_svc.h> |
| #include <secure_partition.h> |
| #include <smcc.h> |
| #include <smcc_helpers.h> |
| #include <spinlock.h> |
| #include <spm_svc.h> |
| #include <utils.h> |
| #include <xlat_tables_v2.h> |
| |
| #include "spm_private.h" |
| |
| /* Lock used for SP_MEMORY_ATTRIBUTES_GET and SP_MEMORY_ATTRIBUTES_SET */ |
| static spinlock_t mem_attr_smc_lock; |
| |
| /******************************************************************************* |
| * Secure Partition context information. |
| ******************************************************************************/ |
| static secure_partition_context_t sp_ctx; |
| |
| /******************************************************************************* |
| * Replace the S-EL1 re-entry information with S-EL0 re-entry |
| * information |
| ******************************************************************************/ |
| void spm_setup_next_eret_into_sel0(cpu_context_t *secure_context) |
| { |
| assert(secure_context == cm_get_context(SECURE)); |
| |
| cm_set_elr_spsr_el3(SECURE, read_elr_el1(), read_spsr_el1()); |
| } |
| |
| /******************************************************************************* |
| * This function takes an SP context pointer and: |
| * 1. Applies the S-EL1 system register context from sp_ctx->cpu_ctx. |
| * 2. Saves the current C runtime state (callee-saved registers) on the stack |
| * frame and saves a reference to this state. |
| * 3. Calls el3_exit() so that the EL3 system and general purpose registers |
| * from the sp_ctx->cpu_ctx are used to enter the secure partition image. |
| ******************************************************************************/ |
| static uint64_t spm_synchronous_sp_entry(secure_partition_context_t *sp_ctx_ptr) |
| { |
| uint64_t rc; |
| |
| assert(sp_ctx_ptr != NULL); |
| assert(sp_ctx_ptr->c_rt_ctx == 0); |
| assert(cm_get_context(SECURE) == &sp_ctx_ptr->cpu_ctx); |
| |
| /* Apply the Secure EL1 system register context and switch to it */ |
| cm_el1_sysregs_context_restore(SECURE); |
| cm_set_next_eret_context(SECURE); |
| |
| VERBOSE("%s: We're about to enter the Secure partition...\n", __func__); |
| |
| rc = spm_secure_partition_enter(&sp_ctx_ptr->c_rt_ctx); |
| #if ENABLE_ASSERTIONS |
| sp_ctx_ptr->c_rt_ctx = 0; |
| #endif |
| |
| return rc; |
| } |
| |
| |
| /******************************************************************************* |
| * This function takes a Secure partition context pointer and: |
| * 1. Saves the S-EL1 system register context to sp_ctx->cpu_ctx. |
| * 2. Restores the current C runtime state (callee saved registers) from the |
| * stack frame using the reference to this state saved in |
| * spm_secure_partition_enter(). |
| * 3. It does not need to save any general purpose or EL3 system register state |
| * as the generic smc entry routine should have saved those. |
| ******************************************************************************/ |
| static void __dead2 spm_synchronous_sp_exit( |
| secure_partition_context_t *sp_ctx_ptr, uint64_t ret) |
| { |
| assert(sp_ctx_ptr != NULL); |
| /* Save the Secure EL1 system register context */ |
| assert(cm_get_context(SECURE) == &sp_ctx_ptr->cpu_ctx); |
| cm_el1_sysregs_context_save(SECURE); |
| |
| assert(sp_ctx_ptr->c_rt_ctx != 0); |
| spm_secure_partition_exit(sp_ctx_ptr->c_rt_ctx, ret); |
| |
| /* Should never reach here */ |
| assert(0); |
| } |
| |
| /******************************************************************************* |
| * This function passes control to the Secure Partition image (BL32) for the |
| * first time on the primary cpu after a cold boot. It assumes that a valid |
| * secure context has already been created by spm_setup() which can be directly |
| * used. This function performs a synchronous entry into the Secure partition. |
| * The SP passes control back to this routine through a SMC. |
| ******************************************************************************/ |
| int32_t spm_init(void) |
| { |
| entry_point_info_t *secure_partition_ep_info; |
| uint64_t rc; |
| |
| VERBOSE("%s entry\n", __func__); |
| |
| /* |
| * Get information about the Secure Partition (BL32) image. Its |
| * absence is a critical failure. |
| */ |
| secure_partition_ep_info = bl31_plat_get_next_image_ep_info(SECURE); |
| assert(secure_partition_ep_info); |
| |
| /* |
| * Initialise the common context and then overlay the S-EL0 specific |
| * context on top of it. |
| */ |
| cm_init_my_context(secure_partition_ep_info); |
| secure_partition_setup(); |
| |
| /* |
| * Make all CPUs use the same secure context. |
| */ |
| for (unsigned int i = 0; i < PLATFORM_CORE_COUNT; i++) { |
| cm_set_context_by_index(i, &sp_ctx.cpu_ctx, SECURE); |
| } |
| |
| /* |
| * Arrange for an entry into the secure partition. |
| */ |
| sp_ctx.sp_init_in_progress = 1; |
| rc = spm_synchronous_sp_entry(&sp_ctx); |
| assert(rc == 0); |
| sp_ctx.sp_init_in_progress = 0; |
| VERBOSE("SP_MEMORY_ATTRIBUTES_SET_AARCH64 availability has been revoked\n"); |
| |
| return rc; |
| } |
| |
| /******************************************************************************* |
| * Given a secure partition entrypoint info pointer, entry point PC & pointer to |
| * a context data structure, this function will initialize the SPM context and |
| * entry point info for the secure partition. |
| ******************************************************************************/ |
| void spm_init_sp_ep_state(struct entry_point_info *sp_ep_info, |
| uint64_t pc, |
| secure_partition_context_t *sp_ctx_ptr) |
| { |
| uint32_t ep_attr; |
| |
| assert(sp_ep_info); |
| assert(pc); |
| assert(sp_ctx_ptr); |
| |
| cm_set_context(&sp_ctx_ptr->cpu_ctx, SECURE); |
| |
| /* initialise an entrypoint to set up the CPU context */ |
| ep_attr = SECURE | EP_ST_ENABLE; |
| if (read_sctlr_el3() & SCTLR_EE_BIT) |
| ep_attr |= EP_EE_BIG; |
| SET_PARAM_HEAD(sp_ep_info, PARAM_EP, VERSION_1, ep_attr); |
| |
| sp_ep_info->pc = pc; |
| /* The secure partition runs in S-EL0. */ |
| sp_ep_info->spsr = SPSR_64(MODE_EL0, |
| MODE_SP_EL0, |
| DISABLE_ALL_EXCEPTIONS); |
| |
| zeromem(&sp_ep_info->args, sizeof(sp_ep_info->args)); |
| } |
| |
| /******************************************************************************* |
| * Secure Partition Manager setup. The SPM finds out the SP entrypoint if not |
| * already known and initialises the context for entry into the SP for its |
| * initialisation. |
| ******************************************************************************/ |
| int32_t spm_setup(void) |
| { |
| entry_point_info_t *secure_partition_ep_info; |
| |
| VERBOSE("%s entry\n", __func__); |
| |
| /* |
| * Get information about the Secure Partition (BL32) image. Its |
| * absence is a critical failure. |
| */ |
| secure_partition_ep_info = bl31_plat_get_next_image_ep_info(SECURE); |
| if (!secure_partition_ep_info) { |
| WARN("No SPM provided by BL2 boot loader, Booting device" |
| " without SPM initialization. SMCs destined for SPM" |
| " will return SMC_UNK\n"); |
| return 1; |
| } |
| |
| /* |
| * If there's no valid entry point for SP, we return a non-zero value |
| * signalling failure initializing the service. We bail out without |
| * registering any handlers |
| */ |
| if (!secure_partition_ep_info->pc) { |
| return 1; |
| } |
| |
| spm_init_sp_ep_state(secure_partition_ep_info, |
| secure_partition_ep_info->pc, |
| &sp_ctx); |
| |
| /* |
| * All SPM initialization done. Now register our init function with |
| * BL31 for deferred invocation |
| */ |
| bl31_register_bl32_init(&spm_init); |
| |
| VERBOSE("%s exit\n", __func__); |
| |
| return 0; |
| } |
| |
| /* |
| * Attributes are encoded using a different format in the SMC interface than in |
| * the Trusted Firmware, where the mmap_attr_t enum type is used. This function |
| * converts an attributes value from the SMC format to the mmap_attr_t format by |
| * setting MT_RW/MT_RO, MT_USER/MT_PRIVILEGED and MT_EXECUTE/MT_EXECUTE_NEVER. |
| * The other fields are left as 0 because they are ignored by the function |
| * change_mem_attributes(). |
| */ |
| static mmap_attr_t smc_attr_to_mmap_attr(unsigned int attributes) |
| { |
| mmap_attr_t tf_attr = 0; |
| |
| unsigned int access = (attributes & SP_MEMORY_ATTRIBUTES_ACCESS_MASK) |
| >> SP_MEMORY_ATTRIBUTES_ACCESS_SHIFT; |
| |
| if (access == SP_MEMORY_ATTRIBUTES_ACCESS_RW) { |
| tf_attr |= MT_RW | MT_USER; |
| } else if (access == SP_MEMORY_ATTRIBUTES_ACCESS_RO) { |
| tf_attr |= MT_RO | MT_USER; |
| } else { |
| /* Other values are reserved. */ |
| assert(access == SP_MEMORY_ATTRIBUTES_ACCESS_NOACCESS); |
| /* The only requirement is that there's no access from EL0 */ |
| tf_attr |= MT_RO | MT_PRIVILEGED; |
| } |
| |
| if ((attributes & SP_MEMORY_ATTRIBUTES_NON_EXEC) == 0) { |
| tf_attr |= MT_EXECUTE; |
| } else { |
| tf_attr |= MT_EXECUTE_NEVER; |
| } |
| |
| return tf_attr; |
| } |
| |
| /* |
| * This function converts attributes from the Trusted Firmware format into the |
| * SMC interface format. |
| */ |
| static int smc_mmap_to_smc_attr(mmap_attr_t attr) |
| { |
| int smc_attr = 0; |
| |
| int data_access; |
| |
| if ((attr & MT_USER) == 0) { |
| /* No access from EL0. */ |
| data_access = SP_MEMORY_ATTRIBUTES_ACCESS_NOACCESS; |
| } else { |
| if ((attr & MT_RW) != 0) { |
| assert(MT_TYPE(attr) != MT_DEVICE); |
| data_access = SP_MEMORY_ATTRIBUTES_ACCESS_RW; |
| } else { |
| data_access = SP_MEMORY_ATTRIBUTES_ACCESS_RO; |
| } |
| } |
| |
| smc_attr |= (data_access & SP_MEMORY_ATTRIBUTES_ACCESS_MASK) |
| << SP_MEMORY_ATTRIBUTES_ACCESS_SHIFT; |
| |
| if (attr & MT_EXECUTE_NEVER) { |
| smc_attr |= SP_MEMORY_ATTRIBUTES_NON_EXEC; |
| } |
| |
| return smc_attr; |
| } |
| |
| static int spm_memory_attributes_get_smc_handler(uintptr_t base_va) |
| { |
| spin_lock(&mem_attr_smc_lock); |
| |
| mmap_attr_t attributes; |
| int rc = get_mem_attributes(secure_partition_xlat_ctx_handle, |
| base_va, &attributes); |
| |
| spin_unlock(&mem_attr_smc_lock); |
| |
| /* Convert error codes of get_mem_attributes() into SPM ones. */ |
| assert(rc == 0 || rc == -EINVAL); |
| |
| if (rc == 0) { |
| return smc_mmap_to_smc_attr(attributes); |
| } else { |
| return SPM_INVALID_PARAMETER; |
| } |
| } |
| |
| static int spm_memory_attributes_set_smc_handler(u_register_t page_address, |
| u_register_t pages_count, |
| u_register_t smc_attributes) |
| { |
| uintptr_t base_va = (uintptr_t) page_address; |
| size_t size = (size_t) (pages_count * PAGE_SIZE); |
| unsigned int attributes = (unsigned int) smc_attributes; |
| |
| INFO(" Start address : 0x%lx\n", base_va); |
| INFO(" Number of pages: %i (%zi bytes)\n", (int) pages_count, size); |
| INFO(" Attributes : 0x%x\n", attributes); |
| |
| spin_lock(&mem_attr_smc_lock); |
| |
| int ret = change_mem_attributes(secure_partition_xlat_ctx_handle, |
| base_va, size, smc_attr_to_mmap_attr(attributes)); |
| |
| spin_unlock(&mem_attr_smc_lock); |
| |
| /* Convert error codes of change_mem_attributes() into SPM ones. */ |
| assert(ret == 0 || ret == -EINVAL); |
| |
| return (ret == 0) ? SPM_SUCCESS : SPM_INVALID_PARAMETER; |
| } |
| |
| |
| uint64_t spm_smc_handler(uint32_t smc_fid, |
| uint64_t x1, |
| uint64_t x2, |
| uint64_t x3, |
| uint64_t x4, |
| void *cookie, |
| void *handle, |
| uint64_t flags) |
| { |
| cpu_context_t *ns_cpu_context; |
| unsigned int ns; |
| |
| /* Determine which security state this SMC originated from */ |
| ns = is_caller_non_secure(flags); |
| |
| if (ns == SMC_FROM_SECURE) { |
| |
| /* Handle SMCs from Secure world. */ |
| |
| switch (smc_fid) { |
| |
| case SPM_VERSION_AARCH32: |
| SMC_RET1(handle, SPM_VERSION_COMPILED); |
| |
| case SP_EVENT_COMPLETE_AARCH64: |
| assert(handle == cm_get_context(SECURE)); |
| cm_el1_sysregs_context_save(SECURE); |
| spm_setup_next_eret_into_sel0(handle); |
| |
| if (sp_ctx.sp_init_in_progress) { |
| /* |
| * SPM reports completion. The SPM must have |
| * initiated the original request through a |
| * synchronous entry into the secure |
| * partition. Jump back to the original C |
| * runtime context. |
| */ |
| spm_synchronous_sp_exit(&sp_ctx, x1); |
| assert(0); |
| } |
| |
| /* Release the Secure Partition context */ |
| spin_unlock(&sp_ctx.lock); |
| |
| /* |
| * This is the result from the Secure partition of an |
| * earlier request. Copy the result into the non-secure |
| * context, save the secure state and return to the |
| * non-secure state. |
| */ |
| |
| /* Get a reference to the non-secure context */ |
| ns_cpu_context = cm_get_context(NON_SECURE); |
| assert(ns_cpu_context); |
| |
| /* Restore non-secure state */ |
| cm_el1_sysregs_context_restore(NON_SECURE); |
| cm_set_next_eret_context(NON_SECURE); |
| |
| /* Return to normal world */ |
| SMC_RET1(ns_cpu_context, x1); |
| |
| case SP_MEMORY_ATTRIBUTES_GET_AARCH64: |
| INFO("Received SP_MEMORY_ATTRIBUTES_GET_AARCH64 SMC\n"); |
| |
| if (!sp_ctx.sp_init_in_progress) { |
| WARN("SP_MEMORY_ATTRIBUTES_GET_AARCH64 is available at boot time only\n"); |
| SMC_RET1(handle, SPM_NOT_SUPPORTED); |
| } |
| SMC_RET1(handle, spm_memory_attributes_get_smc_handler(x1)); |
| |
| case SP_MEMORY_ATTRIBUTES_SET_AARCH64: |
| INFO("Received SP_MEMORY_ATTRIBUTES_SET_AARCH64 SMC\n"); |
| |
| if (!sp_ctx.sp_init_in_progress) { |
| WARN("SP_MEMORY_ATTRIBUTES_SET_AARCH64 is available at boot time only\n"); |
| SMC_RET1(handle, SPM_NOT_SUPPORTED); |
| } |
| SMC_RET1(handle, spm_memory_attributes_set_smc_handler(x1, x2, x3)); |
| default: |
| break; |
| } |
| } else { |
| |
| /* Handle SMCs from Non-secure world. */ |
| |
| switch (smc_fid) { |
| |
| case SP_VERSION_AARCH64: |
| case SP_VERSION_AARCH32: |
| SMC_RET1(handle, SP_VERSION_COMPILED); |
| |
| case MM_COMMUNICATE_AARCH32: |
| case MM_COMMUNICATE_AARCH64: |
| { |
| uint64_t mm_cookie = x1; |
| uint64_t comm_buffer_address = x2; |
| uint64_t comm_size_address = x3; |
| |
| /* Cookie. Reserved for future use. It must be zero. */ |
| if (mm_cookie != 0) { |
| ERROR("MM_COMMUNICATE: cookie is not zero\n"); |
| SMC_RET1(handle, SPM_INVALID_PARAMETER); |
| } |
| |
| if (comm_buffer_address == 0) { |
| ERROR("MM_COMMUNICATE: comm_buffer_address is zero\n"); |
| SMC_RET1(handle, SPM_INVALID_PARAMETER); |
| } |
| |
| if (comm_size_address != 0) { |
| VERBOSE("MM_COMMUNICATE: comm_size_address is not 0 as recommended.\n"); |
| } |
| |
| /* Save the Normal world context */ |
| cm_el1_sysregs_context_save(NON_SECURE); |
| |
| /* Lock the Secure Partition context. */ |
| spin_lock(&sp_ctx.lock); |
| |
| /* |
| * Restore the secure world context and prepare for |
| * entry in S-EL0 |
| */ |
| assert(&sp_ctx.cpu_ctx == cm_get_context(SECURE)); |
| cm_el1_sysregs_context_restore(SECURE); |
| cm_set_next_eret_context(SECURE); |
| |
| SMC_RET4(&sp_ctx.cpu_ctx, smc_fid, comm_buffer_address, |
| comm_size_address, plat_my_core_pos()); |
| } |
| |
| case SP_MEMORY_ATTRIBUTES_GET_AARCH64: |
| case SP_MEMORY_ATTRIBUTES_SET_AARCH64: |
| /* SMC interfaces reserved for secure callers. */ |
| SMC_RET1(handle, SPM_NOT_SUPPORTED); |
| |
| default: |
| break; |
| } |
| } |
| |
| SMC_RET1(handle, SMC_UNK); |
| } |