blob: 45defd8aa1e21080878db406ab452a2a146da5ed [file] [log] [blame]
/*
* Copyright (c) 2015, ARM Limited and Contributors. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* Neither the name of ARM nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <bakery_lock.h>
#include <debug.h>
#include <mmio.h>
#include <mt8173_def.h>
#include <spm.h>
#include <spm_suspend.h>
/*
* System Power Manager (SPM) is a hardware module, which controls cpu or
* system power for different power scenarios using different firmware, i.e.,
* - spm_hotplug.c for cpu power control in cpu hotplug flow.
* - spm_mcdi.c for cpu power control in cpu idle power saving state.
* - spm_suspend.c for system power control in system suspend scenario.
*
* This file provide utility functions common to hotplug, mcdi(idle), suspend
* power scenarios. A bakery lock (software lock) is incoporated to protect
* certain critical sections to avoid kicking different SPM firmware
* concurrently.
*/
#define SPM_SYSCLK_SETTLE 128 /* 3.9ms */
#if DEBUG
static int spm_dormant_sta = CPU_DORMANT_RESET;
#endif
DEFINE_BAKERY_LOCK(spm_lock);
static int spm_hotplug_ready __section("tzfw_coherent_mem");
static int spm_mcdi_ready __section("tzfw_coherent_mem");
static int spm_suspend_ready __section("tzfw_coherent_mem");
void spm_lock_init(void)
{
bakery_lock_init(&spm_lock);
}
void spm_lock_get(void)
{
bakery_lock_get(&spm_lock);
}
void spm_lock_release(void)
{
bakery_lock_release(&spm_lock);
}
int is_mcdi_ready(void)
{
return spm_mcdi_ready;
}
int is_hotplug_ready(void)
{
return spm_hotplug_ready;
}
int is_suspend_ready(void)
{
return spm_suspend_ready;
}
void set_mcdi_ready(void)
{
spm_mcdi_ready = 1;
spm_hotplug_ready = 0;
spm_suspend_ready = 0;
}
void set_hotplug_ready(void)
{
spm_mcdi_ready = 0;
spm_hotplug_ready = 1;
spm_suspend_ready = 0;
}
void set_suspend_ready(void)
{
spm_mcdi_ready = 0;
spm_hotplug_ready = 0;
spm_suspend_ready = 1;
}
void clear_all_ready(void)
{
spm_mcdi_ready = 0;
spm_hotplug_ready = 0;
spm_suspend_ready = 0;
}
void spm_register_init(void)
{
mmio_write_32(SPM_POWERON_CONFIG_SET, SPM_REGWR_CFG_KEY | SPM_REGWR_EN);
mmio_write_32(SPM_POWER_ON_VAL0, 0);
mmio_write_32(SPM_POWER_ON_VAL1, POWER_ON_VAL1_DEF);
mmio_write_32(SPM_PCM_PWR_IO_EN, 0);
mmio_write_32(SPM_PCM_CON0, CON0_CFG_KEY | CON0_PCM_SW_RESET);
mmio_write_32(SPM_PCM_CON0, CON0_CFG_KEY);
if (mmio_read_32(SPM_PCM_FSM_STA) != PCM_FSM_STA_DEF)
WARN("PCM reset failed\n");
mmio_write_32(SPM_PCM_CON0, CON0_CFG_KEY | CON0_IM_SLEEP_DVS);
mmio_write_32(SPM_PCM_CON1, CON1_CFG_KEY | CON1_EVENT_LOCK_EN |
CON1_SPM_SRAM_ISO_B | CON1_SPM_SRAM_SLP_B | CON1_MIF_APBEN);
mmio_write_32(SPM_PCM_IM_PTR, 0);
mmio_write_32(SPM_PCM_IM_LEN, 0);
mmio_write_32(SPM_CLK_CON, CC_SYSCLK0_EN_1 | CC_SYSCLK0_EN_0 |
CC_SYSCLK1_EN_0 | CC_SRCLKENA_MASK_0 | CC_CLKSQ1_SEL |
CC_CXO32K_RM_EN_MD2 | CC_CXO32K_RM_EN_MD1 | CC_MD32_DCM_EN);
mmio_write_32(SPM_SLEEP_ISR_MASK, 0xff0c);
mmio_write_32(SPM_SLEEP_ISR_STATUS, 0xc);
mmio_write_32(SPM_PCM_SW_INT_CLEAR, 0xff);
mmio_write_32(SPM_MD32_SRAM_CON, 0xff0);
}
void spm_reset_and_init_pcm(void)
{
unsigned int con1;
int i = 0;
mmio_write_32(SPM_PCM_CON0, CON0_CFG_KEY | CON0_PCM_SW_RESET);
mmio_write_32(SPM_PCM_CON0, CON0_CFG_KEY);
while (mmio_read_32(SPM_PCM_FSM_STA) != PCM_FSM_STA_DEF) {
i++;
if (i > 1000) {
i = 0;
WARN("PCM reset failed\n");
break;
}
}
mmio_write_32(SPM_PCM_CON0, CON0_CFG_KEY | CON0_IM_SLEEP_DVS);
con1 = mmio_read_32(SPM_PCM_CON1) &
(CON1_PCM_WDT_WAKE_MODE | CON1_PCM_WDT_EN);
mmio_write_32(SPM_PCM_CON1, con1 | CON1_CFG_KEY | CON1_EVENT_LOCK_EN |
CON1_SPM_SRAM_ISO_B | CON1_SPM_SRAM_SLP_B |
CON1_IM_NONRP_EN | CON1_MIF_APBEN);
}
void spm_init_pcm_register(void)
{
mmio_write_32(SPM_PCM_REG_DATA_INI, mmio_read_32(SPM_POWER_ON_VAL0));
mmio_write_32(SPM_PCM_PWR_IO_EN, PCM_RF_SYNC_R0);
mmio_write_32(SPM_PCM_PWR_IO_EN, 0);
mmio_write_32(SPM_PCM_REG_DATA_INI, mmio_read_32(SPM_POWER_ON_VAL1));
mmio_write_32(SPM_PCM_PWR_IO_EN, PCM_RF_SYNC_R7);
mmio_write_32(SPM_PCM_PWR_IO_EN, 0);
}
void spm_set_power_control(const struct pwr_ctrl *pwrctrl)
{
mmio_write_32(SPM_AP_STANBY_CON, (!pwrctrl->md32_req_mask << 21) |
(!pwrctrl->mfg_req_mask << 17) |
(!pwrctrl->disp_req_mask << 16) |
(!!pwrctrl->mcusys_idle_mask << 7) |
(!!pwrctrl->ca15top_idle_mask << 6) |
(!!pwrctrl->ca7top_idle_mask << 5) |
(!!pwrctrl->wfi_op << 4));
mmio_write_32(SPM_PCM_SRC_REQ, (!!pwrctrl->pcm_apsrc_req << 0));
mmio_write_32(SPM_PCM_PASR_DPD_2, 0);
mmio_clrsetbits_32(SPM_CLK_CON, CC_SRCLKENA_MASK_0,
(pwrctrl->srclkenai_mask ? CC_SRCLKENA_MASK_0 : 0));
mmio_write_32(SPM_SLEEP_CA15_WFI0_EN, !!pwrctrl->ca15_wfi0_en);
mmio_write_32(SPM_SLEEP_CA15_WFI1_EN, !!pwrctrl->ca15_wfi1_en);
mmio_write_32(SPM_SLEEP_CA15_WFI2_EN, !!pwrctrl->ca15_wfi2_en);
mmio_write_32(SPM_SLEEP_CA15_WFI3_EN, !!pwrctrl->ca15_wfi3_en);
mmio_write_32(SPM_SLEEP_CA7_WFI0_EN, !!pwrctrl->ca7_wfi0_en);
mmio_write_32(SPM_SLEEP_CA7_WFI1_EN, !!pwrctrl->ca7_wfi1_en);
mmio_write_32(SPM_SLEEP_CA7_WFI2_EN, !!pwrctrl->ca7_wfi2_en);
mmio_write_32(SPM_SLEEP_CA7_WFI3_EN, !!pwrctrl->ca7_wfi3_en);
}
void spm_set_wakeup_event(const struct pwr_ctrl *pwrctrl)
{
unsigned int val, mask;
if (pwrctrl->timer_val_cust == 0)
val = pwrctrl->timer_val ? pwrctrl->timer_val : PCM_TIMER_MAX;
else
val = pwrctrl->timer_val_cust;
mmio_write_32(SPM_PCM_TIMER_VAL, val);
mmio_setbits_32(SPM_PCM_CON1, CON1_CFG_KEY);
if (pwrctrl->wake_src_cust == 0)
mask = pwrctrl->wake_src;
else
mask = pwrctrl->wake_src_cust;
if (pwrctrl->syspwreq_mask)
mask &= ~WAKE_SRC_SYSPWREQ;
mmio_write_32(SPM_SLEEP_WAKEUP_EVENT_MASK, ~mask);
mmio_write_32(SPM_SLEEP_ISR_MASK, 0xfe04);
}
void spm_get_wakeup_status(struct wake_status *wakesta)
{
wakesta->assert_pc = mmio_read_32(SPM_PCM_REG_DATA_INI);
wakesta->r12 = mmio_read_32(SPM_PCM_REG12_DATA);
wakesta->raw_sta = mmio_read_32(SPM_SLEEP_ISR_RAW_STA);
wakesta->wake_misc = mmio_read_32(SPM_SLEEP_WAKEUP_MISC);
wakesta->timer_out = mmio_read_32(SPM_PCM_TIMER_OUT);
wakesta->r13 = mmio_read_32(SPM_PCM_REG13_DATA);
wakesta->idle_sta = mmio_read_32(SPM_SLEEP_SUBSYS_IDLE_STA);
wakesta->debug_flag = mmio_read_32(SPM_PCM_PASR_DPD_3);
wakesta->event_reg = mmio_read_32(SPM_PCM_EVENT_REG_STA);
wakesta->isr = mmio_read_32(SPM_SLEEP_ISR_STATUS);
}
void spm_init_event_vector(const struct pcm_desc *pcmdesc)
{
/* init event vector register */
mmio_write_32(SPM_PCM_EVENT_VECTOR0, pcmdesc->vec0);
mmio_write_32(SPM_PCM_EVENT_VECTOR1, pcmdesc->vec1);
mmio_write_32(SPM_PCM_EVENT_VECTOR2, pcmdesc->vec2);
mmio_write_32(SPM_PCM_EVENT_VECTOR3, pcmdesc->vec3);
mmio_write_32(SPM_PCM_EVENT_VECTOR4, pcmdesc->vec4);
mmio_write_32(SPM_PCM_EVENT_VECTOR5, pcmdesc->vec5);
mmio_write_32(SPM_PCM_EVENT_VECTOR6, pcmdesc->vec6);
mmio_write_32(SPM_PCM_EVENT_VECTOR7, pcmdesc->vec7);
/* event vector will be enabled by PCM itself */
}
void spm_kick_im_to_fetch(const struct pcm_desc *pcmdesc)
{
unsigned int ptr = 0, len, con0;
ptr = (unsigned int)(unsigned long)(pcmdesc->base);
len = pcmdesc->size - 1;
if (mmio_read_32(SPM_PCM_IM_PTR) != ptr ||
mmio_read_32(SPM_PCM_IM_LEN) != len ||
pcmdesc->sess > 2) {
mmio_write_32(SPM_PCM_IM_PTR, ptr);
mmio_write_32(SPM_PCM_IM_LEN, len);
} else {
mmio_setbits_32(SPM_PCM_CON1, CON1_CFG_KEY | CON1_IM_SLAVE);
}
/* kick IM to fetch (only toggle IM_KICK) */
con0 = mmio_read_32(SPM_PCM_CON0) & ~(CON0_IM_KICK | CON0_PCM_KICK);
mmio_write_32(SPM_PCM_CON0, con0 | CON0_CFG_KEY | CON0_IM_KICK);
mmio_write_32(SPM_PCM_CON0, con0 | CON0_CFG_KEY);
/* kick IM to fetch (only toggle PCM_KICK) */
con0 = mmio_read_32(SPM_PCM_CON0) & ~(CON0_IM_KICK | CON0_PCM_KICK);
mmio_write_32(SPM_PCM_CON0, con0 | CON0_CFG_KEY | CON0_PCM_KICK);
mmio_write_32(SPM_PCM_CON0, con0 | CON0_CFG_KEY);
}
void spm_set_sysclk_settle(void)
{
mmio_write_32(SPM_CLK_SETTLE, SPM_SYSCLK_SETTLE);
INFO("settle = %u\n", mmio_read_32(SPM_CLK_SETTLE));
}
void spm_kick_pcm_to_run(struct pwr_ctrl *pwrctrl)
{
unsigned int con1;
con1 = mmio_read_32(SPM_PCM_CON1) &
~(CON1_PCM_WDT_WAKE_MODE | CON1_PCM_WDT_EN);
mmio_write_32(SPM_PCM_CON1, CON1_CFG_KEY | con1);
if (mmio_read_32(SPM_PCM_TIMER_VAL) > PCM_TIMER_MAX)
mmio_write_32(SPM_PCM_TIMER_VAL, PCM_TIMER_MAX);
mmio_write_32(SPM_PCM_WDT_TIMER_VAL,
mmio_read_32(SPM_PCM_TIMER_VAL) + PCM_WDT_TIMEOUT);
mmio_write_32(SPM_PCM_CON1, con1 | CON1_CFG_KEY | CON1_PCM_WDT_EN);
mmio_write_32(SPM_PCM_PASR_DPD_0, 0);
mmio_write_32(SPM_PCM_MAS_PAUSE_MASK, 0xffffffff);
mmio_write_32(SPM_PCM_REG_DATA_INI, 0);
mmio_clrbits_32(SPM_CLK_CON, CC_DISABLE_DORM_PWR);
mmio_write_32(SPM_PCM_FLAGS, pwrctrl->pcm_flags);
mmio_clrsetbits_32(SPM_CLK_CON, CC_LOCK_INFRA_DCM,
(pwrctrl->infra_dcm_lock ? CC_LOCK_INFRA_DCM : 0));
mmio_write_32(SPM_PCM_PWR_IO_EN,
(pwrctrl->r0_ctrl_en ? PCM_PWRIO_EN_R0 : 0) |
(pwrctrl->r7_ctrl_en ? PCM_PWRIO_EN_R7 : 0));
}
void spm_clean_after_wakeup(void)
{
mmio_clrsetbits_32(SPM_PCM_CON1, CON1_PCM_WDT_EN, CON1_CFG_KEY);
mmio_write_32(SPM_PCM_PWR_IO_EN, 0);
mmio_write_32(SPM_SLEEP_CPU_WAKEUP_EVENT, 0);
mmio_clrsetbits_32(SPM_PCM_CON1, CON1_PCM_TIMER_EN, CON1_CFG_KEY);
mmio_write_32(SPM_SLEEP_WAKEUP_EVENT_MASK, ~0);
mmio_write_32(SPM_SLEEP_ISR_MASK, 0xFF0C);
mmio_write_32(SPM_SLEEP_ISR_STATUS, 0xC);
mmio_write_32(SPM_PCM_SW_INT_CLEAR, 0xFF);
}
enum wake_reason_t spm_output_wake_reason(struct wake_status *wakesta)
{
enum wake_reason_t wr;
int i;
wr = WR_UNKNOWN;
if (wakesta->assert_pc != 0) {
ERROR("PCM ASSERT AT %u, r12=0x%x, r13=0x%x, debug_flag=0x%x\n",
wakesta->assert_pc, wakesta->r12, wakesta->r13,
wakesta->debug_flag);
return WR_PCM_ASSERT;
}
if (wakesta->r12 & WAKE_SRC_SPM_MERGE) {
if (wakesta->wake_misc & WAKE_MISC_PCM_TIMER)
wr = WR_PCM_TIMER;
if (wakesta->wake_misc & WAKE_MISC_CPU_WAKE)
wr = WR_WAKE_SRC;
}
for (i = 1; i < 32; i++) {
if (wakesta->r12 & (1U << i))
wr = WR_WAKE_SRC;
}
if ((wakesta->event_reg & 0x100000) == 0) {
INFO("pcm sleep abort!\n");
wr = WR_PCM_ABORT;
}
INFO("timer_out = %u, r12 = 0x%x, r13 = 0x%x, debug_flag = 0x%x\n",
wakesta->timer_out, wakesta->r12, wakesta->r13,
wakesta->debug_flag);
INFO("raw_sta = 0x%x, idle_sta = 0x%x, event_reg = 0x%x, isr = 0x%x\n",
wakesta->raw_sta, wakesta->idle_sta, wakesta->event_reg,
wakesta->isr);
INFO("dormant state = %d\n", spm_dormant_sta);
return wr;
}
void spm_boot_init(void)
{
/* Only CPU0 is online during boot, initialize cpu online reserve bit */
mmio_write_32(SPM_PCM_RESERVE, 0xFE);
mmio_clrbits_32(AP_PLL_CON3, 0xFFFFF);
mmio_clrbits_32(AP_PLL_CON4, 0xF);
spm_lock_init();
spm_register_init();
}