blob: 446d0addb7b754e9e8d7040a341114d8339951ee [file] [log] [blame]
/*
* Copyright (c) 2015-2022, Arm Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <assert.h>
#include <arch.h>
#include <arch_helpers.h>
#include <common/debug.h>
#include <common/interrupt_props.h>
#include <drivers/arm/gic_common.h>
#include <platform_def.h>
#include "../common/gic_common_private.h"
#include "gicv3_private.h"
/******************************************************************************
* This function marks the core as awake in the re-distributor and
* ensures that the interface is active.
*****************************************************************************/
void gicv3_rdistif_mark_core_awake(uintptr_t gicr_base)
{
/*
* The WAKER_PS_BIT should be changed to 0
* only when WAKER_CA_BIT is 1.
*/
assert((gicr_read_waker(gicr_base) & WAKER_CA_BIT) != 0U);
/* Mark the connected core as awake */
gicr_write_waker(gicr_base, gicr_read_waker(gicr_base) & ~WAKER_PS_BIT);
/* Wait till the WAKER_CA_BIT changes to 0 */
while ((gicr_read_waker(gicr_base) & WAKER_CA_BIT) != 0U) {
}
}
/******************************************************************************
* This function marks the core as asleep in the re-distributor and ensures
* that the interface is quiescent.
*****************************************************************************/
void gicv3_rdistif_mark_core_asleep(uintptr_t gicr_base)
{
/* Mark the connected core as asleep */
gicr_write_waker(gicr_base, gicr_read_waker(gicr_base) | WAKER_PS_BIT);
/* Wait till the WAKER_CA_BIT changes to 1 */
while ((gicr_read_waker(gicr_base) & WAKER_CA_BIT) == 0U) {
}
}
/*******************************************************************************
* This function probes the Redistributor frames when the driver is initialised
* and saves their base addresses. These base addresses are used later to
* initialise each Redistributor interface.
******************************************************************************/
void gicv3_rdistif_base_addrs_probe(uintptr_t *rdistif_base_addrs,
unsigned int rdistif_num,
uintptr_t gicr_base,
mpidr_hash_fn mpidr_to_core_pos)
{
u_register_t mpidr;
unsigned int proc_num;
uint64_t typer_val;
uintptr_t rdistif_base = gicr_base;
assert(rdistif_base_addrs != NULL);
/*
* Iterate over the Redistributor frames. Store the base address of each
* frame in the platform provided array. Use the "Processor Number"
* field to index into the array if the platform has not provided a hash
* function to convert an MPIDR (obtained from the "Affinity Value"
* field into a linear index.
*/
do {
typer_val = gicr_read_typer(rdistif_base);
if (mpidr_to_core_pos != NULL) {
mpidr = mpidr_from_gicr_typer(typer_val);
proc_num = mpidr_to_core_pos(mpidr);
} else {
proc_num = (typer_val >> TYPER_PROC_NUM_SHIFT) &
TYPER_PROC_NUM_MASK;
}
if (proc_num < rdistif_num) {
rdistif_base_addrs[proc_num] = rdistif_base;
}
rdistif_base += gicv3_redist_size(typer_val);
} while ((typer_val & TYPER_LAST_BIT) == 0U);
}
/*******************************************************************************
* Helper function to get the maximum SPI INTID + 1.
******************************************************************************/
unsigned int gicv3_get_spi_limit(uintptr_t gicd_base)
{
unsigned int spi_limit;
unsigned int typer_reg = gicd_read_typer(gicd_base);
/* (maximum SPI INTID + 1) is equal to 32 * (GICD_TYPER.ITLinesNumber+1) */
spi_limit = ((typer_reg & TYPER_IT_LINES_NO_MASK) + 1U) << 5;
/* Filter out special INTIDs 1020-1023 */
if (spi_limit > (MAX_SPI_ID + 1U)) {
return MAX_SPI_ID + 1U;
}
return spi_limit;
}
#if GIC_EXT_INTID
/*******************************************************************************
* Helper function to get the maximum ESPI INTID + 1.
******************************************************************************/
unsigned int gicv3_get_espi_limit(uintptr_t gicd_base)
{
unsigned int typer_reg = gicd_read_typer(gicd_base);
/* Check if extended SPI range is implemented */
if ((typer_reg & TYPER_ESPI) != 0U) {
/*
* (maximum ESPI INTID + 1) is equal to
* 32 * (GICD_TYPER.ESPI_range + 1) + 4096
*/
return ((((typer_reg >> TYPER_ESPI_RANGE_SHIFT) &
TYPER_ESPI_RANGE_MASK) + 1U) << 5) + MIN_ESPI_ID;
}
return 0U;
}
#endif /* GIC_EXT_INTID */
/*******************************************************************************
* Helper function to configure the default attributes of (E)SPIs.
******************************************************************************/
void gicv3_spis_config_defaults(uintptr_t gicd_base)
{
unsigned int i, num_ints;
#if GIC_EXT_INTID
unsigned int num_eints;
#endif
num_ints = gicv3_get_spi_limit(gicd_base);
INFO("Maximum SPI INTID supported: %u\n", num_ints - 1);
/* Treat all (E)SPIs as G1NS by default. We do 32 at a time. */
for (i = MIN_SPI_ID; i < num_ints; i += (1U << IGROUPR_SHIFT)) {
gicd_write_igroupr(gicd_base, i, ~0U);
}
#if GIC_EXT_INTID
num_eints = gicv3_get_espi_limit(gicd_base);
if (num_eints != 0U) {
INFO("Maximum ESPI INTID supported: %u\n", num_eints - 1);
for (i = MIN_ESPI_ID; i < num_eints;
i += (1U << IGROUPR_SHIFT)) {
gicd_write_igroupr(gicd_base, i, ~0U);
}
} else {
INFO("ESPI range is not implemented.\n");
}
#endif
/* Setup the default (E)SPI priorities doing four at a time */
for (i = MIN_SPI_ID; i < num_ints; i += (1U << IPRIORITYR_SHIFT)) {
gicd_write_ipriorityr(gicd_base, i, GICD_IPRIORITYR_DEF_VAL);
}
#if GIC_EXT_INTID
for (i = MIN_ESPI_ID; i < num_eints;
i += (1U << IPRIORITYR_SHIFT)) {
gicd_write_ipriorityr(gicd_base, i, GICD_IPRIORITYR_DEF_VAL);
}
#endif
/*
* Treat all (E)SPIs as level triggered by default, write 16 at a time
*/
for (i = MIN_SPI_ID; i < num_ints; i += (1U << ICFGR_SHIFT)) {
gicd_write_icfgr(gicd_base, i, 0U);
}
#if GIC_EXT_INTID
for (i = MIN_ESPI_ID; i < num_eints; i += (1U << ICFGR_SHIFT)) {
gicd_write_icfgr(gicd_base, i, 0U);
}
#endif
}
/*******************************************************************************
* Helper function to configure properties of secure (E)SPIs
******************************************************************************/
unsigned int gicv3_secure_spis_config_props(uintptr_t gicd_base,
const interrupt_prop_t *interrupt_props,
unsigned int interrupt_props_num)
{
unsigned int i;
const interrupt_prop_t *current_prop;
unsigned long long gic_affinity_val;
unsigned int ctlr_enable = 0U;
/* Make sure there's a valid property array */
if (interrupt_props_num > 0U) {
assert(interrupt_props != NULL);
}
for (i = 0U; i < interrupt_props_num; i++) {
current_prop = &interrupt_props[i];
unsigned int intr_num = current_prop->intr_num;
/* Skip SGI, (E)PPI and LPI interrupts */
if (!IS_SPI(intr_num)) {
continue;
}
/* Configure this interrupt as a secure interrupt */
gicd_clr_igroupr(gicd_base, intr_num);
/* Configure this interrupt as G0 or a G1S interrupt */
assert((current_prop->intr_grp == INTR_GROUP0) ||
(current_prop->intr_grp == INTR_GROUP1S));
if (current_prop->intr_grp == INTR_GROUP1S) {
gicd_set_igrpmodr(gicd_base, intr_num);
ctlr_enable |= CTLR_ENABLE_G1S_BIT;
} else {
gicd_clr_igrpmodr(gicd_base, intr_num);
ctlr_enable |= CTLR_ENABLE_G0_BIT;
}
/* Set interrupt configuration */
gicd_set_icfgr(gicd_base, intr_num, current_prop->intr_cfg);
/* Set the priority of this interrupt */
gicd_set_ipriorityr(gicd_base, intr_num,
current_prop->intr_pri);
/* Target (E)SPIs to the primary CPU */
gic_affinity_val =
gicd_irouter_val_from_mpidr(read_mpidr(), 0U);
gicd_write_irouter(gicd_base, intr_num,
gic_affinity_val);
/* Enable this interrupt */
gicd_set_isenabler(gicd_base, intr_num);
}
return ctlr_enable;
}
/*******************************************************************************
* Helper function to configure the default attributes of (E)SPIs
******************************************************************************/
void gicv3_ppi_sgi_config_defaults(uintptr_t gicr_base)
{
unsigned int i, ppi_regs_num, regs_num;
#if GIC_EXT_INTID
/* Calculate number of PPI registers */
ppi_regs_num = (unsigned int)((gicr_read_typer(gicr_base) >>
TYPER_PPI_NUM_SHIFT) & TYPER_PPI_NUM_MASK) + 1;
/* All other values except PPInum [0-2] are reserved */
if (ppi_regs_num > 3U) {
ppi_regs_num = 1U;
}
#else
ppi_regs_num = 1U;
#endif
/*
* Disable all SGIs (imp. def.)/(E)PPIs before configuring them.
* This is a more scalable approach as it avoids clearing
* the enable bits in the GICD_CTLR.
*/
for (i = 0U; i < ppi_regs_num; ++i) {
gicr_write_icenabler(gicr_base, i, ~0U);
}
/* Wait for pending writes to GICR_ICENABLER */
gicr_wait_for_pending_write(gicr_base);
/* 32 interrupt IDs per GICR_IGROUPR register */
for (i = 0U; i < ppi_regs_num; ++i) {
/* Treat all SGIs/(E)PPIs as G1NS by default */
gicr_write_igroupr(gicr_base, i, ~0U);
}
/* 4 interrupt IDs per GICR_IPRIORITYR register */
regs_num = ppi_regs_num << 3;
for (i = 0U; i < regs_num; ++i) {
/* Setup the default (E)PPI/SGI priorities doing 4 at a time */
gicr_write_ipriorityr(gicr_base, i, GICD_IPRIORITYR_DEF_VAL);
}
/* 16 interrupt IDs per GICR_ICFGR register */
regs_num = ppi_regs_num << 1;
for (i = (MIN_PPI_ID >> ICFGR_SHIFT); i < regs_num; ++i) {
/* Configure all (E)PPIs as level triggered by default */
gicr_write_icfgr(gicr_base, i, 0U);
}
}
/*******************************************************************************
* Helper function to configure properties of secure G0 and G1S (E)PPIs and SGIs
******************************************************************************/
unsigned int gicv3_secure_ppi_sgi_config_props(uintptr_t gicr_base,
const interrupt_prop_t *interrupt_props,
unsigned int interrupt_props_num)
{
unsigned int i;
const interrupt_prop_t *current_prop;
unsigned int ctlr_enable = 0U;
/* Make sure there's a valid property array */
if (interrupt_props_num > 0U) {
assert(interrupt_props != NULL);
}
for (i = 0U; i < interrupt_props_num; i++) {
current_prop = &interrupt_props[i];
unsigned int intr_num = current_prop->intr_num;
/* Skip (E)SPI interrupt */
if (!IS_SGI_PPI(intr_num)) {
continue;
}
/* Configure this interrupt as a secure interrupt */
gicr_clr_igroupr(gicr_base, intr_num);
/* Configure this interrupt as G0 or a G1S interrupt */
assert((current_prop->intr_grp == INTR_GROUP0) ||
(current_prop->intr_grp == INTR_GROUP1S));
if (current_prop->intr_grp == INTR_GROUP1S) {
gicr_set_igrpmodr(gicr_base, intr_num);
ctlr_enable |= CTLR_ENABLE_G1S_BIT;
} else {
gicr_clr_igrpmodr(gicr_base, intr_num);
ctlr_enable |= CTLR_ENABLE_G0_BIT;
}
/* Set the priority of this interrupt */
gicr_set_ipriorityr(gicr_base, intr_num,
current_prop->intr_pri);
/*
* Set interrupt configuration for (E)PPIs.
* Configurations for SGIs 0-15 are ignored.
*/
if (intr_num >= MIN_PPI_ID) {
gicr_set_icfgr(gicr_base, intr_num,
current_prop->intr_cfg);
}
/* Enable this interrupt */
gicr_set_isenabler(gicr_base, intr_num);
}
return ctlr_enable;
}
/**
* gicv3_rdistif_get_number_frames() - determine size of GICv3 GICR region
* @gicr_frame: base address of the GICR region to check
*
* This iterates over the GICR_TYPER registers of multiple GICR frames in
* a GICR region, to find the instance which has the LAST bit set. For most
* systems this corresponds to the number of cores handled by a redistributor,
* but there could be disabled cores among them.
* It assumes that each GICR region is fully accessible (till the LAST bit
* marks the end of the region).
* If a platform has multiple GICR regions, this function would need to be
* called multiple times, providing the respective GICR base address each time.
*
* Return: number of valid GICR frames (at least 1, up to PLATFORM_CORE_COUNT)
******************************************************************************/
unsigned int gicv3_rdistif_get_number_frames(const uintptr_t gicr_frame)
{
uintptr_t rdistif_base = gicr_frame;
unsigned int count;
for (count = 1U; count < PLATFORM_CORE_COUNT; count++) {
uint64_t typer_val = gicr_read_typer(rdistif_base);
if ((typer_val & TYPER_LAST_BIT) != 0U) {
break;
}
rdistif_base += gicv3_redist_size(typer_val);
}
return count;
}
unsigned int gicv3_get_component_partnum(const uintptr_t gic_frame)
{
unsigned int part_id;
/*
* The lower 8 bits of PIDR0, complemented by the lower 4 bits of
* PIDR1 contain a part number identifying the GIC component at a
* particular base address.
*/
part_id = mmio_read_32(gic_frame + GICD_PIDR0_GICV3) & 0xff;
part_id |= (mmio_read_32(gic_frame + GICD_PIDR1_GICV3) << 8) & 0xf00;
return part_id;
}
/*******************************************************************************
* Helper function to return product ID and revision of GIC
* @gicd_base: base address of the GIC distributor
* @gic_prod_id: retrieved product id of GIC
* @gic_rev: retrieved revision of GIC
******************************************************************************/
void gicv3_get_component_prodid_rev(const uintptr_t gicd_base,
unsigned int *gic_prod_id,
uint8_t *gic_rev)
{
unsigned int gicd_iidr;
uint8_t gic_variant;
gicd_iidr = gicd_read_iidr(gicd_base);
*gic_prod_id = gicd_iidr >> IIDR_PRODUCT_ID_SHIFT;
*gic_prod_id &= IIDR_PRODUCT_ID_MASK;
gic_variant = gicd_iidr >> IIDR_VARIANT_SHIFT;
gic_variant &= IIDR_VARIANT_MASK;
*gic_rev = gicd_iidr >> IIDR_REV_SHIFT;
*gic_rev &= IIDR_REV_MASK;
/*
* pack gic variant and gic_rev in 1 byte
* gic_rev = gic_variant[7:4] and gic_rev[0:3]
*/
*gic_rev = *gic_rev | gic_variant << 0x4;
}