blob: 80b506bc60edafbe3698eb75bc4b3ca1d6f36f8e [file] [log] [blame]
/*
* Copyright (c) 2020-2023, Arm Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <assert.h>
#include <errno.h>
#include <inttypes.h>
#include <stdint.h>
#include <string.h>
#include <arch_helpers.h>
#include <arch/aarch64/arch_features.h>
#include <bl31/bl31.h>
#include <bl31/interrupt_mgmt.h>
#include <common/debug.h>
#include <common/runtime_svc.h>
#include <common/tbbr/tbbr_img_def.h>
#include <lib/el3_runtime/context_mgmt.h>
#include <lib/fconf/fconf.h>
#include <lib/fconf/fconf_dyn_cfg_getter.h>
#include <lib/smccc.h>
#include <lib/spinlock.h>
#include <lib/utils.h>
#include <lib/xlat_tables/xlat_tables_v2.h>
#include <plat/common/common_def.h>
#include <plat/common/platform.h>
#include <platform_def.h>
#include <services/ffa_svc.h>
#include <services/spmc_svc.h>
#include <services/spmd_svc.h>
#include <smccc_helpers.h>
#include "spmd_private.h"
/*******************************************************************************
* SPM Core context information.
******************************************************************************/
static spmd_spm_core_context_t spm_core_context[PLATFORM_CORE_COUNT];
/*******************************************************************************
* SPM Core attribute information is read from its manifest if the SPMC is not
* at EL3. Else, it is populated from the SPMC directly.
******************************************************************************/
static spmc_manifest_attribute_t spmc_attrs;
/*******************************************************************************
* SPM Core entry point information. Discovered on the primary core and reused
* on secondary cores.
******************************************************************************/
static entry_point_info_t *spmc_ep_info;
/*******************************************************************************
* SPM Core context on CPU based on mpidr.
******************************************************************************/
spmd_spm_core_context_t *spmd_get_context_by_mpidr(uint64_t mpidr)
{
int core_idx = plat_core_pos_by_mpidr(mpidr);
if (core_idx < 0) {
ERROR("Invalid mpidr: %" PRIx64 ", returned ID: %d\n", mpidr, core_idx);
panic();
}
return &spm_core_context[core_idx];
}
/*******************************************************************************
* SPM Core context on current CPU get helper.
******************************************************************************/
spmd_spm_core_context_t *spmd_get_context(void)
{
return spmd_get_context_by_mpidr(read_mpidr());
}
/*******************************************************************************
* SPM Core ID getter.
******************************************************************************/
uint16_t spmd_spmc_id_get(void)
{
return spmc_attrs.spmc_id;
}
/*******************************************************************************
* Static function declaration.
******************************************************************************/
static int32_t spmd_init(void);
static int spmd_spmc_init(void *pm_addr);
static uint64_t spmd_ffa_error_return(void *handle,
int error_code);
static uint64_t spmd_smc_forward(uint32_t smc_fid,
bool secure_origin,
uint64_t x1,
uint64_t x2,
uint64_t x3,
uint64_t x4,
void *cookie,
void *handle,
uint64_t flags);
/******************************************************************************
* Builds an SPMD to SPMC direct message request.
*****************************************************************************/
void spmd_build_spmc_message(gp_regs_t *gpregs, uint8_t target_func,
unsigned long long message)
{
write_ctx_reg(gpregs, CTX_GPREG_X0, FFA_MSG_SEND_DIRECT_REQ_SMC32);
write_ctx_reg(gpregs, CTX_GPREG_X1,
(SPMD_DIRECT_MSG_ENDPOINT_ID << FFA_DIRECT_MSG_SOURCE_SHIFT) |
spmd_spmc_id_get());
write_ctx_reg(gpregs, CTX_GPREG_X2, BIT(31) | target_func);
write_ctx_reg(gpregs, CTX_GPREG_X3, message);
}
/*******************************************************************************
* This function takes an SPMC context pointer and performs a synchronous
* SPMC entry.
******************************************************************************/
uint64_t spmd_spm_core_sync_entry(spmd_spm_core_context_t *spmc_ctx)
{
uint64_t rc;
assert(spmc_ctx != NULL);
cm_set_context(&(spmc_ctx->cpu_ctx), SECURE);
/* Restore the context assigned above */
#if SPMD_SPM_AT_SEL2
cm_el2_sysregs_context_restore(SECURE);
#else
cm_el1_sysregs_context_restore(SECURE);
#endif
cm_set_next_eret_context(SECURE);
/* Enter SPMC */
rc = spmd_spm_core_enter(&spmc_ctx->c_rt_ctx);
/* Save secure state */
#if SPMD_SPM_AT_SEL2
cm_el2_sysregs_context_save(SECURE);
#else
cm_el1_sysregs_context_save(SECURE);
#endif
return rc;
}
/*******************************************************************************
* This function returns to the place where spmd_spm_core_sync_entry() was
* called originally.
******************************************************************************/
__dead2 void spmd_spm_core_sync_exit(uint64_t rc)
{
spmd_spm_core_context_t *ctx = spmd_get_context();
/* Get current CPU context from SPMC context */
assert(cm_get_context(SECURE) == &(ctx->cpu_ctx));
/*
* The SPMD must have initiated the original request through a
* synchronous entry into SPMC. Jump back to the original C runtime
* context with the value of rc in x0;
*/
spmd_spm_core_exit(ctx->c_rt_ctx, rc);
panic();
}
/*******************************************************************************
* Jump to the SPM Core for the first time.
******************************************************************************/
static int32_t spmd_init(void)
{
spmd_spm_core_context_t *ctx = spmd_get_context();
uint64_t rc;
VERBOSE("SPM Core init start.\n");
/* Primary boot core enters the SPMC for initialization. */
ctx->state = SPMC_STATE_ON_PENDING;
rc = spmd_spm_core_sync_entry(ctx);
if (rc != 0ULL) {
ERROR("SPMC initialisation failed 0x%" PRIx64 "\n", rc);
return 0;
}
ctx->state = SPMC_STATE_ON;
VERBOSE("SPM Core init end.\n");
return 1;
}
/*******************************************************************************
* spmd_secure_interrupt_handler
* Enter the SPMC for further handling of the secure interrupt by the SPMC
* itself or a Secure Partition.
******************************************************************************/
static uint64_t spmd_secure_interrupt_handler(uint32_t id,
uint32_t flags,
void *handle,
void *cookie)
{
spmd_spm_core_context_t *ctx = spmd_get_context();
gp_regs_t *gpregs = get_gpregs_ctx(&ctx->cpu_ctx);
unsigned int linear_id = plat_my_core_pos();
int64_t rc;
/* Sanity check the security state when the exception was generated */
assert(get_interrupt_src_ss(flags) == NON_SECURE);
/* Sanity check the pointer to this cpu's context */
assert(handle == cm_get_context(NON_SECURE));
/* Save the non-secure context before entering SPMC */
cm_el1_sysregs_context_save(NON_SECURE);
#if SPMD_SPM_AT_SEL2
cm_el2_sysregs_context_save(NON_SECURE);
#endif
/* Convey the event to the SPMC through the FFA_INTERRUPT interface. */
write_ctx_reg(gpregs, CTX_GPREG_X0, FFA_INTERRUPT);
write_ctx_reg(gpregs, CTX_GPREG_X1, 0);
write_ctx_reg(gpregs, CTX_GPREG_X2, 0);
write_ctx_reg(gpregs, CTX_GPREG_X3, 0);
write_ctx_reg(gpregs, CTX_GPREG_X4, 0);
write_ctx_reg(gpregs, CTX_GPREG_X5, 0);
write_ctx_reg(gpregs, CTX_GPREG_X6, 0);
write_ctx_reg(gpregs, CTX_GPREG_X7, 0);
/* Mark current core as handling a secure interrupt. */
ctx->secure_interrupt_ongoing = true;
rc = spmd_spm_core_sync_entry(ctx);
if (rc != 0ULL) {
ERROR("%s failed (%" PRId64 ") on CPU%u\n", __func__, rc, linear_id);
}
ctx->secure_interrupt_ongoing = false;
cm_el1_sysregs_context_restore(NON_SECURE);
#if SPMD_SPM_AT_SEL2
cm_el2_sysregs_context_restore(NON_SECURE);
#endif
cm_set_next_eret_context(NON_SECURE);
SMC_RET0(&ctx->cpu_ctx);
}
/*******************************************************************************
* spmd_group0_interrupt_handler_nwd
* Group0 secure interrupt in the normal world are trapped to EL3. Delegate the
* handling of the interrupt to the platform handler, and return only upon
* successfully handling the Group0 interrupt.
******************************************************************************/
static uint64_t spmd_group0_interrupt_handler_nwd(uint32_t id,
uint32_t flags,
void *handle,
void *cookie)
{
uint32_t intid;
/* Sanity check the security state when the exception was generated. */
assert(get_interrupt_src_ss(flags) == NON_SECURE);
/* Sanity check the pointer to this cpu's context. */
assert(handle == cm_get_context(NON_SECURE));
assert(id == INTR_ID_UNAVAILABLE);
assert(plat_ic_get_pending_interrupt_type() == INTR_TYPE_EL3);
intid = plat_ic_get_pending_interrupt_id();
if (plat_spmd_handle_group0_interrupt(intid) < 0) {
ERROR("Group0 interrupt %u not handled\n", intid);
panic();
}
return 0U;
}
/*******************************************************************************
* spmd_handle_group0_intr_swd
* SPMC delegates handling of Group0 secure interrupt to EL3 firmware using
* FFA_EL3_INTR_HANDLE SMC call. Further, SPMD delegates the handling of the
* interrupt to the platform handler, and returns only upon successfully
* handling the Group0 interrupt.
******************************************************************************/
static uint64_t spmd_handle_group0_intr_swd(void *handle)
{
uint32_t intid;
/* Sanity check the pointer to this cpu's context */
assert(handle == cm_get_context(SECURE));
assert(plat_ic_get_pending_interrupt_type() == INTR_TYPE_EL3);
intid = plat_ic_get_pending_interrupt_id();
/*
* TODO: Currently due to a limitation in SPMD implementation, the
* platform handler is expected to not delegate handling to NWd while
* processing Group0 secure interrupt.
*/
if (plat_spmd_handle_group0_interrupt(intid) < 0) {
/* Group0 interrupt was not handled by the platform. */
ERROR("Group0 interrupt %u not handled\n", intid);
panic();
}
/* Return success. */
SMC_RET8(handle, FFA_SUCCESS_SMC32, FFA_PARAM_MBZ, FFA_PARAM_MBZ,
FFA_PARAM_MBZ, FFA_PARAM_MBZ, FFA_PARAM_MBZ, FFA_PARAM_MBZ,
FFA_PARAM_MBZ);
}
#if ENABLE_RME && SPMD_SPM_AT_SEL2 && !RESET_TO_BL31
static int spmd_dynamic_map_mem(uintptr_t base_addr, size_t size,
unsigned int attr, uintptr_t *align_addr,
size_t *align_size)
{
uintptr_t base_addr_align;
size_t mapped_size_align;
int rc;
/* Page aligned address and size if necessary */
base_addr_align = page_align(base_addr, DOWN);
mapped_size_align = page_align(size, UP);
if ((base_addr != base_addr_align) &&
(size == mapped_size_align)) {
mapped_size_align += PAGE_SIZE;
}
/*
* Map dynamically given region with its aligned base address and
* size
*/
rc = mmap_add_dynamic_region((unsigned long long)base_addr_align,
base_addr_align,
mapped_size_align,
attr);
if (rc == 0) {
*align_addr = base_addr_align;
*align_size = mapped_size_align;
}
return rc;
}
static void spmd_do_sec_cpy(uintptr_t root_base_addr, uintptr_t sec_base_addr,
size_t size)
{
uintptr_t root_base_addr_align, sec_base_addr_align;
size_t root_mapped_size_align, sec_mapped_size_align;
int rc;
assert(root_base_addr != 0UL);
assert(sec_base_addr != 0UL);
assert(size != 0UL);
/* Map the memory with required attributes */
rc = spmd_dynamic_map_mem(root_base_addr, size, MT_RO_DATA | MT_ROOT,
&root_base_addr_align,
&root_mapped_size_align);
if (rc != 0) {
ERROR("%s %s %lu (%d)\n", "Error while mapping", "root region",
root_base_addr, rc);
panic();
}
rc = spmd_dynamic_map_mem(sec_base_addr, size, MT_RW_DATA | MT_SECURE,
&sec_base_addr_align, &sec_mapped_size_align);
if (rc != 0) {
ERROR("%s %s %lu (%d)\n", "Error while mapping",
"secure region", sec_base_addr, rc);
panic();
}
/* Do copy operation */
(void)memcpy((void *)sec_base_addr, (void *)root_base_addr, size);
/* Unmap root memory region */
rc = mmap_remove_dynamic_region(root_base_addr_align,
root_mapped_size_align);
if (rc != 0) {
ERROR("%s %s %lu (%d)\n", "Error while unmapping",
"root region", root_base_addr_align, rc);
panic();
}
/* Unmap secure memory region */
rc = mmap_remove_dynamic_region(sec_base_addr_align,
sec_mapped_size_align);
if (rc != 0) {
ERROR("%s %s %lu (%d)\n", "Error while unmapping",
"secure region", sec_base_addr_align, rc);
panic();
}
}
#endif /* ENABLE_RME && SPMD_SPM_AT_SEL2 && !RESET_TO_BL31 */
/*******************************************************************************
* Loads SPMC manifest and inits SPMC.
******************************************************************************/
static int spmd_spmc_init(void *pm_addr)
{
cpu_context_t *cpu_ctx;
unsigned int core_id;
uint32_t ep_attr, flags;
int rc;
const struct dyn_cfg_dtb_info_t *image_info __unused;
/* Load the SPM Core manifest */
rc = plat_spm_core_manifest_load(&spmc_attrs, pm_addr);
if (rc != 0) {
WARN("No or invalid SPM Core manifest image provided by BL2\n");
return rc;
}
/*
* Ensure that the SPM Core version is compatible with the SPM
* Dispatcher version.
*/
if ((spmc_attrs.major_version != FFA_VERSION_MAJOR) ||
(spmc_attrs.minor_version > FFA_VERSION_MINOR)) {
WARN("Unsupported FFA version (%u.%u)\n",
spmc_attrs.major_version, spmc_attrs.minor_version);
return -EINVAL;
}
VERBOSE("FFA version (%u.%u)\n", spmc_attrs.major_version,
spmc_attrs.minor_version);
VERBOSE("SPM Core run time EL%x.\n",
SPMD_SPM_AT_SEL2 ? MODE_EL2 : MODE_EL1);
/* Validate the SPMC ID, Ensure high bit is set */
if (((spmc_attrs.spmc_id >> SPMC_SECURE_ID_SHIFT) &
SPMC_SECURE_ID_MASK) == 0U) {
WARN("Invalid ID (0x%x) for SPMC.\n", spmc_attrs.spmc_id);
return -EINVAL;
}
/* Validate the SPM Core execution state */
if ((spmc_attrs.exec_state != MODE_RW_64) &&
(spmc_attrs.exec_state != MODE_RW_32)) {
WARN("Unsupported %s%x.\n", "SPM Core execution state 0x",
spmc_attrs.exec_state);
return -EINVAL;
}
VERBOSE("%s%x.\n", "SPM Core execution state 0x",
spmc_attrs.exec_state);
#if SPMD_SPM_AT_SEL2
/* Ensure manifest has not requested AArch32 state in S-EL2 */
if (spmc_attrs.exec_state == MODE_RW_32) {
WARN("AArch32 state at S-EL2 is not supported.\n");
return -EINVAL;
}
/*
* Check if S-EL2 is supported on this system if S-EL2
* is required for SPM
*/
if (!is_feat_sel2_supported()) {
WARN("SPM Core run time S-EL2 is not supported.\n");
return -EINVAL;
}
#endif /* SPMD_SPM_AT_SEL2 */
/* Initialise an entrypoint to set up the CPU context */
ep_attr = SECURE | EP_ST_ENABLE;
if ((read_sctlr_el3() & SCTLR_EE_BIT) != 0ULL) {
ep_attr |= EP_EE_BIG;
}
SET_PARAM_HEAD(spmc_ep_info, PARAM_EP, VERSION_1, ep_attr);
/*
* Populate SPSR for SPM Core based upon validated parameters from the
* manifest.
*/
if (spmc_attrs.exec_state == MODE_RW_32) {
spmc_ep_info->spsr = SPSR_MODE32(MODE32_svc, SPSR_T_ARM,
SPSR_E_LITTLE,
DAIF_FIQ_BIT |
DAIF_IRQ_BIT |
DAIF_ABT_BIT);
} else {
#if SPMD_SPM_AT_SEL2
static const uint32_t runtime_el = MODE_EL2;
#else
static const uint32_t runtime_el = MODE_EL1;
#endif
spmc_ep_info->spsr = SPSR_64(runtime_el,
MODE_SP_ELX,
DISABLE_ALL_EXCEPTIONS);
}
#if ENABLE_RME && SPMD_SPM_AT_SEL2 && !RESET_TO_BL31
image_info = FCONF_GET_PROPERTY(dyn_cfg, dtb, TOS_FW_CONFIG_ID);
assert(image_info != NULL);
if ((image_info->config_addr == 0UL) ||
(image_info->secondary_config_addr == 0UL) ||
(image_info->config_max_size == 0UL)) {
return -EINVAL;
}
/* Copy manifest from root->secure region */
spmd_do_sec_cpy(image_info->config_addr,
image_info->secondary_config_addr,
image_info->config_max_size);
/* Update ep info of BL32 */
assert(spmc_ep_info != NULL);
spmc_ep_info->args.arg0 = image_info->secondary_config_addr;
#endif /* ENABLE_RME && SPMD_SPM_AT_SEL2 && !RESET_TO_BL31 */
/* Set an initial SPMC context state for all cores. */
for (core_id = 0U; core_id < PLATFORM_CORE_COUNT; core_id++) {
spm_core_context[core_id].state = SPMC_STATE_OFF;
/* Setup an initial cpu context for the SPMC. */
cpu_ctx = &spm_core_context[core_id].cpu_ctx;
cm_setup_context(cpu_ctx, spmc_ep_info);
/*
* Pass the core linear ID to the SPMC through x4.
* (TF-A implementation defined behavior helping
* a legacy TOS migration to adopt FF-A).
*/
write_ctx_reg(get_gpregs_ctx(cpu_ctx), CTX_GPREG_X4, core_id);
}
/* Register power management hooks with PSCI */
psci_register_spd_pm_hook(&spmd_pm);
/* Register init function for deferred init. */
bl31_register_bl32_init(&spmd_init);
INFO("SPM Core setup done.\n");
/*
* Register an interrupt handler routing secure interrupts to SPMD
* while the NWd is running.
*/
flags = 0;
set_interrupt_rm_flag(flags, NON_SECURE);
rc = register_interrupt_type_handler(INTR_TYPE_S_EL1,
spmd_secure_interrupt_handler,
flags);
if (rc != 0) {
panic();
}
/*
* Register an interrupt handler routing Group0 interrupts to SPMD
* while the NWd is running.
*/
rc = register_interrupt_type_handler(INTR_TYPE_EL3,
spmd_group0_interrupt_handler_nwd,
flags);
if (rc != 0) {
panic();
}
return 0;
}
/*******************************************************************************
* Initialize context of SPM Core.
******************************************************************************/
int spmd_setup(void)
{
int rc;
void *spmc_manifest;
/*
* If the SPMC is at EL3, then just initialise it directly. The
* shenanigans of when it is at a lower EL are not needed.
*/
if (is_spmc_at_el3()) {
/* Allow the SPMC to populate its attributes directly. */
spmc_populate_attrs(&spmc_attrs);
rc = spmc_setup();
if (rc != 0) {
WARN("SPMC initialisation failed 0x%x.\n", rc);
}
return 0;
}
spmc_ep_info = bl31_plat_get_next_image_ep_info(SECURE);
if (spmc_ep_info == NULL) {
WARN("No SPM Core image provided by BL2 boot loader.\n");
return 0;
}
/* Under no circumstances will this parameter be 0 */
assert(spmc_ep_info->pc != 0ULL);
/*
* Check if BL32 ep_info has a reference to 'tos_fw_config'. This will
* be used as a manifest for the SPM Core at the next lower EL/mode.
*/
spmc_manifest = (void *)spmc_ep_info->args.arg0;
if (spmc_manifest == NULL) {
WARN("Invalid or absent SPM Core manifest.\n");
return 0;
}
/* Load manifest, init SPMC */
rc = spmd_spmc_init(spmc_manifest);
if (rc != 0) {
WARN("Booting device without SPM initialization.\n");
}
return 0;
}
/*******************************************************************************
* Forward FF-A SMCs to the other security state.
******************************************************************************/
uint64_t spmd_smc_switch_state(uint32_t smc_fid,
bool secure_origin,
uint64_t x1,
uint64_t x2,
uint64_t x3,
uint64_t x4,
void *handle)
{
unsigned int secure_state_in = (secure_origin) ? SECURE : NON_SECURE;
unsigned int secure_state_out = (!secure_origin) ? SECURE : NON_SECURE;
/* Save incoming security state */
#if SPMD_SPM_AT_SEL2
if (secure_state_in == NON_SECURE) {
cm_el1_sysregs_context_save(secure_state_in);
}
cm_el2_sysregs_context_save(secure_state_in);
#else
cm_el1_sysregs_context_save(secure_state_in);
#endif
/* Restore outgoing security state */
#if SPMD_SPM_AT_SEL2
if (secure_state_out == NON_SECURE) {
cm_el1_sysregs_context_restore(secure_state_out);
}
cm_el2_sysregs_context_restore(secure_state_out);
#else
cm_el1_sysregs_context_restore(secure_state_out);
#endif
cm_set_next_eret_context(secure_state_out);
#if SPMD_SPM_AT_SEL2
/*
* If SPMC is at SEL2, save additional registers x8-x17, which may
* be used in FF-A calls such as FFA_PARTITION_INFO_GET_REGS.
* Note that technically, all SPMCs can support this, but this code is
* under ifdef to minimize breakage in case other SPMCs do not save
* and restore x8-x17.
* We also need to pass through these registers since not all FF-A ABIs
* modify x8-x17, in which case, SMCCC requires that these registers be
* preserved, so the SPMD passes through these registers and expects the
* SPMC to save and restore (potentially also modify) them.
*/
SMC_RET18(cm_get_context(secure_state_out), smc_fid, x1, x2, x3, x4,
SMC_GET_GP(handle, CTX_GPREG_X5),
SMC_GET_GP(handle, CTX_GPREG_X6),
SMC_GET_GP(handle, CTX_GPREG_X7),
SMC_GET_GP(handle, CTX_GPREG_X8),
SMC_GET_GP(handle, CTX_GPREG_X9),
SMC_GET_GP(handle, CTX_GPREG_X10),
SMC_GET_GP(handle, CTX_GPREG_X11),
SMC_GET_GP(handle, CTX_GPREG_X12),
SMC_GET_GP(handle, CTX_GPREG_X13),
SMC_GET_GP(handle, CTX_GPREG_X14),
SMC_GET_GP(handle, CTX_GPREG_X15),
SMC_GET_GP(handle, CTX_GPREG_X16),
SMC_GET_GP(handle, CTX_GPREG_X17)
);
#else
SMC_RET8(cm_get_context(secure_state_out), smc_fid, x1, x2, x3, x4,
SMC_GET_GP(handle, CTX_GPREG_X5),
SMC_GET_GP(handle, CTX_GPREG_X6),
SMC_GET_GP(handle, CTX_GPREG_X7));
#endif
}
/*******************************************************************************
* Forward SMCs to the other security state.
******************************************************************************/
static uint64_t spmd_smc_forward(uint32_t smc_fid,
bool secure_origin,
uint64_t x1,
uint64_t x2,
uint64_t x3,
uint64_t x4,
void *cookie,
void *handle,
uint64_t flags)
{
if (is_spmc_at_el3() && !secure_origin) {
return spmc_smc_handler(smc_fid, secure_origin, x1, x2, x3, x4,
cookie, handle, flags);
}
return spmd_smc_switch_state(smc_fid, secure_origin, x1, x2, x3, x4,
handle);
}
/*******************************************************************************
* Return FFA_ERROR with specified error code
******************************************************************************/
static uint64_t spmd_ffa_error_return(void *handle, int error_code)
{
SMC_RET8(handle, (uint32_t) FFA_ERROR,
FFA_TARGET_INFO_MBZ, (uint32_t)error_code,
FFA_PARAM_MBZ, FFA_PARAM_MBZ, FFA_PARAM_MBZ,
FFA_PARAM_MBZ, FFA_PARAM_MBZ);
}
/*******************************************************************************
* spmd_check_address_in_binary_image
******************************************************************************/
bool spmd_check_address_in_binary_image(uint64_t address)
{
assert(!check_uptr_overflow(spmc_attrs.load_address, spmc_attrs.binary_size));
return ((address >= spmc_attrs.load_address) &&
(address < (spmc_attrs.load_address + spmc_attrs.binary_size)));
}
/******************************************************************************
* spmd_is_spmc_message
*****************************************************************************/
static bool spmd_is_spmc_message(unsigned int ep)
{
if (is_spmc_at_el3()) {
return false;
}
return ((ffa_endpoint_destination(ep) == SPMD_DIRECT_MSG_ENDPOINT_ID)
&& (ffa_endpoint_source(ep) == spmc_attrs.spmc_id));
}
/******************************************************************************
* spmd_handle_spmc_message
*****************************************************************************/
static int spmd_handle_spmc_message(unsigned long long msg,
unsigned long long parm1, unsigned long long parm2,
unsigned long long parm3, unsigned long long parm4)
{
VERBOSE("%s %llx %llx %llx %llx %llx\n", __func__,
msg, parm1, parm2, parm3, parm4);
return -EINVAL;
}
/*******************************************************************************
* This function forwards FF-A SMCs to either the main SPMD handler or the
* SPMC at EL3, depending on the origin security state, if enabled.
******************************************************************************/
uint64_t spmd_ffa_smc_handler(uint32_t smc_fid,
uint64_t x1,
uint64_t x2,
uint64_t x3,
uint64_t x4,
void *cookie,
void *handle,
uint64_t flags)
{
if (is_spmc_at_el3()) {
/*
* If we have an SPMC at EL3 allow handling of the SMC first.
* The SPMC will call back through to SPMD handler if required.
*/
if (is_caller_secure(flags)) {
return spmc_smc_handler(smc_fid,
is_caller_secure(flags),
x1, x2, x3, x4, cookie,
handle, flags);
}
}
return spmd_smc_handler(smc_fid, x1, x2, x3, x4, cookie,
handle, flags);
}
/*******************************************************************************
* This function handles all SMCs in the range reserved for FFA. Each call is
* either forwarded to the other security state or handled by the SPM dispatcher
******************************************************************************/
uint64_t spmd_smc_handler(uint32_t smc_fid,
uint64_t x1,
uint64_t x2,
uint64_t x3,
uint64_t x4,
void *cookie,
void *handle,
uint64_t flags)
{
unsigned int linear_id = plat_my_core_pos();
spmd_spm_core_context_t *ctx = spmd_get_context();
bool secure_origin;
int32_t ret;
uint32_t input_version;
/* Determine which security state this SMC originated from */
secure_origin = is_caller_secure(flags);
VERBOSE("SPM(%u): 0x%x 0x%" PRIx64 " 0x%" PRIx64 " 0x%" PRIx64 " 0x%" PRIx64
" 0x%" PRIx64 " 0x%" PRIx64 " 0x%" PRIx64 "\n",
linear_id, smc_fid, x1, x2, x3, x4,
SMC_GET_GP(handle, CTX_GPREG_X5),
SMC_GET_GP(handle, CTX_GPREG_X6),
SMC_GET_GP(handle, CTX_GPREG_X7));
switch (smc_fid) {
case FFA_ERROR:
/*
* Check if this is the first invocation of this interface on
* this CPU. If so, then indicate that the SPM Core initialised
* unsuccessfully.
*/
if (secure_origin && (ctx->state == SPMC_STATE_ON_PENDING)) {
spmd_spm_core_sync_exit(x2);
}
return spmd_smc_forward(smc_fid, secure_origin,
x1, x2, x3, x4, cookie,
handle, flags);
break; /* not reached */
case FFA_VERSION:
input_version = (uint32_t)(0xFFFFFFFF & x1);
/*
* If caller is secure and SPMC was initialized,
* return FFA_VERSION of SPMD.
* If caller is non secure and SPMC was initialized,
* forward to the EL3 SPMC if enabled, otherwise return
* the SPMC version if implemented at a lower EL.
* Sanity check to "input_version".
* If the EL3 SPMC is enabled, ignore the SPMC state as
* this is not used.
*/
if ((input_version & FFA_VERSION_BIT31_MASK) ||
(!is_spmc_at_el3() && (ctx->state == SPMC_STATE_RESET))) {
ret = FFA_ERROR_NOT_SUPPORTED;
} else if (!secure_origin) {
if (is_spmc_at_el3()) {
/*
* Forward the call directly to the EL3 SPMC, if
* enabled, as we don't need to wrap the call in
* a direct request.
*/
return spmd_smc_forward(smc_fid, secure_origin,
x1, x2, x3, x4, cookie,
handle, flags);
}
gp_regs_t *gpregs = get_gpregs_ctx(&ctx->cpu_ctx);
uint64_t rc;
if (spmc_attrs.major_version == 1 &&
spmc_attrs.minor_version == 0) {
ret = MAKE_FFA_VERSION(spmc_attrs.major_version,
spmc_attrs.minor_version);
SMC_RET8(handle, (uint32_t)ret,
FFA_TARGET_INFO_MBZ,
FFA_TARGET_INFO_MBZ,
FFA_PARAM_MBZ, FFA_PARAM_MBZ,
FFA_PARAM_MBZ, FFA_PARAM_MBZ,
FFA_PARAM_MBZ);
break;
}
/* Save non-secure system registers context */
cm_el1_sysregs_context_save(NON_SECURE);
#if SPMD_SPM_AT_SEL2
cm_el2_sysregs_context_save(NON_SECURE);
#endif
/*
* The incoming request has FFA_VERSION as X0 smc_fid
* and requested version in x1. Prepare a direct request
* from SPMD to SPMC with FFA_VERSION framework function
* identifier in X2 and requested version in X3.
*/
spmd_build_spmc_message(gpregs,
SPMD_FWK_MSG_FFA_VERSION_REQ,
input_version);
rc = spmd_spm_core_sync_entry(ctx);
if ((rc != 0ULL) ||
(SMC_GET_GP(gpregs, CTX_GPREG_X0) !=
FFA_MSG_SEND_DIRECT_RESP_SMC32) ||
(SMC_GET_GP(gpregs, CTX_GPREG_X2) !=
(FFA_FWK_MSG_BIT |
SPMD_FWK_MSG_FFA_VERSION_RESP))) {
ERROR("Failed to forward FFA_VERSION\n");
ret = FFA_ERROR_NOT_SUPPORTED;
} else {
ret = SMC_GET_GP(gpregs, CTX_GPREG_X3);
}
/*
* Return here after SPMC has handled FFA_VERSION.
* The returned SPMC version is held in X3.
* Forward this version in X0 to the non-secure caller.
*/
return spmd_smc_forward(ret, true, FFA_PARAM_MBZ,
FFA_PARAM_MBZ, FFA_PARAM_MBZ,
FFA_PARAM_MBZ, cookie, gpregs,
flags);
} else {
ret = MAKE_FFA_VERSION(FFA_VERSION_MAJOR,
FFA_VERSION_MINOR);
}
SMC_RET8(handle, (uint32_t)ret, FFA_TARGET_INFO_MBZ,
FFA_TARGET_INFO_MBZ, FFA_PARAM_MBZ, FFA_PARAM_MBZ,
FFA_PARAM_MBZ, FFA_PARAM_MBZ, FFA_PARAM_MBZ);
break; /* not reached */
case FFA_FEATURES:
/*
* This is an optional interface. Do the minimal checks and
* forward to SPM Core which will handle it if implemented.
*/
/* Forward SMC from Normal world to the SPM Core */
if (!secure_origin) {
return spmd_smc_forward(smc_fid, secure_origin,
x1, x2, x3, x4, cookie,
handle, flags);
}
/*
* Return success if call was from secure world i.e. all
* FFA functions are supported. This is essentially a
* nop.
*/
SMC_RET8(handle, FFA_SUCCESS_SMC32, x1, x2, x3, x4,
SMC_GET_GP(handle, CTX_GPREG_X5),
SMC_GET_GP(handle, CTX_GPREG_X6),
SMC_GET_GP(handle, CTX_GPREG_X7));
break; /* not reached */
case FFA_ID_GET:
/*
* Returns the ID of the calling FFA component.
*/
if (!secure_origin) {
SMC_RET8(handle, FFA_SUCCESS_SMC32,
FFA_TARGET_INFO_MBZ, FFA_NS_ENDPOINT_ID,
FFA_PARAM_MBZ, FFA_PARAM_MBZ,
FFA_PARAM_MBZ, FFA_PARAM_MBZ,
FFA_PARAM_MBZ);
}
SMC_RET8(handle, FFA_SUCCESS_SMC32,
FFA_TARGET_INFO_MBZ, spmc_attrs.spmc_id,
FFA_PARAM_MBZ, FFA_PARAM_MBZ,
FFA_PARAM_MBZ, FFA_PARAM_MBZ,
FFA_PARAM_MBZ);
break; /* not reached */
case FFA_SECONDARY_EP_REGISTER_SMC64:
if (secure_origin) {
ret = spmd_pm_secondary_ep_register(x1);
if (ret < 0) {
SMC_RET8(handle, FFA_ERROR_SMC64,
FFA_TARGET_INFO_MBZ, ret,
FFA_PARAM_MBZ, FFA_PARAM_MBZ,
FFA_PARAM_MBZ, FFA_PARAM_MBZ,
FFA_PARAM_MBZ);
} else {
SMC_RET8(handle, FFA_SUCCESS_SMC64,
FFA_TARGET_INFO_MBZ, FFA_PARAM_MBZ,
FFA_PARAM_MBZ, FFA_PARAM_MBZ,
FFA_PARAM_MBZ, FFA_PARAM_MBZ,
FFA_PARAM_MBZ);
}
}
return spmd_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED);
break; /* Not reached */
case FFA_SPM_ID_GET:
if (MAKE_FFA_VERSION(1, 1) > FFA_VERSION_COMPILED) {
return spmd_ffa_error_return(handle,
FFA_ERROR_NOT_SUPPORTED);
}
/*
* Returns the ID of the SPMC or SPMD depending on the FF-A
* instance where this function is invoked
*/
if (!secure_origin) {
SMC_RET8(handle, FFA_SUCCESS_SMC32,
FFA_TARGET_INFO_MBZ, spmc_attrs.spmc_id,
FFA_PARAM_MBZ, FFA_PARAM_MBZ,
FFA_PARAM_MBZ, FFA_PARAM_MBZ,
FFA_PARAM_MBZ);
}
SMC_RET8(handle, FFA_SUCCESS_SMC32,
FFA_TARGET_INFO_MBZ, SPMD_DIRECT_MSG_ENDPOINT_ID,
FFA_PARAM_MBZ, FFA_PARAM_MBZ,
FFA_PARAM_MBZ, FFA_PARAM_MBZ,
FFA_PARAM_MBZ);
break; /* not reached */
case FFA_MSG_SEND_DIRECT_REQ_SMC32:
case FFA_MSG_SEND_DIRECT_REQ_SMC64:
if (!secure_origin) {
/* Validate source endpoint is non-secure for non-secure caller. */
if (ffa_is_secure_world_id(ffa_endpoint_source(x1))) {
return spmd_ffa_error_return(handle,
FFA_ERROR_INVALID_PARAMETER);
}
}
if (secure_origin && spmd_is_spmc_message(x1)) {
ret = spmd_handle_spmc_message(x3, x4,
SMC_GET_GP(handle, CTX_GPREG_X5),
SMC_GET_GP(handle, CTX_GPREG_X6),
SMC_GET_GP(handle, CTX_GPREG_X7));
SMC_RET8(handle, FFA_SUCCESS_SMC32,
FFA_TARGET_INFO_MBZ, ret,
FFA_PARAM_MBZ, FFA_PARAM_MBZ,
FFA_PARAM_MBZ, FFA_PARAM_MBZ,
FFA_PARAM_MBZ);
} else {
/* Forward direct message to the other world */
return spmd_smc_forward(smc_fid, secure_origin,
x1, x2, x3, x4, cookie,
handle, flags);
}
break; /* Not reached */
case FFA_MSG_SEND_DIRECT_RESP_SMC32:
if (secure_origin && spmd_is_spmc_message(x1)) {
spmd_spm_core_sync_exit(0ULL);
} else {
/* Forward direct message to the other world */
return spmd_smc_forward(smc_fid, secure_origin,
x1, x2, x3, x4, cookie,
handle, flags);
}
break; /* Not reached */
case FFA_RX_RELEASE:
case FFA_RXTX_MAP_SMC32:
case FFA_RXTX_MAP_SMC64:
case FFA_RXTX_UNMAP:
case FFA_PARTITION_INFO_GET:
#if MAKE_FFA_VERSION(1, 1) <= FFA_VERSION_COMPILED
case FFA_NOTIFICATION_BITMAP_CREATE:
case FFA_NOTIFICATION_BITMAP_DESTROY:
case FFA_NOTIFICATION_BIND:
case FFA_NOTIFICATION_UNBIND:
case FFA_NOTIFICATION_SET:
case FFA_NOTIFICATION_GET:
case FFA_NOTIFICATION_INFO_GET:
case FFA_NOTIFICATION_INFO_GET_SMC64:
case FFA_MSG_SEND2:
case FFA_RX_ACQUIRE:
#endif
case FFA_MSG_RUN:
/*
* Above calls should be invoked only by the Normal world and
* must not be forwarded from Secure world to Normal world.
*/
if (secure_origin) {
return spmd_ffa_error_return(handle,
FFA_ERROR_NOT_SUPPORTED);
}
/* Forward the call to the other world */
/* fallthrough */
case FFA_MSG_SEND:
case FFA_MSG_SEND_DIRECT_RESP_SMC64:
case FFA_MEM_DONATE_SMC32:
case FFA_MEM_DONATE_SMC64:
case FFA_MEM_LEND_SMC32:
case FFA_MEM_LEND_SMC64:
case FFA_MEM_SHARE_SMC32:
case FFA_MEM_SHARE_SMC64:
case FFA_MEM_RETRIEVE_REQ_SMC32:
case FFA_MEM_RETRIEVE_REQ_SMC64:
case FFA_MEM_RETRIEVE_RESP:
case FFA_MEM_RELINQUISH:
case FFA_MEM_RECLAIM:
case FFA_MEM_FRAG_TX:
case FFA_MEM_FRAG_RX:
case FFA_SUCCESS_SMC32:
case FFA_SUCCESS_SMC64:
/*
* TODO: Assume that no requests originate from EL3 at the
* moment. This will change if a SP service is required in
* response to secure interrupts targeted to EL3. Until then
* simply forward the call to the Normal world.
*/
return spmd_smc_forward(smc_fid, secure_origin,
x1, x2, x3, x4, cookie,
handle, flags);
break; /* not reached */
case FFA_MSG_WAIT:
/*
* Check if this is the first invocation of this interface on
* this CPU from the Secure world. If so, then indicate that the
* SPM Core initialised successfully.
*/
if (secure_origin && (ctx->state == SPMC_STATE_ON_PENDING)) {
spmd_spm_core_sync_exit(0ULL);
}
/* Forward the call to the other world */
/* fallthrough */
case FFA_INTERRUPT:
case FFA_MSG_YIELD:
/* This interface must be invoked only by the Secure world */
if (!secure_origin) {
return spmd_ffa_error_return(handle,
FFA_ERROR_NOT_SUPPORTED);
}
return spmd_smc_forward(smc_fid, secure_origin,
x1, x2, x3, x4, cookie,
handle, flags);
break; /* not reached */
case FFA_NORMAL_WORLD_RESUME:
if (secure_origin && ctx->secure_interrupt_ongoing) {
spmd_spm_core_sync_exit(0ULL);
} else {
return spmd_ffa_error_return(handle, FFA_ERROR_DENIED);
}
break; /* Not reached */
#if MAKE_FFA_VERSION(1, 1) <= FFA_VERSION_COMPILED
case FFA_PARTITION_INFO_GET_REGS_SMC64:
if (secure_origin) {
/* TODO: Future patches to enable support for this */
return spmd_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED);
}
/* Call only supported with SMCCC 1.2+ */
if (MAKE_SMCCC_VERSION(SMCCC_MAJOR_VERSION, SMCCC_MINOR_VERSION) < 0x10002) {
return spmd_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED);
}
return spmd_smc_forward(smc_fid, secure_origin,
x1, x2, x3, x4, cookie,
handle, flags);
break; /* Not reached */
#endif
case FFA_EL3_INTR_HANDLE:
if (secure_origin) {
return spmd_handle_group0_intr_swd(handle);
} else {
return spmd_ffa_error_return(handle, FFA_ERROR_DENIED);
}
default:
WARN("SPM: Unsupported call 0x%08x\n", smc_fid);
return spmd_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED);
}
}