blob: 02f1d34a8066b3efbb08d567ac6c53bc2dbaeb0f [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
*
* Copyright (C) 2009-2016 John Crispin <blogic@openwrt.org>
* Copyright (C) 2009-2016 Felix Fietkau <nbd@openwrt.org>
* Copyright (C) 2013-2016 Michael Lee <igvtee@gmail.com>
*/
#include <linux/of_device.h>
#include <linux/of_mdio.h>
#include <linux/of_net.h>
#include <linux/of_address.h>
#include <linux/mfd/syscon.h>
#include <linux/regmap.h>
#include <linux/clk.h>
#include <linux/pm_runtime.h>
#include <linux/if_vlan.h>
#include <linux/reset.h>
#include <linux/tcp.h>
#include <linux/interrupt.h>
#include <linux/pinctrl/devinfo.h>
#include <linux/phylink.h>
#include <linux/gpio/consumer.h>
#include <net/dsa.h>
#include "mtk_eth_soc.h"
#include "mtk_eth_dbg.h"
#include "mtk_eth_reset.h"
#if defined(CONFIG_NET_MEDIATEK_HNAT) || defined(CONFIG_NET_MEDIATEK_HNAT_MODULE)
#include "mtk_hnat/nf_hnat_mtk.h"
#endif
#if defined(CONFIG_XFRM_OFFLOAD)
#include <crypto/sha.h>
#include <net/xfrm.h>
#include "mtk_ipsec.h"
#endif
static int mtk_msg_level = -1;
atomic_t reset_lock = ATOMIC_INIT(0);
atomic_t force = ATOMIC_INIT(0);
module_param_named(msg_level, mtk_msg_level, int, 0);
MODULE_PARM_DESC(msg_level, "Message level (-1=defaults,0=none,...,16=all)");
DECLARE_COMPLETION(wait_ser_done);
#define MTK_ETHTOOL_STAT(x) { #x, \
offsetof(struct mtk_hw_stats, x) / sizeof(u64) }
static const struct mtk_reg_map mtk_reg_map = {
.tx_irq_mask = 0x1a1c,
.tx_irq_status = 0x1a18,
.pdma = {
.rx_ptr = 0x0900,
.rx_cnt_cfg = 0x0904,
.pcrx_ptr = 0x0908,
.glo_cfg = 0x0a04,
.rst_idx = 0x0a08,
.delay_irq = 0x0a0c,
.irq_status = 0x0a20,
.irq_mask = 0x0a28,
.int_grp = 0x0a50,
.int_grp2 = 0x0a54,
},
.qdma = {
.qtx_cfg = 0x1800,
.qtx_sch = 0x1804,
.rx_ptr = 0x1900,
.rx_cnt_cfg = 0x1904,
.qcrx_ptr = 0x1908,
.glo_cfg = 0x1a04,
.rst_idx = 0x1a08,
.delay_irq = 0x1a0c,
.fc_th = 0x1a10,
.tx_sch_rate = 0x1a14,
.int_grp = 0x1a20,
.int_grp2 = 0x1a24,
.hred2 = 0x1a44,
.ctx_ptr = 0x1b00,
.dtx_ptr = 0x1b04,
.crx_ptr = 0x1b10,
.drx_ptr = 0x1b14,
.fq_head = 0x1b20,
.fq_tail = 0x1b24,
.fq_count = 0x1b28,
.fq_blen = 0x1b2c,
},
.gdm1_cnt = 0x2400,
.gdma_to_ppe0 = 0x4444,
.ppe_base = {
[0] = 0x0c00,
},
.wdma_base = {
[0] = 0x2800,
[1] = 0x2c00,
},
};
static const struct mtk_reg_map mt7628_reg_map = {
.tx_irq_mask = 0x0a28,
.tx_irq_status = 0x0a20,
.pdma = {
.rx_ptr = 0x0900,
.rx_cnt_cfg = 0x0904,
.pcrx_ptr = 0x0908,
.glo_cfg = 0x0a04,
.rst_idx = 0x0a08,
.delay_irq = 0x0a0c,
.irq_status = 0x0a20,
.irq_mask = 0x0a28,
.int_grp = 0x0a50,
.int_grp2 = 0x0a54,
},
};
static const struct mtk_reg_map mt7986_reg_map = {
.tx_irq_mask = 0x461c,
.tx_irq_status = 0x4618,
.pdma = {
.rx_ptr = 0x4100,
.rx_cnt_cfg = 0x4104,
.pcrx_ptr = 0x4108,
.glo_cfg = 0x4204,
.rst_idx = 0x4208,
.delay_irq = 0x420c,
.irq_status = 0x4220,
.irq_mask = 0x4228,
.int_grp = 0x4250,
.int_grp2 = 0x4254,
},
.qdma = {
.qtx_cfg = 0x4400,
.qtx_sch = 0x4404,
.rx_ptr = 0x4500,
.rx_cnt_cfg = 0x4504,
.qcrx_ptr = 0x4508,
.glo_cfg = 0x4604,
.rst_idx = 0x4608,
.delay_irq = 0x460c,
.fc_th = 0x4610,
.int_grp = 0x4620,
.int_grp2 = 0x4624,
.hred2 = 0x4644,
.ctx_ptr = 0x4700,
.dtx_ptr = 0x4704,
.crx_ptr = 0x4710,
.drx_ptr = 0x4714,
.fq_head = 0x4720,
.fq_tail = 0x4724,
.fq_count = 0x4728,
.fq_blen = 0x472c,
.tx_sch_rate = 0x4798,
},
.gdm1_cnt = 0x1c00,
.gdma_to_ppe0 = 0x3333,
.ppe_base = {
[0] = 0x2000,
[1] = 0x2400,
},
.wdma_base = {
[0] = 0x4800,
[1] = 0x4c00,
},
};
static const struct mtk_reg_map mt7988_reg_map = {
.tx_irq_mask = 0x461c,
.tx_irq_status = 0x4618,
.pdma = {
.rx_ptr = 0x6900,
.rx_cnt_cfg = 0x6904,
.pcrx_ptr = 0x6908,
.glo_cfg = 0x6a04,
.rst_idx = 0x6a08,
.delay_irq = 0x6a0c,
.irq_status = 0x6a20,
.irq_mask = 0x6a28,
.int_grp = 0x6a50,
.int_grp2 = 0x6a54,
},
.qdma = {
.qtx_cfg = 0x4400,
.qtx_sch = 0x4404,
.rx_ptr = 0x4500,
.rx_cnt_cfg = 0x4504,
.qcrx_ptr = 0x4508,
.glo_cfg = 0x4604,
.rst_idx = 0x4608,
.delay_irq = 0x460c,
.fc_th = 0x4610,
.int_grp = 0x4620,
.int_grp2 = 0x4624,
.hred2 = 0x4644,
.ctx_ptr = 0x4700,
.dtx_ptr = 0x4704,
.crx_ptr = 0x4710,
.drx_ptr = 0x4714,
.fq_head = 0x4720,
.fq_tail = 0x4724,
.fq_count = 0x4728,
.fq_blen = 0x472c,
.tx_sch_rate = 0x4798,
},
.gdm1_cnt = 0x1c00,
.gdma_to_ppe0 = 0x3333,
.ppe_base = {
[0] = 0x2000,
[1] = 0x2400,
[2] = 0x2c00,
},
.wdma_base = {
[0] = 0x4800,
[1] = 0x4c00,
[2] = 0x5000,
},
};
/* strings used by ethtool */
static const struct mtk_ethtool_stats {
char str[ETH_GSTRING_LEN];
u32 offset;
} mtk_ethtool_stats[] = {
MTK_ETHTOOL_STAT(tx_bytes),
MTK_ETHTOOL_STAT(tx_packets),
MTK_ETHTOOL_STAT(tx_skip),
MTK_ETHTOOL_STAT(tx_collisions),
MTK_ETHTOOL_STAT(rx_bytes),
MTK_ETHTOOL_STAT(rx_packets),
MTK_ETHTOOL_STAT(rx_overflow),
MTK_ETHTOOL_STAT(rx_fcs_errors),
MTK_ETHTOOL_STAT(rx_short_errors),
MTK_ETHTOOL_STAT(rx_long_errors),
MTK_ETHTOOL_STAT(rx_checksum_errors),
MTK_ETHTOOL_STAT(rx_flow_control_packets),
};
static const char * const mtk_clks_source_name[] = {
"ethif", "sgmiitop", "esw", "gp0", "gp1", "gp2", "gp3",
"xgp1", "xgp2", "xgp3", "crypto", "fe", "trgpll",
"sgmii_tx250m", "sgmii_rx250m", "sgmii_cdr_ref", "sgmii_cdr_fb",
"sgmii2_tx250m", "sgmii2_rx250m", "sgmii2_cdr_ref", "sgmii2_cdr_fb",
"sgmii_ck", "eth2pll", "wocpu0", "wocpu1",
"ethwarp_wocpu2", "ethwarp_wocpu1", "ethwarp_wocpu0",
"top_usxgmii0_sel", "top_usxgmii1_sel", "top_sgm0_sel", "top_sgm1_sel",
"top_xfi_phy0_xtal_sel", "top_xfi_phy1_xtal_sel", "top_eth_gmii_sel",
"top_eth_refck_50m_sel", "top_eth_sys_200m_sel", "top_eth_sys_sel",
"top_eth_xgmii_sel", "top_eth_mii_sel", "top_netsys_sel",
"top_netsys_500m_sel", "top_netsys_pao_2x_sel",
"top_netsys_sync_250m_sel", "top_netsys_ppefb_250m_sel",
"top_netsys_warp_sel",
};
void mtk_w32(struct mtk_eth *eth, u32 val, unsigned reg)
{
__raw_writel(val, eth->base + reg);
}
u32 mtk_r32(struct mtk_eth *eth, unsigned reg)
{
return __raw_readl(eth->base + reg);
}
u32 mtk_m32(struct mtk_eth *eth, u32 mask, u32 set, unsigned reg)
{
u32 val;
val = mtk_r32(eth, reg);
val &= ~mask;
val |= set;
mtk_w32(eth, val, reg);
return reg;
}
static int mtk_mdio_busy_wait(struct mtk_eth *eth)
{
unsigned long t_start = jiffies;
while (1) {
if (!(mtk_r32(eth, MTK_PHY_IAC) & PHY_IAC_ACCESS))
return 0;
if (time_after(jiffies, t_start + PHY_IAC_TIMEOUT))
break;
cond_resched();
}
dev_err(eth->dev, "mdio: MDIO timeout\n");
return -1;
}
u32 _mtk_mdio_write(struct mtk_eth *eth, int phy_addr,
int phy_reg, u16 write_data)
{
if (mtk_mdio_busy_wait(eth))
return -1;
write_data &= 0xffff;
if (phy_reg & MII_ADDR_C45) {
mtk_w32(eth, PHY_IAC_ACCESS | PHY_IAC_START_C45 | PHY_IAC_ADDR_C45 |
((mdiobus_c45_devad(phy_reg) & 0x1f) << PHY_IAC_REG_SHIFT) |
((phy_addr & 0x1f) << PHY_IAC_ADDR_SHIFT) | mdiobus_c45_regad(phy_reg),
MTK_PHY_IAC);
if (mtk_mdio_busy_wait(eth))
return -1;
mtk_w32(eth, PHY_IAC_ACCESS | PHY_IAC_START_C45 | PHY_IAC_WRITE |
((mdiobus_c45_devad(phy_reg) & 0x1f) << PHY_IAC_REG_SHIFT) |
((phy_addr & 0x1f) << PHY_IAC_ADDR_SHIFT) | write_data,
MTK_PHY_IAC);
} else {
mtk_w32(eth, PHY_IAC_ACCESS | PHY_IAC_START | PHY_IAC_WRITE |
((phy_reg & 0x1f) << PHY_IAC_REG_SHIFT) |
((phy_addr & 0x1f) << PHY_IAC_ADDR_SHIFT) | write_data,
MTK_PHY_IAC);
}
if (mtk_mdio_busy_wait(eth))
return -1;
return 0;
}
u32 _mtk_mdio_read(struct mtk_eth *eth, int phy_addr, int phy_reg)
{
u32 d;
if (mtk_mdio_busy_wait(eth))
return 0xffff;
if (phy_reg & MII_ADDR_C45) {
mtk_w32(eth, PHY_IAC_ACCESS | PHY_IAC_START_C45 | PHY_IAC_ADDR_C45 |
((mdiobus_c45_devad(phy_reg) & 0x1f) << PHY_IAC_REG_SHIFT) |
((phy_addr & 0x1f) << PHY_IAC_ADDR_SHIFT) | mdiobus_c45_regad(phy_reg),
MTK_PHY_IAC);
if (mtk_mdio_busy_wait(eth))
return 0xffff;
mtk_w32(eth, PHY_IAC_ACCESS | PHY_IAC_START_C45 | PHY_IAC_READ_C45 |
((mdiobus_c45_devad(phy_reg) & 0x1f) << PHY_IAC_REG_SHIFT) |
((phy_addr & 0x1f) << PHY_IAC_ADDR_SHIFT),
MTK_PHY_IAC);
} else {
mtk_w32(eth, PHY_IAC_ACCESS | PHY_IAC_START | PHY_IAC_READ |
((phy_reg & 0x1f) << PHY_IAC_REG_SHIFT) |
((phy_addr & 0x1f) << PHY_IAC_ADDR_SHIFT),
MTK_PHY_IAC);
}
if (mtk_mdio_busy_wait(eth))
return 0xffff;
d = mtk_r32(eth, MTK_PHY_IAC) & 0xffff;
return d;
}
static int mtk_mdio_write(struct mii_bus *bus, int phy_addr,
int phy_reg, u16 val)
{
struct mtk_eth *eth = bus->priv;
return _mtk_mdio_write(eth, phy_addr, phy_reg, val);
}
static int mtk_mdio_read(struct mii_bus *bus, int phy_addr, int phy_reg)
{
struct mtk_eth *eth = bus->priv;
return _mtk_mdio_read(eth, phy_addr, phy_reg);
}
static int mtk_mdio_reset(struct mii_bus *bus)
{
/* The mdiobus_register will trigger a reset pulse when enabling Bus reset,
* we just need to wait until device ready.
*/
mdelay(20);
return 0;
}
static int mt7621_gmac0_rgmii_adjust(struct mtk_eth *eth,
phy_interface_t interface)
{
u32 val = 0;
/* Check DDR memory type.
* Currently TRGMII mode with DDR2 memory is not supported.
*/
regmap_read(eth->ethsys, ETHSYS_SYSCFG, &val);
if (interface == PHY_INTERFACE_MODE_TRGMII &&
val & SYSCFG_DRAM_TYPE_DDR2) {
dev_err(eth->dev,
"TRGMII mode with DDR2 memory is not supported!\n");
return -EOPNOTSUPP;
}
val = (interface == PHY_INTERFACE_MODE_TRGMII) ?
ETHSYS_TRGMII_MT7621_DDR_PLL : 0;
regmap_update_bits(eth->ethsys, ETHSYS_CLKCFG0,
ETHSYS_TRGMII_MT7621_MASK, val);
return 0;
}
static void mtk_gmac0_rgmii_adjust(struct mtk_eth *eth,
phy_interface_t interface, int speed)
{
u32 val;
int ret;
if (interface == PHY_INTERFACE_MODE_TRGMII) {
mtk_w32(eth, TRGMII_MODE, INTF_MODE);
val = 500000000;
ret = clk_set_rate(eth->clks[MTK_CLK_TRGPLL], val);
if (ret)
dev_err(eth->dev, "Failed to set trgmii pll: %d\n", ret);
return;
}
val = (speed == SPEED_1000) ?
INTF_MODE_RGMII_1000 : INTF_MODE_RGMII_10_100;
mtk_w32(eth, val, INTF_MODE);
regmap_update_bits(eth->ethsys, ETHSYS_CLKCFG0,
ETHSYS_TRGMII_CLK_SEL362_5,
ETHSYS_TRGMII_CLK_SEL362_5);
val = (speed == SPEED_1000) ? 250000000 : 500000000;
ret = clk_set_rate(eth->clks[MTK_CLK_TRGPLL], val);
if (ret)
dev_err(eth->dev, "Failed to set trgmii pll: %d\n", ret);
val = (speed == SPEED_1000) ?
RCK_CTRL_RGMII_1000 : RCK_CTRL_RGMII_10_100;
mtk_w32(eth, val, TRGMII_RCK_CTRL);
val = (speed == SPEED_1000) ?
TCK_CTRL_RGMII_1000 : TCK_CTRL_RGMII_10_100;
mtk_w32(eth, val, TRGMII_TCK_CTRL);
}
static void mtk_setup_bridge_switch(struct mtk_eth *eth)
{
int val;
/* Force Port1 XGMAC Link Up */
val = mtk_r32(eth, MTK_XGMAC_STS(MTK_GMAC1_ID));
mtk_w32(eth, val | MTK_XGMAC_FORCE_LINK(MTK_GMAC1_ID),
MTK_XGMAC_STS(MTK_GMAC1_ID));
/* Adjust GSW bridge IPG to 11*/
val = mtk_r32(eth, MTK_GSW_CFG);
val &= ~(GSWTX_IPG_MASK | GSWRX_IPG_MASK);
val |= (GSW_IPG_11 << GSWTX_IPG_SHIFT) |
(GSW_IPG_11 << GSWRX_IPG_SHIFT);
mtk_w32(eth, val, MTK_GSW_CFG);
}
static bool mtk_check_gmac23_idle(struct mtk_mac *mac)
{
u32 mac_fsm, gdm_fsm;
mac_fsm = mtk_r32(mac->hw, MTK_MAC_FSM(mac->id));
switch (mac->id) {
case MTK_GMAC2_ID:
gdm_fsm = mtk_r32(mac->hw, MTK_FE_GDM2_FSM);
break;
case MTK_GMAC3_ID:
gdm_fsm = mtk_r32(mac->hw, MTK_FE_GDM3_FSM);
break;
default:
return true;
};
if ((mac_fsm & 0xFFFF0000) == 0x01010000 &&
(gdm_fsm & 0xFFFF0000) == 0x00000000)
return true;
return false;
}
static void mtk_setup_eee(struct mtk_mac *mac, bool enable)
{
struct mtk_eth *eth = mac->hw;
u32 mcr, mcr_cur;
u32 val;
mcr = mcr_cur = mtk_r32(eth, MTK_MAC_MCR(mac->id));
mcr &= ~(MAC_MCR_FORCE_EEE100 | MAC_MCR_FORCE_EEE1000);
if (enable) {
mac->tx_lpi_enabled = 1;
val = FIELD_PREP(MAC_EEE_WAKEUP_TIME_1000, 19) |
FIELD_PREP(MAC_EEE_WAKEUP_TIME_100, 33) |
FIELD_PREP(MAC_EEE_LPI_TXIDLE_THD,
mac->tx_lpi_timer) |
FIELD_PREP(MAC_EEE_RESV0, 14);
mtk_w32(eth, val, MTK_MAC_EEE(mac->id));
switch (mac->speed) {
case SPEED_1000:
mcr |= MAC_MCR_FORCE_EEE1000;
break;
case SPEED_100:
mcr |= MAC_MCR_FORCE_EEE100;
break;
};
} else {
mac->tx_lpi_enabled = 0;
mtk_w32(eth, 0x00000002, MTK_MAC_EEE(mac->id));
}
/* Only update control register when needed! */
if (mcr != mcr_cur)
mtk_w32(eth, mcr, MTK_MAC_MCR(mac->id));
}
static int mtk_get_hwver(struct mtk_eth *eth)
{
struct device_node *np;
struct regmap *hwver;
u32 info = 0;
eth->hwver = MTK_HWID_V1;
np = of_parse_phandle(eth->dev->of_node, "mediatek,hwver", 0);
if (!np)
return -EINVAL;
hwver = syscon_node_to_regmap(np);
if (IS_ERR(hwver))
return PTR_ERR(hwver);
regmap_read(hwver, 0x8, &info);
if (MTK_HAS_CAPS(eth->soc->caps, MTK_NETSYS_V3))
eth->hwver = FIELD_GET(HWVER_BIT_NETSYS_3, info);
else
eth->hwver = FIELD_GET(HWVER_BIT_NETSYS_1_2, info);
of_node_put(np);
return 0;
}
static struct phylink_pcs *mtk_mac_select_pcs(struct phylink_config *config,
phy_interface_t interface)
{
struct mtk_mac *mac = container_of(config, struct mtk_mac,
phylink_config);
struct mtk_eth *eth = mac->hw;
unsigned int sid;
if (interface == PHY_INTERFACE_MODE_SGMII ||
phy_interface_mode_is_8023z(interface)) {
sid = (MTK_HAS_CAPS(eth->soc->caps, MTK_SHARED_SGMII)) ?
0 : mtk_mac2xgmii_id(eth, mac->id);
return mtk_sgmii_select_pcs(eth->sgmii, sid);
} else if (interface == PHY_INTERFACE_MODE_USXGMII ||
interface == PHY_INTERFACE_MODE_10GKR ||
interface == PHY_INTERFACE_MODE_5GBASER) {
if (MTK_HAS_CAPS(eth->soc->caps, MTK_NETSYS_V3) &&
mac->id != MTK_GMAC1_ID) {
sid = mtk_mac2xgmii_id(eth, mac->id);
return mtk_usxgmii_select_pcs(eth->usxgmii, sid);
}
}
return NULL;
}
static void mtk_mac_config(struct phylink_config *config, unsigned int mode,
const struct phylink_link_state *state)
{
struct mtk_mac *mac = container_of(config, struct mtk_mac,
phylink_config);
struct mtk_eth *eth = mac->hw;
u32 sid, i;
int val = 0, ge_mode, force_link, err = 0;
unsigned int mac_type = mac->type;
/* MT76x8 has no hardware settings between for the MAC */
if (!MTK_HAS_CAPS(eth->soc->caps, MTK_SOC_MT7628) &&
mac->interface != state->interface) {
/* Setup soc pin functions */
switch (state->interface) {
case PHY_INTERFACE_MODE_TRGMII:
if (mac->id)
goto err_phy;
if (!MTK_HAS_CAPS(mac->hw->soc->caps,
MTK_GMAC1_TRGMII))
goto err_phy;
/* fall through */
case PHY_INTERFACE_MODE_RGMII_TXID:
case PHY_INTERFACE_MODE_RGMII_RXID:
case PHY_INTERFACE_MODE_RGMII_ID:
case PHY_INTERFACE_MODE_RGMII:
case PHY_INTERFACE_MODE_MII:
case PHY_INTERFACE_MODE_REVMII:
case PHY_INTERFACE_MODE_RMII:
mac->type = MTK_GDM_TYPE;
if (MTK_HAS_CAPS(eth->soc->caps, MTK_RGMII)) {
err = mtk_gmac_rgmii_path_setup(eth, mac->id);
if (err)
goto init_err;
}
break;
case PHY_INTERFACE_MODE_1000BASEX:
case PHY_INTERFACE_MODE_2500BASEX:
case PHY_INTERFACE_MODE_SGMII:
mac->type = MTK_GDM_TYPE;
if (MTK_HAS_CAPS(eth->soc->caps, MTK_SGMII)) {
err = mtk_gmac_sgmii_path_setup(eth, mac->id);
if (err)
goto init_err;
}
break;
case PHY_INTERFACE_MODE_GMII:
mac->type = MTK_GDM_TYPE;
if (MTK_HAS_CAPS(eth->soc->caps, MTK_GEPHY)) {
err = mtk_gmac_gephy_path_setup(eth, mac->id);
if (err)
goto init_err;
}
break;
case PHY_INTERFACE_MODE_XGMII:
mac->type = MTK_XGDM_TYPE;
if (MTK_HAS_CAPS(eth->soc->caps, MTK_XGMII)) {
err = mtk_gmac_xgmii_path_setup(eth, mac->id);
if (err)
goto init_err;
}
break;
case PHY_INTERFACE_MODE_USXGMII:
case PHY_INTERFACE_MODE_10GKR:
case PHY_INTERFACE_MODE_5GBASER:
mac->type = MTK_XGDM_TYPE;
if (MTK_HAS_CAPS(eth->soc->caps, MTK_USXGMII)) {
err = mtk_gmac_usxgmii_path_setup(eth, mac->id);
if (err)
goto init_err;
}
break;
default:
goto err_phy;
}
/* Setup clock for 1st gmac */
if (!mac->id && state->interface != PHY_INTERFACE_MODE_SGMII &&
!phy_interface_mode_is_8023z(state->interface) &&
MTK_HAS_CAPS(mac->hw->soc->caps, MTK_GMAC1_TRGMII)) {
if (MTK_HAS_CAPS(mac->hw->soc->caps,
MTK_TRGMII_MT7621_CLK)) {
if (mt7621_gmac0_rgmii_adjust(mac->hw,
state->interface))
goto err_phy;
} else {
mtk_gmac0_rgmii_adjust(mac->hw,
state->interface,
state->speed);
/* mt7623_pad_clk_setup */
for (i = 0 ; i < NUM_TRGMII_CTRL; i++)
mtk_w32(mac->hw,
TD_DM_DRVP(8) | TD_DM_DRVN(8),
TRGMII_TD_ODT(i));
/* Assert/release MT7623 RXC reset */
mtk_m32(mac->hw, 0, RXC_RST | RXC_DQSISEL,
TRGMII_RCK_CTRL);
mtk_m32(mac->hw, RXC_RST, 0, TRGMII_RCK_CTRL);
}
}
ge_mode = 0;
switch (state->interface) {
case PHY_INTERFACE_MODE_MII:
case PHY_INTERFACE_MODE_GMII:
ge_mode = 1;
break;
case PHY_INTERFACE_MODE_REVMII:
ge_mode = 2;
break;
case PHY_INTERFACE_MODE_RMII:
if (mac->id)
goto err_phy;
ge_mode = 3;
break;
default:
break;
}
/* put the gmac into the right mode */
spin_lock(&eth->syscfg0_lock);
regmap_read(eth->ethsys, ETHSYS_SYSCFG0, &val);
val &= ~SYSCFG0_GE_MODE(SYSCFG0_GE_MASK, mac->id);
val |= SYSCFG0_GE_MODE(ge_mode, mac->id);
regmap_write(eth->ethsys, ETHSYS_SYSCFG0, val);
spin_unlock(&eth->syscfg0_lock);
mac->interface = state->interface;
}
/* SGMII */
if (state->interface == PHY_INTERFACE_MODE_SGMII ||
phy_interface_mode_is_8023z(state->interface)) {
/* The path GMAC to SGMII will be enabled once the SGMIISYS is
* being setup done.
*/
spin_lock(&eth->syscfg0_lock);
regmap_read(eth->ethsys, ETHSYS_SYSCFG0, &val);
regmap_update_bits(eth->ethsys, ETHSYS_SYSCFG0,
SYSCFG0_SGMII_MASK,
~(u32)SYSCFG0_SGMII_MASK);
/* Decide how GMAC and SGMIISYS be mapped */
sid = (MTK_HAS_CAPS(eth->soc->caps, MTK_SHARED_SGMII)) ?
0 : mac->id;
/* Save the syscfg0 value for mac_finish */
mac->syscfg0 = val;
spin_unlock(&eth->syscfg0_lock);
} else if (state->interface == PHY_INTERFACE_MODE_USXGMII ||
state->interface == PHY_INTERFACE_MODE_10GKR ||
state->interface == PHY_INTERFACE_MODE_5GBASER) {
/* Nothing to do */
} else if (phylink_autoneg_inband(mode)) {
dev_err(eth->dev,
"In-band mode not supported in non SGMII mode!\n");
return;
}
/* Setup gmac */
if (mac->type == MTK_XGDM_TYPE) {
mtk_w32(mac->hw, MTK_GDMA_XGDM_SEL, MTK_GDMA_EG_CTRL(mac->id));
mtk_w32(mac->hw, MAC_MCR_FORCE_LINK_DOWN, MTK_MAC_MCR(mac->id));
if (MTK_HAS_CAPS(eth->soc->caps, MTK_NETSYS_V3)) {
switch (mac->id) {
case MTK_GMAC1_ID:
mtk_setup_bridge_switch(eth);
break;
case MTK_GMAC2_ID:
force_link = (mac->interface ==
PHY_INTERFACE_MODE_XGMII) ?
MTK_XGMAC_FORCE_LINK(mac->id) : 0;
val = mtk_r32(eth, MTK_XGMAC_STS(mac->id));
mtk_w32(eth, val | force_link,
MTK_XGMAC_STS(mac->id));
break;
case MTK_GMAC3_ID:
val = mtk_r32(eth, MTK_XGMAC_STS(mac->id));
mtk_w32(eth,
val | MTK_XGMAC_FORCE_LINK(mac->id),
MTK_XGMAC_STS(mac->id));
break;
}
}
} else if (mac->type == MTK_GDM_TYPE) {
val = mtk_r32(eth, MTK_GDMA_EG_CTRL(mac->id));
mtk_w32(eth, val & ~MTK_GDMA_XGDM_SEL,
MTK_GDMA_EG_CTRL(mac->id));
if (MTK_HAS_CAPS(eth->soc->caps, MTK_NETSYS_V3)) {
switch (mac->id) {
case MTK_GMAC2_ID:
case MTK_GMAC3_ID:
val = mtk_r32(eth, MTK_XGMAC_STS(mac->id));
mtk_w32(eth,
val & ~MTK_XGMAC_FORCE_LINK(mac->id),
MTK_XGMAC_STS(mac->id));
break;
}
}
/* FIXME: In current hardware design, we have to reset FE
* when swtiching XGDM to GDM. Therefore, here trigger an SER
* to let GDM go back to the initial state.
*/
if (mac->type != mac_type && !mtk_check_gmac23_idle(mac)) {
if (!test_bit(MTK_RESETTING, &mac->hw->state)) {
atomic_inc(&force);
schedule_work(&eth->pending_work);
}
}
}
return;
err_phy:
dev_err(eth->dev, "%s: GMAC%d mode %s not supported!\n", __func__,
mac->id, phy_modes(state->interface));
return;
init_err:
dev_err(eth->dev, "%s: GMAC%d mode %s err: %d!\n", __func__,
mac->id, phy_modes(state->interface), err);
}
static int mtk_mac_finish(struct phylink_config *config, unsigned int mode,
phy_interface_t interface)
{
struct mtk_mac *mac = container_of(config, struct mtk_mac,
phylink_config);
struct mtk_eth *eth = mac->hw;
/* Enable SGMII */
if (interface == PHY_INTERFACE_MODE_SGMII ||
phy_interface_mode_is_8023z(interface))
regmap_update_bits(eth->ethsys, ETHSYS_SYSCFG0,
SYSCFG0_SGMII_MASK, mac->syscfg0);
return 0;
}
static int mtk_mac_pcs_get_state(struct phylink_config *config,
struct phylink_link_state *state)
{
struct mtk_mac *mac = container_of(config, struct mtk_mac,
phylink_config);
if (mac->type == MTK_XGDM_TYPE) {
u32 sts = mtk_r32(mac->hw, MTK_XGMAC_STS(mac->id));
if (mac->id == MTK_GMAC2_ID)
sts = sts >> 16;
state->duplex = DUPLEX_FULL;
switch (FIELD_GET(MTK_USXGMII_PCS_MODE, sts)) {
case 0:
state->speed = SPEED_10000;
break;
case 1:
state->speed = SPEED_5000;
break;
case 2:
state->speed = SPEED_2500;
break;
case 3:
state->speed = SPEED_1000;
break;
}
state->interface = mac->interface;
state->link = FIELD_GET(MTK_USXGMII_PCS_LINK, sts);
} else if (mac->type == MTK_GDM_TYPE) {
struct mtk_eth *eth = mac->hw;
struct mtk_sgmii *ss = eth->sgmii;
u32 id = mtk_mac2xgmii_id(eth, mac->id);
u32 pmsr = mtk_r32(mac->hw, MTK_MAC_MSR(mac->id));
u32 bm, adv, rgc3, sgm_mode;
state->interface = mac->interface;
regmap_read(ss->pcs[id].regmap, SGMSYS_PCS_CONTROL_1, &bm);
if (bm & SGMII_AN_ENABLE) {
regmap_read(ss->pcs[id].regmap,
SGMSYS_PCS_ADVERTISE, &adv);
phylink_mii_c22_pcs_decode_state(
state,
FIELD_GET(SGMII_BMSR, bm),
FIELD_GET(SGMII_LPA, adv));
} else {
state->link = !!(bm & SGMII_LINK_STATYS);
regmap_read(ss->pcs[id].regmap,
SGMSYS_SGMII_MODE, &sgm_mode);
switch (sgm_mode & SGMII_SPEED_MASK) {
case SGMII_SPEED_10:
state->speed = SPEED_10;
break;
case SGMII_SPEED_100:
state->speed = SPEED_100;
break;
case SGMII_SPEED_1000:
regmap_read(ss->pcs[id].regmap,
ss->pcs[id].ana_rgc3, &rgc3);
rgc3 = FIELD_GET(RG_PHY_SPEED_3_125G, rgc3);
state->speed = rgc3 ? SPEED_2500 : SPEED_1000;
break;
}
if (sgm_mode & SGMII_DUPLEX_HALF)
state->duplex = DUPLEX_HALF;
else
state->duplex = DUPLEX_FULL;
}
state->pause &= (MLO_PAUSE_RX | MLO_PAUSE_TX);
if (pmsr & MAC_MSR_RX_FC)
state->pause |= MLO_PAUSE_RX;
if (pmsr & MAC_MSR_TX_FC)
state->pause |= MLO_PAUSE_TX;
}
return 1;
}
static void mtk_mac_link_down(struct phylink_config *config, unsigned int mode,
phy_interface_t interface)
{
struct mtk_mac *mac = container_of(config, struct mtk_mac,
phylink_config);
u32 mcr;
if (mac->type == MTK_GDM_TYPE) {
mcr = mtk_r32(mac->hw, MTK_MAC_MCR(mac->id));
mcr &= ~(MAC_MCR_TX_EN | MAC_MCR_RX_EN);
mtk_w32(mac->hw, mcr, MTK_MAC_MCR(mac->id));
} else if (mac->type == MTK_XGDM_TYPE && mac->id != MTK_GMAC1_ID) {
mcr = mtk_r32(mac->hw, MTK_XMAC_MCR(mac->id));
mcr &= 0xfffffff0;
mcr |= XMAC_MCR_TRX_DISABLE;
mtk_w32(mac->hw, mcr, MTK_XMAC_MCR(mac->id));
}
}
static void mtk_mac_link_up(struct phylink_config *config, unsigned int mode,
phy_interface_t interface,
struct phy_device *phy)
{
struct mtk_mac *mac = container_of(config, struct mtk_mac,
phylink_config);
u32 mcr, mcr_cur;
mac->speed = speed;
if (mac->type == MTK_GDM_TYPE) {
mcr_cur = mtk_r32(mac->hw, MTK_MAC_MCR(mac->id));
mcr = mcr_cur;
mcr &= ~(MAC_MCR_SPEED_100 | MAC_MCR_SPEED_1000 |
MAC_MCR_FORCE_DPX | MAC_MCR_FORCE_TX_FC |
MAC_MCR_FORCE_RX_FC);
mcr |= MAC_MCR_MAX_RX_1536 | MAC_MCR_IPG_CFG | MAC_MCR_FORCE_MODE |
MAC_MCR_BACKOFF_EN | MAC_MCR_BACKPR_EN | MAC_MCR_FORCE_LINK;
/* Configure speed */
switch (speed) {
case SPEED_2500:
case SPEED_1000:
mcr |= MAC_MCR_SPEED_1000;
break;
case SPEED_100:
mcr |= MAC_MCR_SPEED_100;
break;
}
/* Configure duplex */
if (duplex == DUPLEX_FULL)
mcr |= MAC_MCR_FORCE_DPX;
/* Configure pause modes -
* phylink will avoid these for half duplex
*/
if (tx_pause)
mcr |= MAC_MCR_FORCE_TX_FC;
if (rx_pause)
mcr |= MAC_MCR_FORCE_RX_FC;
mcr |= MAC_MCR_TX_EN | MAC_MCR_RX_EN;
/* Only update control register when needed! */
if (mcr != mcr_cur)
mtk_w32(mac->hw, mcr, MTK_MAC_MCR(mac->id));
if (mode == MLO_AN_PHY && phy)
mtk_setup_eee(mac, phy_init_eee(phy, false) >= 0);
} else if (mac->type == MTK_XGDM_TYPE && mac->id != MTK_GMAC1_ID) {
mcr = mtk_r32(mac->hw, MTK_XMAC_MCR(mac->id));
mcr &= ~(XMAC_MCR_FORCE_TX_FC | XMAC_MCR_FORCE_RX_FC);
/* Configure pause modes -
* phylink will avoid these for half duplex
*/
if (tx_pause)
mcr |= XMAC_MCR_FORCE_TX_FC;
if (rx_pause)
mcr |= XMAC_MCR_FORCE_RX_FC;
mcr &= ~(XMAC_MCR_TRX_DISABLE);
mtk_w32(mac->hw, mcr, MTK_XMAC_MCR(mac->id));
}
}
static void mtk_validate(struct phylink_config *config,
unsigned long *supported,
struct phylink_link_state *state)
{
struct mtk_mac *mac = container_of(config, struct mtk_mac,
phylink_config);
__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
if (state->interface != PHY_INTERFACE_MODE_NA &&
state->interface != PHY_INTERFACE_MODE_MII &&
state->interface != PHY_INTERFACE_MODE_GMII &&
!(MTK_HAS_CAPS(mac->hw->soc->caps, MTK_RGMII) &&
phy_interface_mode_is_rgmii(state->interface)) &&
!(MTK_HAS_CAPS(mac->hw->soc->caps, MTK_TRGMII) &&
!mac->id && state->interface == PHY_INTERFACE_MODE_TRGMII) &&
!(MTK_HAS_CAPS(mac->hw->soc->caps, MTK_SGMII) &&
(state->interface == PHY_INTERFACE_MODE_SGMII ||
phy_interface_mode_is_8023z(state->interface))) &&
!(MTK_HAS_CAPS(mac->hw->soc->caps, MTK_XGMII) &&
(state->interface == PHY_INTERFACE_MODE_XGMII)) &&
!(MTK_HAS_CAPS(mac->hw->soc->caps, MTK_USXGMII) &&
(state->interface == PHY_INTERFACE_MODE_USXGMII)) &&
!(MTK_HAS_CAPS(mac->hw->soc->caps, MTK_USXGMII) &&
(state->interface == PHY_INTERFACE_MODE_10GKR))) {
linkmode_zero(supported);
return;
}
phylink_set_port_modes(mask);
phylink_set(mask, Autoneg);
switch (state->interface) {
case PHY_INTERFACE_MODE_USXGMII:
case PHY_INTERFACE_MODE_10GKR:
phylink_set(mask, 10000baseKR_Full);
phylink_set(mask, 10000baseT_Full);
phylink_set(mask, 10000baseCR_Full);
phylink_set(mask, 10000baseSR_Full);
phylink_set(mask, 10000baseLR_Full);
phylink_set(mask, 10000baseLRM_Full);
phylink_set(mask, 10000baseER_Full);
phylink_set(mask, 100baseT_Half);
phylink_set(mask, 100baseT_Full);
phylink_set(mask, 1000baseT_Half);
phylink_set(mask, 1000baseT_Full);
phylink_set(mask, 1000baseX_Full);
phylink_set(mask, 2500baseT_Full);
phylink_set(mask, 5000baseT_Full);
break;
case PHY_INTERFACE_MODE_TRGMII:
phylink_set(mask, 1000baseT_Full);
break;
case PHY_INTERFACE_MODE_XGMII:
/* fall through */
case PHY_INTERFACE_MODE_1000BASEX:
phylink_set(mask, 1000baseX_Full);
/* fall through; */
case PHY_INTERFACE_MODE_2500BASEX:
phylink_set(mask, 2500baseX_Full);
phylink_set(mask, 2500baseT_Full);
/* fall through; */
case PHY_INTERFACE_MODE_GMII:
case PHY_INTERFACE_MODE_RGMII:
case PHY_INTERFACE_MODE_RGMII_ID:
case PHY_INTERFACE_MODE_RGMII_RXID:
case PHY_INTERFACE_MODE_RGMII_TXID:
phylink_set(mask, 1000baseT_Half);
/* fall through */
case PHY_INTERFACE_MODE_SGMII:
phylink_set(mask, 1000baseT_Full);
phylink_set(mask, 1000baseX_Full);
/* fall through */
case PHY_INTERFACE_MODE_MII:
case PHY_INTERFACE_MODE_RMII:
case PHY_INTERFACE_MODE_REVMII:
case PHY_INTERFACE_MODE_NA:
default:
phylink_set(mask, 10baseT_Half);
phylink_set(mask, 10baseT_Full);
phylink_set(mask, 100baseT_Half);
phylink_set(mask, 100baseT_Full);
break;
}
if (state->interface == PHY_INTERFACE_MODE_NA) {
if (MTK_HAS_CAPS(mac->hw->soc->caps, MTK_USXGMII)) {
phylink_set(mask, 10000baseKR_Full);
phylink_set(mask, 10000baseT_Full);
phylink_set(mask, 10000baseCR_Full);
phylink_set(mask, 10000baseSR_Full);
phylink_set(mask, 10000baseLR_Full);
phylink_set(mask, 10000baseLRM_Full);
phylink_set(mask, 10000baseER_Full);
phylink_set(mask, 1000baseKX_Full);
phylink_set(mask, 1000baseT_Full);
phylink_set(mask, 1000baseX_Full);
phylink_set(mask, 2500baseX_Full);
phylink_set(mask, 2500baseT_Full);
phylink_set(mask, 5000baseT_Full);
}
if (MTK_HAS_CAPS(mac->hw->soc->caps, MTK_SGMII)) {
phylink_set(mask, 1000baseT_Full);
phylink_set(mask, 1000baseX_Full);
phylink_set(mask, 2500baseX_Full);
}
if (MTK_HAS_CAPS(mac->hw->soc->caps, MTK_RGMII)) {
phylink_set(mask, 1000baseT_Full);
phylink_set(mask, 1000baseT_Half);
phylink_set(mask, 1000baseX_Full);
}
if (MTK_HAS_CAPS(mac->hw->soc->caps, MTK_GEPHY)) {
phylink_set(mask, 1000baseT_Full);
phylink_set(mask, 1000baseT_Half);
}
}
if (mac->type == MTK_XGDM_TYPE) {
phylink_clear(mask, 10baseT_Half);
phylink_clear(mask, 100baseT_Half);
phylink_clear(mask, 1000baseT_Half);
}
phylink_set(mask, Pause);
phylink_set(mask, Asym_Pause);
linkmode_and(supported, supported, mask);
linkmode_and(state->advertising, state->advertising, mask);
/* We can only operate at 2500BaseX or 1000BaseX. If requested
* to advertise both, only report advertising at 2500BaseX.
*/
phylink_helper_basex_speed(state);
}
static const struct phylink_mac_ops mtk_phylink_ops = {
.validate = mtk_validate,
.mac_select_pcs = mtk_mac_select_pcs,
.mac_link_state = mtk_mac_pcs_get_state,
.mac_config = mtk_mac_config,
.mac_finish = mtk_mac_finish,
.mac_link_down = mtk_mac_link_down,
.mac_link_up = mtk_mac_link_up,
};
static int mtk_mdc_init(struct mtk_eth *eth)
{
struct device_node *mii_np;
int max_clk = 2500000, divider;
int ret = 0;
u32 val;
mii_np = of_get_child_by_name(eth->dev->of_node, "mdio-bus");
if (!mii_np) {
dev_err(eth->dev, "no %s child node found", "mdio-bus");
return -ENODEV;
}
if (!of_device_is_available(mii_np)) {
ret = -ENODEV;
goto err_put_node;
}
if (!of_property_read_u32(mii_np, "clock-frequency", &val)) {
if (val > MDC_MAX_FREQ ||
val < MDC_MAX_FREQ / MDC_MAX_DIVIDER) {
dev_err(eth->dev, "MDIO clock frequency out of range");
ret = -EINVAL;
goto err_put_node;
}
max_clk = val;
}
divider = min_t(unsigned int, DIV_ROUND_UP(MDC_MAX_FREQ, max_clk), 63);
/* Configure MDC Turbo Mode */
if (MTK_HAS_CAPS(eth->soc->caps, MTK_NETSYS_V3)) {
val = mtk_r32(eth, MTK_MAC_MISC);
val |= MISC_MDC_TURBO;
mtk_w32(eth, val, MTK_MAC_MISC);
} else {
val = mtk_r32(eth, MTK_PPSC);
val |= PPSC_MDC_TURBO;
mtk_w32(eth, val, MTK_PPSC);
}
/* Configure MDC Divider */
val = mtk_r32(eth, MTK_PPSC);
val &= ~PPSC_MDC_CFG;
val |= FIELD_PREP(PPSC_MDC_CFG, divider);
mtk_w32(eth, val, MTK_PPSC);
dev_info(eth->dev, "MDC is running on %d Hz\n", MDC_MAX_FREQ / divider);
err_put_node:
of_node_put(mii_np);
return ret;
}
static int mtk_mdio_init(struct mtk_eth *eth)
{
struct device_node *mii_np;
int ret;
mii_np = of_get_child_by_name(eth->dev->of_node, "mdio-bus");
if (!mii_np) {
dev_err(eth->dev, "no %s child node found", "mdio-bus");
return -ENODEV;
}
if (!of_device_is_available(mii_np)) {
ret = -ENODEV;
goto err_put_node;
}
eth->mii_bus = devm_mdiobus_alloc(eth->dev);
if (!eth->mii_bus) {
ret = -ENOMEM;
goto err_put_node;
}
eth->mii_bus->name = "mdio";
eth->mii_bus->read = mtk_mdio_read;
eth->mii_bus->write = mtk_mdio_write;
eth->mii_bus->reset = mtk_mdio_reset;
eth->mii_bus->priv = eth;
eth->mii_bus->parent = eth->dev;
if (snprintf(eth->mii_bus->id, MII_BUS_ID_SIZE, "%pOFn", mii_np) < 0) {
ret = -ENOMEM;
goto err_put_node;
}
ret = of_mdiobus_register(eth->mii_bus, mii_np);
err_put_node:
of_node_put(mii_np);
return ret;
}
static void mtk_mdio_cleanup(struct mtk_eth *eth)
{
if (!eth->mii_bus)
return;
mdiobus_unregister(eth->mii_bus);
}
static inline void mtk_tx_irq_disable(struct mtk_eth *eth, u32 mask)
{
unsigned long flags;
u32 val;
spin_lock_irqsave(&eth->tx_irq_lock, flags);
val = mtk_r32(eth, eth->soc->reg_map->tx_irq_mask);
mtk_w32(eth, val & ~mask, eth->soc->reg_map->tx_irq_mask);
spin_unlock_irqrestore(&eth->tx_irq_lock, flags);
}
static inline void mtk_tx_irq_enable(struct mtk_eth *eth, u32 mask)
{
unsigned long flags;
u32 val;
spin_lock_irqsave(&eth->tx_irq_lock, flags);
val = mtk_r32(eth, eth->soc->reg_map->tx_irq_mask);
mtk_w32(eth, val | mask, eth->soc->reg_map->tx_irq_mask);
spin_unlock_irqrestore(&eth->tx_irq_lock, flags);
}
static inline void mtk_rx_irq_disable(struct mtk_eth *eth, u32 mask)
{
unsigned long flags;
u32 val;
spin_lock_irqsave(&eth->rx_irq_lock, flags);
val = mtk_r32(eth, eth->soc->reg_map->pdma.irq_mask);
mtk_w32(eth, val & ~mask, eth->soc->reg_map->pdma.irq_mask);
spin_unlock_irqrestore(&eth->rx_irq_lock, flags);
}
static inline void mtk_rx_irq_enable(struct mtk_eth *eth, u32 mask)
{
unsigned long flags;
u32 val;
spin_lock_irqsave(&eth->rx_irq_lock, flags);
val = mtk_r32(eth, eth->soc->reg_map->pdma.irq_mask);
mtk_w32(eth, val | mask, eth->soc->reg_map->pdma.irq_mask);
spin_unlock_irqrestore(&eth->rx_irq_lock, flags);
}
static int mtk_set_mac_address(struct net_device *dev, void *p)
{
int ret = eth_mac_addr(dev, p);
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_eth *eth = mac->hw;
const char *macaddr = dev->dev_addr;
if (ret)
return ret;
if (unlikely(test_bit(MTK_RESETTING, &mac->hw->state)))
return -EBUSY;
spin_lock_bh(&mac->hw->page_lock);
if (MTK_HAS_CAPS(eth->soc->caps, MTK_SOC_MT7628)) {
mtk_w32(mac->hw, (macaddr[0] << 8) | macaddr[1],
MT7628_SDM_MAC_ADRH);
mtk_w32(mac->hw, (macaddr[2] << 24) | (macaddr[3] << 16) |
(macaddr[4] << 8) | macaddr[5],
MT7628_SDM_MAC_ADRL);
} else {
mtk_w32(mac->hw, (macaddr[0] << 8) | macaddr[1],
MTK_GDMA_MAC_ADRH(mac->id));
mtk_w32(mac->hw, (macaddr[2] << 24) | (macaddr[3] << 16) |
(macaddr[4] << 8) | macaddr[5],
MTK_GDMA_MAC_ADRL(mac->id));
}
spin_unlock_bh(&mac->hw->page_lock);
return 0;
}
void mtk_stats_update_mac(struct mtk_mac *mac)
{
struct mtk_eth *eth = mac->hw;
const struct mtk_reg_map *reg_map = eth->soc->reg_map;
struct mtk_hw_stats *hw_stats = mac->hw_stats;
unsigned int offs = hw_stats->reg_offset;
u64 stats;
u64_stats_update_begin(&hw_stats->syncp);
hw_stats->rx_bytes += mtk_r32(mac->hw, reg_map->gdm1_cnt + offs);
stats = mtk_r32(mac->hw, reg_map->gdm1_cnt + 0x4 + offs);
if (stats)
hw_stats->rx_bytes += (stats << 32);
hw_stats->rx_packets +=
mtk_r32(mac->hw, reg_map->gdm1_cnt + 0x08 + offs);
hw_stats->rx_overflow +=
mtk_r32(mac->hw, reg_map->gdm1_cnt + 0x10 + offs);
hw_stats->rx_fcs_errors +=
mtk_r32(mac->hw, reg_map->gdm1_cnt + 0x14 + offs);
hw_stats->rx_short_errors +=
mtk_r32(mac->hw, reg_map->gdm1_cnt + 0x18 + offs);
hw_stats->rx_long_errors +=
mtk_r32(mac->hw, reg_map->gdm1_cnt + 0x1c + offs);
hw_stats->rx_checksum_errors +=
mtk_r32(mac->hw, reg_map->gdm1_cnt + 0x20 + offs);
hw_stats->rx_flow_control_packets +=
mtk_r32(mac->hw, reg_map->gdm1_cnt + 0x24 + offs);
if (MTK_HAS_CAPS(eth->soc->caps, MTK_NETSYS_V3)) {
hw_stats->tx_skip +=
mtk_r32(mac->hw, reg_map->gdm1_cnt + 0x50 + offs);
hw_stats->tx_collisions +=
mtk_r32(mac->hw, reg_map->gdm1_cnt + 0x54 + offs);
hw_stats->tx_bytes +=
mtk_r32(mac->hw, reg_map->gdm1_cnt + 0x40 + offs);
stats = mtk_r32(mac->hw, reg_map->gdm1_cnt + 0x44 + offs);
if (stats)
hw_stats->tx_bytes += (stats << 32);
hw_stats->tx_packets +=
mtk_r32(mac->hw, reg_map->gdm1_cnt + 0x48 + offs);
} else {
hw_stats->tx_skip +=
mtk_r32(mac->hw, reg_map->gdm1_cnt + 0x28 + offs);
hw_stats->tx_collisions +=
mtk_r32(mac->hw, reg_map->gdm1_cnt + 0x2c + offs);
hw_stats->tx_bytes +=
mtk_r32(mac->hw, reg_map->gdm1_cnt + 0x30 + offs);
stats = mtk_r32(mac->hw, reg_map->gdm1_cnt + 0x34 + offs);
if (stats)
hw_stats->tx_bytes += (stats << 32);
hw_stats->tx_packets +=
mtk_r32(mac->hw, reg_map->gdm1_cnt + 0x38 + offs);
}
u64_stats_update_end(&hw_stats->syncp);
}
static void mtk_stats_update(struct mtk_eth *eth)
{
int i;
for (i = 0; i < MTK_MAC_COUNT; i++) {
if (!eth->mac[i] || !eth->mac[i]->hw_stats)
continue;
if (spin_trylock(&eth->mac[i]->hw_stats->stats_lock)) {
mtk_stats_update_mac(eth->mac[i]);
spin_unlock(&eth->mac[i]->hw_stats->stats_lock);
}
}
}
static void mtk_get_stats64(struct net_device *dev,
struct rtnl_link_stats64 *storage)
{
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_hw_stats *hw_stats = mac->hw_stats;
unsigned int start;
if (netif_running(dev) && netif_device_present(dev)) {
if (spin_trylock_bh(&hw_stats->stats_lock)) {
mtk_stats_update_mac(mac);
spin_unlock_bh(&hw_stats->stats_lock);
}
}
do {
start = u64_stats_fetch_begin_irq(&hw_stats->syncp);
storage->rx_packets = hw_stats->rx_packets;
storage->tx_packets = hw_stats->tx_packets;
storage->rx_bytes = hw_stats->rx_bytes;
storage->tx_bytes = hw_stats->tx_bytes;
storage->collisions = hw_stats->tx_collisions;
storage->rx_length_errors = hw_stats->rx_short_errors +
hw_stats->rx_long_errors;
storage->rx_over_errors = hw_stats->rx_overflow;
storage->rx_crc_errors = hw_stats->rx_fcs_errors;
storage->rx_errors = hw_stats->rx_checksum_errors;
storage->tx_aborted_errors = hw_stats->tx_skip;
} while (u64_stats_fetch_retry_irq(&hw_stats->syncp, start));
storage->tx_errors = dev->stats.tx_errors;
storage->rx_dropped = dev->stats.rx_dropped;
storage->tx_dropped = dev->stats.tx_dropped;
}
static inline int mtk_max_frag_size(int mtu)
{
/* make sure buf_size will be at least MTK_MAX_RX_LENGTH */
if (mtu + MTK_RX_ETH_HLEN < MTK_MAX_RX_LENGTH)
mtu = MTK_MAX_RX_LENGTH - MTK_RX_ETH_HLEN;
return SKB_DATA_ALIGN(MTK_RX_HLEN + mtu) +
SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
}
static inline int mtk_max_buf_size(int frag_size)
{
int buf_size = frag_size - NET_SKB_PAD - NET_IP_ALIGN -
SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
WARN_ON(buf_size < MTK_MAX_RX_LENGTH);
return buf_size;
}
static bool mtk_rx_get_desc(struct mtk_eth *eth, struct mtk_rx_dma_v2 *rxd,
struct mtk_rx_dma_v2 *dma_rxd)
{
rxd->rxd2 = READ_ONCE(dma_rxd->rxd2);
if (!(rxd->rxd2 & RX_DMA_DONE))
return false;
rxd->rxd1 = READ_ONCE(dma_rxd->rxd1);
rxd->rxd3 = READ_ONCE(dma_rxd->rxd3);
rxd->rxd4 = READ_ONCE(dma_rxd->rxd4);
if (MTK_HAS_CAPS(eth->soc->caps, MTK_NETSYS_RX_V2)) {
rxd->rxd5 = READ_ONCE(dma_rxd->rxd5);
rxd->rxd6 = READ_ONCE(dma_rxd->rxd6);
rxd->rxd7 = READ_ONCE(dma_rxd->rxd7);
}
return true;
}
/* the qdma core needs scratch memory to be setup */
static int mtk_init_fq_dma(struct mtk_eth *eth)
{
const struct mtk_soc_data *soc = eth->soc;
dma_addr_t phy_ring_tail;
int cnt = MTK_DMA_SIZE;
dma_addr_t dma_addr;
int i;
if (!eth->soc->has_sram) {
eth->scratch_ring = dma_alloc_coherent(eth->dma_dev,
cnt * soc->txrx.txd_size,
&eth->phy_scratch_ring,
GFP_KERNEL);
} else {
if (MTK_HAS_CAPS(eth->soc->caps, MTK_NETSYS_V3))
eth->scratch_ring = eth->sram_base;
else if (MTK_HAS_CAPS(eth->soc->caps, MTK_NETSYS_V2))
eth->scratch_ring = eth->base + MTK_ETH_SRAM_OFFSET;
}
if (unlikely(!eth->scratch_ring))
return -ENOMEM;
eth->scratch_head = kcalloc(cnt, MTK_QDMA_PAGE_SIZE, GFP_KERNEL);
if (unlikely(!eth->scratch_head))
return -ENOMEM;
dma_addr = dma_map_single(eth->dma_dev,
eth->scratch_head, cnt * MTK_QDMA_PAGE_SIZE,
DMA_FROM_DEVICE);
if (unlikely(dma_mapping_error(eth->dma_dev, dma_addr)))
return -ENOMEM;
phy_ring_tail = eth->phy_scratch_ring +
(dma_addr_t)soc->txrx.txd_size * (cnt - 1);
for (i = 0; i < cnt; i++) {
struct mtk_tx_dma_v2 *txd;
txd = eth->scratch_ring + i * soc->txrx.txd_size;
txd->txd1 = dma_addr + i * MTK_QDMA_PAGE_SIZE;
if (i < cnt - 1)
txd->txd2 = eth->phy_scratch_ring +
(i + 1) * soc->txrx.txd_size;
txd->txd3 = TX_DMA_PLEN0(MTK_QDMA_PAGE_SIZE);
txd->txd4 = 0;
if (MTK_HAS_CAPS(eth->soc->caps, MTK_NETSYS_V2) ||
MTK_HAS_CAPS(eth->soc->caps, MTK_NETSYS_V3)) {
txd->txd5 = 0;
txd->txd6 = 0;
txd->txd7 = 0;
txd->txd8 = 0;
}
}
mtk_w32(eth, eth->phy_scratch_ring, soc->reg_map->qdma.fq_head);
mtk_w32(eth, phy_ring_tail, soc->reg_map->qdma.fq_tail);
mtk_w32(eth, (cnt << 16) | cnt, soc->reg_map->qdma.fq_count);
mtk_w32(eth, MTK_QDMA_PAGE_SIZE << 16, soc->reg_map->qdma.fq_blen);
return 0;
}
static inline void *mtk_qdma_phys_to_virt(struct mtk_tx_ring *ring, u32 desc)
{
return ring->dma + (desc - ring->phys);
}
static inline struct mtk_tx_buf *mtk_desc_to_tx_buf(struct mtk_tx_ring *ring,
void *txd, u32 txd_size)
{
int idx = (txd - ring->dma) / txd_size;
return &ring->buf[idx];
}
static struct mtk_tx_dma *qdma_to_pdma(struct mtk_tx_ring *ring,
void *dma)
{
return ring->dma_pdma - ring->dma + dma;
}
static int txd_to_idx(struct mtk_tx_ring *ring, void *dma, u32 txd_size)
{
return (dma - ring->dma) / txd_size;
}
static void mtk_tx_unmap(struct mtk_eth *eth, struct mtk_tx_buf *tx_buf,
bool napi)
{
if (MTK_HAS_CAPS(eth->soc->caps, MTK_QDMA)) {
if (tx_buf->flags & MTK_TX_FLAGS_SINGLE0) {
dma_unmap_single(eth->dma_dev,
dma_unmap_addr(tx_buf, dma_addr0),
dma_unmap_len(tx_buf, dma_len0),
DMA_TO_DEVICE);
} else if (tx_buf->flags & MTK_TX_FLAGS_PAGE0) {
dma_unmap_page(eth->dma_dev,
dma_unmap_addr(tx_buf, dma_addr0),
dma_unmap_len(tx_buf, dma_len0),
DMA_TO_DEVICE);
}
} else {
if (dma_unmap_len(tx_buf, dma_len0)) {
dma_unmap_page(eth->dma_dev,
dma_unmap_addr(tx_buf, dma_addr0),
dma_unmap_len(tx_buf, dma_len0),
DMA_TO_DEVICE);
}
if (dma_unmap_len(tx_buf, dma_len1)) {
dma_unmap_page(eth->dma_dev,
dma_unmap_addr(tx_buf, dma_addr1),
dma_unmap_len(tx_buf, dma_len1),
DMA_TO_DEVICE);
}
}
tx_buf->flags = 0;
if (tx_buf->skb &&
(tx_buf->skb != (struct sk_buff *)MTK_DMA_DUMMY_DESC)) {
if (napi)
napi_consume_skb(tx_buf->skb, napi);
else
dev_kfree_skb_any(tx_buf->skb);
}
tx_buf->skb = NULL;
}
static void setup_tx_buf(struct mtk_eth *eth, struct mtk_tx_buf *tx_buf,
struct mtk_tx_dma *txd, dma_addr_t mapped_addr,
size_t size, int idx)
{
if (MTK_HAS_CAPS(eth->soc->caps, MTK_QDMA)) {
dma_unmap_addr_set(tx_buf, dma_addr0, mapped_addr);
dma_unmap_len_set(tx_buf, dma_len0, size);
} else {
if (idx & 1) {
txd->txd3 = mapped_addr;
txd->txd2 |= TX_DMA_PLEN1(size);
dma_unmap_addr_set(tx_buf, dma_addr1, mapped_addr);
dma_unmap_len_set(tx_buf, dma_len1, size);
} else {
tx_buf->skb = (struct sk_buff *)MTK_DMA_DUMMY_DESC;
txd->txd1 = mapped_addr;
txd->txd2 = TX_DMA_PLEN0(size);
dma_unmap_addr_set(tx_buf, dma_addr0, mapped_addr);
dma_unmap_len_set(tx_buf, dma_len0, size);
}
}
}
static void mtk_tx_set_dma_desc_v1(struct sk_buff *skb, struct net_device *dev, void *txd,
struct mtk_tx_dma_desc_info *info)
{
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_eth *eth = mac->hw;
struct mtk_tx_dma *desc = txd;
u32 data;
WRITE_ONCE(desc->txd1, info->addr);
data = TX_DMA_SWC | QID_LOW_BITS(info->qid) | TX_DMA_PLEN0(info->size);
if (info->last)
data |= TX_DMA_LS0;
WRITE_ONCE(desc->txd3, data);
data = (mac->id + 1) << TX_DMA_FPORT_SHIFT; /* forward port */
data |= QID_HIGH_BITS(info->qid);
if (info->first) {
if (info->gso)
data |= TX_DMA_TSO;
/* tx checksum offload */
if (info->csum)
data |= TX_DMA_CHKSUM;
/* vlan header offload */
if (info->vlan)
data |= TX_DMA_INS_VLAN | info->vlan_tci;
}
#if defined(CONFIG_NET_MEDIATEK_HNAT) || defined(CONFIG_NET_MEDIATEK_HNAT_MODULE)
if (HNAT_SKB_CB2(skb)->magic == 0x78681415) {
data &= ~(0x7 << TX_DMA_FPORT_SHIFT);
data |= 0x4 << TX_DMA_FPORT_SHIFT;
}
trace_printk("[%s] skb_shinfo(skb)->nr_frags=%x HNAT_SKB_CB2(skb)->magic=%x txd4=%x<-----\n",
__func__, skb_shinfo(skb)->nr_frags, HNAT_SKB_CB2(skb)->magic, data);
#endif
WRITE_ONCE(desc->txd4, data);
}
static void mtk_tx_set_dma_desc_v2(struct sk_buff *skb, struct net_device *dev, void *txd,
struct mtk_tx_dma_desc_info *info)
{
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_eth *eth = mac->hw;
struct mtk_tx_dma_v2 *desc = txd;
u32 data = 0;
if (!info->qid && mac->id)
info->qid = MTK_QDMA_GMAC2_QID;
WRITE_ONCE(desc->txd1, info->addr);
data = TX_DMA_PLEN0(info->size);
if (info->last)
data |= TX_DMA_LS0;
WRITE_ONCE(desc->txd3, data);
data = ((mac->id == MTK_GMAC3_ID) ?
PSE_GDM3_PORT : (mac->id + 1)) << TX_DMA_FPORT_SHIFT_V2; /* forward port */
data |= TX_DMA_SWC_V2 | QID_BITS_V2(info->qid);
#if defined(CONFIG_NET_MEDIATEK_HNAT) || defined(CONFIG_NET_MEDIATEK_HNAT_MODULE)
if (HNAT_SKB_CB2(skb)->magic == 0x78681415) {
data &= ~(0xf << TX_DMA_FPORT_SHIFT_V2);
data |= 0x4 << TX_DMA_FPORT_SHIFT_V2;
}
trace_printk("[%s] skb_shinfo(skb)->nr_frags=%x HNAT_SKB_CB2(skb)->magic=%x txd4=%x<-----\n",
__func__, skb_shinfo(skb)->nr_frags, HNAT_SKB_CB2(skb)->magic, data);
#endif
WRITE_ONCE(desc->txd4, data);
data = 0;
if (info->first) {
if (info->gso)
data |= TX_DMA_TSO_V2;
/* tx checksum offload */
if (info->csum)
data |= TX_DMA_CHKSUM_V2;
}
WRITE_ONCE(desc->txd5, data);
data = 0;
if (info->first && info->vlan)
data |= TX_DMA_INS_VLAN_V2 | info->vlan_tci;
WRITE_ONCE(desc->txd6, data);
WRITE_ONCE(desc->txd7, 0);
WRITE_ONCE(desc->txd8, 0);
}
static void mtk_tx_set_dma_desc_v3(struct sk_buff *skb, struct net_device *dev, void *txd,
struct mtk_tx_dma_desc_info *info)
{
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_eth *eth = mac->hw;
struct mtk_tx_dma_v2 *desc = txd;
u64 addr64 = 0;
u32 data = 0;
if (!info->qid && mac->id)
info->qid = MTK_QDMA_GMAC2_QID;
addr64 = (MTK_HAS_CAPS(eth->soc->caps, MTK_8GB_ADDRESSING)) ?
TX_DMA_SDP1(info->addr) : 0;
WRITE_ONCE(desc->txd1, info->addr);
data = TX_DMA_PLEN0(info->size);
if (info->last)
data |= TX_DMA_LS0;
WRITE_ONCE(desc->txd3, data | addr64);
data = ((mac->id == MTK_GMAC3_ID) ?
PSE_GDM3_PORT : (mac->id + 1)) << TX_DMA_FPORT_SHIFT_V2; /* forward port */
data |= TX_DMA_SWC_V2 | QID_BITS_V2(info->qid);
#if defined(CONFIG_NET_MEDIATEK_HNAT) || defined(CONFIG_NET_MEDIATEK_HNAT_MODULE)
if (HNAT_SKB_CB2(skb)->magic == 0x78681415) {
data &= ~(0xf << TX_DMA_FPORT_SHIFT_V2);
data |= 0x4 << TX_DMA_FPORT_SHIFT_V2;
}
trace_printk("[%s] skb_shinfo(skb)->nr_frags=%x HNAT_SKB_CB2(skb)->magic=%x txd4=%x<-----\n",
__func__, skb_shinfo(skb)->nr_frags, HNAT_SKB_CB2(skb)->magic, data);
#endif
WRITE_ONCE(desc->txd4, data);
data = 0;
if (info->first) {
if (info->gso)
data |= TX_DMA_TSO_V2;
/* tx checksum offload */
if (info->csum)
data |= TX_DMA_CHKSUM_V2;
if (netdev_uses_dsa(dev))
data |= TX_DMA_SPTAG_V3;
}
WRITE_ONCE(desc->txd5, data);
data = 0;
if (info->first && info->vlan)
data |= TX_DMA_INS_VLAN_V2 | info->vlan_tci;
WRITE_ONCE(desc->txd6, data);
WRITE_ONCE(desc->txd7, 0);
WRITE_ONCE(desc->txd8, 0);
}
static void mtk_tx_set_dma_desc(struct sk_buff *skb, struct net_device *dev, void *txd,
struct mtk_tx_dma_desc_info *info)
{
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_eth *eth = mac->hw;
if (MTK_HAS_CAPS(eth->soc->caps, MTK_NETSYS_V3))
mtk_tx_set_dma_desc_v3(skb, dev, txd, info);
else if (MTK_HAS_CAPS(eth->soc->caps, MTK_NETSYS_V2))
mtk_tx_set_dma_desc_v2(skb, dev, txd, info);
else
mtk_tx_set_dma_desc_v1(skb, dev, txd, info);
}
static int mtk_tx_map(struct sk_buff *skb, struct net_device *dev,
int tx_num, struct mtk_tx_ring *ring, bool gso)
{
struct mtk_tx_dma_desc_info txd_info = {
.size = skb_headlen(skb),
.qid = skb->mark & MTK_QDMA_TX_MASK,
.gso = gso,
.csum = skb->ip_summed == CHECKSUM_PARTIAL,
.vlan = skb_vlan_tag_present(skb),
.vlan_tci = skb_vlan_tag_get(skb),
.first = true,
.last = !skb_is_nonlinear(skb),
};
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_eth *eth = mac->hw;
const struct mtk_soc_data *soc = eth->soc;
struct mtk_tx_dma *itxd, *txd;
struct mtk_tx_dma *itxd_pdma, *txd_pdma;
struct mtk_tx_buf *itx_buf, *tx_buf;
int i, n_desc = 1;
int k = 0;
if (skb->len < 32) {
if (skb_put_padto(skb, MTK_MIN_TX_LENGTH))
return -ENOMEM;
txd_info.size = skb_headlen(skb);
}
itxd = ring->next_free;
itxd_pdma = qdma_to_pdma(ring, itxd);
if (itxd == ring->last_free)
return -ENOMEM;
itx_buf = mtk_desc_to_tx_buf(ring, itxd, soc->txrx.txd_size);
memset(itx_buf, 0, sizeof(*itx_buf));
txd_info.addr = dma_map_single(eth->dma_dev, skb->data, txd_info.size,
DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(eth->dma_dev, txd_info.addr)))
return -ENOMEM;
mtk_tx_set_dma_desc(skb, dev, itxd, &txd_info);
itx_buf->flags |= MTK_TX_FLAGS_SINGLE0;
itx_buf->flags |= (mac->id == MTK_GMAC1_ID) ? MTK_TX_FLAGS_FPORT0 :
(mac->id == MTK_GMAC2_ID) ? MTK_TX_FLAGS_FPORT1 :
MTK_TX_FLAGS_FPORT2;
setup_tx_buf(eth, itx_buf, itxd_pdma, txd_info.addr, txd_info.size,
k++);
/* TX SG offload */
txd = itxd;
txd_pdma = qdma_to_pdma(ring, txd);
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
unsigned int offset = 0;
int frag_size = skb_frag_size(frag);
while (frag_size) {
bool new_desc = true;
if (MTK_HAS_CAPS(soc->caps, MTK_QDMA) ||
(i & 0x1)) {
txd = mtk_qdma_phys_to_virt(ring, txd->txd2);
txd_pdma = qdma_to_pdma(ring, txd);
if (txd == ring->last_free)
goto err_dma;
n_desc++;
} else {
new_desc = false;
}
memset(&txd_info, 0, sizeof(struct mtk_tx_dma_desc_info));
txd_info.size = min(frag_size, MTK_TX_DMA_BUF_LEN);
txd_info.qid = skb->mark & MTK_QDMA_TX_MASK;
txd_info.last = i == skb_shinfo(skb)->nr_frags - 1 &&
!(frag_size - txd_info.size);
txd_info.addr = skb_frag_dma_map(eth->dma_dev, frag,
offset, txd_info.size,
DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(eth->dma_dev,
txd_info.addr)))
goto err_dma;
mtk_tx_set_dma_desc(skb, dev, txd, &txd_info);
tx_buf = mtk_desc_to_tx_buf(ring, txd, soc->txrx.txd_size);
if (new_desc)
memset(tx_buf, 0, sizeof(*tx_buf));
tx_buf->skb = (struct sk_buff *)MTK_DMA_DUMMY_DESC;
tx_buf->flags |= MTK_TX_FLAGS_PAGE0;
tx_buf->flags |=
(mac->id == MTK_GMAC1_ID) ? MTK_TX_FLAGS_FPORT0 :
(mac->id == MTK_GMAC2_ID) ? MTK_TX_FLAGS_FPORT1 :
MTK_TX_FLAGS_FPORT2;
setup_tx_buf(eth, tx_buf, txd_pdma, txd_info.addr,
txd_info.size, k++);
frag_size -= txd_info.size;
offset += txd_info.size;
}
}
/* store skb to cleanup */
itx_buf->skb = skb;
if (!MTK_HAS_CAPS(soc->caps, MTK_QDMA)) {
if (k & 0x1)
txd_pdma->txd2 |= TX_DMA_LS0;
else
txd_pdma->txd2 |= TX_DMA_LS1;
}
netdev_sent_queue(dev, skb->len);
skb_tx_timestamp(skb);
ring->next_free = mtk_qdma_phys_to_virt(ring, txd->txd2);
atomic_sub(n_desc, &ring->free_count);
/* make sure that all changes to the dma ring are flushed before we
* continue
*/
wmb();
if (MTK_HAS_CAPS(soc->caps, MTK_QDMA)) {
if (netif_xmit_stopped(netdev_get_tx_queue(dev, 0)) ||
!netdev_xmit_more())
mtk_w32(eth, txd->txd2, soc->reg_map->qdma.ctx_ptr);
} else {
int next_idx = NEXT_DESP_IDX(txd_to_idx(ring, txd, soc->txrx.txd_size),
ring->dma_size);
mtk_w32(eth, next_idx, MT7628_TX_CTX_IDX0);
}
return 0;
err_dma:
do {
tx_buf = mtk_desc_to_tx_buf(ring, itxd, soc->txrx.txd_size);
/* unmap dma */
mtk_tx_unmap(eth, tx_buf, false);
itxd->txd3 = TX_DMA_LS0 | TX_DMA_OWNER_CPU;
if (!MTK_HAS_CAPS(soc->caps, MTK_QDMA))
itxd_pdma->txd2 = TX_DMA_DESP2_DEF;
itxd = mtk_qdma_phys_to_virt(ring, itxd->txd2);
itxd_pdma = qdma_to_pdma(ring, itxd);
} while (itxd != txd);
return -ENOMEM;
}
static inline int mtk_cal_txd_req(struct sk_buff *skb)
{
int i, nfrags;
skb_frag_t *frag;
nfrags = 1;
if (skb_is_gso(skb)) {
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
frag = &skb_shinfo(skb)->frags[i];
nfrags += DIV_ROUND_UP(skb_frag_size(frag),
MTK_TX_DMA_BUF_LEN);
}
} else {
nfrags += skb_shinfo(skb)->nr_frags;
}
return nfrags;
}
static int mtk_queue_stopped(struct mtk_eth *eth)
{
int i;
for (i = 0; i < MTK_MAC_COUNT; i++) {
if (!eth->netdev[i])
continue;
if (netif_queue_stopped(eth->netdev[i]))
return 1;
}
return 0;
}
static void mtk_wake_queue(struct mtk_eth *eth)
{
int i;
for (i = 0; i < MTK_MAC_COUNT; i++) {
if (!eth->netdev[i])
continue;
netif_wake_queue(eth->netdev[i]);
}
}
static int mtk_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_eth *eth = mac->hw;
struct mtk_tx_ring *ring = &eth->tx_ring;
struct net_device_stats *stats = &dev->stats;
bool gso = false;
int tx_num;
/* normally we can rely on the stack not calling this more than once,
* however we have 2 queues running on the same ring so we need to lock
* the ring access
*/
spin_lock(&eth->page_lock);
if (unlikely(test_bit(MTK_RESETTING, &eth->state)))
goto drop;
tx_num = mtk_cal_txd_req(skb);
if (unlikely(atomic_read(&ring->free_count) <= tx_num)) {
netif_stop_queue(dev);
netif_err(eth, tx_queued, dev,
"Tx Ring full when queue awake!\n");
spin_unlock(&eth->page_lock);
return NETDEV_TX_BUSY;
}
/* TSO: fill MSS info in tcp checksum field */
if (skb_is_gso(skb)) {
if (skb_cow_head(skb, 0)) {
netif_warn(eth, tx_err, dev,
"GSO expand head fail.\n");
goto drop;
}
if (skb_shinfo(skb)->gso_type &
(SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
gso = true;
tcp_hdr(skb)->check = htons(skb_shinfo(skb)->gso_size);
}
}
if (mtk_tx_map(skb, dev, tx_num, ring, gso) < 0)
goto drop;
if (unlikely(atomic_read(&ring->free_count) <= ring->thresh))
netif_stop_queue(dev);
spin_unlock(&eth->page_lock);
return NETDEV_TX_OK;
drop:
spin_unlock(&eth->page_lock);
stats->tx_dropped++;
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
static struct mtk_rx_ring *mtk_get_rx_ring(struct mtk_eth *eth)
{
int i;
struct mtk_rx_ring *ring;
int idx;
for (i = 0; i < MTK_MAX_RX_RING_NUM; i++) {
struct mtk_rx_dma *rxd;
if (!IS_NORMAL_RING(i) && !IS_HW_LRO_RING(i))
continue;
ring = &eth->rx_ring[i];
idx = NEXT_DESP_IDX(ring->calc_idx, ring->dma_size);
rxd = ring->dma + idx * eth->soc->txrx.rxd_size;
if (rxd->rxd2 & RX_DMA_DONE) {
ring->calc_idx_update = true;
return ring;
}
}
return NULL;
}
static void mtk_update_rx_cpu_idx(struct mtk_eth *eth, struct mtk_rx_ring *ring)
{
int i;
if (!eth->hwlro)
mtk_w32(eth, ring->calc_idx, ring->crx_idx_reg);
else {
for (i = 0; i < MTK_MAX_RX_RING_NUM; i++) {
ring = &eth->rx_ring[i];
if (ring->calc_idx_update) {
ring->calc_idx_update = false;
mtk_w32(eth, ring->calc_idx, ring->crx_idx_reg);
}
}
}
}
static int mtk_poll_rx(struct napi_struct *napi, int budget,
struct mtk_eth *eth)
{
struct mtk_napi *rx_napi = container_of(napi, struct mtk_napi, napi);
struct mtk_rx_ring *ring = rx_napi->rx_ring;
int idx;
struct sk_buff *skb;
u64 addr64 = 0;
u8 *data, *new_data;
struct mtk_rx_dma_v2 *rxd, trxd;
int done = 0;
if (unlikely(!ring))
goto rx_done;
while (done < budget) {
unsigned int pktlen, *rxdcsum;
struct net_device *netdev = NULL;
dma_addr_t dma_addr = 0;
int mac = 0;
if (eth->hwlro)
ring = mtk_get_rx_ring(eth);
if (unlikely(!ring))
goto rx_done;
idx = NEXT_DESP_IDX(ring->calc_idx, ring->dma_size);
rxd = ring->dma + idx * eth->soc->txrx.rxd_size;
data = ring->data[idx];
if (!mtk_rx_get_desc(eth, &trxd, rxd))
break;
/* find out which mac the packet come from. values start at 1 */
if (MTK_HAS_CAPS(eth->soc->caps, MTK_SOC_MT7628)) {
mac = 0;
} else {
if (MTK_HAS_CAPS(eth->soc->caps, MTK_NETSYS_RX_V2)) {
switch (RX_DMA_GET_SPORT_V2(trxd.rxd5)) {
case PSE_GDM1_PORT:
case PSE_GDM2_PORT:
mac = RX_DMA_GET_SPORT_V2(trxd.rxd5) - 1;
break;
case PSE_GDM3_PORT:
mac = MTK_GMAC3_ID;
break;
}
} else
mac = (trxd.rxd4 & RX_DMA_SPECIAL_TAG) ?
0 : RX_DMA_GET_SPORT(trxd.rxd4) - 1;
}
if (unlikely(mac < 0 || mac >= MTK_MAC_COUNT ||
!eth->netdev[mac]))
goto release_desc;
netdev = eth->netdev[mac];
if (unlikely(test_bit(MTK_RESETTING, &eth->state)))
goto release_desc;
/* alloc new buffer */
new_data = napi_alloc_frag(ring->frag_size);
if (unlikely(!new_data)) {
netdev->stats.rx_dropped++;
goto release_desc;
}
dma_addr = dma_map_single(eth->dma_dev,
new_data + NET_SKB_PAD +
eth->ip_align,
ring->buf_size,
DMA_FROM_DEVICE);
if (unlikely(dma_mapping_error(eth->dma_dev, dma_addr))) {
skb_free_frag(new_data);
netdev->stats.rx_dropped++;
goto release_desc;
}
addr64 = (MTK_HAS_CAPS(eth->soc->caps, MTK_8GB_ADDRESSING)) ?
((u64)(trxd.rxd2 & 0xf)) << 32 : 0;
dma_unmap_single(eth->dma_dev,
(u64)(trxd.rxd1 | addr64),
ring->buf_size, DMA_FROM_DEVICE);
/* receive data */
skb = build_skb(data, ring->frag_size);
if (unlikely(!skb)) {
skb_free_frag(data);
netdev->stats.rx_dropped++;
goto skip_rx;
}
skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
pktlen = RX_DMA_GET_PLEN0(trxd.rxd2);
skb->dev = netdev;
skb_put(skb, pktlen);
if ((MTK_HAS_CAPS(eth->soc->caps, MTK_NETSYS_RX_V2)))
rxdcsum = &trxd.rxd3;
else
rxdcsum = &trxd.rxd4;
if (*rxdcsum & eth->soc->txrx.rx_dma_l4_valid)
skb->ip_summed = CHECKSUM_UNNECESSARY;
else
skb_checksum_none_assert(skb);
skb->protocol = eth_type_trans(skb, netdev);
if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX) {
if (MTK_HAS_CAPS(eth->soc->caps, MTK_NETSYS_RX_V2)) {
if (trxd.rxd3 & RX_DMA_VTAG_V2)
__vlan_hwaccel_put_tag(skb,
htons(RX_DMA_VPID_V2(trxd.rxd4)),
RX_DMA_VID_V2(trxd.rxd4));
} else {
if (trxd.rxd2 & RX_DMA_VTAG)
__vlan_hwaccel_put_tag(skb,
htons(RX_DMA_VPID(trxd.rxd3)),
RX_DMA_VID(trxd.rxd3));
}
/* If netdev is attached to dsa switch, the special
* tag inserted in VLAN field by switch hardware can
* be offload by RX HW VLAN offload. Clears the VLAN
* information from @skb to avoid unexpected 8021d
* handler before packet enter dsa framework.
*/
if (netdev_uses_dsa(netdev))
__vlan_hwaccel_clear_tag(skb);
}
#if defined(CONFIG_NET_MEDIATEK_HNAT) || defined(CONFIG_NET_MEDIATEK_HNAT_MODULE)
if (MTK_HAS_CAPS(eth->soc->caps, MTK_NETSYS_RX_V2))
*(u32 *)(skb->head) = trxd.rxd5;
else
*(u32 *)(skb->head) = trxd.rxd4;
skb_hnat_alg(skb) = 0;
skb_hnat_filled(skb) = 0;
skb_hnat_magic_tag(skb) = HNAT_MAGIC_TAG;
if (skb_hnat_reason(skb) == HIT_BIND_FORCE_TO_CPU) {
trace_printk("[%s] reason=0x%x(force to CPU) from WAN to Ext\n",
__func__, skb_hnat_reason(skb));
skb->pkt_type = PACKET_HOST;
}
trace_printk("[%s] rxd:(entry=%x,sport=%x,reason=%x,alg=%x\n",
__func__, skb_hnat_entry(skb), skb_hnat_sport(skb),
skb_hnat_reason(skb), skb_hnat_alg(skb));
#endif
if (mtk_hwlro_stats_ebl &&
IS_HW_LRO_RING(ring->ring_no) && eth->hwlro) {
hw_lro_stats_update(ring->ring_no, &trxd);
hw_lro_flush_stats_update(ring->ring_no, &trxd);
}
skb_record_rx_queue(skb, 0);
napi_gro_receive(napi, skb);
skip_rx:
ring->data[idx] = new_data;
rxd->rxd1 = (unsigned int)dma_addr;
release_desc:
addr64 = (MTK_HAS_CAPS(eth->soc->caps, MTK_8GB_ADDRESSING)) ?
RX_DMA_SDP1(dma_addr) : 0;
if (MTK_HAS_CAPS(eth->soc->caps, MTK_SOC_MT7628))
rxd->rxd2 = RX_DMA_LSO;
else
rxd->rxd2 = RX_DMA_PLEN0(ring->buf_size) | addr64;
ring->calc_idx = idx;
done++;
}
rx_done:
if (done) {
/* make sure that all changes to the dma ring are flushed before
* we continue
*/
wmb();
mtk_update_rx_cpu_idx(eth, ring);
}
return done;
}
static void mtk_poll_tx_qdma(struct mtk_eth *eth, int budget,
unsigned int *done, unsigned int *bytes)
{
const struct mtk_reg_map *reg_map = eth->soc->reg_map;
const struct mtk_soc_data *soc = eth->soc;
struct mtk_tx_ring *ring = &eth->tx_ring;
struct mtk_tx_dma *desc;
struct sk_buff *skb;
struct mtk_tx_buf *tx_buf;
u32 cpu, dma;
cpu = ring->last_free_ptr;
dma = mtk_r32(eth, reg_map->qdma.drx_ptr);
desc = mtk_qdma_phys_to_virt(ring, cpu);
while ((cpu != dma) && budget) {
u32 next_cpu = desc->txd2;
int mac = 0;
if ((desc->txd3 & TX_DMA_OWNER_CPU) == 0)
break;
desc = mtk_qdma_phys_to_virt(ring, desc->txd2);
tx_buf = mtk_desc_to_tx_buf(ring, desc, soc->txrx.txd_size);
if (tx_buf->flags & MTK_TX_FLAGS_FPORT1)
mac = MTK_GMAC2_ID;
else if (tx_buf->flags & MTK_TX_FLAGS_FPORT2)
mac = MTK_GMAC3_ID;
skb = tx_buf->skb;
if (!skb)
break;
if (skb != (struct sk_buff *)MTK_DMA_DUMMY_DESC) {
bytes[mac] += skb->len;
done[mac]++;
budget--;
}
mtk_tx_unmap(eth, tx_buf, true);
ring->last_free = desc;
atomic_inc(&ring->free_count);
cpu = next_cpu;
}
ring->last_free_ptr = cpu;
mtk_w32(eth, cpu, reg_map->qdma.crx_ptr);
}
static void mtk_poll_tx_pdma(struct mtk_eth *eth, int budget,
unsigned int *done, unsigned int *bytes)
{
struct mtk_tx_ring *ring = &eth->tx_ring;
struct mtk_tx_dma *desc;
struct sk_buff *skb;
struct mtk_tx_buf *tx_buf;
u32 cpu, dma;
cpu = ring->cpu_idx;
dma = mtk_r32(eth, MT7628_TX_DTX_IDX0);
while ((cpu != dma) && budget) {
tx_buf = &ring->buf[cpu];
skb = tx_buf->skb;
if (!skb)
break;
if (skb != (struct sk_buff *)MTK_DMA_DUMMY_DESC) {
bytes[0] += skb->len;
done[0]++;
budget--;
}
mtk_tx_unmap(eth, tx_buf, true);
desc = ring->dma + cpu * eth->soc->txrx.txd_size;
ring->last_free = desc;
atomic_inc(&ring->free_count);
cpu = NEXT_DESP_IDX(cpu, ring->dma_size);
}
ring->cpu_idx = cpu;
}
static int mtk_poll_tx(struct mtk_eth *eth, int budget)
{
struct mtk_tx_ring *ring = &eth->tx_ring;
unsigned int done[MTK_MAX_DEVS];
unsigned int bytes[MTK_MAX_DEVS];
int total = 0, i;
memset(done, 0, sizeof(done));
memset(bytes, 0, sizeof(bytes));
if (MTK_HAS_CAPS(eth->soc->caps, MTK_QDMA))
mtk_poll_tx_qdma(eth, budget, done, bytes);
else
mtk_poll_tx_pdma(eth, budget, done, bytes);
for (i = 0; i < MTK_MAC_COUNT; i++) {
if (!eth->netdev[i] || !done[i])
continue;
netdev_completed_queue(eth->netdev[i], done[i], bytes[i]);
total += done[i];
}
if (mtk_queue_stopped(eth) &&
(atomic_read(&ring->free_count) > ring->thresh))
mtk_wake_queue(eth);
return total;
}
static void mtk_handle_status_irq(struct mtk_eth *eth)
{
u32 status2 = mtk_r32(eth, MTK_FE_INT_STATUS);
if (unlikely(status2 & (MTK_GDM1_AF | MTK_GDM2_AF))) {
mtk_stats_update(eth);
mtk_w32(eth, (MTK_GDM1_AF | MTK_GDM2_AF),
MTK_FE_INT_STATUS);
}
}
static int mtk_napi_tx(struct napi_struct *napi, int budget)
{
struct mtk_eth *eth = container_of(napi, struct mtk_eth, tx_napi);
const struct mtk_reg_map *reg_map = eth->soc->reg_map;
u32 status, mask;
int tx_done = 0;
if (MTK_HAS_CAPS(eth->soc->caps, MTK_QDMA))
mtk_handle_status_irq(eth);
mtk_w32(eth, MTK_TX_DONE_INT, reg_map->tx_irq_status);
tx_done = mtk_poll_tx(eth, budget);
if (unlikely(netif_msg_intr(eth))) {
status = mtk_r32(eth, reg_map->tx_irq_status);
mask = mtk_r32(eth, reg_map->tx_irq_mask);
dev_info(eth->dev,
"done tx %d, intr 0x%08x/0x%x\n",
tx_done, status, mask);
}
if (tx_done == budget)
return budget;
status = mtk_r32(eth, reg_map->tx_irq_status);
if (status & MTK_TX_DONE_INT)
return budget;
if (napi_complete(napi))
mtk_tx_irq_enable(eth, MTK_TX_DONE_INT);
return tx_done;
}
static int mtk_napi_rx(struct napi_struct *napi, int budget)
{
struct mtk_napi *rx_napi = container_of(napi, struct mtk_napi, napi);
struct mtk_eth *eth = rx_napi->eth;
const struct mtk_reg_map *reg_map = eth->soc->reg_map;
struct mtk_rx_ring *ring = rx_napi->rx_ring;
u32 status, mask;
int rx_done = 0;
int remain_budget = budget;
mtk_handle_status_irq(eth);
poll_again:
mtk_w32(eth, MTK_RX_DONE_INT(ring->ring_no), reg_map->pdma.irq_status);
rx_done = mtk_poll_rx(napi, remain_budget, eth);
if (unlikely(netif_msg_intr(eth))) {
status = mtk_r32(eth, reg_map->pdma.irq_status);
mask = mtk_r32(eth, reg_map->pdma.irq_mask);
dev_info(eth->dev,
"done rx %d, intr 0x%08x/0x%x\n",
rx_done, status, mask);
}
if (rx_done == remain_budget)
return budget;
status = mtk_r32(eth, reg_map->pdma.irq_status);
if (status & MTK_RX_DONE_INT(ring->ring_no)) {
remain_budget -= rx_done;
goto poll_again;
}
if (napi_complete(napi))
mtk_rx_irq_enable(eth, MTK_RX_DONE_INT(ring->ring_no));
return rx_done + budget - remain_budget;
}
static int mtk_tx_alloc(struct mtk_eth *eth)
{
const struct mtk_soc_data *soc = eth->soc;
struct mtk_tx_ring *ring = &eth->tx_ring;
int i, sz = soc->txrx.txd_size;
struct mtk_tx_dma_v2 *txd, *pdma_txd;
ring->buf = kcalloc(MTK_DMA_SIZE, sizeof(*ring->buf),
GFP_KERNEL);
if (!ring->buf)
goto no_tx_mem;
if (!eth->soc->has_sram)
ring->dma = dma_alloc_coherent(eth->dma_dev, MTK_DMA_SIZE * sz,
&ring->phys, GFP_KERNEL);
else {
ring->dma = eth->scratch_ring + MTK_DMA_SIZE * sz;
ring->phys = eth->phy_scratch_ring +
MTK_DMA_SIZE * (dma_addr_t)sz;
}
if (!ring->dma)
goto no_tx_mem;
for (i = 0; i < MTK_DMA_SIZE; i++) {
int next = (i + 1) % MTK_DMA_SIZE;
u32 next_ptr = ring->phys + next * sz;
txd = ring->dma + i * sz;
txd->txd2 = next_ptr;
txd->txd3 = TX_DMA_LS0 | TX_DMA_OWNER_CPU;
txd->txd4 = 0;
if (MTK_HAS_CAPS(eth->soc->caps, MTK_NETSYS_V2) ||
MTK_HAS_CAPS(eth->soc->caps, MTK_NETSYS_V3)) {
txd->txd5 = 0;
txd->txd6 = 0;
txd->txd7 = 0;
txd->txd8 = 0;
}
}
/* On MT7688 (PDMA only) this driver uses the ring->dma structs
* only as the framework. The real HW descriptors are the PDMA
* descriptors in ring->dma_pdma.
*/
if (!MTK_HAS_CAPS(eth->soc->caps, MTK_QDMA)) {
ring->dma_pdma = dma_alloc_coherent(eth->dma_dev,
MTK_DMA_SIZE * sz,
&ring->phys_pdma, GFP_KERNEL);
if (!ring->dma_pdma)
goto no_tx_mem;
for (i = 0; i < MTK_DMA_SIZE; i++) {
pdma_txd = ring->dma_pdma + i *sz;
pdma_txd->txd2 = TX_DMA_DESP2_DEF;
pdma_txd->txd4 = 0;
}
}
ring->dma_size = MTK_DMA_SIZE;
atomic_set(&ring->free_count, MTK_DMA_SIZE - 2);
ring->next_free = ring->dma;
ring->last_free = (void *)txd;
ring->last_free_ptr = (u32)(ring->phys + ((MTK_DMA_SIZE - 1) * sz));
ring->thresh = MAX_SKB_FRAGS;
/* make sure that all changes to the dma ring are flushed before we
* continue
*/
wmb();
if (MTK_HAS_CAPS(eth->soc->caps, MTK_QDMA)) {
mtk_w32(eth, ring->phys, soc->reg_map->qdma.ctx_ptr);
mtk_w32(eth, ring->phys, soc->reg_map->qdma.dtx_ptr);
mtk_w32(eth,
ring->phys + ((MTK_DMA_SIZE - 1) * sz),
soc->reg_map->qdma.crx_ptr);
mtk_w32(eth, ring->last_free_ptr, soc->reg_map->qdma.drx_ptr);
mtk_w32(eth, (QDMA_RES_THRES << 8) | QDMA_RES_THRES,
soc->reg_map->qdma.qtx_cfg);
} else {
mtk_w32(eth, ring->phys_pdma, MT7628_TX_BASE_PTR0);
mtk_w32(eth, MTK_DMA_SIZE, MT7628_TX_MAX_CNT0);
mtk_w32(eth, 0, MT7628_TX_CTX_IDX0);
mtk_w32(eth, MT7628_PST_DTX_IDX0, soc->reg_map->pdma.rst_idx);
}
return 0;
no_tx_mem:
return -ENOMEM;
}
static void mtk_tx_clean(struct mtk_eth *eth)
{
const struct mtk_soc_data *soc = eth->soc;
struct mtk_tx_ring *ring = &eth->tx_ring;
int i;
if (ring->buf) {
for (i = 0; i < MTK_DMA_SIZE; i++)
mtk_tx_unmap(eth, &ring->buf[i], false);
kfree(ring->buf);
ring->buf = NULL;
}
if (!eth->soc->has_sram && ring->dma) {
dma_free_coherent(eth->dma_dev,
MTK_DMA_SIZE * soc->txrx.txd_size,
ring->dma, ring->phys);
ring->dma = NULL;
}
if (ring->dma_pdma) {
dma_free_coherent(eth->dma_dev,
MTK_DMA_SIZE * soc->txrx.txd_size,
ring->dma_pdma, ring->phys_pdma);
ring->dma_pdma = NULL;
}
}
static int mtk_rx_alloc(struct mtk_eth *eth, int ring_no, int rx_flag)
{
const struct mtk_reg_map *reg_map = eth->soc->reg_map;
struct mtk_rx_ring *ring;
int rx_data_len, rx_dma_size;
int i;
u64 addr64 = 0;
if (rx_flag == MTK_RX_FLAGS_QDMA) {
if (ring_no)
return -EINVAL;
ring = &eth->rx_ring_qdma;
} else {
ring = &eth->rx_ring[ring_no];
}
if (rx_flag == MTK_RX_FLAGS_HWLRO) {
rx_data_len = MTK_MAX_LRO_RX_LENGTH;
rx_dma_size = MTK_HW_LRO_DMA_SIZE;
} else {
rx_data_len = ETH_DATA_LEN;
rx_dma_size = MTK_DMA_SIZE;
}
ring->frag_size = mtk_max_frag_size(rx_data_len);
ring->buf_size = mtk_max_buf_size(ring->frag_size);
ring->data = kcalloc(rx_dma_size, sizeof(*ring->data),
GFP_KERNEL);
if (!ring->data)
return -ENOMEM;
for (i = 0; i < rx_dma_size; i++) {
ring->data[i] = netdev_alloc_frag(ring->frag_size);
if (!ring->data[i])
return -ENOMEM;
}
if ((!eth->soc->has_sram) || (eth->soc->has_sram
&& (rx_flag != MTK_RX_FLAGS_NORMAL)))
ring->dma = dma_alloc_coherent(eth->dma_dev,
rx_dma_size * eth->soc->txrx.rxd_size,
&ring->phys, GFP_KERNEL);
else {
struct mtk_tx_ring *tx_ring = &eth->tx_ring;
ring->dma = tx_ring->dma + MTK_DMA_SIZE *
eth->soc->txrx.txd_size * (ring_no + 1);
ring->phys = tx_ring->phys + MTK_DMA_SIZE *
eth->soc->txrx.txd_size * (ring_no + 1);
}
if (!ring->dma)
return -ENOMEM;
for (i = 0; i < rx_dma_size; i++) {
struct mtk_rx_dma_v2 *rxd;
dma_addr_t dma_addr = dma_map_single(eth->dma_dev,
ring->data[i] + NET_SKB_PAD + eth->ip_align,
ring->buf_size,
DMA_FROM_DEVICE);
if (unlikely(dma_mapping_error(eth->dma_dev, dma_addr)))
return -ENOMEM;
rxd = ring->dma + i * eth->soc->txrx.rxd_size;
rxd->rxd1 = (unsigned int)dma_addr;
addr64 = (MTK_HAS_CAPS(eth->soc->caps, MTK_8GB_ADDRESSING)) ?
RX_DMA_SDP1(dma_addr) : 0;
if (MTK_HAS_CAPS(eth->soc->caps, MTK_SOC_MT7628))
rxd->rxd2 = RX_DMA_LSO;
else
rxd->rxd2 = RX_DMA_PLEN0(ring->buf_size) | addr64;
rxd->rxd3 = 0;
rxd->rxd4 = 0;
if (MTK_HAS_CAPS(eth->soc->caps, MTK_NETSYS_RX_V2)) {
rxd->rxd5 = 0;
rxd->rxd6 = 0;
rxd->rxd7 = 0;
rxd->rxd8 = 0;
}
}
ring->dma_size = rx_dma_size;
ring->calc_idx_update = false;
ring->calc_idx = rx_dma_size - 1;
ring->crx_idx_reg = (rx_flag == MTK_RX_FLAGS_QDMA) ?
MTK_QRX_CRX_IDX_CFG(ring_no) :
MTK_PRX_CRX_IDX_CFG(ring_no);
ring->ring_no = ring_no;
/* make sure that all changes to the dma ring are flushed before we
* continue
*/
wmb();
if (rx_flag == MTK_RX_FLAGS_QDMA) {
mtk_w32(eth, ring->phys,
reg_map->qdma.rx_ptr + ring_no * MTK_QRX_OFFSET);
mtk_w32(eth, rx_dma_size,
reg_map->qdma.rx_cnt_cfg + ring_no * MTK_QRX_OFFSET);
mtk_w32(eth, ring->calc_idx,
ring->crx_idx_reg);
mtk_w32(eth, MTK_PST_DRX_IDX_CFG(ring_no),
reg_map->qdma.rst_idx);
} else {
mtk_w32(eth, ring->phys,
reg_map->pdma.rx_ptr + ring_no * MTK_QRX_OFFSET);
mtk_w32(eth, rx_dma_size,
reg_map->pdma.rx_cnt_cfg + ring_no * MTK_QRX_OFFSET);
mtk_w32(eth, ring->calc_idx,
ring->crx_idx_reg);
mtk_w32(eth, MTK_PST_DRX_IDX_CFG(ring_no),
reg_map->pdma.rst_idx);
}
return 0;
}
static void mtk_rx_clean(struct mtk_eth *eth, struct mtk_rx_ring *ring, int in_sram)
{
int i;
u64 addr64 = 0;
if (ring->data && ring->dma) {
for (i = 0; i < ring->dma_size; i++) {
struct mtk_rx_dma *rxd;
if (!ring->data[i])
continue;
rxd = ring->dma + i * eth->soc->txrx.rxd_size;
if (!rxd->rxd1)
continue;
addr64 = (MTK_HAS_CAPS(eth->soc->caps,
MTK_8GB_ADDRESSING)) ?
((u64)(rxd->rxd2 & 0xf)) << 32 : 0;
dma_unmap_single(eth->dma_dev,
(u64)(rxd->rxd1 | addr64),
ring->buf_size,
DMA_FROM_DEVICE);
skb_free_frag(ring->data[i]);
}
kfree(ring->data);
ring->data = NULL;
}
if(in_sram)
return;
if (ring->dma) {
dma_free_coherent(eth->dma_dev,
ring->dma_size * eth->soc->txrx.rxd_size,
ring->dma,
ring->phys);
ring->dma = NULL;
}
}
static int mtk_hwlro_rx_init(struct mtk_eth *eth)
{
int i;
u32 val;
u32 ring_ctrl_dw1 = 0, ring_ctrl_dw2 = 0, ring_ctrl_dw3 = 0;
u32 lro_ctrl_dw0 = 0, lro_ctrl_dw3 = 0;
/* set LRO rings to auto-learn modes */
ring_ctrl_dw2 |= MTK_RING_AUTO_LERAN_MODE;
/* validate LRO ring */
ring_ctrl_dw2 |= MTK_RING_VLD;
/* set AGE timer (unit: 20us) */
ring_ctrl_dw2 |= MTK_RING_AGE_TIME_H;
ring_ctrl_dw1 |= MTK_RING_AGE_TIME_L;
/* set max AGG timer (unit: 20us) */
ring_ctrl_dw2 |= MTK_RING_MAX_AGG_TIME;
/* set max LRO AGG count */
ring_ctrl_dw2 |= MTK_RING_MAX_AGG_CNT_L;
ring_ctrl_dw3 |= MTK_RING_MAX_AGG_CNT_H;
for (i = 1; i <= MTK_HW_LRO_RING_NUM; i++) {
mtk_w32(eth, ring_ctrl_dw1, MTK_LRO_CTRL_DW1_CFG(i));
mtk_w32(eth, ring_ctrl_dw2, MTK_LRO_CTRL_DW2_CFG(i));
mtk_w32(eth, ring_ctrl_dw3, MTK_LRO_CTRL_DW3_CFG(i));
}
/* IPv4 checksum update enable */
lro_ctrl_dw0 |= MTK_L3_CKS_UPD_EN;
/* switch priority comparison to packet count mode */
lro_ctrl_dw0 |= MTK_LRO_ALT_PKT_CNT_MODE;
/* bandwidth threshold setting */
mtk_w32(eth, MTK_HW_LRO_BW_THRE, MTK_PDMA_LRO_CTRL_DW2);
/* auto-learn score delta setting */
mtk_w32(eth, MTK_HW_LRO_REPLACE_DELTA, MTK_LRO_ALT_SCORE_DELTA);
/* set refresh timer for altering flows to 1 sec. (unit: 20us) */
mtk_w32(eth, (MTK_HW_LRO_TIMER_UNIT << 16) | MTK_HW_LRO_REFRESH_TIME,
MTK_PDMA_LRO_ALT_REFRESH_TIMER);
/* the minimal remaining room of SDL0 in RXD for lro aggregation */
lro_ctrl_dw3 |= MTK_LRO_MIN_RXD_SDL;
if (MTK_HAS_CAPS(eth->soc->caps, MTK_NETSYS_RX_V2)) {
val = mtk_r32(eth, MTK_PDMA_RX_CFG);
mtk_w32(eth, val | (MTK_PDMA_LRO_SDL << MTK_RX_CFG_SDL_OFFSET),
MTK_PDMA_RX_CFG);
lro_ctrl_dw0 |= MTK_PDMA_LRO_SDL << MTK_CTRL_DW0_SDL_OFFSET;
} else {
/* set HW LRO mode & the max aggregation count for rx packets */
lro_ctrl_dw3 |= MTK_ADMA_MODE | (MTK_HW_LRO_MAX_AGG_CNT & 0xff);
}
/* enable HW LRO */
lro_ctrl_dw0 |= MTK_LRO_EN;
/* enable cpu reason black list */
lro_ctrl_dw0 |= MTK_LRO_CRSN_BNW;
mtk_w32(eth, lro_ctrl_dw3, MTK_PDMA_LRO_CTRL_DW3);
mtk_w32(eth, lro_ctrl_dw0, MTK_PDMA_LRO_CTRL_DW0);
/* no use PPE cpu reason */
mtk_w32(eth, 0xffffffff, MTK_PDMA_LRO_CTRL_DW1);
return 0;
}
static void mtk_hwlro_rx_uninit(struct mtk_eth *eth)
{
int i;
u32 val;
/* relinquish lro rings, flush aggregated packets */
mtk_w32(eth, MTK_LRO_RING_RELINGUISH_REQ, MTK_PDMA_LRO_CTRL_DW0);
/* wait for relinquishments done */
for (i = 0; i < 10; i++) {
val = mtk_r32(eth, MTK_PDMA_LRO_CTRL_DW0);
if (val & MTK_LRO_RING_RELINGUISH_DONE) {
mdelay(20);