blob: b6f3f5e21b0bcf93bc9e71bca103b3e05ed7f018 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
#include <linux/bitfield.h>
#include <linux/module.h>
#include <linux/nvmem-consumer.h>
#include <linux/of_address.h>
#include <linux/of_platform.h>
#include <linux/phy.h>
#define MTK_GPHY_ID_MT7530 0x03a29412
#define MTK_GPHY_ID_MT7531 0x03a29441
#ifdef CONFIG_MEDIATEK_GE_PHY_SOC
#define MTK_GPHY_ID_MT7981 0x03a29461
#define MTK_GPHY_ID_MT7988 0x03a29481
#endif
#define MTK_EXT_PAGE_ACCESS 0x1f
#define MTK_PHY_PAGE_STANDARD 0x0000
#define MTK_PHY_PAGE_EXTENDED 0x0001
#define MTK_PHY_PAGE_EXTENDED_2 0x0002
#define MTK_PHY_PAGE_EXTENDED_3 0x0003
#define MTK_PHY_PAGE_EXTENDED_2A30 0x2a30
#define MTK_PHY_PAGE_EXTENDED_52B5 0x52b5
#define ANALOG_INTERNAL_OPERATION_MAX_US (20)
#define ZCAL_CTRL_MIN (0)
#define ZCAL_CTRL_MAX (63)
#define TXRESERVE_MIN (0)
#define TXRESERVE_MAX (7)
#define MTK_PHY_ANARG_RG (0x10)
#define MTK_PHY_TCLKOFFSET_MASK GENMASK(12, 8)
/* Registers on MDIO_MMD_VEND1 */
enum {
MTK_PHY_MIDDLE_LEVEL_SHAPPER_0TO1 = 0,
MTK_PHY_1st_OVERSHOOT_LEVEL_0TO1,
MTK_PHY_2nd_OVERSHOOT_LEVEL_0TO1,
MTK_PHY_MIDDLE_LEVEL_SHAPPER_1TO0,
MTK_PHY_1st_OVERSHOOT_LEVEL_1TO0,
MTK_PHY_2nd_OVERSHOOT_LEVEL_1TO0,
MTK_PHY_MIDDLE_LEVEL_SHAPPER_0TON1, /* N means negative */
MTK_PHY_1st_OVERSHOOT_LEVEL_0TON1,
MTK_PHY_2nd_OVERSHOOT_LEVEL_0TON1,
MTK_PHY_MIDDLE_LEVEL_SHAPPER_N1TO0,
MTK_PHY_1st_OVERSHOOT_LEVEL_N1TO0,
MTK_PHY_2nd_OVERSHOOT_LEVEL_N1TO0,
MTK_PHY_TX_MLT3_END,
};
#define MTK_PHY_TXVLD_DA_RG (0x12)
#define MTK_PHY_DA_TX_I2MPB_A_GBE_MASK GENMASK(15, 10)
#define MTK_PHY_DA_TX_I2MPB_A_TBT_MASK GENMASK(5, 0)
#define MTK_PHY_TX_I2MPB_TEST_MODE_A2 (0x16)
#define MTK_PHY_DA_TX_I2MPB_A_HBT_MASK GENMASK(15, 10)
#define MTK_PHY_DA_TX_I2MPB_A_TST_MASK GENMASK(5, 0)
#define MTK_PHY_TX_I2MPB_TEST_MODE_B1 (0x17)
#define MTK_PHY_DA_TX_I2MPB_B_GBE_MASK GENMASK(13, 8)
#define MTK_PHY_DA_TX_I2MPB_B_TBT_MASK GENMASK(5, 0)
#define MTK_PHY_TX_I2MPB_TEST_MODE_B2 (0x18)
#define MTK_PHY_DA_TX_I2MPB_B_HBT_MASK GENMASK(13, 8)
#define MTK_PHY_DA_TX_I2MPB_B_TST_MASK GENMASK(5, 0)
#define MTK_PHY_TX_I2MPB_TEST_MODE_C1 (0x19)
#define MTK_PHY_DA_TX_I2MPB_C_GBE_MASK GENMASK(13, 8)
#define MTK_PHY_DA_TX_I2MPB_C_TBT_MASK GENMASK(5, 0)
#define MTK_PHY_TX_I2MPB_TEST_MODE_C2 (0x20)
#define MTK_PHY_DA_TX_I2MPB_C_HBT_MASK GENMASK(13, 8)
#define MTK_PHY_DA_TX_I2MPB_C_TST_MASK GENMASK(5, 0)
#define MTK_PHY_TX_I2MPB_TEST_MODE_D1 (0x21)
#define MTK_PHY_DA_TX_I2MPB_D_GBE_MASK GENMASK(13, 8)
#define MTK_PHY_DA_TX_I2MPB_D_TBT_MASK GENMASK(5, 0)
#define MTK_PHY_TX_I2MPB_TEST_MODE_D2 (0x22)
#define MTK_PHY_DA_TX_I2MPB_D_HBT_MASK GENMASK(13, 8)
#define MTK_PHY_DA_TX_I2MPB_D_TST_MASK GENMASK(5, 0)
#define MTK_PHY_TANA_CAL_MODE (0xc1)
#define MTK_PHY_TANA_CAL_MODE_SHIFT (8)
#define MTK_PHY_RXADC_CTRL_RG7 (0xc6)
#define MTK_PHY_DA_AD_BUF_BIAS_LP_MASK GENMASK(9, 8)
#define MTK_PHY_RXADC_CTRL_RG9 (0xc8)
#define MTK_PHY_DA_RX_PSBN_TBT_MASK GENMASK(14, 12)
#define MTK_PHY_DA_RX_PSBN_HBT_MASK GENMASK(10, 8)
#define MTK_PHY_DA_RX_PSBN_GBE_MASK GENMASK(6, 4)
#define MTK_PHY_DA_RX_PSBN_LP_MASK GENMASK(2, 0)
#define MTK_PHY_LDO_OUTPUT_V (0xd7)
#define MTK_PHY_RG_ANA_CAL_RG0 (0xdb)
#define MTK_PHY_RG_CAL_CKINV BIT(12)
#define MTK_PHY_RG_ANA_CALEN BIT(8)
#define MTK_PHY_RG_REXT_CALEN BIT(4)
#define MTK_PHY_RG_ZCALEN_A BIT(0)
#define MTK_PHY_RG_ANA_CAL_RG1 (0xdc)
#define MTK_PHY_RG_ZCALEN_B BIT(12)
#define MTK_PHY_RG_ZCALEN_C BIT(8)
#define MTK_PHY_RG_ZCALEN_D BIT(4)
#define MTK_PHY_RG_TXVOS_CALEN BIT(0)
#define MTK_PHY_RG_ANA_CAL_RG2 (0xdd)
#define MTK_PHY_RG_TXG_CALEN_A BIT(12)
#define MTK_PHY_RG_TXG_CALEN_B BIT(8)
#define MTK_PHY_RG_TXG_CALEN_C BIT(4)
#define MTK_PHY_RG_TXG_CALEN_D BIT(0)
#define MTK_PHY_RG_ANA_CAL_RG5 (0xe0)
#define MTK_PHY_RG_REXT_TRIM_MASK GENMASK(13, 8)
#define MTK_PHY_RG_ZCAL_CTRL_MASK GENMASK(5, 0)
#define MTK_PHY_RG_TX_FILTER (0xfe)
#define MTK_PHY_RG_CR_TX_AMP_OFFSET_A_B (0x172)
#define MTK_PHY_CR_TX_AMP_OFFSET_A_MASK GENMASK(13, 8)
#define MTK_PHY_CR_TX_AMP_OFFSET_B_MASK GENMASK(6, 0)
#define MTK_PHY_RG_CR_TX_AMP_OFFSET_C_D (0x173)
#define MTK_PHY_CR_TX_AMP_OFFSET_C_MASK GENMASK(13, 8)
#define MTK_PHY_CR_TX_AMP_OFFSET_D_MASK GENMASK(6, 0)
#define MTK_PHY_RG_AD_CAL_COMP (0x17a)
#define MTK_PHY_AD_CAL_COMP_OUT_SHIFT (8)
#define MTK_PHY_RG_AD_CAL_CLK (0x17b)
#define MTK_PHY_DA_CAL_CLK BIT(0)
#define MTK_PHY_RG_AD_CALIN (0x17c)
#define MTK_PHY_DA_CALIN_FLAG BIT(0)
#define MTK_PHY_RG_DASN_DAC_IN0_A (0x17d)
#define MTK_PHY_DASN_DAC_IN0_A_MASK GENMASK(9, 0)
#define MTK_PHY_RG_DASN_DAC_IN0_B (0x17e)
#define MTK_PHY_DASN_DAC_IN0_B_MASK GENMASK(9, 0)
#define MTK_PHY_RG_DASN_DAC_IN0_C (0x17f)
#define MTK_PHY_DASN_DAC_IN0_C_MASK GENMASK(9, 0)
#define MTK_PHY_RG_DASN_DAC_IN0_D (0x180)
#define MTK_PHY_DASN_DAC_IN0_D_MASK GENMASK(9, 0)
#define MTK_PHY_RG_DASN_DAC_IN1_A (0x181)
#define MTK_PHY_DASN_DAC_IN1_A_MASK GENMASK(9, 0)
#define MTK_PHY_RG_DASN_DAC_IN1_B (0x182)
#define MTK_PHY_DASN_DAC_IN1_B_MASK GENMASK(9, 0)
#define MTK_PHY_RG_DASN_DAC_IN1_C (0x183)
#define MTK_PHY_DASN_DAC_IN1_C_MASK GENMASK(9, 0)
#define MTK_PHY_RG_DASN_DAC_IN1_D (0x180)
#define MTK_PHY_DASN_DAC_IN1_D_MASK GENMASK(9, 0)
#define MTK_PHY_RG_LP_IIR2_K1_L (0x22a)
#define MTK_PHY_RG_LP_IIR2_K1_U (0x22b)
#define MTK_PHY_RG_LP_IIR2_K2_L (0x22c)
#define MTK_PHY_RG_LP_IIR2_K2_U (0x22d)
#define MTK_PHY_RG_LP_IIR2_K3_L (0x22e)
#define MTK_PHY_RG_LP_IIR2_K3_U (0x22f)
#define MTK_PHY_RG_LP_IIR2_K4_L (0x230)
#define MTK_PHY_RG_LP_IIR2_K4_U (0x231)
#define MTK_PHY_RG_LP_IIR2_K5_L (0x232)
#define MTK_PHY_RG_LP_IIR2_K5_U (0x233)
#define MTK_PHY_RG_DEV1E_REG234 (0x234)
#define MTK_PHY_TR_OPEN_LOOP_EN_MASK GENMASK(0, 0)
#define MTK_PHY_LPF_X_AVERAGE_MASK GENMASK(7, 4)
#define MTK_PHY_RG_LPF_CNT_VAL (0x235)
#define MTK_PHY_RG_DEV1E_REG27C (0x27c)
#define MTK_PHY_VGASTATE_FFE_THR_ST1_MASK GENMASK(12, 8)
#define MTK_PHY_RG_DEV1E_REG27D (0x27d)
#define MTK_PHY_VGASTATE_FFE_THR_ST2_MASK GENMASK(4, 0)
#define MTK_PHY_LDO_PUMP_EN_PAIRAB (0x502)
#define MTK_PHY_LDO_PUMP_EN_PAIRCD (0x503)
#define MTK_PHY_DA_TX_R50_PAIR_A (0x53d)
#define MTK_PHY_DA_TX_R50_PAIR_B (0x53e)
#define MTK_PHY_DA_TX_R50_PAIR_C (0x53f)
#define MTK_PHY_DA_TX_R50_PAIR_D (0x540)
/* Registers on MDIO_MMD_VEND2 */
#define MTK_PHY_LED0_ON_CTRL (0x24)
#define MTK_PHY_LED0_ON_MASK GENMASK(6, 0)
#define MTK_PHY_LED0_ON_LINK1000 BIT(0)
#define MTK_PHY_LED0_ON_LINK100 BIT(1)
#define MTK_PHY_LED0_ON_LINK10 BIT(2)
#define MTK_PHY_LED0_ON_LINKDOWN BIT(3)
#define MTK_PHY_LED0_ON_FDX BIT(4) /* Full duplex */
#define MTK_PHY_LED0_ON_HDX BIT(5) /* Half duplex */
#define MTK_PHY_LED0_FORCE_ON BIT(6)
#define MTK_PHY_LED0_POLARITY BIT(14)
#define MTK_PHY_LED0_ENABLE BIT(15)
#define MTK_PHY_LED0_BLINK_CTRL (0x25)
#define MTK_PHY_LED0_1000TX BIT(0)
#define MTK_PHY_LED0_1000RX BIT(1)
#define MTK_PHY_LED0_100TX BIT(2)
#define MTK_PHY_LED0_100RX BIT(3)
#define MTK_PHY_LED0_10TX BIT(4)
#define MTK_PHY_LED0_10RX BIT(5)
#define MTK_PHY_LED0_COLLISION BIT(6)
#define MTK_PHY_LED0_RX_CRC_ERR BIT(7)
#define MTK_PHY_LED0_RX_IDLE_ERR BIT(8)
#define MTK_PHY_LED0_FORCE_BLINK BIT(9)
#define MTK_PHY_ANA_TEST_BUS_CTRL_RG (0x100)
#define MTK_PHY_ANA_TEST_MODE_MASK GENMASK(15, 8)
#define MTK_PHY_RG_DASN_TXT_DMY2 (0x110)
#define MTK_PHY_TST_DMY2_MASK GENMASK(5, 0)
#define MTK_PHY_RG_BG_RASEL (0x115)
#define MTK_PHY_RG_BG_RASEL_MASK GENMASK(2, 0)
/* These macro privides efuse parsing for internal phy. */
#define EFS_DA_TX_I2MPB_A(x) (((x) >> 0) & GENMASK(5, 0))
#define EFS_DA_TX_I2MPB_B(x) (((x) >> 6) & GENMASK(5, 0))
#define EFS_DA_TX_I2MPB_C(x) (((x) >> 12) & GENMASK(5, 0))
#define EFS_DA_TX_I2MPB_D(x) (((x) >> 18) & GENMASK(5, 0))
#define EFS_DA_TX_AMP_OFFSET_A(x) (((x) >> 24) & GENMASK(5, 0))
#define EFS_DA_TX_AMP_OFFSET_B(x) (((x) >> 0) & GENMASK(5, 0))
#define EFS_DA_TX_AMP_OFFSET_C(x) (((x) >> 6) & GENMASK(5, 0))
#define EFS_DA_TX_AMP_OFFSET_D(x) (((x) >> 12) & GENMASK(5, 0))
#define EFS_DA_TX_R50_A(x) (((x) >> 18) & GENMASK(5, 0))
#define EFS_DA_TX_R50_B(x) (((x) >> 24) & GENMASK(5, 0))
#define EFS_DA_TX_R50_C(x) (((x) >> 0) & GENMASK(5, 0))
#define EFS_DA_TX_R50_D(x) (((x) >> 6) & GENMASK(5, 0))
#define EFS_DA_TX_R50_A_10M(x) (((x) >> 12) & GENMASK(5, 0))
#define EFS_DA_TX_R50_B_10M(x) (((x) >> 18) & GENMASK(5, 0))
#define EFS_RG_BG_RASEL(x) (((x) >> 4) & GENMASK(2, 0))
#define EFS_RG_REXT_TRIM(x) (((x) >> 7) & GENMASK(5, 0))
enum {
NO_PAIR,
PAIR_A,
PAIR_B,
PAIR_C,
PAIR_D,
};
enum {
GPHY_PORT0,
GPHY_PORT1,
GPHY_PORT2,
GPHY_PORT3,
};
enum calibration_mode {
EFUSE_K,
SW_K
};
enum CAL_ITEM {
REXT,
TX_OFFSET,
TX_AMP,
TX_R50,
TX_VCM
};
enum CAL_MODE {
SW_EFUSE_M,
EFUSE_M,
SW_M
};
const u8 mt798x_zcal_to_r50[64] = {
7, 8, 9, 9, 10, 10, 11, 11,
12, 13, 13, 14, 14, 15, 16, 16,
17, 18, 18, 19, 20, 21, 21, 22,
23, 24, 24, 25, 26, 27, 28, 29,
30, 31, 32, 33, 34, 35, 36, 37,
38, 40, 41, 42, 43, 45, 46, 48,
49, 51, 52, 54, 55, 57, 59, 61,
62, 63, 63, 63, 63, 63, 63, 63
};
const char pair[4] = {'A', 'B', 'C', 'D'};
static int mtk_gephy_read_page(struct phy_device *phydev)
{
return __phy_read(phydev, MTK_EXT_PAGE_ACCESS);
}
static int mtk_gephy_write_page(struct phy_device *phydev, int page)
{
return __phy_write(phydev, MTK_EXT_PAGE_ACCESS, page);
}
static void mtk_gephy_config_init(struct phy_device *phydev)
{
/* Disable EEE */
phy_write_mmd(phydev, MDIO_MMD_AN, MDIO_AN_EEE_ADV, 0);
/* Enable HW auto downshift */
phy_modify_paged(phydev, MTK_PHY_PAGE_EXTENDED, 0x14, 0, BIT(4));
/* Increase SlvDPSready time */
phy_select_page(phydev, MTK_PHY_PAGE_EXTENDED_52B5);
__phy_write(phydev, 0x10, 0xafae);
__phy_write(phydev, 0x12, 0x2f);
__phy_write(phydev, 0x10, 0x8fae);
phy_restore_page(phydev, MTK_PHY_PAGE_STANDARD, 0);
/* Adjust 100_mse_threshold */
phy_write_mmd(phydev, MDIO_MMD_VEND1, 0x123, 0xffff);
/* Disable mcc */
phy_write_mmd(phydev, MDIO_MMD_VEND1, 0xa6, 0x300);
}
static int mt7530_phy_config_init(struct phy_device *phydev)
{
mtk_gephy_config_init(phydev);
/* Increase post_update_timer */
phy_write_paged(phydev, MTK_PHY_PAGE_EXTENDED_3, 0x11, 0x4b);
return 0;
}
static int mt7531_phy_config_init(struct phy_device *phydev)
{
mtk_gephy_config_init(phydev);
/* PHY link down power saving enable */
phy_set_bits(phydev, 0x17, BIT(4));
phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, 0xc6, 0x300);
/* Set TX Pair delay selection */
phy_write_mmd(phydev, MDIO_MMD_VEND1, 0x13, 0x404);
phy_write_mmd(phydev, MDIO_MMD_VEND1, 0x14, 0x404);
return 0;
}
#ifdef CONFIG_MEDIATEK_GE_PHY_SOC
/* One calibration cycle consists of:
* 1.Set DA_CALIN_FLAG high to start calibration. Keep it high
* until AD_CAL_COMP is ready to output calibration result.
* 2.Wait until DA_CAL_CLK is available.
* 3.Fetch AD_CAL_COMP_OUT.
*/
static int cal_cycle(struct phy_device *phydev, int devad,
u32 regnum, u16 mask, u16 cal_val)
{
unsigned long timeout;
int reg_val;
int ret;
phy_modify_mmd(phydev, devad, regnum,
mask, cal_val);
phy_set_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_AD_CALIN,
MTK_PHY_DA_CALIN_FLAG);
timeout = jiffies + usecs_to_jiffies(ANALOG_INTERNAL_OPERATION_MAX_US);
do {
reg_val = phy_read_mmd(phydev, MDIO_MMD_VEND1,
MTK_PHY_RG_AD_CAL_CLK);
} while (time_before(jiffies, timeout) && !(reg_val & BIT(0)));
if (!(reg_val & BIT(0))) {
dev_err(&phydev->mdio.dev, "Calibration cycle timeout\n");
return -ETIMEDOUT;
}
phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_AD_CALIN,
MTK_PHY_DA_CALIN_FLAG);
ret = phy_read_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_AD_CAL_COMP) >>
MTK_PHY_AD_CAL_COMP_OUT_SHIFT;
dev_dbg(&phydev->mdio.dev, "cal_val: 0x%x, ret: %d\n", cal_val, ret);
return ret;
}
static int rext_fill_result(struct phy_device *phydev, u16 *buf)
{
phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG5,
MTK_PHY_RG_REXT_TRIM_MASK, buf[0] << 8);
phy_modify_mmd(phydev, MDIO_MMD_VEND2, MTK_PHY_RG_BG_RASEL,
MTK_PHY_RG_BG_RASEL_MASK, buf[1]);
return 0;
}
static int rext_cal_efuse(struct phy_device *phydev, u32 *buf)
{
u16 rext_cal_val[2];
rext_cal_val[0] = EFS_RG_REXT_TRIM(buf[3]);
rext_cal_val[1] = EFS_RG_BG_RASEL(buf[3]);
rext_fill_result(phydev, rext_cal_val);
return 0;
}
static int rext_cal_sw(struct phy_device *phydev)
{
u8 rg_zcal_ctrl_def;
u8 zcal_lower, zcal_upper, rg_zcal_ctrl;
u8 lower_ret, upper_ret;
u16 rext_cal_val[2];
int ret;
phy_modify_mmd(phydev, MDIO_MMD_VEND2, MTK_PHY_ANA_TEST_BUS_CTRL_RG,
MTK_PHY_ANA_TEST_MODE_MASK, MTK_PHY_TANA_CAL_MODE << 8);
phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG1,
MTK_PHY_RG_TXVOS_CALEN);
phy_set_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG0,
MTK_PHY_RG_CAL_CKINV | MTK_PHY_RG_ANA_CALEN |
MTK_PHY_RG_REXT_CALEN);
phy_modify_mmd(phydev, MDIO_MMD_VEND2, MTK_PHY_RG_DASN_TXT_DMY2,
MTK_PHY_TST_DMY2_MASK, 0x1);
rg_zcal_ctrl_def = phy_read_mmd(phydev, MDIO_MMD_VEND1,
MTK_PHY_RG_ANA_CAL_RG5) &
MTK_PHY_RG_ZCAL_CTRL_MASK;
zcal_lower = ZCAL_CTRL_MIN;
zcal_upper = ZCAL_CTRL_MAX;
dev_dbg(&phydev->mdio.dev, "Start REXT SW cal.\n");
while ((zcal_upper - zcal_lower) > 1) {
rg_zcal_ctrl = DIV_ROUND_CLOSEST(zcal_lower + zcal_upper, 2);
ret = cal_cycle(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG5,
MTK_PHY_RG_ZCAL_CTRL_MASK, rg_zcal_ctrl);
if (ret == 1) {
zcal_upper = rg_zcal_ctrl;
upper_ret = ret;
} else if (ret == 0) {
zcal_lower = rg_zcal_ctrl;
lower_ret = ret;
} else {
goto restore;
}
}
if (zcal_lower == ZCAL_CTRL_MIN) {
lower_ret = cal_cycle(phydev, MDIO_MMD_VEND1,
MTK_PHY_RG_ANA_CAL_RG5,
MTK_PHY_RG_ZCAL_CTRL_MASK, zcal_lower);
ret = lower_ret;
} else if (zcal_upper == ZCAL_CTRL_MAX) {
upper_ret = cal_cycle(phydev, MDIO_MMD_VEND1,
MTK_PHY_RG_ANA_CAL_RG5,
MTK_PHY_RG_ZCAL_CTRL_MASK, zcal_upper);
ret = upper_ret;
}
if (ret < 0)
goto restore;
ret = upper_ret - lower_ret;
if (ret == 1) {
rext_cal_val[0] = zcal_upper;
rext_cal_val[1] = zcal_upper >> 3;
rext_fill_result(phydev, rext_cal_val);
dev_info(&phydev->mdio.dev, "REXT SW cal result: 0x%x\n",
zcal_upper);
ret = 0;
} else {
ret = -EINVAL;
}
restore:
phy_clear_bits_mmd(phydev, MDIO_MMD_VEND2,
MTK_PHY_ANA_TEST_BUS_CTRL_RG,
MTK_PHY_ANA_TEST_MODE_MASK);
phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG0,
MTK_PHY_RG_CAL_CKINV | MTK_PHY_RG_ANA_CALEN |
MTK_PHY_RG_REXT_CALEN);
phy_clear_bits_mmd(phydev, MDIO_MMD_VEND2, MTK_PHY_RG_DASN_TXT_DMY2,
MTK_PHY_TST_DMY2_MASK);
phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG5,
MTK_PHY_RG_ZCAL_CTRL_MASK, rg_zcal_ctrl_def);
return ret;
}
static int tx_offset_fill_result(struct phy_device *phydev, u16 *buf)
{
phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_CR_TX_AMP_OFFSET_A_B,
MTK_PHY_CR_TX_AMP_OFFSET_A_MASK, buf[0] << 8);
phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_CR_TX_AMP_OFFSET_A_B,
MTK_PHY_CR_TX_AMP_OFFSET_B_MASK, buf[1]);
phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_CR_TX_AMP_OFFSET_C_D,
MTK_PHY_CR_TX_AMP_OFFSET_C_MASK, buf[2] << 8);
phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_CR_TX_AMP_OFFSET_C_D,
MTK_PHY_CR_TX_AMP_OFFSET_D_MASK, buf[3]);
return 0;
}
static int tx_offset_cal_efuse(struct phy_device *phydev, u32 *buf)
{
u16 tx_offset_cal_val[4];
tx_offset_cal_val[0] = EFS_DA_TX_AMP_OFFSET_A(buf[0]);
tx_offset_cal_val[1] = EFS_DA_TX_AMP_OFFSET_B(buf[1]);
tx_offset_cal_val[2] = EFS_DA_TX_AMP_OFFSET_C(buf[1]);
tx_offset_cal_val[3] = EFS_DA_TX_AMP_OFFSET_D(buf[1]);
tx_offset_fill_result(phydev, tx_offset_cal_val);
return 0;
}
static int tx_amp_fill_result(struct phy_device *phydev, u16 *buf)
{
int i;
int bias[16] = {0};
const int vals_9461[16] = { 7, 1, 4, 7,
7, 1, 4, 7,
7, 1, 4, 7,
7, 1, 4, 7 };
const int vals_9481[16] = { 10, 6, 6, 10,
10, 6, 6, 10,
10, 6, 6, 10,
10, 6, 6, 10 };
switch (phydev->drv->phy_id) {
case MTK_GPHY_ID_MT7981:
/* We add some calibration to efuse values
* due to board level influence.
* GBE: +7, TBT: +1, HBT: +4, TST: +7
*/
memcpy(bias, (const void *)vals_9461, sizeof(bias));
for (i = 0; i <= 12; i += 4) {
if (likely(buf[i >> 2] + bias[i] >= 32)) {
bias[i] -= 13;
} else {
phy_modify_mmd(phydev, MDIO_MMD_VEND1,
0x5c, 0x7 << i, bias[i] << i);
bias[i + 1] += 13;
bias[i + 2] += 13;
bias[i + 3] += 13;
}
}
break;
case MTK_GPHY_ID_MT7988:
memcpy(bias, (const void *)vals_9481, sizeof(bias));
break;
default:
break;
}
/* Prevent overflow */
for (i = 0; i < 12; i++) {
if (buf[i >> 2] + bias[i] > 63) {
buf[i >> 2] = 63;
bias[i] = 0;
} else if (buf[i >> 2] + bias[i] < 0) {
/* Bias caused by board design may change in the future.
* So check negative cases, too.
*/
buf[i >> 2] = 0;
bias[i] = 0;
}
}
phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TXVLD_DA_RG,
MTK_PHY_DA_TX_I2MPB_A_GBE_MASK, (buf[0] + bias[0]) << 10);
phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TXVLD_DA_RG,
MTK_PHY_DA_TX_I2MPB_A_TBT_MASK, buf[0] + bias[1]);
phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_A2,
MTK_PHY_DA_TX_I2MPB_A_HBT_MASK, (buf[0] + bias[2]) << 10);
phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_A2,
MTK_PHY_DA_TX_I2MPB_A_TST_MASK, buf[0] + bias[3]);
phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_B1,
MTK_PHY_DA_TX_I2MPB_B_GBE_MASK, (buf[1] + bias[4]) << 8);
phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_B1,
MTK_PHY_DA_TX_I2MPB_B_TBT_MASK, buf[1] + bias[5]);
phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_B2,
MTK_PHY_DA_TX_I2MPB_B_HBT_MASK, (buf[1] + bias[6]) << 8);
phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_B2,
MTK_PHY_DA_TX_I2MPB_B_TST_MASK, buf[1] + bias[7]);
phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_C1,
MTK_PHY_DA_TX_I2MPB_C_GBE_MASK, (buf[2] + bias[8]) << 8);
phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_C1,
MTK_PHY_DA_TX_I2MPB_C_TBT_MASK, buf[2] + bias[9]);
phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_C2,
MTK_PHY_DA_TX_I2MPB_C_HBT_MASK, (buf[2] + bias[10]) << 8);
phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_C2,
MTK_PHY_DA_TX_I2MPB_C_TST_MASK, buf[2] + bias[11]);
phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_D1,
MTK_PHY_DA_TX_I2MPB_D_GBE_MASK, (buf[3] + bias[12]) << 8);
phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_D1,
MTK_PHY_DA_TX_I2MPB_D_TBT_MASK, buf[3] + bias[13]);
phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_D2,
MTK_PHY_DA_TX_I2MPB_D_HBT_MASK, (buf[3] + bias[14]) << 8);
phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_D2,
MTK_PHY_DA_TX_I2MPB_D_TST_MASK, buf[3] + bias[15]);
return 0;
}
static int tx_amp_cal_efuse(struct phy_device *phydev, u32 *buf)
{
u16 tx_amp_cal_val[4];
tx_amp_cal_val[0] = EFS_DA_TX_I2MPB_A(buf[0]);
tx_amp_cal_val[1] = EFS_DA_TX_I2MPB_B(buf[0]);
tx_amp_cal_val[2] = EFS_DA_TX_I2MPB_C(buf[0]);
tx_amp_cal_val[3] = EFS_DA_TX_I2MPB_D(buf[0]);
tx_amp_fill_result(phydev, tx_amp_cal_val);
return 0;
}
static int tx_r50_fill_result(struct phy_device *phydev, u16 tx_r50_cal_val,
u8 txg_calen_x)
{
int bias = 0;
u16 reg, val;
switch (phydev->drv->phy_id) {
case MTK_GPHY_ID_MT7988:
{
bias = -2;
break;
}
/* MTK_GPHY_ID_MT7981 enters default case */
default:
break;
}
val = clamp_val(bias + tx_r50_cal_val, 0, 63);
switch (txg_calen_x) {
case PAIR_A:
reg = MTK_PHY_DA_TX_R50_PAIR_A;
break;
case PAIR_B:
reg = MTK_PHY_DA_TX_R50_PAIR_B;
break;
case PAIR_C:
reg = MTK_PHY_DA_TX_R50_PAIR_C;
break;
case PAIR_D:
reg = MTK_PHY_DA_TX_R50_PAIR_D;
break;
}
phy_write_mmd(phydev, MDIO_MMD_VEND1, reg, val | val << 8);
return 0;
}
static int tx_r50_cal_efuse(struct phy_device *phydev, u32 *buf,
u8 txg_calen_x)
{
u16 tx_r50_cal_val;
switch (txg_calen_x) {
case PAIR_A:
tx_r50_cal_val = EFS_DA_TX_R50_A(buf[1]);
break;
case PAIR_B:
tx_r50_cal_val = EFS_DA_TX_R50_B(buf[1]);
break;
case PAIR_C:
tx_r50_cal_val = EFS_DA_TX_R50_C(buf[2]);
break;
case PAIR_D:
tx_r50_cal_val = EFS_DA_TX_R50_D(buf[2]);
break;
}
tx_r50_fill_result(phydev, tx_r50_cal_val, txg_calen_x);
return 0;
}
static int tx_r50_cal_sw(struct phy_device *phydev, u8 txg_calen_x)
{
u8 zcal_lower, zcal_upper, rg_zcal_ctrl;
u8 lower_ret, upper_ret;
u8 rg_zcal_ctrl_def;
u16 tx_r50_cal_val;
int ret;
phy_modify_mmd(phydev, MDIO_MMD_VEND2, MTK_PHY_ANA_TEST_BUS_CTRL_RG,
MTK_PHY_ANA_TEST_MODE_MASK, MTK_PHY_TANA_CAL_MODE << 8);
phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG1,
MTK_PHY_RG_TXVOS_CALEN);
phy_set_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG0,
MTK_PHY_RG_CAL_CKINV | MTK_PHY_RG_ANA_CALEN);
phy_set_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG2,
BIT(txg_calen_x * 4));
phy_modify_mmd(phydev, MDIO_MMD_VEND2, MTK_PHY_RG_DASN_TXT_DMY2,
MTK_PHY_TST_DMY2_MASK, 0x1);
rg_zcal_ctrl_def = phy_read_mmd(phydev, MDIO_MMD_VEND1,
MTK_PHY_RG_ANA_CAL_RG5) &
MTK_PHY_RG_ZCAL_CTRL_MASK;
zcal_lower = ZCAL_CTRL_MIN;
zcal_upper = ZCAL_CTRL_MAX;
dev_dbg(&phydev->mdio.dev, "Start TX-R50 Pair%c SW cal.\n",
pair[txg_calen_x]);
while ((zcal_upper - zcal_lower) > 1) {
rg_zcal_ctrl = DIV_ROUND_CLOSEST(zcal_lower + zcal_upper, 2);
ret = cal_cycle(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG5,
MTK_PHY_RG_ZCAL_CTRL_MASK, rg_zcal_ctrl);
if (ret == 1) {
zcal_upper = rg_zcal_ctrl;
upper_ret = ret;
} else if (ret == 0) {
zcal_lower = rg_zcal_ctrl;
lower_ret = ret;
} else {
goto restore;
}
}
if (zcal_lower == ZCAL_CTRL_MIN) {
lower_ret = cal_cycle(phydev, MDIO_MMD_VEND1,
MTK_PHY_RG_ANA_CAL_RG5,
MTK_PHY_RG_ZCAL_CTRL_MASK, zcal_lower);
ret = lower_ret;
} else if (zcal_upper == ZCAL_CTRL_MAX) {
upper_ret = cal_cycle(phydev, MDIO_MMD_VEND1,
MTK_PHY_RG_ANA_CAL_RG5,
MTK_PHY_RG_ZCAL_CTRL_MASK, zcal_upper);
ret = upper_ret;
}
if (ret < 0)
goto restore;
ret = upper_ret - lower_ret;
if (ret == 1) {
tx_r50_cal_val = mt798x_zcal_to_r50[zcal_upper];
tx_r50_fill_result(phydev, tx_r50_cal_val, txg_calen_x);
dev_info(&phydev->mdio.dev,
"TX-R50 Pair%c SW cal result: 0x%x\n",
pair[txg_calen_x], zcal_lower);
ret = 0;
} else {
ret = -EINVAL;
}
restore:
phy_clear_bits_mmd(phydev, MDIO_MMD_VEND2, MTK_PHY_ANA_TEST_BUS_CTRL_RG,
MTK_PHY_ANA_TEST_MODE_MASK);
phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG0,
MTK_PHY_RG_CAL_CKINV | MTK_PHY_RG_ANA_CALEN);
phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG2,
BIT(txg_calen_x * 4));
phy_clear_bits_mmd(phydev, MDIO_MMD_VEND2, MTK_PHY_RG_DASN_TXT_DMY2,
MTK_PHY_TST_DMY2_MASK);
phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG5,
MTK_PHY_RG_ZCAL_CTRL_MASK, rg_zcal_ctrl_def);
return ret;
}
static int tx_vcm_cal_sw(struct phy_device *phydev, u8 rg_txreserve_x)
{
u8 lower_idx, upper_idx, txreserve_val;
u8 lower_ret, upper_ret;
int ret;
phy_set_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG0,
MTK_PHY_RG_ANA_CALEN);
phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG0,
MTK_PHY_RG_CAL_CKINV);
phy_set_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG1,
MTK_PHY_RG_TXVOS_CALEN);
switch (rg_txreserve_x) {
case PAIR_A:
phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
MTK_PHY_RG_DASN_DAC_IN0_A,
MTK_PHY_DASN_DAC_IN0_A_MASK);
phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
MTK_PHY_RG_DASN_DAC_IN1_A,
MTK_PHY_DASN_DAC_IN1_A_MASK);
phy_set_bits_mmd(phydev, MDIO_MMD_VEND1,
MTK_PHY_RG_ANA_CAL_RG0,
MTK_PHY_RG_ZCALEN_A);
break;
case PAIR_B:
phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
MTK_PHY_RG_DASN_DAC_IN0_B,
MTK_PHY_DASN_DAC_IN0_B_MASK);
phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
MTK_PHY_RG_DASN_DAC_IN1_B,
MTK_PHY_DASN_DAC_IN1_B_MASK);
phy_set_bits_mmd(phydev, MDIO_MMD_VEND1,
MTK_PHY_RG_ANA_CAL_RG1,
MTK_PHY_RG_ZCALEN_B);
break;
case PAIR_C:
phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
MTK_PHY_RG_DASN_DAC_IN0_C,
MTK_PHY_DASN_DAC_IN0_C_MASK);
phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
MTK_PHY_RG_DASN_DAC_IN1_C,
MTK_PHY_DASN_DAC_IN1_C_MASK);
phy_set_bits_mmd(phydev, MDIO_MMD_VEND1,
MTK_PHY_RG_ANA_CAL_RG1,
MTK_PHY_RG_ZCALEN_C);
break;
case PAIR_D:
phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
MTK_PHY_RG_DASN_DAC_IN0_D,
MTK_PHY_DASN_DAC_IN0_D_MASK);
phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
MTK_PHY_RG_DASN_DAC_IN1_D,
MTK_PHY_DASN_DAC_IN1_D_MASK);
phy_set_bits_mmd(phydev, MDIO_MMD_VEND1,
MTK_PHY_RG_ANA_CAL_RG1,
MTK_PHY_RG_ZCALEN_D);
break;
default:
ret = -EINVAL;
goto restore;
}
lower_idx = TXRESERVE_MIN;
upper_idx = TXRESERVE_MAX;
dev_dbg(&phydev->mdio.dev, "Start TX-VCM SW cal.\n");
while ((upper_idx - lower_idx) > 1) {
txreserve_val = DIV_ROUND_CLOSEST(lower_idx + upper_idx, 2);
ret = cal_cycle(phydev, MDIO_MMD_VEND1, MTK_PHY_RXADC_CTRL_RG9,
MTK_PHY_DA_RX_PSBN_TBT_MASK |
MTK_PHY_DA_RX_PSBN_HBT_MASK |
MTK_PHY_DA_RX_PSBN_GBE_MASK |
MTK_PHY_DA_RX_PSBN_LP_MASK,
txreserve_val << 12 | txreserve_val << 8 |
txreserve_val << 4 | txreserve_val);
if (ret == 1) {
upper_idx = txreserve_val;
upper_ret = ret;
} else if (ret == 0) {
lower_idx = txreserve_val;
lower_ret = ret;
} else {
goto restore;
}
}
if (lower_idx == TXRESERVE_MIN) {
lower_ret = cal_cycle(phydev, MDIO_MMD_VEND1,
MTK_PHY_RXADC_CTRL_RG9,
MTK_PHY_DA_RX_PSBN_TBT_MASK |
MTK_PHY_DA_RX_PSBN_HBT_MASK |
MTK_PHY_DA_RX_PSBN_GBE_MASK |
MTK_PHY_DA_RX_PSBN_LP_MASK,
lower_idx << 12 | lower_idx << 8 |
lower_idx << 4 | lower_idx);
ret = lower_ret;
} else if (upper_idx == TXRESERVE_MAX) {
upper_ret = cal_cycle(phydev, MDIO_MMD_VEND1,
MTK_PHY_RXADC_CTRL_RG9,
MTK_PHY_DA_RX_PSBN_TBT_MASK |
MTK_PHY_DA_RX_PSBN_HBT_MASK |
MTK_PHY_DA_RX_PSBN_GBE_MASK |
MTK_PHY_DA_RX_PSBN_LP_MASK,
upper_idx << 12 | upper_idx << 8 |
upper_idx << 4 | upper_idx);
ret = upper_ret;
}
if (ret < 0)
goto restore;
/* We calibrate TX-VCM in different logic. Check upper index and then
* lower index. If this calibration is valid, apply lower index's result.
*/
ret = upper_ret - lower_ret;
if (ret == 1) {
ret = 0;
/* Make sure we use upper_idx in our calibration system */
cal_cycle(phydev, MDIO_MMD_VEND1, MTK_PHY_RXADC_CTRL_RG9,
MTK_PHY_DA_RX_PSBN_TBT_MASK |
MTK_PHY_DA_RX_PSBN_HBT_MASK |
MTK_PHY_DA_RX_PSBN_GBE_MASK |
MTK_PHY_DA_RX_PSBN_LP_MASK,
upper_idx << 12 | upper_idx << 8 |
upper_idx << 4 | upper_idx);
dev_info(&phydev->mdio.dev, "TX-VCM SW cal result: 0x%x\n",
upper_idx);
} else if (lower_idx == TXRESERVE_MIN && upper_ret == 1 &&
lower_ret == 1) {
ret = 0;
cal_cycle(phydev, MDIO_MMD_VEND1, MTK_PHY_RXADC_CTRL_RG9,
MTK_PHY_DA_RX_PSBN_TBT_MASK |
MTK_PHY_DA_RX_PSBN_HBT_MASK |
MTK_PHY_DA_RX_PSBN_GBE_MASK |
MTK_PHY_DA_RX_PSBN_LP_MASK,
lower_idx << 12 | lower_idx << 8 |
lower_idx << 4 | lower_idx);
dev_warn(&phydev->mdio.dev,
"TX-VCM SW cal result at low margin 0x%x\n",
lower_idx);
} else if (upper_idx == TXRESERVE_MAX && upper_ret == 0 &&
lower_ret == 0) {
ret = 0;
dev_warn(&phydev->mdio.dev,
"TX-VCM SW cal result at high margin 0x%x\n",
upper_idx);
} else {
ret = -EINVAL;
}
restore:
phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG0,
MTK_PHY_RG_ANA_CALEN);
phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG1,
MTK_PHY_RG_TXVOS_CALEN);
phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG0,
MTK_PHY_RG_ZCALEN_A);
phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG1,
MTK_PHY_RG_ZCALEN_B | MTK_PHY_RG_ZCALEN_C |
MTK_PHY_RG_ZCALEN_D);
return ret;
}
static inline void mt7981_phy_finetune(struct phy_device *phydev)
{
u32 i;
/* 100M eye finetune:
* Keep middle level of TX MLT3 shapper as default.
* Only change TX MLT3 overshoot level here.
*/
phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_1st_OVERSHOOT_LEVEL_0TO1,
0x1ce);
phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_2nd_OVERSHOOT_LEVEL_0TO1,
0x1c1);
phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_1st_OVERSHOOT_LEVEL_1TO0,
0x20f);
phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_2nd_OVERSHOOT_LEVEL_1TO0,
0x202);
phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_1st_OVERSHOOT_LEVEL_0TON1,
0x3d0);
phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_2nd_OVERSHOOT_LEVEL_0TON1,
0x3c0);
phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_1st_OVERSHOOT_LEVEL_N1TO0,
0x13);
phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_2nd_OVERSHOOT_LEVEL_N1TO0,
0x5);
/* TX-AMP finetune:
* 100M +4, 1000M +6 to default value.
* If efuse values aren't valid, TX-AMP uses the below values.
*/
phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TXVLD_DA_RG, 0x9824);
phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_A2,
0x9026);
phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_B1,
0x2624);
phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_B2,
0x2426);
phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_C1,
0x2624);
phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_C2,
0x2426);
phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_D1,
0x2624);
phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_D2,
0x2426);
phy_select_page(phydev, MTK_PHY_PAGE_EXTENDED_52B5);
/* EnabRandUpdTrig = 1 */
__phy_write(phydev, 0x11, 0x2f00);
__phy_write(phydev, 0x12, 0xe);
__phy_write(phydev, 0x10, 0x8fb0);
/* SlvDSPreadyTime = 0xc */
__phy_write(phydev, 0x11, 0x671);
__phy_write(phydev, 0x12, 0xc);
__phy_write(phydev, 0x10, 0x8fae);
/* NormMseLoThresh = 85 */
__phy_write(phydev, 0x11, 0x55a0);
__phy_write(phydev, 0x12, 0x0);
__phy_write(phydev, 0x10, 0x83aa);
/* InhibitDisableDfeTail1000 = 1 */
__phy_write(phydev, 0x11, 0x2b);
__phy_write(phydev, 0x12, 0x0);
__phy_write(phydev, 0x10, 0x8f80);
/* SSTr related */
__phy_write(phydev, 0x11, 0xbaef);
__phy_write(phydev, 0x12, 0x2e);
__phy_write(phydev, 0x10, 0x968c);
/* VcoSlicerThreshBitsHigh */
__phy_write(phydev, 0x11, 0x5555);
__phy_write(phydev, 0x12, 0x55);
__phy_write(phydev, 0x10, 0x8ec0);
/* ResetSyncOffset = 6 */
__phy_write(phydev, 0x11, 0x600);
__phy_write(phydev, 0x12, 0x0);
__phy_write(phydev, 0x10, 0x8fc0);
/* VgaDecRate = 1 */
__phy_write(phydev, 0x11, 0x4c2a);
__phy_write(phydev, 0x12, 0x3e);
__phy_write(phydev, 0x10, 0x8fa4);
phy_restore_page(phydev, MTK_PHY_PAGE_STANDARD, 0);
/* TR_OPEN_LOOP_EN = 1, lpf_x_average = 9*/
phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG234,
MTK_PHY_TR_OPEN_LOOP_EN_MASK | MTK_PHY_LPF_X_AVERAGE_MASK,
BIT(0) | FIELD_PREP(MTK_PHY_LPF_X_AVERAGE_MASK, 0x9));
/* rg_tr_lpf_cnt_val = 512 */
phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LPF_CNT_VAL, 0x200);
/* IIR2 related */
phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K1_L, 0x82);
phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K1_U, 0x0);
phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K2_L, 0x103);
phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K2_U, 0x0);
phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K3_L, 0x82);
phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K3_U, 0x0);
phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K4_L, 0xd177);
phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K4_U, 0x3);
phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K5_L, 0x2c82);
phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K5_U, 0xe);
/* FFE peaking */
phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG27C,
MTK_PHY_VGASTATE_FFE_THR_ST1_MASK, 0x1b << 8);
phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG27D,
MTK_PHY_VGASTATE_FFE_THR_ST2_MASK, 0x1e);
/* TX shape */
/* 10/100/1000 TX shaper is enabled by default */
for (i = 0x202; i < 0x230; i += 2) {
if (i == 0x20c || i == 0x218 || i == 0x224)
continue;
phy_write_mmd(phydev, MDIO_MMD_VEND2, i, 0x2219);
phy_write_mmd(phydev, MDIO_MMD_VEND2, i + 1, 0x23);
}
}
static inline void mt7988_phy_finetune(struct phy_device *phydev)
{
u16 val[12] = { 0x0187, 0x01cd, 0x01c8, 0x0182,
0x020d, 0x0206, 0x0384, 0x03d0,
0x03c6, 0x030a, 0x0011, 0x0005 };
int i;
for (i = 0; i < MTK_PHY_TX_MLT3_END; i++)
phy_write_mmd(phydev, MDIO_MMD_VEND1, i, val[i]);
/* TCT finetune */
phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_TX_FILTER, 0x5);
/* Disable TX power saving */
phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RXADC_CTRL_RG7,
MTK_PHY_DA_AD_BUF_BIAS_LP_MASK, 0x3 << 8);
phy_select_page(phydev, MTK_PHY_PAGE_EXTENDED_52B5);
/* EnabRandUpdTrig = 1 */
__phy_write(phydev, 0x11, 0x2f00);
__phy_write(phydev, 0x12, 0xe);
__phy_write(phydev, 0x10, 0x8fb0);
/* SlvDSPreadyTime = 0xc */
__phy_write(phydev, 0x11, 0x671);
__phy_write(phydev, 0x12, 0xc);
__phy_write(phydev, 0x10, 0x8fae);
/* NormMseLoThresh = 85 */
__phy_write(phydev, 0x11, 0x55a0);
__phy_write(phydev, 0x12, 0x0);
__phy_write(phydev, 0x10, 0x83aa);
/* InhibitDisableDfeTail1000 = 1 */
__phy_write(phydev, 0x11, 0x2b);
__phy_write(phydev, 0x12, 0x0);
__phy_write(phydev, 0x10, 0x8f80);
/* SSTr related */
__phy_write(phydev, 0x11, 0xbaef);
__phy_write(phydev, 0x12, 0x2e);
__phy_write(phydev, 0x10, 0x968c);
/* MrvlTrFix100Kp = 3, MrvlTrFix100Kf = 2,
* MrvlTrFix1000Kp = 3, MrvlTrFix1000Kf = 2
*/
__phy_write(phydev, 0x11, 0xd10a);
__phy_write(phydev, 0x12, 0x34);
__phy_write(phydev, 0x10, 0x8f82);
/* VcoSlicerThreshBitsHigh */
__phy_write(phydev, 0x11, 0x5555);
__phy_write(phydev, 0x12, 0x55);
__phy_write(phydev, 0x10, 0x8ec0);
/* ResetSyncOffset = 5 */
__phy_write(phydev, 0x11, 0x500);
__phy_write(phydev, 0x12, 0x0);
__phy_write(phydev, 0x10, 0x8fc0);
phy_restore_page(phydev, MTK_PHY_PAGE_STANDARD, 0);
phy_select_page(phydev, MTK_PHY_PAGE_EXTENDED_2A30);
/* TxClkOffset = 2 */
__phy_modify(phydev, MTK_PHY_ANARG_RG, MTK_PHY_TCLKOFFSET_MASK,
FIELD_PREP(MTK_PHY_TCLKOFFSET_MASK, 0x2));
phy_restore_page(phydev, MTK_PHY_PAGE_STANDARD, 0);
/* TR_OPEN_LOOP_EN = 1, lpf_x_average = 9*/
phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG234,
MTK_PHY_TR_OPEN_LOOP_EN_MASK | MTK_PHY_LPF_X_AVERAGE_MASK,
BIT(0) | FIELD_PREP(MTK_PHY_LPF_X_AVERAGE_MASK, 0x9));
/* rg_tr_lpf_cnt_val = 512 */
phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LPF_CNT_VAL, 0x200);
/* IIR2 related */
phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K1_L, 0x82);
phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K1_U, 0x0);
phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K2_L, 0x103);
phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K2_U, 0x0);
phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K3_L, 0x82);
phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K3_U, 0x0);
phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K4_L, 0xd177);
phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K4_U, 0x3);
phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K5_L, 0x2c82);
phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K5_U, 0xe);
/* FFE peaking */
phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG27C,
MTK_PHY_VGASTATE_FFE_THR_ST1_MASK, 0x1b << 8);
phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG27D,
MTK_PHY_VGASTATE_FFE_THR_ST2_MASK, 0x1e);
/* TX shape */
/* 10/100/1000 TX shaper is enabled by default */
for (i = 0x202; i < 0x230; i += 2) {
if (i == 0x20c || i == 0x218 || i == 0x224)
continue;
phy_write_mmd(phydev, MDIO_MMD_VEND2, i, 0x2219);
phy_write_mmd(phydev, MDIO_MMD_VEND2, i + 1, 0x23);
}
/* Disable LDO pump */
phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_LDO_PUMP_EN_PAIRAB, 0x0);
phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_LDO_PUMP_EN_PAIRCD, 0x0);
/* Adjust LDO output voltage */
phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_LDO_OUTPUT_V, 0x2222);
}
static inline int cal_sw(struct phy_device *phydev, enum CAL_ITEM cal_item,
u8 start_pair, u8 end_pair)
{
u8 pair_n;
int ret;
for (pair_n = start_pair; pair_n <= end_pair; pair_n++) {
/* TX_OFFSET & TX_AMP have no SW calibration. */
switch (cal_item) {
case REXT:
ret = rext_cal_sw(phydev);
break;
case TX_R50:
ret = tx_r50_cal_sw(phydev, pair_n);
break;
case TX_VCM:
ret = tx_vcm_cal_sw(phydev, pair_n);
break;
default:
return -EINVAL;
}
if (ret)
return ret;
}
return 0;
}
static inline int cal_efuse(struct phy_device *phydev, enum CAL_ITEM cal_item,
u8 start_pair, u8 end_pair, u32 *buf)
{
u8 pair_n;
int ret;
for (pair_n = start_pair; pair_n <= end_pair; pair_n++) {
/* TX_VCM has no efuse calibration. */
switch (cal_item) {
case REXT:
ret = rext_cal_efuse(phydev, buf);
break;
case TX_OFFSET:
ret = tx_offset_cal_efuse(phydev, buf);
break;
case TX_AMP:
ret = tx_amp_cal_efuse(phydev, buf);
break;
case TX_R50:
ret = tx_r50_cal_efuse(phydev, buf, pair_n);
break;
default:
return -EINVAL;
}
if (ret)
return ret;
}
return 0;
}
static int start_cal(struct phy_device *phydev, enum CAL_ITEM cal_item,
bool efs_valid, enum CAL_MODE cal_mode, u8 start_pair,
u8 end_pair, u32 *buf)
{
char cal_prop[5][20] = { "mediatek,rext", "mediatek,tx_offset",
"mediatek,tx_amp", "mediatek,tx_r50",
"mediatek,tx_vcm" };
const char *dts_cal_mode;
u8 final_cal_mode = 0;
bool is_cal = true;
int ret, cal_ret;
ret = of_property_read_string(phydev->mdio.dev.of_node,
cal_prop[cal_item], &dts_cal_mode);
switch (cal_mode) {
case SW_EFUSE_M:
if ((efs_valid && ret) ||
(efs_valid && !ret && strcmp("efuse", dts_cal_mode) == 0)) {
cal_ret = cal_efuse(phydev, cal_item, start_pair,
end_pair, buf);
final_cal_mode = EFUSE_K;
} else if ((!efs_valid && ret) ||
(!ret && strcmp("sw", dts_cal_mode) == 0)) {
cal_ret = cal_sw(phydev, cal_item, start_pair, end_pair);
final_cal_mode = SW_K;
} else {
is_cal = false;
}
break;
case EFUSE_M:
if ((efs_valid && ret) ||
(efs_valid && !ret && strcmp("efuse", dts_cal_mode) == 0)) {
cal_ret = cal_efuse(phydev, cal_item, start_pair,
end_pair, buf);
final_cal_mode = EFUSE_K;
} else {
is_cal = false;
}
break;
case SW_M:
if (ret || (!ret && strcmp("sw", dts_cal_mode) == 0)) {
cal_ret = cal_sw(phydev, cal_item, start_pair, end_pair);
final_cal_mode = SW_K;
} else {
is_cal = false;
}
break;
default:
return -EINVAL;
}
if (cal_ret) {
dev_err(&phydev->mdio.dev, "[%s]cal failed\n", cal_prop[cal_item]);
return -EIO;
}
if (!is_cal) {
dev_dbg(&phydev->mdio.dev, "[%s]K mode: %s(not supported)\n",
cal_prop[cal_item], dts_cal_mode);
return -EIO;
}
dev_dbg(&phydev->mdio.dev, "[%s]K mode: %s(dts: %s), efs-valid: %s\n",
cal_prop[cal_item],
final_cal_mode ? "SW" : "EFUSE",
ret ? "not set" : dts_cal_mode,
efs_valid ? "yes" : "no");
return 0;
}
static int mt798x_phy_calibration(struct phy_device *phydev)
{
int ret = 0;
u32 *buf;
bool efs_valid = true;
size_t len;
struct nvmem_cell *cell;
if (phydev->interface != PHY_INTERFACE_MODE_GMII)
return -EINVAL;
cell = nvmem_cell_get(&phydev->mdio.dev, "phy-cal-data");
if (IS_ERR(cell)) {
if (PTR_ERR(cell) == -EPROBE_DEFER)
return PTR_ERR(cell);
return 0;
}
buf = (u32 *)nvmem_cell_read(cell, &len);
if (IS_ERR(buf))
return PTR_ERR(buf);
nvmem_cell_put(cell);
if (!buf[0] || !buf[1] || !buf[2] || !buf[3])
efs_valid = false;
if (len < 4 * sizeof(u32)) {
dev_err(&phydev->mdio.dev, "invalid calibration data\n");
ret = -EINVAL;
goto out;
}
ret = start_cal(phydev, REXT, efs_valid, SW_EFUSE_M,
NO_PAIR, NO_PAIR, buf);
if (ret)
goto out;
ret = start_cal(phydev, TX_OFFSET, efs_valid, EFUSE_M,
NO_PAIR, NO_PAIR, buf);
if (ret)
goto out;
ret = start_cal(phydev, TX_AMP, efs_valid, EFUSE_M,
NO_PAIR, NO_PAIR, buf);
if (ret)
goto out;
ret = start_cal(phydev, TX_R50, efs_valid, EFUSE_M,
PAIR_A, PAIR_D, buf);
if (ret)
goto out;
ret = start_cal(phydev, TX_VCM, efs_valid, SW_M,
PAIR_A, PAIR_A, buf);
if (ret)
goto out;
out:
kfree(buf);
return ret;
}
static int mt7981_phy_probe(struct phy_device *phydev)
{
mt7981_phy_finetune(phydev);
return mt798x_phy_calibration(phydev);
}
static int mt7988_phy_probe(struct phy_device *phydev)
{
mt7988_phy_finetune(phydev);
return mt798x_phy_calibration(phydev);
}
#endif
static struct phy_driver mtk_gephy_driver[] = {
{
PHY_ID_MATCH_EXACT(MTK_GPHY_ID_MT7530),
.name = "MediaTek MT7530 PHY",
.config_init = mt7530_phy_config_init,
/* Interrupts are handled by the switch, not the PHY
* itself.
*/
.config_intr = genphy_no_config_intr,
.handle_interrupt = genphy_no_ack_interrupt,
.suspend = genphy_suspend,
.resume = genphy_resume,
.read_page = mtk_gephy_read_page,
.write_page = mtk_gephy_write_page,
},
{
PHY_ID_MATCH_EXACT(MTK_GPHY_ID_MT7531),
.name = "MediaTek MT7531 PHY",
.config_init = mt7531_phy_config_init,
/* Interrupts are handled by the switch, not the PHY
* itself.
*/
.config_intr = genphy_no_config_intr,
.handle_interrupt = genphy_no_ack_interrupt,
.suspend = genphy_suspend,
.resume = genphy_resume,
.read_page = mtk_gephy_read_page,
.write_page = mtk_gephy_write_page,
},
#ifdef CONFIG_MEDIATEK_GE_PHY_SOC
{
PHY_ID_MATCH_EXACT(MTK_GPHY_ID_MT7981),
.name = "MediaTek MT7981 PHY",
.probe = mt7981_phy_probe,
.config_intr = genphy_no_config_intr,
.handle_interrupt = genphy_no_ack_interrupt,
.suspend = genphy_suspend,
.resume = genphy_resume,
.read_page = mtk_gephy_read_page,
.write_page = mtk_gephy_write_page,
},
{
PHY_ID_MATCH_EXACT(MTK_GPHY_ID_MT7988),
.name = "MediaTek MT7988 PHY",
.probe = mt7988_phy_probe,
.config_intr = genphy_no_config_intr,
.handle_interrupt = genphy_no_ack_interrupt,
.suspend = genphy_suspend,
.resume = genphy_resume,
.read_page = mtk_gephy_read_page,
.write_page = mtk_gephy_write_page,
},
#endif
};
module_phy_driver(mtk_gephy_driver);
static struct mdio_device_id __maybe_unused mtk_gephy_tbl[] = {
{ PHY_ID_MATCH_VENDOR(0x03a29400) },
{ }
};
MODULE_DESCRIPTION("MediaTek Gigabit Ethernet PHY driver");
MODULE_AUTHOR("Daniel Golle <daniel@makrotopia.org>");
MODULE_AUTHOR("SkyLake Huang <SkyLake.Huang@mediatek.com>");
MODULE_AUTHOR("DENG, Qingfang <dqfext@gmail.com>");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(mdio, mtk_gephy_tbl);