blob: 2d56d23c5d0beac4c1a4cab22da660674d0e0080 [file] [log] [blame]
Willy Tarreaub5684e02015-04-27 11:59:40 +02001/*
Dragan Dosende374432020-12-22 12:00:37 +01002 * xxHash - Extremely Fast Hash algorithm
3 * Header File
4 * Copyright (C) 2012-2020 Yann Collet
5 *
6 * BSD 2-Clause License (https://www.opensource.org/licenses/bsd-license.php)
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions are
10 * met:
11 *
12 * * Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * * Redistributions in binary form must reproduce the above
15 * copyright notice, this list of conditions and the following disclaimer
16 * in the documentation and/or other materials provided with the
17 * distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 *
31 * You can contact the author at:
32 * - xxHash homepage: https://www.xxhash.com
33 * - xxHash source repository: https://github.com/Cyan4973/xxHash
34 */
Willy Tarreaub5684e02015-04-27 11:59:40 +020035
Dragan Dosende374432020-12-22 12:00:37 +010036/* TODO: update */
37/* Notice extracted from xxHash homepage:
Willy Tarreaub5684e02015-04-27 11:59:40 +020038
Dragan Dosende374432020-12-22 12:00:37 +010039xxHash is an extremely fast hash algorithm, running at RAM speed limits.
Willy Tarreaub5684e02015-04-27 11:59:40 +020040It also successfully passes all tests from the SMHasher suite.
41
42Comparison (single thread, Windows Seven 32 bits, using SMHasher on a Core 2 Duo @3GHz)
43
44Name Speed Q.Score Author
45xxHash 5.4 GB/s 10
46CrapWow 3.2 GB/s 2 Andrew
47MumurHash 3a 2.7 GB/s 10 Austin Appleby
48SpookyHash 2.0 GB/s 10 Bob Jenkins
49SBox 1.4 GB/s 9 Bret Mulvey
50Lookup3 1.2 GB/s 9 Bob Jenkins
51SuperFastHash 1.2 GB/s 1 Paul Hsieh
52CityHash64 1.05 GB/s 10 Pike & Alakuijala
53FNV 0.55 GB/s 5 Fowler, Noll, Vo
54CRC32 0.43 GB/s 9
55MD5-32 0.33 GB/s 10 Ronald L. Rivest
56SHA1-32 0.28 GB/s 10
57
58Q.Score is a measure of quality of the hash function.
59It depends on successfully passing SMHasher test set.
6010 is a perfect score.
Willy Tarreaub5684e02015-04-27 11:59:40 +020061
Dragan Dosende374432020-12-22 12:00:37 +010062Note: SMHasher's CRC32 implementation is not the fastest one.
63Other speed-oriented implementations can be faster,
64especially in combination with PCLMUL instruction:
65https://fastcompression.blogspot.com/2019/03/presenting-xxh3.html?showComment=1552696407071#c3490092340461170735
66
67A 64-bit version, named XXH64, is available since r35.
68It offers much better speed, but for 64-bit applications only.
69Name Speed on 64 bits Speed on 32 bits
70XXH64 13.8 GB/s 1.9 GB/s
71XXH32 6.8 GB/s 6.0 GB/s
72*/
Willy Tarreaub5684e02015-04-27 11:59:40 +020073
74#if defined (__cplusplus)
75extern "C" {
76#endif
77
Dragan Dosende374432020-12-22 12:00:37 +010078/* ****************************
79 * INLINE mode
80 ******************************/
81/*!
82 * XXH_INLINE_ALL (and XXH_PRIVATE_API)
83 * Use these build macros to inline xxhash into the target unit.
84 * Inlining improves performance on small inputs, especially when the length is
85 * expressed as a compile-time constant:
86 *
87 * https://fastcompression.blogspot.com/2018/03/xxhash-for-small-keys-impressive-power.html
88 *
89 * It also keeps xxHash symbols private to the unit, so they are not exported.
90 *
91 * Usage:
92 * #define XXH_INLINE_ALL
93 * #include "xxhash.h"
94 *
95 * Do not compile and link xxhash.o as a separate object, as it is not useful.
96 */
97#if (defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API)) \
98 && !defined(XXH_INLINE_ALL_31684351384)
99 /* this section should be traversed only once */
100# define XXH_INLINE_ALL_31684351384
101 /* give access to the advanced API, required to compile implementations */
102# undef XXH_STATIC_LINKING_ONLY /* avoid macro redef */
103# define XXH_STATIC_LINKING_ONLY
104 /* make all functions private */
105# undef XXH_PUBLIC_API
106# if defined(__GNUC__)
107# define XXH_PUBLIC_API static __inline __attribute__((unused))
108# elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
109# define XXH_PUBLIC_API static inline
110# elif defined(_MSC_VER)
111# define XXH_PUBLIC_API static __inline
112# else
113 /* note: this version may generate warnings for unused static functions */
114# define XXH_PUBLIC_API static
115# endif
Willy Tarreaub5684e02015-04-27 11:59:40 +0200116
Dragan Dosende374432020-12-22 12:00:37 +0100117 /*
118 * This part deals with the special case where a unit wants to inline xxHash,
119 * but "xxhash.h" has previously been included without XXH_INLINE_ALL, such
120 * as part of some previously included *.h header file.
121 * Without further action, the new include would just be ignored,
122 * and functions would effectively _not_ be inlined (silent failure).
123 * The following macros solve this situation by prefixing all inlined names,
124 * avoiding naming collision with previous inclusions.
125 */
126# ifdef XXH_NAMESPACE
127# error "XXH_INLINE_ALL with XXH_NAMESPACE is not supported"
128 /*
129 * Note: Alternative: #undef all symbols (it's a pretty large list).
130 * Without #error: it compiles, but functions are actually not inlined.
131 */
132# endif
133# define XXH_NAMESPACE XXH_INLINE_
134 /*
135 * Some identifiers (enums, type names) are not symbols, but they must
136 * still be renamed to avoid redeclaration.
137 * Alternative solution: do not redeclare them.
138 * However, this requires some #ifdefs, and is a more dispersed action.
139 * Meanwhile, renaming can be achieved in a single block
140 */
141# define XXH_IPREF(Id) XXH_INLINE_ ## Id
142# define XXH_OK XXH_IPREF(XXH_OK)
143# define XXH_ERROR XXH_IPREF(XXH_ERROR)
144# define XXH_errorcode XXH_IPREF(XXH_errorcode)
145# define XXH32_canonical_t XXH_IPREF(XXH32_canonical_t)
146# define XXH64_canonical_t XXH_IPREF(XXH64_canonical_t)
147# define XXH128_canonical_t XXH_IPREF(XXH128_canonical_t)
148# define XXH32_state_s XXH_IPREF(XXH32_state_s)
149# define XXH32_state_t XXH_IPREF(XXH32_state_t)
150# define XXH64_state_s XXH_IPREF(XXH64_state_s)
151# define XXH64_state_t XXH_IPREF(XXH64_state_t)
152# define XXH3_state_s XXH_IPREF(XXH3_state_s)
153# define XXH3_state_t XXH_IPREF(XXH3_state_t)
154# define XXH128_hash_t XXH_IPREF(XXH128_hash_t)
155 /* Ensure the header is parsed again, even if it was previously included */
156# undef XXHASH_H_5627135585666179
157# undef XXHASH_H_STATIC_13879238742
158#endif /* XXH_INLINE_ALL || XXH_PRIVATE_API */
Willy Tarreaub5684e02015-04-27 11:59:40 +0200159
160
Dragan Dosende374432020-12-22 12:00:37 +0100161
162/* ****************************************************************
163 * Stable API
164 *****************************************************************/
165#ifndef XXHASH_H_5627135585666179
166#define XXHASH_H_5627135585666179 1
167
168/* specific declaration modes for Windows */
169#if !defined(XXH_INLINE_ALL) && !defined(XXH_PRIVATE_API)
170# if defined(WIN32) && defined(_MSC_VER) && (defined(XXH_IMPORT) || defined(XXH_EXPORT))
171# ifdef XXH_EXPORT
172# define XXH_PUBLIC_API __declspec(dllexport)
173# elif XXH_IMPORT
174# define XXH_PUBLIC_API __declspec(dllimport)
175# endif
176# else
177# define XXH_PUBLIC_API /* do nothing */
178# endif
179#endif
180
181/*!
182 * XXH_NAMESPACE, aka Namespace Emulation:
183 *
184 * If you want to include _and expose_ xxHash functions from within your own
185 * library, but also want to avoid symbol collisions with other libraries which
186 * may also include xxHash, you can use XXH_NAMESPACE to automatically prefix
187 * any public symbol from xxhash library with the value of XXH_NAMESPACE
188 * (therefore, avoid empty or numeric values).
189 *
190 * Note that no change is required within the calling program as long as it
191 * includes `xxhash.h`: Regular symbol names will be automatically translated
192 * by this header.
193 */
194#ifdef XXH_NAMESPACE
195# define XXH_CAT(A,B) A##B
196# define XXH_NAME2(A,B) XXH_CAT(A,B)
197# define XXH_versionNumber XXH_NAME2(XXH_NAMESPACE, XXH_versionNumber)
198/* XXH32 */
199# define XXH32 XXH_NAME2(XXH_NAMESPACE, XXH32)
200# define XXH32_createState XXH_NAME2(XXH_NAMESPACE, XXH32_createState)
201# define XXH32_freeState XXH_NAME2(XXH_NAMESPACE, XXH32_freeState)
202# define XXH32_reset XXH_NAME2(XXH_NAMESPACE, XXH32_reset)
203# define XXH32_update XXH_NAME2(XXH_NAMESPACE, XXH32_update)
204# define XXH32_digest XXH_NAME2(XXH_NAMESPACE, XXH32_digest)
205# define XXH32_copyState XXH_NAME2(XXH_NAMESPACE, XXH32_copyState)
206# define XXH32_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH32_canonicalFromHash)
207# define XXH32_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH32_hashFromCanonical)
208/* XXH64 */
209# define XXH64 XXH_NAME2(XXH_NAMESPACE, XXH64)
210# define XXH64_createState XXH_NAME2(XXH_NAMESPACE, XXH64_createState)
211# define XXH64_freeState XXH_NAME2(XXH_NAMESPACE, XXH64_freeState)
212# define XXH64_reset XXH_NAME2(XXH_NAMESPACE, XXH64_reset)
213# define XXH64_update XXH_NAME2(XXH_NAMESPACE, XXH64_update)
214# define XXH64_digest XXH_NAME2(XXH_NAMESPACE, XXH64_digest)
215# define XXH64_copyState XXH_NAME2(XXH_NAMESPACE, XXH64_copyState)
216# define XXH64_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH64_canonicalFromHash)
217# define XXH64_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH64_hashFromCanonical)
218/* XXH3_64bits */
219# define XXH3_64bits XXH_NAME2(XXH_NAMESPACE, XXH3_64bits)
220# define XXH3_64bits_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSecret)
221# define XXH3_64bits_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSeed)
222# define XXH3_createState XXH_NAME2(XXH_NAMESPACE, XXH3_createState)
223# define XXH3_freeState XXH_NAME2(XXH_NAMESPACE, XXH3_freeState)
224# define XXH3_copyState XXH_NAME2(XXH_NAMESPACE, XXH3_copyState)
225# define XXH3_64bits_reset XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset)
226# define XXH3_64bits_reset_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSeed)
227# define XXH3_64bits_reset_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSecret)
228# define XXH3_64bits_update XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_update)
229# define XXH3_64bits_digest XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_digest)
230# define XXH3_generateSecret XXH_NAME2(XXH_NAMESPACE, XXH3_generateSecret)
231/* XXH3_128bits */
232# define XXH128 XXH_NAME2(XXH_NAMESPACE, XXH128)
233# define XXH3_128bits XXH_NAME2(XXH_NAMESPACE, XXH3_128bits)
234# define XXH3_128bits_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSeed)
235# define XXH3_128bits_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSecret)
236# define XXH3_128bits_reset XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset)
237# define XXH3_128bits_reset_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSeed)
238# define XXH3_128bits_reset_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSecret)
239# define XXH3_128bits_update XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_update)
240# define XXH3_128bits_digest XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_digest)
241# define XXH128_isEqual XXH_NAME2(XXH_NAMESPACE, XXH128_isEqual)
242# define XXH128_cmp XXH_NAME2(XXH_NAMESPACE, XXH128_cmp)
243# define XXH128_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH128_canonicalFromHash)
244# define XXH128_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH128_hashFromCanonical)
245#endif
246
247
248/* *************************************
249* Version
250***************************************/
251#define XXH_VERSION_MAJOR 0
252#define XXH_VERSION_MINOR 8
253#define XXH_VERSION_RELEASE 0
254#define XXH_VERSION_NUMBER (XXH_VERSION_MAJOR *100*100 + XXH_VERSION_MINOR *100 + XXH_VERSION_RELEASE)
255XXH_PUBLIC_API unsigned XXH_versionNumber (void);
256
257
258/* ****************************
259* Definitions
260******************************/
261#include <stddef.h> /* size_t */
Willy Tarreaub5684e02015-04-27 11:59:40 +0200262typedef enum { XXH_OK=0, XXH_ERROR } XXH_errorcode;
263
264
Dragan Dosende374432020-12-22 12:00:37 +0100265/*-**********************************************************************
266* 32-bit hash
267************************************************************************/
268#if !defined (__VMS) \
269 && (defined (__cplusplus) \
270 || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
271# include <stdint.h>
272 typedef uint32_t XXH32_hash_t;
273#else
274# include <limits.h>
275# if UINT_MAX == 0xFFFFFFFFUL
276 typedef unsigned int XXH32_hash_t;
277# else
278# if ULONG_MAX == 0xFFFFFFFFUL
279 typedef unsigned long XXH32_hash_t;
280# else
281# error "unsupported platform: need a 32-bit type"
282# endif
283# endif
284#endif
Willy Tarreaub5684e02015-04-27 11:59:40 +0200285
Dragan Dosende374432020-12-22 12:00:37 +0100286/*!
287 * XXH32():
288 * Calculate the 32-bit hash of sequence "length" bytes stored at memory address "input".
289 * The memory between input & input+length must be valid (allocated and read-accessible).
290 * "seed" can be used to alter the result predictably.
291 * Speed on Core 2 Duo @ 3 GHz (single thread, SMHasher benchmark): 5.4 GB/s
292 *
293 * Note: XXH3 provides competitive speed for both 32-bit and 64-bit systems,
294 * and offers true 64/128 bit hash results. It provides a superior level of
295 * dispersion, and greatly reduces the risks of collisions.
296 */
297XXH_PUBLIC_API XXH32_hash_t XXH32 (const void* input, size_t length, XXH32_hash_t seed);
Willy Tarreaub5684e02015-04-27 11:59:40 +0200298
Dragan Dosende374432020-12-22 12:00:37 +0100299/******* Streaming *******/
Willy Tarreaub5684e02015-04-27 11:59:40 +0200300
301/*
Dragan Dosende374432020-12-22 12:00:37 +0100302 * Streaming functions generate the xxHash value from an incrememtal input.
303 * This method is slower than single-call functions, due to state management.
304 * For small inputs, prefer `XXH32()` and `XXH64()`, which are better optimized.
305 *
306 * An XXH state must first be allocated using `XXH*_createState()`.
307 *
308 * Start a new hash by initializing the state with a seed using `XXH*_reset()`.
309 *
310 * Then, feed the hash state by calling `XXH*_update()` as many times as necessary.
311 *
312 * The function returns an error code, with 0 meaning OK, and any other value
313 * meaning there is an error.
314 *
315 * Finally, a hash value can be produced anytime, by using `XXH*_digest()`.
316 * This function returns the nn-bits hash as an int or long long.
317 *
318 * It's still possible to continue inserting input into the hash state after a
319 * digest, and generate new hash values later on by invoking `XXH*_digest()`.
320 *
321 * When done, release the state using `XXH*_freeState()`.
322 */
323
324typedef struct XXH32_state_s XXH32_state_t; /* incomplete type */
325XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void);
326XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr);
327XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* dst_state, const XXH32_state_t* src_state);
328
329XXH_PUBLIC_API XXH_errorcode XXH32_reset (XXH32_state_t* statePtr, XXH32_hash_t seed);
330XXH_PUBLIC_API XXH_errorcode XXH32_update (XXH32_state_t* statePtr, const void* input, size_t length);
331XXH_PUBLIC_API XXH32_hash_t XXH32_digest (const XXH32_state_t* statePtr);
332
333/******* Canonical representation *******/
334
335/*
336 * The default return values from XXH functions are unsigned 32 and 64 bit
337 * integers.
338 * This the simplest and fastest format for further post-processing.
339 *
340 * However, this leaves open the question of what is the order on the byte level,
341 * since little and big endian conventions will store the same number differently.
342 *
343 * The canonical representation settles this issue by mandating big-endian
344 * convention, the same convention as human-readable numbers (large digits first).
345 *
346 * When writing hash values to storage, sending them over a network, or printing
347 * them, it's highly recommended to use the canonical representation to ensure
348 * portability across a wider range of systems, present and future.
349 *
350 * The following functions allow transformation of hash values to and from
351 * canonical format.
352 */
353
354typedef struct { unsigned char digest[4]; } XXH32_canonical_t;
355XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash);
356XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src);
357
358
359#ifndef XXH_NO_LONG_LONG
360/*-**********************************************************************
361* 64-bit hash
362************************************************************************/
363#if !defined (__VMS) \
364 && (defined (__cplusplus) \
365 || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
366# include <stdint.h>
367 typedef uint64_t XXH64_hash_t;
368#else
369 /* the following type must have a width of 64-bit */
370 typedef unsigned long long XXH64_hash_t;
371#endif
372
373/*!
374 * XXH64():
375 * Returns the 64-bit hash of sequence of length @length stored at memory
376 * address @input.
377 * @seed can be used to alter the result predictably.
378 *
379 * This function usually runs faster on 64-bit systems, but slower on 32-bit
380 * systems (see benchmark).
381 *
382 * Note: XXH3 provides competitive speed for both 32-bit and 64-bit systems,
383 * and offers true 64/128 bit hash results. It provides a superior level of
384 * dispersion, and greatly reduces the risks of collisions.
385 */
386XXH_PUBLIC_API XXH64_hash_t XXH64 (const void* input, size_t length, XXH64_hash_t seed);
387
388/******* Streaming *******/
389typedef struct XXH64_state_s XXH64_state_t; /* incomplete type */
390XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void);
391XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr);
392XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* dst_state, const XXH64_state_t* src_state);
393
394XXH_PUBLIC_API XXH_errorcode XXH64_reset (XXH64_state_t* statePtr, XXH64_hash_t seed);
395XXH_PUBLIC_API XXH_errorcode XXH64_update (XXH64_state_t* statePtr, const void* input, size_t length);
396XXH_PUBLIC_API XXH64_hash_t XXH64_digest (const XXH64_state_t* statePtr);
397
398/******* Canonical representation *******/
399typedef struct { unsigned char digest[sizeof(XXH64_hash_t)]; } XXH64_canonical_t;
400XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash);
401XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src);
402
403
404/*-**********************************************************************
405* XXH3 64-bit variant
406************************************************************************/
407
408/* ************************************************************************
409 * XXH3 is a new hash algorithm featuring:
410 * - Improved speed for both small and large inputs
411 * - True 64-bit and 128-bit outputs
412 * - SIMD acceleration
413 * - Improved 32-bit viability
414 *
415 * Speed analysis methodology is explained here:
416 *
417 * https://fastcompression.blogspot.com/2019/03/presenting-xxh3.html
418 *
419 * In general, expect XXH3 to run about ~2x faster on large inputs and >3x
420 * faster on small ones compared to XXH64, though exact differences depend on
421 * the platform.
422 *
423 * The algorithm is portable: Like XXH32 and XXH64, it generates the same hash
424 * on all platforms.
425 *
426 * It benefits greatly from SIMD and 64-bit arithmetic, but does not require it.
427 *
428 * Almost all 32-bit and 64-bit targets that can run XXH32 smoothly can run
429 * XXH3 at competitive speeds, even if XXH64 runs slowly. Further details are
430 * explained in the implementation.
431 *
432 * Optimized implementations are provided for AVX512, AVX2, SSE2, NEON, POWER8,
433 * ZVector and scalar targets. This can be controlled with the XXH_VECTOR macro.
434 *
435 * XXH3 offers 2 variants, _64bits and _128bits.
436 * When only 64 bits are needed, prefer calling the _64bits variant, as it
437 * reduces the amount of mixing, resulting in faster speed on small inputs.
438 *
439 * It's also generally simpler to manipulate a scalar return type than a struct.
440 *
441 * The 128-bit version adds additional strength, but it is slightly slower.
442 *
443 * The XXH3 algorithm is still in development.
444 * The results it produces may still change in future versions.
445 *
446 * Results produced by v0.7.x are not comparable with results from v0.7.y.
447 * However, the API is completely stable, and it can safely be used for
448 * ephemeral data (local sessions).
449 *
450 * Avoid storing values in long-term storage until the algorithm is finalized.
451 * XXH3's return values will be officially finalized upon reaching v0.8.0.
452 *
453 * After which, return values of XXH3 and XXH128 will no longer change in
454 * future versions.
455 *
456 * The API supports one-shot hashing, streaming mode, and custom secrets.
457 */
458
459/* XXH3_64bits():
460 * default 64-bit variant, using default secret and default seed of 0.
461 * It's the fastest variant. */
462XXH_PUBLIC_API XXH64_hash_t XXH3_64bits(const void* data, size_t len);
463
464/*
465 * XXH3_64bits_withSeed():
466 * This variant generates a custom secret on the fly
467 * based on default secret altered using the `seed` value.
468 * While this operation is decently fast, note that it's not completely free.
469 * Note: seed==0 produces the same results as XXH3_64bits().
470 */
471XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_withSeed(const void* data, size_t len, XXH64_hash_t seed);
472
473/*
474 * XXH3_64bits_withSecret():
475 * It's possible to provide any blob of bytes as a "secret" to generate the hash.
476 * This makes it more difficult for an external actor to prepare an intentional collision.
477 * The main condition is that secretSize *must* be large enough (>= XXH3_SECRET_SIZE_MIN).
478 * However, the quality of produced hash values depends on secret's entropy.
479 * Technically, the secret must look like a bunch of random bytes.
480 * Avoid "trivial" or structured data such as repeated sequences or a text document.
481 * Whenever unsure about the "randomness" of the blob of bytes,
482 * consider relabelling it as a "custom seed" instead,
483 * and employ "XXH3_generateSecret()" (see below)
484 * to generate a high entropy secret derived from the custom seed.
485 */
486#define XXH3_SECRET_SIZE_MIN 136
487XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_withSecret(const void* data, size_t len, const void* secret, size_t secretSize);
488
489
490/******* Streaming *******/
491/*
492 * Streaming requires state maintenance.
493 * This operation costs memory and CPU.
494 * As a consequence, streaming is slower than one-shot hashing.
495 * For better performance, prefer one-shot functions whenever applicable.
496 */
497typedef struct XXH3_state_s XXH3_state_t;
498XXH_PUBLIC_API XXH3_state_t* XXH3_createState(void);
499XXH_PUBLIC_API XXH_errorcode XXH3_freeState(XXH3_state_t* statePtr);
500XXH_PUBLIC_API void XXH3_copyState(XXH3_state_t* dst_state, const XXH3_state_t* src_state);
501
502/*
503 * XXH3_64bits_reset():
504 * Initialize with default parameters.
505 * digest will be equivalent to `XXH3_64bits()`.
506 */
507XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset(XXH3_state_t* statePtr);
508/*
509 * XXH3_64bits_reset_withSeed():
510 * Generate a custom secret from `seed`, and store it into `statePtr`.
511 * digest will be equivalent to `XXH3_64bits_withSeed()`.
512 */
513XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed);
514/*
515 * XXH3_64bits_reset_withSecret():
516 * `secret` is referenced, it _must outlive_ the hash streaming session.
517 * Similar to one-shot API, `secretSize` must be >= `XXH3_SECRET_SIZE_MIN`,
518 * and the quality of produced hash values depends on secret's entropy
519 * (secret's content should look like a bunch of random bytes).
520 * When in doubt about the randomness of a candidate `secret`,
521 * consider employing `XXH3_generateSecret()` instead (see below).
522 */
523XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize);
524
525XXH_PUBLIC_API XXH_errorcode XXH3_64bits_update (XXH3_state_t* statePtr, const void* input, size_t length);
526XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_digest (const XXH3_state_t* statePtr);
527
528/* note : canonical representation of XXH3 is the same as XXH64
529 * since they both produce XXH64_hash_t values */
530
531
532/*-**********************************************************************
533* XXH3 128-bit variant
534************************************************************************/
535
536typedef struct {
537 XXH64_hash_t low64;
538 XXH64_hash_t high64;
539} XXH128_hash_t;
540
541XXH_PUBLIC_API XXH128_hash_t XXH3_128bits(const void* data, size_t len);
542XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_withSeed(const void* data, size_t len, XXH64_hash_t seed);
543XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_withSecret(const void* data, size_t len, const void* secret, size_t secretSize);
544
545/******* Streaming *******/
546/*
547 * Streaming requires state maintenance.
548 * This operation costs memory and CPU.
549 * As a consequence, streaming is slower than one-shot hashing.
550 * For better performance, prefer one-shot functions whenever applicable.
551 *
552 * XXH3_128bits uses the same XXH3_state_t as XXH3_64bits().
553 * Use already declared XXH3_createState() and XXH3_freeState().
554 *
555 * All reset and streaming functions have same meaning as their 64-bit counterpart.
556 */
557
558XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset(XXH3_state_t* statePtr);
559XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed);
560XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize);
561
562XXH_PUBLIC_API XXH_errorcode XXH3_128bits_update (XXH3_state_t* statePtr, const void* input, size_t length);
563XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_digest (const XXH3_state_t* statePtr);
564
565/* Following helper functions make it possible to compare XXH128_hast_t values.
566 * Since XXH128_hash_t is a structure, this capability is not offered by the language.
567 * Note: For better performance, these functions can be inlined using XXH_INLINE_ALL */
568
569/*!
570 * XXH128_isEqual():
571 * Return: 1 if `h1` and `h2` are equal, 0 if they are not.
572 */
573XXH_PUBLIC_API int XXH128_isEqual(XXH128_hash_t h1, XXH128_hash_t h2);
574
575/*!
576 * XXH128_cmp():
577 *
578 * This comparator is compatible with stdlib's `qsort()`/`bsearch()`.
579 *
580 * return: >0 if *h128_1 > *h128_2
581 * =0 if *h128_1 == *h128_2
582 * <0 if *h128_1 < *h128_2
583 */
584XXH_PUBLIC_API int XXH128_cmp(const void* h128_1, const void* h128_2);
585
586
587/******* Canonical representation *******/
588typedef struct { unsigned char digest[sizeof(XXH128_hash_t)]; } XXH128_canonical_t;
589XXH_PUBLIC_API void XXH128_canonicalFromHash(XXH128_canonical_t* dst, XXH128_hash_t hash);
590XXH_PUBLIC_API XXH128_hash_t XXH128_hashFromCanonical(const XXH128_canonical_t* src);
591
592
593#endif /* XXH_NO_LONG_LONG */
594
595#endif /* XXHASH_H_5627135585666179 */
596
597
598
599#if defined(XXH_STATIC_LINKING_ONLY) && !defined(XXHASH_H_STATIC_13879238742)
600#define XXHASH_H_STATIC_13879238742
601/* ****************************************************************************
602 * This section contains declarations which are not guaranteed to remain stable.
603 * They may change in future versions, becoming incompatible with a different
604 * version of the library.
605 * These declarations should only be used with static linking.
606 * Never use them in association with dynamic linking!
607 ***************************************************************************** */
608
609/*
610 * These definitions are only present to allow static allocation
611 * of XXH states, on stack or in a struct, for example.
612 * Never **ever** access their members directly.
613 */
614
615struct XXH32_state_s {
616 XXH32_hash_t total_len_32;
617 XXH32_hash_t large_len;
618 XXH32_hash_t v1;
619 XXH32_hash_t v2;
620 XXH32_hash_t v3;
621 XXH32_hash_t v4;
622 XXH32_hash_t mem32[4];
623 XXH32_hash_t memsize;
624 XXH32_hash_t reserved; /* never read nor write, might be removed in a future version */
625}; /* typedef'd to XXH32_state_t */
626
627
628#ifndef XXH_NO_LONG_LONG /* defined when there is no 64-bit support */
629
630struct XXH64_state_s {
631 XXH64_hash_t total_len;
632 XXH64_hash_t v1;
633 XXH64_hash_t v2;
634 XXH64_hash_t v3;
635 XXH64_hash_t v4;
636 XXH64_hash_t mem64[4];
637 XXH32_hash_t memsize;
638 XXH32_hash_t reserved32; /* required for padding anyway */
639 XXH64_hash_t reserved64; /* never read nor write, might be removed in a future version */
640}; /* typedef'd to XXH64_state_t */
641
642#if defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) /* C11+ */
643# include <stdalign.h>
644# define XXH_ALIGN(n) alignas(n)
645#elif defined(__GNUC__)
646# define XXH_ALIGN(n) __attribute__ ((aligned(n)))
647#elif defined(_MSC_VER)
648# define XXH_ALIGN(n) __declspec(align(n))
649#else
650# define XXH_ALIGN(n) /* disabled */
651#endif
652
653/* Old GCC versions only accept the attribute after the type in structures. */
654#if !(defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L)) /* C11+ */ \
655 && defined(__GNUC__)
656# define XXH_ALIGN_MEMBER(align, type) type XXH_ALIGN(align)
657#else
658# define XXH_ALIGN_MEMBER(align, type) XXH_ALIGN(align) type
659#endif
660
661#define XXH3_INTERNALBUFFER_SIZE 256
662#define XXH3_SECRET_DEFAULT_SIZE 192
663struct XXH3_state_s {
664 XXH_ALIGN_MEMBER(64, XXH64_hash_t acc[8]);
665 /* used to store a custom secret generated from a seed */
666 XXH_ALIGN_MEMBER(64, unsigned char customSecret[XXH3_SECRET_DEFAULT_SIZE]);
667 XXH_ALIGN_MEMBER(64, unsigned char buffer[XXH3_INTERNALBUFFER_SIZE]);
668 XXH32_hash_t bufferedSize;
669 XXH32_hash_t reserved32;
670 size_t nbStripesSoFar;
671 XXH64_hash_t totalLen;
672 size_t nbStripesPerBlock;
673 size_t secretLimit;
674 XXH64_hash_t seed;
675 XXH64_hash_t reserved64;
676 const unsigned char* extSecret; /* reference to external secret;
677 * if == NULL, use .customSecret instead */
678 /* note: there may be some padding at the end due to alignment on 64 bytes */
679}; /* typedef'd to XXH3_state_t */
680
681#undef XXH_ALIGN_MEMBER
682
683/* When the XXH3_state_t structure is merely emplaced on stack,
684 * it should be initialized with XXH3_INITSTATE() or a memset()
685 * in case its first reset uses XXH3_NNbits_reset_withSeed().
686 * This init can be omitted if the first reset uses default or _withSecret mode.
687 * This operation isn't necessary when the state is created with XXH3_createState().
688 * Note that this doesn't prepare the state for a streaming operation,
689 * it's still necessary to use XXH3_NNbits_reset*() afterwards.
690 */
691#define XXH3_INITSTATE(XXH3_state_ptr) { (XXH3_state_ptr)->seed = 0; }
692
693
694/* === Experimental API === */
695/* Symbols defined below must be considered tied to a specific library version. */
696
697/*
698 * XXH3_generateSecret():
699 *
700 * Derive a high-entropy secret from any user-defined content, named customSeed.
701 * The generated secret can be used in combination with `*_withSecret()` functions.
702 * The `_withSecret()` variants are useful to provide a higher level of protection than 64-bit seed,
703 * as it becomes much more difficult for an external actor to guess how to impact the calculation logic.
704 *
705 * The function accepts as input a custom seed of any length and any content,
706 * and derives from it a high-entropy secret of length XXH3_SECRET_DEFAULT_SIZE
707 * into an already allocated buffer secretBuffer.
708 * The generated secret is _always_ XXH_SECRET_DEFAULT_SIZE bytes long.
709 *
710 * The generated secret can then be used with any `*_withSecret()` variant.
711 * Functions `XXH3_128bits_withSecret()`, `XXH3_64bits_withSecret()`,
712 * `XXH3_128bits_reset_withSecret()` and `XXH3_64bits_reset_withSecret()`
713 * are part of this list. They all accept a `secret` parameter
714 * which must be very long for implementation reasons (>= XXH3_SECRET_SIZE_MIN)
715 * _and_ feature very high entropy (consist of random-looking bytes).
716 * These conditions can be a high bar to meet, so
717 * this function can be used to generate a secret of proper quality.
718 *
719 * customSeed can be anything. It can have any size, even small ones,
720 * and its content can be anything, even stupidly "low entropy" source such as a bunch of zeroes.
721 * The resulting `secret` will nonetheless provide all expected qualities.
722 *
723 * Supplying NULL as the customSeed copies the default secret into `secretBuffer`.
724 * When customSeedSize > 0, supplying NULL as customSeed is undefined behavior.
725 */
726XXH_PUBLIC_API void XXH3_generateSecret(void* secretBuffer, const void* customSeed, size_t customSeedSize);
727
728
729/* simple short-cut to pre-selected XXH3_128bits variant */
730XXH_PUBLIC_API XXH128_hash_t XXH128(const void* data, size_t len, XXH64_hash_t seed);
731
732
733#endif /* XXH_NO_LONG_LONG */
734
735
736#if defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API)
737# define XXH_IMPLEMENTATION
738#endif
739
740#endif /* defined(XXH_STATIC_LINKING_ONLY) && !defined(XXHASH_H_STATIC_13879238742) */
741
742
743/* ======================================================================== */
744/* ======================================================================== */
745/* ======================================================================== */
746
747
748/*-**********************************************************************
749 * xxHash implementation
750 *-**********************************************************************
751 * xxHash's implementation used to be hosted inside xxhash.c.
752 *
753 * However, inlining requires implementation to be visible to the compiler,
754 * hence be included alongside the header.
755 * Previously, implementation was hosted inside xxhash.c,
756 * which was then #included when inlining was activated.
757 * This construction created issues with a few build and install systems,
758 * as it required xxhash.c to be stored in /include directory.
759 *
760 * xxHash implementation is now directly integrated within xxhash.h.
761 * As a consequence, xxhash.c is no longer needed in /include.
762 *
763 * xxhash.c is still available and is still useful.
764 * In a "normal" setup, when xxhash is not inlined,
765 * xxhash.h only exposes the prototypes and public symbols,
766 * while xxhash.c can be built into an object file xxhash.o
767 * which can then be linked into the final binary.
768 ************************************************************************/
769
770#if ( defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API) \
771 || defined(XXH_IMPLEMENTATION) ) && !defined(XXH_IMPLEM_13a8737387)
772# define XXH_IMPLEM_13a8737387
773
774/* *************************************
775* Tuning parameters
776***************************************/
777/*!
778 * XXH_FORCE_MEMORY_ACCESS:
779 * By default, access to unaligned memory is controlled by `memcpy()`, which is
780 * safe and portable.
781 *
782 * Unfortunately, on some target/compiler combinations, the generated assembly
783 * is sub-optimal.
784 *
785 * The below switch allow selection of a different access method
786 * in the search for improved performance.
787 * Method 0 (default):
788 * Use `memcpy()`. Safe and portable. Default.
789 * Method 1:
790 * `__attribute__((packed))` statement. It depends on compiler extensions
791 * and is therefore not portable.
792 * This method is safe if your compiler supports it, and *generally* as
793 * fast or faster than `memcpy`.
794 * Method 2:
795 * Direct access via cast. This method doesn't depend on the compiler but
796 * violates the C standard.
797 * It can generate buggy code on targets which do not support unaligned
798 * memory accesses.
799 * But in some circumstances, it's the only known way to get the most
800 * performance (example: GCC + ARMv6)
801 * Method 3:
802 * Byteshift. This can generate the best code on old compilers which don't
803 * inline small `memcpy()` calls, and it might also be faster on big-endian
804 * systems which lack a native byteswap instruction.
805 * See https://stackoverflow.com/a/32095106/646947 for details.
806 * Prefer these methods in priority order (0 > 1 > 2 > 3)
807 */
808#ifndef XXH_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */
809# if !defined(__clang__) && defined(__GNUC__) && defined(__ARM_FEATURE_UNALIGNED) && defined(__ARM_ARCH) && (__ARM_ARCH == 6)
810# define XXH_FORCE_MEMORY_ACCESS 2
811# elif !defined(__clang__) && ((defined(__INTEL_COMPILER) && !defined(_WIN32)) || \
812 (defined(__GNUC__) && (defined(__ARM_ARCH) && __ARM_ARCH >= 7)))
813# define XXH_FORCE_MEMORY_ACCESS 1
814# endif
815#endif
816
817/*!
818 * XXH_ACCEPT_NULL_INPUT_POINTER:
819 * If the input pointer is NULL, xxHash's default behavior is to dereference it,
820 * triggering a segfault.
821 * When this macro is enabled, xxHash actively checks the input for a null pointer.
822 * If it is, the result for null input pointers is the same as a zero-length input.
823 */
824#ifndef XXH_ACCEPT_NULL_INPUT_POINTER /* can be defined externally */
825# define XXH_ACCEPT_NULL_INPUT_POINTER 0
826#endif
827
828/*!
829 * XXH_FORCE_ALIGN_CHECK:
830 * This is an important performance trick
831 * for architectures without decent unaligned memory access performance.
832 * It checks for input alignment, and when conditions are met,
833 * uses a "fast path" employing direct 32-bit/64-bit read,
834 * resulting in _dramatically faster_ read speed.
835 *
836 * The check costs one initial branch per hash, which is generally negligible, but not zero.
837 * Moreover, it's not useful to generate binary for an additional code path
838 * if memory access uses same instruction for both aligned and unaligned adresses.
839 *
840 * In these cases, the alignment check can be removed by setting this macro to 0.
841 * Then the code will always use unaligned memory access.
842 * Align check is automatically disabled on x86, x64 & arm64,
843 * which are platforms known to offer good unaligned memory accesses performance.
844 *
845 * This option does not affect XXH3 (only XXH32 and XXH64).
846 */
847#ifndef XXH_FORCE_ALIGN_CHECK /* can be defined externally */
848# if defined(__i386) || defined(__x86_64__) || defined(__aarch64__) \
849 || defined(_M_IX86) || defined(_M_X64) || defined(_M_ARM64) /* visual */
850# define XXH_FORCE_ALIGN_CHECK 0
851# else
852# define XXH_FORCE_ALIGN_CHECK 1
853# endif
854#endif
855
856/*!
857 * XXH_NO_INLINE_HINTS:
858 *
859 * By default, xxHash tries to force the compiler to inline almost all internal
860 * functions.
861 *
862 * This can usually improve performance due to reduced jumping and improved
863 * constant folding, but significantly increases the size of the binary which
864 * might not be favorable.
865 *
866 * Additionally, sometimes the forced inlining can be detrimental to performance,
867 * depending on the architecture.
868 *
869 * XXH_NO_INLINE_HINTS marks all internal functions as static, giving the
870 * compiler full control on whether to inline or not.
871 *
872 * When not optimizing (-O0), optimizing for size (-Os, -Oz), or using
873 * -fno-inline with GCC or Clang, this will automatically be defined.
874 */
875#ifndef XXH_NO_INLINE_HINTS
876# if defined(__OPTIMIZE_SIZE__) /* -Os, -Oz */ \
877 || defined(__NO_INLINE__) /* -O0, -fno-inline */
878# define XXH_NO_INLINE_HINTS 1
879# else
880# define XXH_NO_INLINE_HINTS 0
881# endif
882#endif
883
884/*!
885 * XXH_REROLL:
886 * Whether to reroll XXH32_finalize, and XXH64_finalize,
887 * instead of using an unrolled jump table/if statement loop.
888 *
889 * This is automatically defined on -Os/-Oz on GCC and Clang.
890 */
891#ifndef XXH_REROLL
892# if defined(__OPTIMIZE_SIZE__)
893# define XXH_REROLL 1
894# else
895# define XXH_REROLL 0
896# endif
897#endif
898
899
900/* *************************************
901* Includes & Memory related functions
902***************************************/
903/*!
904 * Modify the local functions below should you wish to use
905 * different memory routines for malloc() and free()
906 */
907#include <stdlib.h>
908
909static void* XXH_malloc(size_t s) { return malloc(s); }
910static void XXH_free(void* p) { free(p); }
911
912/*! and for memcpy() */
913#include <string.h>
914static void* XXH_memcpy(void* dest, const void* src, size_t size)
915{
916 return memcpy(dest,src,size);
917}
918
919#include <limits.h> /* ULLONG_MAX */
920
921
922/* *************************************
923* Compiler Specific Options
924***************************************/
925#ifdef _MSC_VER /* Visual Studio warning fix */
926# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
927#endif
928
929#if XXH_NO_INLINE_HINTS /* disable inlining hints */
930# if defined(__GNUC__)
931# define XXH_FORCE_INLINE static __attribute__((unused))
932# else
933# define XXH_FORCE_INLINE static
934# endif
935# define XXH_NO_INLINE static
936/* enable inlining hints */
937#elif defined(_MSC_VER) /* Visual Studio */
938# define XXH_FORCE_INLINE static __forceinline
939# define XXH_NO_INLINE static __declspec(noinline)
940#elif defined(__GNUC__)
941# define XXH_FORCE_INLINE static __inline__ __attribute__((always_inline, unused))
942# define XXH_NO_INLINE static __attribute__((noinline))
943#elif defined (__cplusplus) \
944 || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L)) /* C99 */
945# define XXH_FORCE_INLINE static inline
946# define XXH_NO_INLINE static
947#else
948# define XXH_FORCE_INLINE static
949# define XXH_NO_INLINE static
950#endif
951
952
953
954/* *************************************
955* Debug
956***************************************/
957/*
958 * XXH_DEBUGLEVEL is expected to be defined externally, typically via the
959 * compiler's command line options. The value must be a number.
960 */
961#ifndef XXH_DEBUGLEVEL
962# ifdef DEBUGLEVEL /* backwards compat */
963# define XXH_DEBUGLEVEL DEBUGLEVEL
964# else
965# define XXH_DEBUGLEVEL 0
966# endif
967#endif
Willy Tarreaub5684e02015-04-27 11:59:40 +0200968
Dragan Dosende374432020-12-22 12:00:37 +0100969#if (XXH_DEBUGLEVEL>=1)
970# include <assert.h> /* note: can still be disabled with NDEBUG */
971# define XXH_ASSERT(c) assert(c)
972#else
973# define XXH_ASSERT(c) ((void)0)
974#endif
975
976/* note: use after variable declarations */
977#define XXH_STATIC_ASSERT(c) do { enum { XXH_sa = 1/(int)(!!(c)) }; } while (0)
978
979
980/* *************************************
981* Basic Types
982***************************************/
983#if !defined (__VMS) \
984 && (defined (__cplusplus) \
985 || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
986# include <stdint.h>
987 typedef uint8_t xxh_u8;
988#else
989 typedef unsigned char xxh_u8;
990#endif
991typedef XXH32_hash_t xxh_u32;
992
993#ifdef XXH_OLD_NAMES
994# define BYTE xxh_u8
995# define U8 xxh_u8
996# define U32 xxh_u32
997#endif
998
999/* *** Memory access *** */
1000
1001#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3))
1002/*
1003 * Manual byteshift. Best for old compilers which don't inline memcpy.
1004 * We actually directly use XXH_readLE32 and XXH_readBE32.
1005 */
1006#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))
1007
1008/*
1009 * Force direct memory access. Only works on CPU which support unaligned memory
1010 * access in hardware.
1011 */
1012static xxh_u32 XXH_read32(const void* memPtr) { return *(const xxh_u32*) memPtr; }
1013
1014#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))
1015
1016/*
1017 * __pack instructions are safer but compiler specific, hence potentially
1018 * problematic for some compilers.
1019 *
1020 * Currently only defined for GCC and ICC.
1021 */
1022#ifdef XXH_OLD_NAMES
1023typedef union { xxh_u32 u32; } __attribute__((packed)) unalign;
1024#endif
1025static xxh_u32 XXH_read32(const void* ptr)
1026{
1027 typedef union { xxh_u32 u32; } __attribute__((packed)) xxh_unalign;
1028 return ((const xxh_unalign*)ptr)->u32;
1029}
1030
1031#else
1032
1033/*
1034 * Portable and safe solution. Generally efficient.
1035 * see: https://stackoverflow.com/a/32095106/646947
1036 */
1037static xxh_u32 XXH_read32(const void* memPtr)
1038{
1039 xxh_u32 val;
1040 memcpy(&val, memPtr, sizeof(val));
1041 return val;
1042}
1043
1044#endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */
1045
1046
1047/* *** Endianess *** */
1048typedef enum { XXH_bigEndian=0, XXH_littleEndian=1 } XXH_endianess;
1049
1050/*!
1051 * XXH_CPU_LITTLE_ENDIAN:
1052 * Defined to 1 if the target is little endian, or 0 if it is big endian.
1053 * It can be defined externally, for example on the compiler command line.
1054 *
1055 * If it is not defined, a runtime check (which is usually constant folded)
1056 * is used instead.
1057 */
1058#ifndef XXH_CPU_LITTLE_ENDIAN
1059/*
1060 * Try to detect endianness automatically, to avoid the nonstandard behavior
1061 * in `XXH_isLittleEndian()`
1062 */
1063# if defined(_WIN32) /* Windows is always little endian */ \
1064 || defined(__LITTLE_ENDIAN__) \
1065 || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)
1066# define XXH_CPU_LITTLE_ENDIAN 1
1067# elif defined(__BIG_ENDIAN__) \
1068 || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
1069# define XXH_CPU_LITTLE_ENDIAN 0
1070# else
1071/*
1072 * runtime test, presumed to simplify to a constant by compiler
1073 */
1074static int XXH_isLittleEndian(void)
1075{
1076 /*
1077 * Portable and well-defined behavior.
1078 * Don't use static: it is detrimental to performance.
1079 */
1080 const union { xxh_u32 u; xxh_u8 c[4]; } one = { 1 };
1081 return one.c[0];
1082}
1083# define XXH_CPU_LITTLE_ENDIAN XXH_isLittleEndian()
1084# endif
1085#endif
1086
1087
1088
1089
1090/* ****************************************
1091* Compiler-specific Functions and Macros
1092******************************************/
1093#define XXH_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
1094
1095#ifdef __has_builtin
1096# define XXH_HAS_BUILTIN(x) __has_builtin(x)
1097#else
1098# define XXH_HAS_BUILTIN(x) 0
1099#endif
1100
1101#if !defined(NO_CLANG_BUILTIN) && XXH_HAS_BUILTIN(__builtin_rotateleft32) \
1102 && XXH_HAS_BUILTIN(__builtin_rotateleft64)
1103# define XXH_rotl32 __builtin_rotateleft32
1104# define XXH_rotl64 __builtin_rotateleft64
1105/* Note: although _rotl exists for minGW (GCC under windows), performance seems poor */
1106#elif defined(_MSC_VER)
1107# define XXH_rotl32(x,r) _rotl(x,r)
1108# define XXH_rotl64(x,r) _rotl64(x,r)
1109#else
1110# define XXH_rotl32(x,r) (((x) << (r)) | ((x) >> (32 - (r))))
1111# define XXH_rotl64(x,r) (((x) << (r)) | ((x) >> (64 - (r))))
1112#endif
1113
1114#if defined(_MSC_VER) /* Visual Studio */
1115# define XXH_swap32 _byteswap_ulong
1116#elif XXH_GCC_VERSION >= 403
1117# define XXH_swap32 __builtin_bswap32
1118#else
1119static xxh_u32 XXH_swap32 (xxh_u32 x)
1120{
1121 return ((x << 24) & 0xff000000 ) |
1122 ((x << 8) & 0x00ff0000 ) |
1123 ((x >> 8) & 0x0000ff00 ) |
1124 ((x >> 24) & 0x000000ff );
1125}
1126#endif
Willy Tarreaub5684e02015-04-27 11:59:40 +02001127
1128
Dragan Dosende374432020-12-22 12:00:37 +01001129/* ***************************
1130* Memory reads
Willy Tarreaub5684e02015-04-27 11:59:40 +02001131*****************************/
Dragan Dosende374432020-12-22 12:00:37 +01001132typedef enum { XXH_aligned, XXH_unaligned } XXH_alignment;
Willy Tarreaub5684e02015-04-27 11:59:40 +02001133
1134/*
Dragan Dosende374432020-12-22 12:00:37 +01001135 * XXH_FORCE_MEMORY_ACCESS==3 is an endian-independent byteshift load.
1136 *
1137 * This is ideal for older compilers which don't inline memcpy.
1138 */
1139#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3))
Willy Tarreaub5684e02015-04-27 11:59:40 +02001140
Dragan Dosende374432020-12-22 12:00:37 +01001141XXH_FORCE_INLINE xxh_u32 XXH_readLE32(const void* memPtr)
1142{
1143 const xxh_u8* bytePtr = (const xxh_u8 *)memPtr;
1144 return bytePtr[0]
1145 | ((xxh_u32)bytePtr[1] << 8)
1146 | ((xxh_u32)bytePtr[2] << 16)
1147 | ((xxh_u32)bytePtr[3] << 24);
1148}
1149
1150XXH_FORCE_INLINE xxh_u32 XXH_readBE32(const void* memPtr)
1151{
1152 const xxh_u8* bytePtr = (const xxh_u8 *)memPtr;
1153 return bytePtr[3]
1154 | ((xxh_u32)bytePtr[2] << 8)
1155 | ((xxh_u32)bytePtr[1] << 16)
1156 | ((xxh_u32)bytePtr[0] << 24);
1157}
1158
1159#else
1160XXH_FORCE_INLINE xxh_u32 XXH_readLE32(const void* ptr)
1161{
1162 return XXH_CPU_LITTLE_ENDIAN ? XXH_read32(ptr) : XXH_swap32(XXH_read32(ptr));
1163}
1164
1165static xxh_u32 XXH_readBE32(const void* ptr)
1166{
1167 return XXH_CPU_LITTLE_ENDIAN ? XXH_swap32(XXH_read32(ptr)) : XXH_read32(ptr);
1168}
1169#endif
1170
1171XXH_FORCE_INLINE xxh_u32
1172XXH_readLE32_align(const void* ptr, XXH_alignment align)
1173{
1174 if (align==XXH_unaligned) {
1175 return XXH_readLE32(ptr);
1176 } else {
1177 return XXH_CPU_LITTLE_ENDIAN ? *(const xxh_u32*)ptr : XXH_swap32(*(const xxh_u32*)ptr);
1178 }
1179}
1180
1181
1182/* *************************************
1183* Misc
1184***************************************/
1185XXH_PUBLIC_API unsigned XXH_versionNumber (void) { return XXH_VERSION_NUMBER; }
1186
1187
1188/* *******************************************************************
1189* 32-bit hash functions
1190*********************************************************************/
1191static const xxh_u32 XXH_PRIME32_1 = 0x9E3779B1U; /* 0b10011110001101110111100110110001 */
1192static const xxh_u32 XXH_PRIME32_2 = 0x85EBCA77U; /* 0b10000101111010111100101001110111 */
1193static const xxh_u32 XXH_PRIME32_3 = 0xC2B2AE3DU; /* 0b11000010101100101010111000111101 */
1194static const xxh_u32 XXH_PRIME32_4 = 0x27D4EB2FU; /* 0b00100111110101001110101100101111 */
1195static const xxh_u32 XXH_PRIME32_5 = 0x165667B1U; /* 0b00010110010101100110011110110001 */
1196
1197#ifdef XXH_OLD_NAMES
1198# define PRIME32_1 XXH_PRIME32_1
1199# define PRIME32_2 XXH_PRIME32_2
1200# define PRIME32_3 XXH_PRIME32_3
1201# define PRIME32_4 XXH_PRIME32_4
1202# define PRIME32_5 XXH_PRIME32_5
1203#endif
1204
1205static xxh_u32 XXH32_round(xxh_u32 acc, xxh_u32 input)
1206{
1207 acc += input * XXH_PRIME32_2;
1208 acc = XXH_rotl32(acc, 13);
1209 acc *= XXH_PRIME32_1;
1210#if defined(__GNUC__) && defined(__SSE4_1__) && !defined(XXH_ENABLE_AUTOVECTORIZE)
1211 /*
1212 * UGLY HACK:
1213 * This inline assembly hack forces acc into a normal register. This is the
1214 * only thing that prevents GCC and Clang from autovectorizing the XXH32
1215 * loop (pragmas and attributes don't work for some resason) without globally
1216 * disabling SSE4.1.
1217 *
1218 * The reason we want to avoid vectorization is because despite working on
1219 * 4 integers at a time, there are multiple factors slowing XXH32 down on
1220 * SSE4:
1221 * - There's a ridiculous amount of lag from pmulld (10 cycles of latency on
1222 * newer chips!) making it slightly slower to multiply four integers at
1223 * once compared to four integers independently. Even when pmulld was
1224 * fastest, Sandy/Ivy Bridge, it is still not worth it to go into SSE
1225 * just to multiply unless doing a long operation.
1226 *
1227 * - Four instructions are required to rotate,
1228 * movqda tmp, v // not required with VEX encoding
1229 * pslld tmp, 13 // tmp <<= 13
1230 * psrld v, 19 // x >>= 19
1231 * por v, tmp // x |= tmp
1232 * compared to one for scalar:
1233 * roll v, 13 // reliably fast across the board
1234 * shldl v, v, 13 // Sandy Bridge and later prefer this for some reason
1235 *
1236 * - Instruction level parallelism is actually more beneficial here because
1237 * the SIMD actually serializes this operation: While v1 is rotating, v2
1238 * can load data, while v3 can multiply. SSE forces them to operate
1239 * together.
1240 *
1241 * How this hack works:
1242 * __asm__("" // Declare an assembly block but don't declare any instructions
1243 * : // However, as an Input/Output Operand,
1244 * "+r" // constrain a read/write operand (+) as a general purpose register (r).
1245 * (acc) // and set acc as the operand
1246 * );
1247 *
1248 * Because of the 'r', the compiler has promised that seed will be in a
1249 * general purpose register and the '+' says that it will be 'read/write',
1250 * so it has to assume it has changed. It is like volatile without all the
1251 * loads and stores.
1252 *
1253 * Since the argument has to be in a normal register (not an SSE register),
1254 * each time XXH32_round is called, it is impossible to vectorize.
1255 */
1256 __asm__("" : "+r" (acc));
1257#endif
1258 return acc;
1259}
1260
1261/* mix all bits */
1262static xxh_u32 XXH32_avalanche(xxh_u32 h32)
1263{
1264 h32 ^= h32 >> 15;
1265 h32 *= XXH_PRIME32_2;
1266 h32 ^= h32 >> 13;
1267 h32 *= XXH_PRIME32_3;
1268 h32 ^= h32 >> 16;
1269 return(h32);
1270}
1271
1272#define XXH_get32bits(p) XXH_readLE32_align(p, align)
1273
1274static xxh_u32
1275XXH32_finalize(xxh_u32 h32, const xxh_u8* ptr, size_t len, XXH_alignment align)
1276{
1277#define XXH_PROCESS1 do { \
1278 h32 += (*ptr++) * XXH_PRIME32_5; \
1279 h32 = XXH_rotl32(h32, 11) * XXH_PRIME32_1; \
1280} while (0)
1281
1282#define XXH_PROCESS4 do { \
1283 h32 += XXH_get32bits(ptr) * XXH_PRIME32_3; \
1284 ptr += 4; \
1285 h32 = XXH_rotl32(h32, 17) * XXH_PRIME32_4; \
1286} while (0)
1287
1288 /* Compact rerolled version */
1289 if (XXH_REROLL) {
1290 len &= 15;
1291 while (len >= 4) {
1292 XXH_PROCESS4;
1293 len -= 4;
1294 }
1295 while (len > 0) {
1296 XXH_PROCESS1;
1297 --len;
1298 }
1299 return XXH32_avalanche(h32);
1300 } else {
1301 switch(len&15) /* or switch(bEnd - p) */ {
1302 case 12: XXH_PROCESS4;
1303 /* fallthrough */
1304 case 8: XXH_PROCESS4;
1305 /* fallthrough */
1306 case 4: XXH_PROCESS4;
1307 return XXH32_avalanche(h32);
1308
1309 case 13: XXH_PROCESS4;
1310 /* fallthrough */
1311 case 9: XXH_PROCESS4;
1312 /* fallthrough */
1313 case 5: XXH_PROCESS4;
1314 XXH_PROCESS1;
1315 return XXH32_avalanche(h32);
1316
1317 case 14: XXH_PROCESS4;
1318 /* fallthrough */
1319 case 10: XXH_PROCESS4;
1320 /* fallthrough */
1321 case 6: XXH_PROCESS4;
1322 XXH_PROCESS1;
1323 XXH_PROCESS1;
1324 return XXH32_avalanche(h32);
1325
1326 case 15: XXH_PROCESS4;
1327 /* fallthrough */
1328 case 11: XXH_PROCESS4;
1329 /* fallthrough */
1330 case 7: XXH_PROCESS4;
1331 /* fallthrough */
1332 case 3: XXH_PROCESS1;
1333 /* fallthrough */
1334 case 2: XXH_PROCESS1;
1335 /* fallthrough */
1336 case 1: XXH_PROCESS1;
1337 /* fallthrough */
1338 case 0: return XXH32_avalanche(h32);
1339 }
1340 XXH_ASSERT(0);
1341 return h32; /* reaching this point is deemed impossible */
1342 }
1343}
1344
1345#ifdef XXH_OLD_NAMES
1346# define PROCESS1 XXH_PROCESS1
1347# define PROCESS4 XXH_PROCESS4
1348#else
1349# undef XXH_PROCESS1
1350# undef XXH_PROCESS4
1351#endif
1352
1353XXH_FORCE_INLINE xxh_u32
1354XXH32_endian_align(const xxh_u8* input, size_t len, xxh_u32 seed, XXH_alignment align)
1355{
1356 const xxh_u8* bEnd = input + len;
1357 xxh_u32 h32;
1358
1359#if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1)
1360 if (input==NULL) {
1361 len=0;
1362 bEnd=input=(const xxh_u8*)(size_t)16;
1363 }
1364#endif
1365
1366 if (len>=16) {
1367 const xxh_u8* const limit = bEnd - 15;
1368 xxh_u32 v1 = seed + XXH_PRIME32_1 + XXH_PRIME32_2;
1369 xxh_u32 v2 = seed + XXH_PRIME32_2;
1370 xxh_u32 v3 = seed + 0;
1371 xxh_u32 v4 = seed - XXH_PRIME32_1;
Willy Tarreaub5684e02015-04-27 11:59:40 +02001372
Dragan Dosende374432020-12-22 12:00:37 +01001373 do {
1374 v1 = XXH32_round(v1, XXH_get32bits(input)); input += 4;
1375 v2 = XXH32_round(v2, XXH_get32bits(input)); input += 4;
1376 v3 = XXH32_round(v3, XXH_get32bits(input)); input += 4;
1377 v4 = XXH32_round(v4, XXH_get32bits(input)); input += 4;
1378 } while (input < limit);
Willy Tarreaub5684e02015-04-27 11:59:40 +02001379
Dragan Dosende374432020-12-22 12:00:37 +01001380 h32 = XXH_rotl32(v1, 1) + XXH_rotl32(v2, 7)
1381 + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18);
1382 } else {
1383 h32 = seed + XXH_PRIME32_5;
1384 }
1385
1386 h32 += (xxh_u32)len;
1387
1388 return XXH32_finalize(h32, input, len&15, align);
1389}
1390
1391
1392XXH_PUBLIC_API XXH32_hash_t XXH32 (const void* input, size_t len, XXH32_hash_t seed)
1393{
1394#if 0
1395 /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
1396 XXH32_state_t state;
1397 XXH32_reset(&state, seed);
1398 XXH32_update(&state, (const xxh_u8*)input, len);
1399 return XXH32_digest(&state);
1400
1401#else
1402
1403 if (XXH_FORCE_ALIGN_CHECK) {
1404 if ((((size_t)input) & 3) == 0) { /* Input is 4-bytes aligned, leverage the speed benefit */
1405 return XXH32_endian_align((const xxh_u8*)input, len, seed, XXH_aligned);
1406 } }
1407
1408 return XXH32_endian_align((const xxh_u8*)input, len, seed, XXH_unaligned);
1409#endif
1410}
1411
1412
1413
1414/******* Hash streaming *******/
1415
1416XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void)
1417{
1418 return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t));
1419}
1420XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr)
1421{
1422 XXH_free(statePtr);
1423 return XXH_OK;
1424}
1425
1426XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* dstState, const XXH32_state_t* srcState)
1427{
1428 memcpy(dstState, srcState, sizeof(*dstState));
1429}
1430
1431XXH_PUBLIC_API XXH_errorcode XXH32_reset(XXH32_state_t* statePtr, XXH32_hash_t seed)
1432{
1433 XXH32_state_t state; /* using a local state to memcpy() in order to avoid strict-aliasing warnings */
1434 memset(&state, 0, sizeof(state));
1435 state.v1 = seed + XXH_PRIME32_1 + XXH_PRIME32_2;
1436 state.v2 = seed + XXH_PRIME32_2;
1437 state.v3 = seed + 0;
1438 state.v4 = seed - XXH_PRIME32_1;
1439 /* do not write into reserved, planned to be removed in a future version */
1440 memcpy(statePtr, &state, sizeof(state) - sizeof(state.reserved));
1441 return XXH_OK;
1442}
1443
1444
1445XXH_PUBLIC_API XXH_errorcode
1446XXH32_update(XXH32_state_t* state, const void* input, size_t len)
1447{
1448 if (input==NULL)
1449#if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1)
1450 return XXH_OK;
1451#else
1452 return XXH_ERROR;
1453#endif
1454
1455 { const xxh_u8* p = (const xxh_u8*)input;
1456 const xxh_u8* const bEnd = p + len;
1457
1458 state->total_len_32 += (XXH32_hash_t)len;
1459 state->large_len |= (XXH32_hash_t)((len>=16) | (state->total_len_32>=16));
1460
1461 if (state->memsize + len < 16) { /* fill in tmp buffer */
1462 XXH_memcpy((xxh_u8*)(state->mem32) + state->memsize, input, len);
1463 state->memsize += (XXH32_hash_t)len;
1464 return XXH_OK;
1465 }
1466
1467 if (state->memsize) { /* some data left from previous update */
1468 XXH_memcpy((xxh_u8*)(state->mem32) + state->memsize, input, 16-state->memsize);
1469 { const xxh_u32* p32 = state->mem32;
1470 state->v1 = XXH32_round(state->v1, XXH_readLE32(p32)); p32++;
1471 state->v2 = XXH32_round(state->v2, XXH_readLE32(p32)); p32++;
1472 state->v3 = XXH32_round(state->v3, XXH_readLE32(p32)); p32++;
1473 state->v4 = XXH32_round(state->v4, XXH_readLE32(p32));
1474 }
1475 p += 16-state->memsize;
1476 state->memsize = 0;
1477 }
1478
1479 if (p <= bEnd-16) {
1480 const xxh_u8* const limit = bEnd - 16;
1481 xxh_u32 v1 = state->v1;
1482 xxh_u32 v2 = state->v2;
1483 xxh_u32 v3 = state->v3;
1484 xxh_u32 v4 = state->v4;
1485
1486 do {
1487 v1 = XXH32_round(v1, XXH_readLE32(p)); p+=4;
1488 v2 = XXH32_round(v2, XXH_readLE32(p)); p+=4;
1489 v3 = XXH32_round(v3, XXH_readLE32(p)); p+=4;
1490 v4 = XXH32_round(v4, XXH_readLE32(p)); p+=4;
1491 } while (p<=limit);
1492
1493 state->v1 = v1;
1494 state->v2 = v2;
1495 state->v3 = v3;
1496 state->v4 = v4;
1497 }
1498
1499 if (p < bEnd) {
1500 XXH_memcpy(state->mem32, p, (size_t)(bEnd-p));
1501 state->memsize = (unsigned)(bEnd-p);
1502 }
1503 }
1504
1505 return XXH_OK;
1506}
1507
1508
1509XXH_PUBLIC_API XXH32_hash_t XXH32_digest (const XXH32_state_t* state)
1510{
1511 xxh_u32 h32;
1512
1513 if (state->large_len) {
1514 h32 = XXH_rotl32(state->v1, 1)
1515 + XXH_rotl32(state->v2, 7)
1516 + XXH_rotl32(state->v3, 12)
1517 + XXH_rotl32(state->v4, 18);
1518 } else {
1519 h32 = state->v3 /* == seed */ + XXH_PRIME32_5;
1520 }
1521
1522 h32 += state->total_len_32;
1523
1524 return XXH32_finalize(h32, (const xxh_u8*)state->mem32, state->memsize, XXH_aligned);
1525}
1526
1527
1528/******* Canonical representation *******/
Willy Tarreaub5684e02015-04-27 11:59:40 +02001529
1530/*
Dragan Dosende374432020-12-22 12:00:37 +01001531 * The default return values from XXH functions are unsigned 32 and 64 bit
1532 * integers.
1533 *
1534 * The canonical representation uses big endian convention, the same convention
1535 * as human-readable numbers (large digits first).
1536 *
1537 * This way, hash values can be written into a file or buffer, remaining
1538 * comparable across different systems.
1539 *
1540 * The following functions allow transformation of hash values to and from their
1541 * canonical format.
1542 */
1543XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash)
1544{
1545 XXH_STATIC_ASSERT(sizeof(XXH32_canonical_t) == sizeof(XXH32_hash_t));
1546 if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap32(hash);
1547 memcpy(dst, &hash, sizeof(*dst));
1548}
1549
1550XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src)
1551{
1552 return XXH_readBE32(src);
1553}
1554
1555
1556#ifndef XXH_NO_LONG_LONG
1557
1558/* *******************************************************************
1559* 64-bit hash functions
1560*********************************************************************/
1561
1562/******* Memory access *******/
1563
1564typedef XXH64_hash_t xxh_u64;
Willy Tarreaub5684e02015-04-27 11:59:40 +02001565
Dragan Dosende374432020-12-22 12:00:37 +01001566#ifdef XXH_OLD_NAMES
1567# define U64 xxh_u64
1568#endif
1569
1570/*!
1571 * XXH_REROLL_XXH64:
1572 * Whether to reroll the XXH64_finalize() loop.
1573 *
1574 * Just like XXH32, we can unroll the XXH64_finalize() loop. This can be a
1575 * performance gain on 64-bit hosts, as only one jump is required.
1576 *
1577 * However, on 32-bit hosts, because arithmetic needs to be done with two 32-bit
1578 * registers, and 64-bit arithmetic needs to be simulated, it isn't beneficial
1579 * to unroll. The code becomes ridiculously large (the largest function in the
1580 * binary on i386!), and rerolling it saves anywhere from 3kB to 20kB. It is
1581 * also slightly faster because it fits into cache better and is more likely
1582 * to be inlined by the compiler.
1583 *
1584 * If XXH_REROLL is defined, this is ignored and the loop is always rerolled.
1585 */
1586#ifndef XXH_REROLL_XXH64
1587# if (defined(__ILP32__) || defined(_ILP32)) /* ILP32 is often defined on 32-bit GCC family */ \
1588 || !(defined(__x86_64__) || defined(_M_X64) || defined(_M_AMD64) /* x86-64 */ \
1589 || defined(_M_ARM64) || defined(__aarch64__) || defined(__arm64__) /* aarch64 */ \
1590 || defined(__PPC64__) || defined(__PPC64LE__) || defined(__ppc64__) || defined(__powerpc64__) /* ppc64 */ \
1591 || defined(__mips64__) || defined(__mips64)) /* mips64 */ \
1592 || (!defined(SIZE_MAX) || SIZE_MAX < ULLONG_MAX) /* check limits */
1593# define XXH_REROLL_XXH64 1
1594# else
1595# define XXH_REROLL_XXH64 0
1596# endif
1597#endif /* !defined(XXH_REROLL_XXH64) */
1598
1599#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3))
1600/*
1601 * Manual byteshift. Best for old compilers which don't inline memcpy.
1602 * We actually directly use XXH_readLE64 and XXH_readBE64.
1603 */
1604#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))
Willy Tarreaub5684e02015-04-27 11:59:40 +02001605
Dragan Dosende374432020-12-22 12:00:37 +01001606/* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */
1607static xxh_u64 XXH_read64(const void* memPtr) { return *(const xxh_u64*) memPtr; }
Willy Tarreaub5684e02015-04-27 11:59:40 +02001608
Dragan Dosende374432020-12-22 12:00:37 +01001609#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))
Willy Tarreaub5684e02015-04-27 11:59:40 +02001610
1611/*
Dragan Dosende374432020-12-22 12:00:37 +01001612 * __pack instructions are safer, but compiler specific, hence potentially
1613 * problematic for some compilers.
1614 *
1615 * Currently only defined for GCC and ICC.
1616 */
1617#ifdef XXH_OLD_NAMES
1618typedef union { xxh_u32 u32; xxh_u64 u64; } __attribute__((packed)) unalign64;
1619#endif
1620static xxh_u64 XXH_read64(const void* ptr)
1621{
1622 typedef union { xxh_u32 u32; xxh_u64 u64; } __attribute__((packed)) xxh_unalign64;
1623 return ((const xxh_unalign64*)ptr)->u64;
1624}
Willy Tarreaub5684e02015-04-27 11:59:40 +02001625
Dragan Dosende374432020-12-22 12:00:37 +01001626#else
Willy Tarreaub5684e02015-04-27 11:59:40 +02001627
Dragan Dosende374432020-12-22 12:00:37 +01001628/*
1629 * Portable and safe solution. Generally efficient.
1630 * see: https://stackoverflow.com/a/32095106/646947
1631 */
1632static xxh_u64 XXH_read64(const void* memPtr)
1633{
1634 xxh_u64 val;
1635 memcpy(&val, memPtr, sizeof(val));
1636 return val;
1637}
Willy Tarreaub5684e02015-04-27 11:59:40 +02001638
Dragan Dosende374432020-12-22 12:00:37 +01001639#endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */
Willy Tarreaub5684e02015-04-27 11:59:40 +02001640
Dragan Dosende374432020-12-22 12:00:37 +01001641#if defined(_MSC_VER) /* Visual Studio */
1642# define XXH_swap64 _byteswap_uint64
1643#elif XXH_GCC_VERSION >= 403
1644# define XXH_swap64 __builtin_bswap64
1645#else
1646static xxh_u64 XXH_swap64 (xxh_u64 x)
1647{
1648 return ((x << 56) & 0xff00000000000000ULL) |
1649 ((x << 40) & 0x00ff000000000000ULL) |
1650 ((x << 24) & 0x0000ff0000000000ULL) |
1651 ((x << 8) & 0x000000ff00000000ULL) |
1652 ((x >> 8) & 0x00000000ff000000ULL) |
1653 ((x >> 24) & 0x0000000000ff0000ULL) |
1654 ((x >> 40) & 0x000000000000ff00ULL) |
1655 ((x >> 56) & 0x00000000000000ffULL);
1656}
1657#endif
Willy Tarreaub5684e02015-04-27 11:59:40 +02001658
Dragan Dosende374432020-12-22 12:00:37 +01001659
1660/* XXH_FORCE_MEMORY_ACCESS==3 is an endian-independent byteshift load. */
1661#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3))
1662
1663XXH_FORCE_INLINE xxh_u64 XXH_readLE64(const void* memPtr)
1664{
1665 const xxh_u8* bytePtr = (const xxh_u8 *)memPtr;
1666 return bytePtr[0]
1667 | ((xxh_u64)bytePtr[1] << 8)
1668 | ((xxh_u64)bytePtr[2] << 16)
1669 | ((xxh_u64)bytePtr[3] << 24)
1670 | ((xxh_u64)bytePtr[4] << 32)
1671 | ((xxh_u64)bytePtr[5] << 40)
1672 | ((xxh_u64)bytePtr[6] << 48)
1673 | ((xxh_u64)bytePtr[7] << 56);
1674}
1675
1676XXH_FORCE_INLINE xxh_u64 XXH_readBE64(const void* memPtr)
1677{
1678 const xxh_u8* bytePtr = (const xxh_u8 *)memPtr;
1679 return bytePtr[7]
1680 | ((xxh_u64)bytePtr[6] << 8)
1681 | ((xxh_u64)bytePtr[5] << 16)
1682 | ((xxh_u64)bytePtr[4] << 24)
1683 | ((xxh_u64)bytePtr[3] << 32)
1684 | ((xxh_u64)bytePtr[2] << 40)
1685 | ((xxh_u64)bytePtr[1] << 48)
1686 | ((xxh_u64)bytePtr[0] << 56);
1687}
1688
1689#else
1690XXH_FORCE_INLINE xxh_u64 XXH_readLE64(const void* ptr)
1691{
1692 return XXH_CPU_LITTLE_ENDIAN ? XXH_read64(ptr) : XXH_swap64(XXH_read64(ptr));
1693}
1694
1695static xxh_u64 XXH_readBE64(const void* ptr)
1696{
1697 return XXH_CPU_LITTLE_ENDIAN ? XXH_swap64(XXH_read64(ptr)) : XXH_read64(ptr);
1698}
1699#endif
1700
1701XXH_FORCE_INLINE xxh_u64
1702XXH_readLE64_align(const void* ptr, XXH_alignment align)
1703{
1704 if (align==XXH_unaligned)
1705 return XXH_readLE64(ptr);
1706 else
1707 return XXH_CPU_LITTLE_ENDIAN ? *(const xxh_u64*)ptr : XXH_swap64(*(const xxh_u64*)ptr);
1708}
1709
1710
1711/******* xxh64 *******/
1712
1713static const xxh_u64 XXH_PRIME64_1 = 0x9E3779B185EBCA87ULL; /* 0b1001111000110111011110011011000110000101111010111100101010000111 */
1714static const xxh_u64 XXH_PRIME64_2 = 0xC2B2AE3D27D4EB4FULL; /* 0b1100001010110010101011100011110100100111110101001110101101001111 */
1715static const xxh_u64 XXH_PRIME64_3 = 0x165667B19E3779F9ULL; /* 0b0001011001010110011001111011000110011110001101110111100111111001 */
1716static const xxh_u64 XXH_PRIME64_4 = 0x85EBCA77C2B2AE63ULL; /* 0b1000010111101011110010100111011111000010101100101010111001100011 */
1717static const xxh_u64 XXH_PRIME64_5 = 0x27D4EB2F165667C5ULL; /* 0b0010011111010100111010110010111100010110010101100110011111000101 */
1718
1719#ifdef XXH_OLD_NAMES
1720# define PRIME64_1 XXH_PRIME64_1
1721# define PRIME64_2 XXH_PRIME64_2
1722# define PRIME64_3 XXH_PRIME64_3
1723# define PRIME64_4 XXH_PRIME64_4
1724# define PRIME64_5 XXH_PRIME64_5
1725#endif
1726
1727static xxh_u64 XXH64_round(xxh_u64 acc, xxh_u64 input)
1728{
1729 acc += input * XXH_PRIME64_2;
1730 acc = XXH_rotl64(acc, 31);
1731 acc *= XXH_PRIME64_1;
1732 return acc;
1733}
1734
1735static xxh_u64 XXH64_mergeRound(xxh_u64 acc, xxh_u64 val)
1736{
1737 val = XXH64_round(0, val);
1738 acc ^= val;
1739 acc = acc * XXH_PRIME64_1 + XXH_PRIME64_4;
1740 return acc;
1741}
1742
1743static xxh_u64 XXH64_avalanche(xxh_u64 h64)
1744{
1745 h64 ^= h64 >> 33;
1746 h64 *= XXH_PRIME64_2;
1747 h64 ^= h64 >> 29;
1748 h64 *= XXH_PRIME64_3;
1749 h64 ^= h64 >> 32;
1750 return h64;
1751}
1752
1753
1754#define XXH_get64bits(p) XXH_readLE64_align(p, align)
1755
1756static xxh_u64
1757XXH64_finalize(xxh_u64 h64, const xxh_u8* ptr, size_t len, XXH_alignment align)
1758{
1759#define XXH_PROCESS1_64 do { \
1760 h64 ^= (*ptr++) * XXH_PRIME64_5; \
1761 h64 = XXH_rotl64(h64, 11) * XXH_PRIME64_1; \
1762} while (0)
1763
1764#define XXH_PROCESS4_64 do { \
1765 h64 ^= (xxh_u64)(XXH_get32bits(ptr)) * XXH_PRIME64_1; \
1766 ptr += 4; \
1767 h64 = XXH_rotl64(h64, 23) * XXH_PRIME64_2 + XXH_PRIME64_3; \
1768} while (0)
1769
1770#define XXH_PROCESS8_64 do { \
1771 xxh_u64 const k1 = XXH64_round(0, XXH_get64bits(ptr)); \
1772 ptr += 8; \
1773 h64 ^= k1; \
1774 h64 = XXH_rotl64(h64,27) * XXH_PRIME64_1 + XXH_PRIME64_4; \
1775} while (0)
1776
1777 /* Rerolled version for 32-bit targets is faster and much smaller. */
1778 if (XXH_REROLL || XXH_REROLL_XXH64) {
1779 len &= 31;
1780 while (len >= 8) {
1781 XXH_PROCESS8_64;
1782 len -= 8;
1783 }
1784 if (len >= 4) {
1785 XXH_PROCESS4_64;
1786 len -= 4;
1787 }
1788 while (len > 0) {
1789 XXH_PROCESS1_64;
1790 --len;
1791 }
1792 return XXH64_avalanche(h64);
1793 } else {
1794 switch(len & 31) {
1795 case 24: XXH_PROCESS8_64;
1796 /* fallthrough */
1797 case 16: XXH_PROCESS8_64;
1798 /* fallthrough */
1799 case 8: XXH_PROCESS8_64;
1800 return XXH64_avalanche(h64);
1801
1802 case 28: XXH_PROCESS8_64;
1803 /* fallthrough */
1804 case 20: XXH_PROCESS8_64;
1805 /* fallthrough */
1806 case 12: XXH_PROCESS8_64;
1807 /* fallthrough */
1808 case 4: XXH_PROCESS4_64;
1809 return XXH64_avalanche(h64);
1810
1811 case 25: XXH_PROCESS8_64;
1812 /* fallthrough */
1813 case 17: XXH_PROCESS8_64;
1814 /* fallthrough */
1815 case 9: XXH_PROCESS8_64;
1816 XXH_PROCESS1_64;
1817 return XXH64_avalanche(h64);
1818
1819 case 29: XXH_PROCESS8_64;
1820 /* fallthrough */
1821 case 21: XXH_PROCESS8_64;
1822 /* fallthrough */
1823 case 13: XXH_PROCESS8_64;
1824 /* fallthrough */
1825 case 5: XXH_PROCESS4_64;
1826 XXH_PROCESS1_64;
1827 return XXH64_avalanche(h64);
1828
1829 case 26: XXH_PROCESS8_64;
1830 /* fallthrough */
1831 case 18: XXH_PROCESS8_64;
1832 /* fallthrough */
1833 case 10: XXH_PROCESS8_64;
1834 XXH_PROCESS1_64;
1835 XXH_PROCESS1_64;
1836 return XXH64_avalanche(h64);
1837
1838 case 30: XXH_PROCESS8_64;
1839 /* fallthrough */
1840 case 22: XXH_PROCESS8_64;
1841 /* fallthrough */
1842 case 14: XXH_PROCESS8_64;
1843 /* fallthrough */
1844 case 6: XXH_PROCESS4_64;
1845 XXH_PROCESS1_64;
1846 XXH_PROCESS1_64;
1847 return XXH64_avalanche(h64);
1848
1849 case 27: XXH_PROCESS8_64;
1850 /* fallthrough */
1851 case 19: XXH_PROCESS8_64;
1852 /* fallthrough */
1853 case 11: XXH_PROCESS8_64;
1854 XXH_PROCESS1_64;
1855 XXH_PROCESS1_64;
1856 XXH_PROCESS1_64;
1857 return XXH64_avalanche(h64);
1858
1859 case 31: XXH_PROCESS8_64;
1860 /* fallthrough */
1861 case 23: XXH_PROCESS8_64;
1862 /* fallthrough */
1863 case 15: XXH_PROCESS8_64;
1864 /* fallthrough */
1865 case 7: XXH_PROCESS4_64;
1866 /* fallthrough */
1867 case 3: XXH_PROCESS1_64;
1868 /* fallthrough */
1869 case 2: XXH_PROCESS1_64;
1870 /* fallthrough */
1871 case 1: XXH_PROCESS1_64;
1872 /* fallthrough */
1873 case 0: return XXH64_avalanche(h64);
1874 }
1875 }
1876 /* impossible to reach */
1877 XXH_ASSERT(0);
1878 return 0; /* unreachable, but some compilers complain without it */
1879}
1880
1881#ifdef XXH_OLD_NAMES
1882# define PROCESS1_64 XXH_PROCESS1_64
1883# define PROCESS4_64 XXH_PROCESS4_64
1884# define PROCESS8_64 XXH_PROCESS8_64
1885#else
1886# undef XXH_PROCESS1_64
1887# undef XXH_PROCESS4_64
1888# undef XXH_PROCESS8_64
1889#endif
1890
1891XXH_FORCE_INLINE xxh_u64
1892XXH64_endian_align(const xxh_u8* input, size_t len, xxh_u64 seed, XXH_alignment align)
1893{
1894 const xxh_u8* bEnd = input + len;
1895 xxh_u64 h64;
1896
1897#if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1)
1898 if (input==NULL) {
1899 len=0;
1900 bEnd=input=(const xxh_u8*)(size_t)32;
1901 }
1902#endif
1903
1904 if (len>=32) {
1905 const xxh_u8* const limit = bEnd - 32;
1906 xxh_u64 v1 = seed + XXH_PRIME64_1 + XXH_PRIME64_2;
1907 xxh_u64 v2 = seed + XXH_PRIME64_2;
1908 xxh_u64 v3 = seed + 0;
1909 xxh_u64 v4 = seed - XXH_PRIME64_1;
1910
1911 do {
1912 v1 = XXH64_round(v1, XXH_get64bits(input)); input+=8;
1913 v2 = XXH64_round(v2, XXH_get64bits(input)); input+=8;
1914 v3 = XXH64_round(v3, XXH_get64bits(input)); input+=8;
1915 v4 = XXH64_round(v4, XXH_get64bits(input)); input+=8;
1916 } while (input<=limit);
1917
1918 h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
1919 h64 = XXH64_mergeRound(h64, v1);
1920 h64 = XXH64_mergeRound(h64, v2);
1921 h64 = XXH64_mergeRound(h64, v3);
1922 h64 = XXH64_mergeRound(h64, v4);
1923
1924 } else {
1925 h64 = seed + XXH_PRIME64_5;
1926 }
1927
1928 h64 += (xxh_u64) len;
1929
1930 return XXH64_finalize(h64, input, len, align);
1931}
1932
1933
1934XXH_PUBLIC_API XXH64_hash_t XXH64 (const void* input, size_t len, XXH64_hash_t seed)
1935{
1936#if 0
1937 /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
1938 XXH64_state_t state;
1939 XXH64_reset(&state, seed);
1940 XXH64_update(&state, (const xxh_u8*)input, len);
1941 return XXH64_digest(&state);
1942
1943#else
1944
1945 if (XXH_FORCE_ALIGN_CHECK) {
1946 if ((((size_t)input) & 7)==0) { /* Input is aligned, let's leverage the speed advantage */
1947 return XXH64_endian_align((const xxh_u8*)input, len, seed, XXH_aligned);
1948 } }
1949
1950 return XXH64_endian_align((const xxh_u8*)input, len, seed, XXH_unaligned);
1951
1952#endif
1953}
1954
1955/******* Hash Streaming *******/
1956
1957XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void)
1958{
1959 return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t));
1960}
1961XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr)
1962{
1963 XXH_free(statePtr);
1964 return XXH_OK;
1965}
1966
1967XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* dstState, const XXH64_state_t* srcState)
1968{
1969 memcpy(dstState, srcState, sizeof(*dstState));
1970}
1971
1972XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH64_state_t* statePtr, XXH64_hash_t seed)
1973{
1974 XXH64_state_t state; /* use a local state to memcpy() in order to avoid strict-aliasing warnings */
1975 memset(&state, 0, sizeof(state));
1976 state.v1 = seed + XXH_PRIME64_1 + XXH_PRIME64_2;
1977 state.v2 = seed + XXH_PRIME64_2;
1978 state.v3 = seed + 0;
1979 state.v4 = seed - XXH_PRIME64_1;
1980 /* do not write into reserved64, might be removed in a future version */
1981 memcpy(statePtr, &state, sizeof(state) - sizeof(state.reserved64));
1982 return XXH_OK;
1983}
1984
1985XXH_PUBLIC_API XXH_errorcode
1986XXH64_update (XXH64_state_t* state, const void* input, size_t len)
1987{
1988 if (input==NULL)
1989#if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1)
1990 return XXH_OK;
1991#else
1992 return XXH_ERROR;
1993#endif
1994
1995 { const xxh_u8* p = (const xxh_u8*)input;
1996 const xxh_u8* const bEnd = p + len;
1997
1998 state->total_len += len;
1999
2000 if (state->memsize + len < 32) { /* fill in tmp buffer */
2001 XXH_memcpy(((xxh_u8*)state->mem64) + state->memsize, input, len);
2002 state->memsize += (xxh_u32)len;
2003 return XXH_OK;
2004 }
2005
2006 if (state->memsize) { /* tmp buffer is full */
2007 XXH_memcpy(((xxh_u8*)state->mem64) + state->memsize, input, 32-state->memsize);
2008 state->v1 = XXH64_round(state->v1, XXH_readLE64(state->mem64+0));
2009 state->v2 = XXH64_round(state->v2, XXH_readLE64(state->mem64+1));
2010 state->v3 = XXH64_round(state->v3, XXH_readLE64(state->mem64+2));
2011 state->v4 = XXH64_round(state->v4, XXH_readLE64(state->mem64+3));
2012 p += 32-state->memsize;
2013 state->memsize = 0;
2014 }
2015
2016 if (p+32 <= bEnd) {
2017 const xxh_u8* const limit = bEnd - 32;
2018 xxh_u64 v1 = state->v1;
2019 xxh_u64 v2 = state->v2;
2020 xxh_u64 v3 = state->v3;
2021 xxh_u64 v4 = state->v4;
2022
2023 do {
2024 v1 = XXH64_round(v1, XXH_readLE64(p)); p+=8;
2025 v2 = XXH64_round(v2, XXH_readLE64(p)); p+=8;
2026 v3 = XXH64_round(v3, XXH_readLE64(p)); p+=8;
2027 v4 = XXH64_round(v4, XXH_readLE64(p)); p+=8;
2028 } while (p<=limit);
2029
2030 state->v1 = v1;
2031 state->v2 = v2;
2032 state->v3 = v3;
2033 state->v4 = v4;
2034 }
2035
2036 if (p < bEnd) {
2037 XXH_memcpy(state->mem64, p, (size_t)(bEnd-p));
2038 state->memsize = (unsigned)(bEnd-p);
2039 }
2040 }
2041
2042 return XXH_OK;
2043}
2044
2045
2046XXH_PUBLIC_API XXH64_hash_t XXH64_digest (const XXH64_state_t* state)
2047{
2048 xxh_u64 h64;
2049
2050 if (state->total_len >= 32) {
2051 xxh_u64 const v1 = state->v1;
2052 xxh_u64 const v2 = state->v2;
2053 xxh_u64 const v3 = state->v3;
2054 xxh_u64 const v4 = state->v4;
2055
2056 h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
2057 h64 = XXH64_mergeRound(h64, v1);
2058 h64 = XXH64_mergeRound(h64, v2);
2059 h64 = XXH64_mergeRound(h64, v3);
2060 h64 = XXH64_mergeRound(h64, v4);
2061 } else {
2062 h64 = state->v3 /*seed*/ + XXH_PRIME64_5;
2063 }
2064
2065 h64 += (xxh_u64) state->total_len;
2066
2067 return XXH64_finalize(h64, (const xxh_u8*)state->mem64, (size_t)state->total_len, XXH_aligned);
2068}
2069
2070
2071/******* Canonical representation *******/
2072
2073XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash)
2074{
2075 XXH_STATIC_ASSERT(sizeof(XXH64_canonical_t) == sizeof(XXH64_hash_t));
2076 if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap64(hash);
2077 memcpy(dst, &hash, sizeof(*dst));
2078}
2079
2080XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src)
2081{
2082 return XXH_readBE64(src);
2083}
2084
2085
2086
2087/* *********************************************************************
2088* XXH3
2089* New generation hash designed for speed on small keys and vectorization
2090************************************************************************ */
2091
2092/* === Compiler specifics === */
2093
2094#if defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* >= C99 */
2095# define XXH_RESTRICT restrict
2096#else
2097/* Note: it might be useful to define __restrict or __restrict__ for some C++ compilers */
2098# define XXH_RESTRICT /* disable */
2099#endif
2100
2101#if (defined(__GNUC__) && (__GNUC__ >= 3)) \
2102 || (defined(__INTEL_COMPILER) && (__INTEL_COMPILER >= 800)) \
2103 || defined(__clang__)
2104# define XXH_likely(x) __builtin_expect(x, 1)
2105# define XXH_unlikely(x) __builtin_expect(x, 0)
2106#else
2107# define XXH_likely(x) (x)
2108# define XXH_unlikely(x) (x)
2109#endif
2110
2111#if defined(__GNUC__)
2112# if defined(__AVX2__)
2113# include <immintrin.h>
2114# elif defined(__SSE2__)
2115# include <emmintrin.h>
2116# elif defined(__ARM_NEON__) || defined(__ARM_NEON)
2117# define inline __inline__ /* circumvent a clang bug */
2118# include <arm_neon.h>
2119# undef inline
2120# endif
2121#elif defined(_MSC_VER)
2122# include <intrin.h>
2123#endif
2124
2125/*
2126 * One goal of XXH3 is to make it fast on both 32-bit and 64-bit, while
2127 * remaining a true 64-bit/128-bit hash function.
2128 *
2129 * This is done by prioritizing a subset of 64-bit operations that can be
2130 * emulated without too many steps on the average 32-bit machine.
2131 *
2132 * For example, these two lines seem similar, and run equally fast on 64-bit:
2133 *
2134 * xxh_u64 x;
2135 * x ^= (x >> 47); // good
2136 * x ^= (x >> 13); // bad
2137 *
2138 * However, to a 32-bit machine, there is a major difference.
2139 *
2140 * x ^= (x >> 47) looks like this:
2141 *
2142 * x.lo ^= (x.hi >> (47 - 32));
2143 *
2144 * while x ^= (x >> 13) looks like this:
2145 *
2146 * // note: funnel shifts are not usually cheap.
2147 * x.lo ^= (x.lo >> 13) | (x.hi << (32 - 13));
2148 * x.hi ^= (x.hi >> 13);
2149 *
2150 * The first one is significantly faster than the second, simply because the
2151 * shift is larger than 32. This means:
2152 * - All the bits we need are in the upper 32 bits, so we can ignore the lower
2153 * 32 bits in the shift.
2154 * - The shift result will always fit in the lower 32 bits, and therefore,
2155 * we can ignore the upper 32 bits in the xor.
2156 *
2157 * Thanks to this optimization, XXH3 only requires these features to be efficient:
2158 *
2159 * - Usable unaligned access
2160 * - A 32-bit or 64-bit ALU
2161 * - If 32-bit, a decent ADC instruction
2162 * - A 32 or 64-bit multiply with a 64-bit result
2163 * - For the 128-bit variant, a decent byteswap helps short inputs.
2164 *
2165 * The first two are already required by XXH32, and almost all 32-bit and 64-bit
2166 * platforms which can run XXH32 can run XXH3 efficiently.
2167 *
2168 * Thumb-1, the classic 16-bit only subset of ARM's instruction set, is one
2169 * notable exception.
2170 *
2171 * First of all, Thumb-1 lacks support for the UMULL instruction which
2172 * performs the important long multiply. This means numerous __aeabi_lmul
2173 * calls.
2174 *
2175 * Second of all, the 8 functional registers are just not enough.
2176 * Setup for __aeabi_lmul, byteshift loads, pointers, and all arithmetic need
2177 * Lo registers, and this shuffling results in thousands more MOVs than A32.
2178 *
2179 * A32 and T32 don't have this limitation. They can access all 14 registers,
2180 * do a 32->64 multiply with UMULL, and the flexible operand allowing free
2181 * shifts is helpful, too.
2182 *
2183 * Therefore, we do a quick sanity check.
2184 *
2185 * If compiling Thumb-1 for a target which supports ARM instructions, we will
2186 * emit a warning, as it is not a "sane" platform to compile for.
2187 *
2188 * Usually, if this happens, it is because of an accident and you probably need
2189 * to specify -march, as you likely meant to compile for a newer architecture.
2190 *
2191 * Credit: large sections of the vectorial and asm source code paths
2192 * have been contributed by @easyaspi314
2193 */
2194#if defined(__thumb__) && !defined(__thumb2__) && defined(__ARM_ARCH_ISA_ARM)
2195# warning "XXH3 is highly inefficient without ARM or Thumb-2."
2196#endif
2197
2198/* ==========================================
2199 * Vectorization detection
2200 * ========================================== */
2201#define XXH_SCALAR 0 /* Portable scalar version */
2202#define XXH_SSE2 1 /* SSE2 for Pentium 4 and all x86_64 */
2203#define XXH_AVX2 2 /* AVX2 for Haswell and Bulldozer */
2204#define XXH_AVX512 3 /* AVX512 for Skylake and Icelake */
2205#define XXH_NEON 4 /* NEON for most ARMv7-A and all AArch64 */
2206#define XXH_VSX 5 /* VSX and ZVector for POWER8/z13 */
2207
2208#ifndef XXH_VECTOR /* can be defined on command line */
2209# if defined(__AVX512F__)
2210# define XXH_VECTOR XXH_AVX512
2211# elif defined(__AVX2__)
2212# define XXH_VECTOR XXH_AVX2
2213# elif defined(__SSE2__) || defined(_M_AMD64) || defined(_M_X64) || (defined(_M_IX86_FP) && (_M_IX86_FP == 2))
2214# define XXH_VECTOR XXH_SSE2
2215# elif defined(__GNUC__) /* msvc support maybe later */ \
2216 && (defined(__ARM_NEON__) || defined(__ARM_NEON)) \
2217 && (defined(__LITTLE_ENDIAN__) /* We only support little endian NEON */ \
2218 || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__))
2219# define XXH_VECTOR XXH_NEON
2220# elif (defined(__PPC64__) && defined(__POWER8_VECTOR__)) \
2221 || (defined(__s390x__) && defined(__VEC__)) \
2222 && defined(__GNUC__) /* TODO: IBM XL */
2223# define XXH_VECTOR XXH_VSX
2224# else
2225# define XXH_VECTOR XXH_SCALAR
2226# endif
2227#endif
2228
2229/*
2230 * Controls the alignment of the accumulator,
2231 * for compatibility with aligned vector loads, which are usually faster.
2232 */
2233#ifndef XXH_ACC_ALIGN
2234# if defined(XXH_X86DISPATCH)
2235# define XXH_ACC_ALIGN 64 /* for compatibility with avx512 */
2236# elif XXH_VECTOR == XXH_SCALAR /* scalar */
2237# define XXH_ACC_ALIGN 8
2238# elif XXH_VECTOR == XXH_SSE2 /* sse2 */
2239# define XXH_ACC_ALIGN 16
2240# elif XXH_VECTOR == XXH_AVX2 /* avx2 */
2241# define XXH_ACC_ALIGN 32
2242# elif XXH_VECTOR == XXH_NEON /* neon */
2243# define XXH_ACC_ALIGN 16
2244# elif XXH_VECTOR == XXH_VSX /* vsx */
2245# define XXH_ACC_ALIGN 16
2246# elif XXH_VECTOR == XXH_AVX512 /* avx512 */
2247# define XXH_ACC_ALIGN 64
2248# endif
2249#endif
2250
2251#if defined(XXH_X86DISPATCH) || XXH_VECTOR == XXH_SSE2 \
2252 || XXH_VECTOR == XXH_AVX2 || XXH_VECTOR == XXH_AVX512
2253# define XXH_SEC_ALIGN XXH_ACC_ALIGN
2254#else
2255# define XXH_SEC_ALIGN 8
2256#endif
2257
2258/*
2259 * UGLY HACK:
2260 * GCC usually generates the best code with -O3 for xxHash.
2261 *
2262 * However, when targeting AVX2, it is overzealous in its unrolling resulting
2263 * in code roughly 3/4 the speed of Clang.
2264 *
2265 * There are other issues, such as GCC splitting _mm256_loadu_si256 into
2266 * _mm_loadu_si128 + _mm256_inserti128_si256. This is an optimization which
2267 * only applies to Sandy and Ivy Bridge... which don't even support AVX2.
2268 *
2269 * That is why when compiling the AVX2 version, it is recommended to use either
2270 * -O2 -mavx2 -march=haswell
2271 * or
2272 * -O2 -mavx2 -mno-avx256-split-unaligned-load
2273 * for decent performance, or to use Clang instead.
2274 *
2275 * Fortunately, we can control the first one with a pragma that forces GCC into
2276 * -O2, but the other one we can't control without "failed to inline always
2277 * inline function due to target mismatch" warnings.
2278 */
2279#if XXH_VECTOR == XXH_AVX2 /* AVX2 */ \
2280 && defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \
2281 && defined(__OPTIMIZE__) && !defined(__OPTIMIZE_SIZE__) /* respect -O0 and -Os */
2282# pragma GCC push_options
2283# pragma GCC optimize("-O2")
2284#endif
2285
2286
2287#if XXH_VECTOR == XXH_NEON
2288/*
2289 * NEON's setup for vmlal_u32 is a little more complicated than it is on
2290 * SSE2, AVX2, and VSX.
2291 *
2292 * While PMULUDQ and VMULEUW both perform a mask, VMLAL.U32 performs an upcast.
2293 *
2294 * To do the same operation, the 128-bit 'Q' register needs to be split into
2295 * two 64-bit 'D' registers, performing this operation::
2296 *
2297 * [ a | b ]
2298 * | '---------. .--------' |
2299 * | x |
2300 * | .---------' '--------. |
2301 * [ a & 0xFFFFFFFF | b & 0xFFFFFFFF ],[ a >> 32 | b >> 32 ]
2302 *
2303 * Due to significant changes in aarch64, the fastest method for aarch64 is
2304 * completely different than the fastest method for ARMv7-A.
2305 *
2306 * ARMv7-A treats D registers as unions overlaying Q registers, so modifying
2307 * D11 will modify the high half of Q5. This is similar to how modifying AH
2308 * will only affect bits 8-15 of AX on x86.
2309 *
2310 * VZIP takes two registers, and puts even lanes in one register and odd lanes
2311 * in the other.
2312 *
2313 * On ARMv7-A, this strangely modifies both parameters in place instead of
2314 * taking the usual 3-operand form.
2315 *
2316 * Therefore, if we want to do this, we can simply use a D-form VZIP.32 on the
2317 * lower and upper halves of the Q register to end up with the high and low
2318 * halves where we want - all in one instruction.
2319 *
2320 * vzip.32 d10, d11 @ d10 = { d10[0], d11[0] }; d11 = { d10[1], d11[1] }
2321 *
2322 * Unfortunately we need inline assembly for this: Instructions modifying two
2323 * registers at once is not possible in GCC or Clang's IR, and they have to
2324 * create a copy.
2325 *
2326 * aarch64 requires a different approach.
2327 *
2328 * In order to make it easier to write a decent compiler for aarch64, many
2329 * quirks were removed, such as conditional execution.
2330 *
2331 * NEON was also affected by this.
2332 *
2333 * aarch64 cannot access the high bits of a Q-form register, and writes to a
2334 * D-form register zero the high bits, similar to how writes to W-form scalar
2335 * registers (or DWORD registers on x86_64) work.
2336 *
2337 * The formerly free vget_high intrinsics now require a vext (with a few
2338 * exceptions)
2339 *
2340 * Additionally, VZIP was replaced by ZIP1 and ZIP2, which are the equivalent
2341 * of PUNPCKL* and PUNPCKH* in SSE, respectively, in order to only modify one
2342 * operand.
2343 *
2344 * The equivalent of the VZIP.32 on the lower and upper halves would be this
2345 * mess:
2346 *
2347 * ext v2.4s, v0.4s, v0.4s, #2 // v2 = { v0[2], v0[3], v0[0], v0[1] }
2348 * zip1 v1.2s, v0.2s, v2.2s // v1 = { v0[0], v2[0] }
2349 * zip2 v0.2s, v0.2s, v1.2s // v0 = { v0[1], v2[1] }
2350 *
2351 * Instead, we use a literal downcast, vmovn_u64 (XTN), and vshrn_n_u64 (SHRN):
2352 *
2353 * shrn v1.2s, v0.2d, #32 // v1 = (uint32x2_t)(v0 >> 32);
2354 * xtn v0.2s, v0.2d // v0 = (uint32x2_t)(v0 & 0xFFFFFFFF);
2355 *
2356 * This is available on ARMv7-A, but is less efficient than a single VZIP.32.
2357 */
2358
2359/*
2360 * Function-like macro:
2361 * void XXH_SPLIT_IN_PLACE(uint64x2_t &in, uint32x2_t &outLo, uint32x2_t &outHi)
2362 * {
2363 * outLo = (uint32x2_t)(in & 0xFFFFFFFF);
2364 * outHi = (uint32x2_t)(in >> 32);
2365 * in = UNDEFINED;
2366 * }
2367 */
2368# if !defined(XXH_NO_VZIP_HACK) /* define to disable */ \
2369 && defined(__GNUC__) \
2370 && !defined(__aarch64__) && !defined(__arm64__)
2371# define XXH_SPLIT_IN_PLACE(in, outLo, outHi) \
2372 do { \
2373 /* Undocumented GCC/Clang operand modifier: %e0 = lower D half, %f0 = upper D half */ \
2374 /* https://github.com/gcc-mirror/gcc/blob/38cf91e5/gcc/config/arm/arm.c#L22486 */ \
2375 /* https://github.com/llvm-mirror/llvm/blob/2c4ca683/lib/Target/ARM/ARMAsmPrinter.cpp#L399 */ \
2376 __asm__("vzip.32 %e0, %f0" : "+w" (in)); \
2377 (outLo) = vget_low_u32 (vreinterpretq_u32_u64(in)); \
2378 (outHi) = vget_high_u32(vreinterpretq_u32_u64(in)); \
2379 } while (0)
2380# else
2381# define XXH_SPLIT_IN_PLACE(in, outLo, outHi) \
2382 do { \
2383 (outLo) = vmovn_u64 (in); \
2384 (outHi) = vshrn_n_u64 ((in), 32); \
2385 } while (0)
2386# endif
2387#endif /* XXH_VECTOR == XXH_NEON */
2388
2389/*
2390 * VSX and Z Vector helpers.
2391 *
2392 * This is very messy, and any pull requests to clean this up are welcome.
2393 *
2394 * There are a lot of problems with supporting VSX and s390x, due to
2395 * inconsistent intrinsics, spotty coverage, and multiple endiannesses.
2396 */
2397#if XXH_VECTOR == XXH_VSX
2398# if defined(__s390x__)
2399# include <s390intrin.h>
2400# else
2401/* gcc's altivec.h can have the unwanted consequence to unconditionally
2402 * #define bool, vector, and pixel keywords,
2403 * with bad consequences for programs already using these keywords for other purposes.
2404 * The paragraph defining these macros is skipped when __APPLE_ALTIVEC__ is defined.
2405 * __APPLE_ALTIVEC__ is _generally_ defined automatically by the compiler,
2406 * but it seems that, in some cases, it isn't.
2407 * Force the build macro to be defined, so that keywords are not altered.
2408 */
2409# if defined(__GNUC__) && !defined(__APPLE_ALTIVEC__)
2410# define __APPLE_ALTIVEC__
2411# endif
2412# include <altivec.h>
2413# endif
2414
2415typedef __vector unsigned long long xxh_u64x2;
2416typedef __vector unsigned char xxh_u8x16;
2417typedef __vector unsigned xxh_u32x4;
2418
2419# ifndef XXH_VSX_BE
2420# if defined(__BIG_ENDIAN__) \
2421 || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
2422# define XXH_VSX_BE 1
2423# elif defined(__VEC_ELEMENT_REG_ORDER__) && __VEC_ELEMENT_REG_ORDER__ == __ORDER_BIG_ENDIAN__
2424# warning "-maltivec=be is not recommended. Please use native endianness."
2425# define XXH_VSX_BE 1
2426# else
2427# define XXH_VSX_BE 0
2428# endif
2429# endif /* !defined(XXH_VSX_BE) */
2430
2431# if XXH_VSX_BE
2432/* A wrapper for POWER9's vec_revb. */
2433# if defined(__POWER9_VECTOR__) || (defined(__clang__) && defined(__s390x__))
2434# define XXH_vec_revb vec_revb
2435# else
2436XXH_FORCE_INLINE xxh_u64x2 XXH_vec_revb(xxh_u64x2 val)
2437{
2438 xxh_u8x16 const vByteSwap = { 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00,
2439 0x0F, 0x0E, 0x0D, 0x0C, 0x0B, 0x0A, 0x09, 0x08 };
2440 return vec_perm(val, val, vByteSwap);
2441}
2442# endif
2443# endif /* XXH_VSX_BE */
2444
2445/*
2446 * Performs an unaligned load and byte swaps it on big endian.
2447 */
2448XXH_FORCE_INLINE xxh_u64x2 XXH_vec_loadu(const void *ptr)
2449{
2450 xxh_u64x2 ret;
2451 memcpy(&ret, ptr, sizeof(xxh_u64x2));
2452# if XXH_VSX_BE
2453 ret = XXH_vec_revb(ret);
2454# endif
2455 return ret;
2456}
2457
2458/*
2459 * vec_mulo and vec_mule are very problematic intrinsics on PowerPC
2460 *
2461 * These intrinsics weren't added until GCC 8, despite existing for a while,
2462 * and they are endian dependent. Also, their meaning swap depending on version.
2463 * */
2464# if defined(__s390x__)
2465 /* s390x is always big endian, no issue on this platform */
2466# define XXH_vec_mulo vec_mulo
2467# define XXH_vec_mule vec_mule
2468# elif defined(__clang__) && XXH_HAS_BUILTIN(__builtin_altivec_vmuleuw)
2469/* Clang has a better way to control this, we can just use the builtin which doesn't swap. */
2470# define XXH_vec_mulo __builtin_altivec_vmulouw
2471# define XXH_vec_mule __builtin_altivec_vmuleuw
2472# else
2473/* gcc needs inline assembly */
2474/* Adapted from https://github.com/google/highwayhash/blob/master/highwayhash/hh_vsx.h. */
2475XXH_FORCE_INLINE xxh_u64x2 XXH_vec_mulo(xxh_u32x4 a, xxh_u32x4 b)
2476{
2477 xxh_u64x2 result;
2478 __asm__("vmulouw %0, %1, %2" : "=v" (result) : "v" (a), "v" (b));
2479 return result;
2480}
2481XXH_FORCE_INLINE xxh_u64x2 XXH_vec_mule(xxh_u32x4 a, xxh_u32x4 b)
2482{
2483 xxh_u64x2 result;
2484 __asm__("vmuleuw %0, %1, %2" : "=v" (result) : "v" (a), "v" (b));
2485 return result;
2486}
2487# endif /* XXH_vec_mulo, XXH_vec_mule */
2488#endif /* XXH_VECTOR == XXH_VSX */
2489
2490
2491/* prefetch
2492 * can be disabled, by declaring XXH_NO_PREFETCH build macro */
2493#if defined(XXH_NO_PREFETCH)
2494# define XXH_PREFETCH(ptr) (void)(ptr) /* disabled */
2495#else
2496# if defined(_MSC_VER) && (defined(_M_X64) || defined(_M_I86)) /* _mm_prefetch() is not defined outside of x86/x64 */
2497# include <mmintrin.h> /* https://msdn.microsoft.com/fr-fr/library/84szxsww(v=vs.90).aspx */
2498# define XXH_PREFETCH(ptr) _mm_prefetch((const char*)(ptr), _MM_HINT_T0)
2499# elif defined(__GNUC__) && ( (__GNUC__ >= 4) || ( (__GNUC__ == 3) && (__GNUC_MINOR__ >= 1) ) )
2500# define XXH_PREFETCH(ptr) __builtin_prefetch((ptr), 0 /* rw==read */, 3 /* locality */)
2501# else
2502# define XXH_PREFETCH(ptr) (void)(ptr) /* disabled */
2503# endif
2504#endif /* XXH_NO_PREFETCH */
2505
2506
2507/* ==========================================
2508 * XXH3 default settings
2509 * ========================================== */
2510
2511#define XXH_SECRET_DEFAULT_SIZE 192 /* minimum XXH3_SECRET_SIZE_MIN */
2512
2513#if (XXH_SECRET_DEFAULT_SIZE < XXH3_SECRET_SIZE_MIN)
2514# error "default keyset is not large enough"
2515#endif
2516
2517/* Pseudorandom secret taken directly from FARSH */
2518XXH_ALIGN(64) static const xxh_u8 XXH3_kSecret[XXH_SECRET_DEFAULT_SIZE] = {
2519 0xb8, 0xfe, 0x6c, 0x39, 0x23, 0xa4, 0x4b, 0xbe, 0x7c, 0x01, 0x81, 0x2c, 0xf7, 0x21, 0xad, 0x1c,
2520 0xde, 0xd4, 0x6d, 0xe9, 0x83, 0x90, 0x97, 0xdb, 0x72, 0x40, 0xa4, 0xa4, 0xb7, 0xb3, 0x67, 0x1f,
2521 0xcb, 0x79, 0xe6, 0x4e, 0xcc, 0xc0, 0xe5, 0x78, 0x82, 0x5a, 0xd0, 0x7d, 0xcc, 0xff, 0x72, 0x21,
2522 0xb8, 0x08, 0x46, 0x74, 0xf7, 0x43, 0x24, 0x8e, 0xe0, 0x35, 0x90, 0xe6, 0x81, 0x3a, 0x26, 0x4c,
2523 0x3c, 0x28, 0x52, 0xbb, 0x91, 0xc3, 0x00, 0xcb, 0x88, 0xd0, 0x65, 0x8b, 0x1b, 0x53, 0x2e, 0xa3,
2524 0x71, 0x64, 0x48, 0x97, 0xa2, 0x0d, 0xf9, 0x4e, 0x38, 0x19, 0xef, 0x46, 0xa9, 0xde, 0xac, 0xd8,
2525 0xa8, 0xfa, 0x76, 0x3f, 0xe3, 0x9c, 0x34, 0x3f, 0xf9, 0xdc, 0xbb, 0xc7, 0xc7, 0x0b, 0x4f, 0x1d,
2526 0x8a, 0x51, 0xe0, 0x4b, 0xcd, 0xb4, 0x59, 0x31, 0xc8, 0x9f, 0x7e, 0xc9, 0xd9, 0x78, 0x73, 0x64,
2527 0xea, 0xc5, 0xac, 0x83, 0x34, 0xd3, 0xeb, 0xc3, 0xc5, 0x81, 0xa0, 0xff, 0xfa, 0x13, 0x63, 0xeb,
2528 0x17, 0x0d, 0xdd, 0x51, 0xb7, 0xf0, 0xda, 0x49, 0xd3, 0x16, 0x55, 0x26, 0x29, 0xd4, 0x68, 0x9e,
2529 0x2b, 0x16, 0xbe, 0x58, 0x7d, 0x47, 0xa1, 0xfc, 0x8f, 0xf8, 0xb8, 0xd1, 0x7a, 0xd0, 0x31, 0xce,
2530 0x45, 0xcb, 0x3a, 0x8f, 0x95, 0x16, 0x04, 0x28, 0xaf, 0xd7, 0xfb, 0xca, 0xbb, 0x4b, 0x40, 0x7e,
2531};
2532
2533
2534#ifdef XXH_OLD_NAMES
2535# define kSecret XXH3_kSecret
2536#endif
2537
2538/*
2539 * Calculates a 32-bit to 64-bit long multiply.
2540 *
2541 * Wraps __emulu on MSVC x86 because it tends to call __allmul when it doesn't
2542 * need to (but it shouldn't need to anyways, it is about 7 instructions to do
2543 * a 64x64 multiply...). Since we know that this will _always_ emit MULL, we
2544 * use that instead of the normal method.
2545 *
2546 * If you are compiling for platforms like Thumb-1 and don't have a better option,
2547 * you may also want to write your own long multiply routine here.
2548 *
2549 * XXH_FORCE_INLINE xxh_u64 XXH_mult32to64(xxh_u64 x, xxh_u64 y)
2550 * {
2551 * return (x & 0xFFFFFFFF) * (y & 0xFFFFFFFF);
2552 * }
2553 */
2554#if defined(_MSC_VER) && defined(_M_IX86)
2555# include <intrin.h>
2556# define XXH_mult32to64(x, y) __emulu((unsigned)(x), (unsigned)(y))
2557#else
2558/*
2559 * Downcast + upcast is usually better than masking on older compilers like
2560 * GCC 4.2 (especially 32-bit ones), all without affecting newer compilers.
2561 *
2562 * The other method, (x & 0xFFFFFFFF) * (y & 0xFFFFFFFF), will AND both operands
2563 * and perform a full 64x64 multiply -- entirely redundant on 32-bit.
2564 */
2565# define XXH_mult32to64(x, y) ((xxh_u64)(xxh_u32)(x) * (xxh_u64)(xxh_u32)(y))
2566#endif
2567
2568/*
2569 * Calculates a 64->128-bit long multiply.
2570 *
2571 * Uses __uint128_t and _umul128 if available, otherwise uses a scalar version.
2572 */
2573static XXH128_hash_t
2574XXH_mult64to128(xxh_u64 lhs, xxh_u64 rhs)
2575{
2576 /*
2577 * GCC/Clang __uint128_t method.
2578 *
2579 * On most 64-bit targets, GCC and Clang define a __uint128_t type.
2580 * This is usually the best way as it usually uses a native long 64-bit
2581 * multiply, such as MULQ on x86_64 or MUL + UMULH on aarch64.
2582 *
2583 * Usually.
2584 *
2585 * Despite being a 32-bit platform, Clang (and emscripten) define this type
2586 * despite not having the arithmetic for it. This results in a laggy
2587 * compiler builtin call which calculates a full 128-bit multiply.
2588 * In that case it is best to use the portable one.
2589 * https://github.com/Cyan4973/xxHash/issues/211#issuecomment-515575677
2590 */
2591#if defined(__GNUC__) && !defined(__wasm__) \
2592 && defined(__SIZEOF_INT128__) \
2593 || (defined(_INTEGRAL_MAX_BITS) && _INTEGRAL_MAX_BITS >= 128)
2594
2595 __uint128_t const product = (__uint128_t)lhs * (__uint128_t)rhs;
2596 XXH128_hash_t r128;
2597 r128.low64 = (xxh_u64)(product);
2598 r128.high64 = (xxh_u64)(product >> 64);
2599 return r128;
2600
2601 /*
2602 * MSVC for x64's _umul128 method.
2603 *
2604 * xxh_u64 _umul128(xxh_u64 Multiplier, xxh_u64 Multiplicand, xxh_u64 *HighProduct);
2605 *
2606 * This compiles to single operand MUL on x64.
2607 */
2608#elif defined(_M_X64) || defined(_M_IA64)
2609
2610#ifndef _MSC_VER
2611# pragma intrinsic(_umul128)
2612#endif
2613 xxh_u64 product_high;
2614 xxh_u64 const product_low = _umul128(lhs, rhs, &product_high);
2615 XXH128_hash_t r128;
2616 r128.low64 = product_low;
2617 r128.high64 = product_high;
2618 return r128;
2619
2620#else
2621 /*
2622 * Portable scalar method. Optimized for 32-bit and 64-bit ALUs.
2623 *
2624 * This is a fast and simple grade school multiply, which is shown below
2625 * with base 10 arithmetic instead of base 0x100000000.
2626 *
2627 * 9 3 // D2 lhs = 93
2628 * x 7 5 // D2 rhs = 75
2629 * ----------
2630 * 1 5 // D2 lo_lo = (93 % 10) * (75 % 10) = 15
2631 * 4 5 | // D2 hi_lo = (93 / 10) * (75 % 10) = 45
2632 * 2 1 | // D2 lo_hi = (93 % 10) * (75 / 10) = 21
2633 * + 6 3 | | // D2 hi_hi = (93 / 10) * (75 / 10) = 63
2634 * ---------
2635 * 2 7 | // D2 cross = (15 / 10) + (45 % 10) + 21 = 27
2636 * + 6 7 | | // D2 upper = (27 / 10) + (45 / 10) + 63 = 67
2637 * ---------
2638 * 6 9 7 5 // D4 res = (27 * 10) + (15 % 10) + (67 * 100) = 6975
2639 *
2640 * The reasons for adding the products like this are:
2641 * 1. It avoids manual carry tracking. Just like how
2642 * (9 * 9) + 9 + 9 = 99, the same applies with this for UINT64_MAX.
2643 * This avoids a lot of complexity.
2644 *
2645 * 2. It hints for, and on Clang, compiles to, the powerful UMAAL
2646 * instruction available in ARM's Digital Signal Processing extension
2647 * in 32-bit ARMv6 and later, which is shown below:
2648 *
2649 * void UMAAL(xxh_u32 *RdLo, xxh_u32 *RdHi, xxh_u32 Rn, xxh_u32 Rm)
2650 * {
2651 * xxh_u64 product = (xxh_u64)*RdLo * (xxh_u64)*RdHi + Rn + Rm;
2652 * *RdLo = (xxh_u32)(product & 0xFFFFFFFF);
2653 * *RdHi = (xxh_u32)(product >> 32);
2654 * }
2655 *
2656 * This instruction was designed for efficient long multiplication, and
2657 * allows this to be calculated in only 4 instructions at speeds
2658 * comparable to some 64-bit ALUs.
2659 *
2660 * 3. It isn't terrible on other platforms. Usually this will be a couple
2661 * of 32-bit ADD/ADCs.
2662 */
2663
2664 /* First calculate all of the cross products. */
2665 xxh_u64 const lo_lo = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs & 0xFFFFFFFF);
2666 xxh_u64 const hi_lo = XXH_mult32to64(lhs >> 32, rhs & 0xFFFFFFFF);
2667 xxh_u64 const lo_hi = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs >> 32);
2668 xxh_u64 const hi_hi = XXH_mult32to64(lhs >> 32, rhs >> 32);
2669
2670 /* Now add the products together. These will never overflow. */
2671 xxh_u64 const cross = (lo_lo >> 32) + (hi_lo & 0xFFFFFFFF) + lo_hi;
2672 xxh_u64 const upper = (hi_lo >> 32) + (cross >> 32) + hi_hi;
2673 xxh_u64 const lower = (cross << 32) | (lo_lo & 0xFFFFFFFF);
2674
2675 XXH128_hash_t r128;
2676 r128.low64 = lower;
2677 r128.high64 = upper;
2678 return r128;
2679#endif
2680}
2681
2682/*
2683 * Does a 64-bit to 128-bit multiply, then XOR folds it.
2684 *
2685 * The reason for the separate function is to prevent passing too many structs
2686 * around by value. This will hopefully inline the multiply, but we don't force it.
2687 */
2688static xxh_u64
2689XXH3_mul128_fold64(xxh_u64 lhs, xxh_u64 rhs)
2690{
2691 XXH128_hash_t product = XXH_mult64to128(lhs, rhs);
2692 return product.low64 ^ product.high64;
2693}
2694
2695/* Seems to produce slightly better code on GCC for some reason. */
2696XXH_FORCE_INLINE xxh_u64 XXH_xorshift64(xxh_u64 v64, int shift)
2697{
2698 XXH_ASSERT(0 <= shift && shift < 64);
2699 return v64 ^ (v64 >> shift);
2700}
2701
2702/*
2703 * This is a fast avalanche stage,
2704 * suitable when input bits are already partially mixed
2705 */
2706static XXH64_hash_t XXH3_avalanche(xxh_u64 h64)
2707{
2708 h64 = XXH_xorshift64(h64, 37);
2709 h64 *= 0x165667919E3779F9ULL;
2710 h64 = XXH_xorshift64(h64, 32);
2711 return h64;
2712}
2713
2714/*
2715 * This is a stronger avalanche,
2716 * inspired by Pelle Evensen's rrmxmx
2717 * preferable when input has not been previously mixed
2718 */
2719static XXH64_hash_t XXH3_rrmxmx(xxh_u64 h64, xxh_u64 len)
2720{
2721 /* this mix is inspired by Pelle Evensen's rrmxmx */
2722 h64 ^= XXH_rotl64(h64, 49) ^ XXH_rotl64(h64, 24);
2723 h64 *= 0x9FB21C651E98DF25ULL;
2724 h64 ^= (h64 >> 35) + len ;
2725 h64 *= 0x9FB21C651E98DF25ULL;
2726 return XXH_xorshift64(h64, 28);
2727}
2728
2729
2730/* ==========================================
2731 * Short keys
2732 * ==========================================
2733 * One of the shortcomings of XXH32 and XXH64 was that their performance was
2734 * sub-optimal on short lengths. It used an iterative algorithm which strongly
2735 * favored lengths that were a multiple of 4 or 8.
2736 *
2737 * Instead of iterating over individual inputs, we use a set of single shot
2738 * functions which piece together a range of lengths and operate in constant time.
2739 *
2740 * Additionally, the number of multiplies has been significantly reduced. This
2741 * reduces latency, especially when emulating 64-bit multiplies on 32-bit.
2742 *
2743 * Depending on the platform, this may or may not be faster than XXH32, but it
2744 * is almost guaranteed to be faster than XXH64.
2745 */
2746
2747/*
2748 * At very short lengths, there isn't enough input to fully hide secrets, or use
2749 * the entire secret.
2750 *
2751 * There is also only a limited amount of mixing we can do before significantly
2752 * impacting performance.
2753 *
2754 * Therefore, we use different sections of the secret and always mix two secret
2755 * samples with an XOR. This should have no effect on performance on the
2756 * seedless or withSeed variants because everything _should_ be constant folded
2757 * by modern compilers.
2758 *
2759 * The XOR mixing hides individual parts of the secret and increases entropy.
2760 *
2761 * This adds an extra layer of strength for custom secrets.
2762 */
2763XXH_FORCE_INLINE XXH64_hash_t
2764XXH3_len_1to3_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
2765{
2766 XXH_ASSERT(input != NULL);
2767 XXH_ASSERT(1 <= len && len <= 3);
2768 XXH_ASSERT(secret != NULL);
2769 /*
2770 * len = 1: combined = { input[0], 0x01, input[0], input[0] }
2771 * len = 2: combined = { input[1], 0x02, input[0], input[1] }
2772 * len = 3: combined = { input[2], 0x03, input[0], input[1] }
2773 */
2774 { xxh_u8 const c1 = input[0];
2775 xxh_u8 const c2 = input[len >> 1];
2776 xxh_u8 const c3 = input[len - 1];
2777 xxh_u32 const combined = ((xxh_u32)c1 << 16) | ((xxh_u32)c2 << 24)
2778 | ((xxh_u32)c3 << 0) | ((xxh_u32)len << 8);
2779 xxh_u64 const bitflip = (XXH_readLE32(secret) ^ XXH_readLE32(secret+4)) + seed;
2780 xxh_u64 const keyed = (xxh_u64)combined ^ bitflip;
2781 return XXH64_avalanche(keyed);
2782 }
2783}
2784
2785XXH_FORCE_INLINE XXH64_hash_t
2786XXH3_len_4to8_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
2787{
2788 XXH_ASSERT(input != NULL);
2789 XXH_ASSERT(secret != NULL);
2790 XXH_ASSERT(4 <= len && len < 8);
2791 seed ^= (xxh_u64)XXH_swap32((xxh_u32)seed) << 32;
2792 { xxh_u32 const input1 = XXH_readLE32(input);
2793 xxh_u32 const input2 = XXH_readLE32(input + len - 4);
2794 xxh_u64 const bitflip = (XXH_readLE64(secret+8) ^ XXH_readLE64(secret+16)) - seed;
2795 xxh_u64 const input64 = input2 + (((xxh_u64)input1) << 32);
2796 xxh_u64 const keyed = input64 ^ bitflip;
2797 return XXH3_rrmxmx(keyed, len);
2798 }
2799}
2800
2801XXH_FORCE_INLINE XXH64_hash_t
2802XXH3_len_9to16_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
2803{
2804 XXH_ASSERT(input != NULL);
2805 XXH_ASSERT(secret != NULL);
2806 XXH_ASSERT(8 <= len && len <= 16);
2807 { xxh_u64 const bitflip1 = (XXH_readLE64(secret+24) ^ XXH_readLE64(secret+32)) + seed;
2808 xxh_u64 const bitflip2 = (XXH_readLE64(secret+40) ^ XXH_readLE64(secret+48)) - seed;
2809 xxh_u64 const input_lo = XXH_readLE64(input) ^ bitflip1;
2810 xxh_u64 const input_hi = XXH_readLE64(input + len - 8) ^ bitflip2;
2811 xxh_u64 const acc = len
2812 + XXH_swap64(input_lo) + input_hi
2813 + XXH3_mul128_fold64(input_lo, input_hi);
2814 return XXH3_avalanche(acc);
2815 }
2816}
2817
2818XXH_FORCE_INLINE XXH64_hash_t
2819XXH3_len_0to16_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
2820{
2821 XXH_ASSERT(len <= 16);
2822 { if (XXH_likely(len > 8)) return XXH3_len_9to16_64b(input, len, secret, seed);
2823 if (XXH_likely(len >= 4)) return XXH3_len_4to8_64b(input, len, secret, seed);
2824 if (len) return XXH3_len_1to3_64b(input, len, secret, seed);
2825 return XXH64_avalanche(seed ^ (XXH_readLE64(secret+56) ^ XXH_readLE64(secret+64)));
2826 }
2827}
2828
2829/*
2830 * DISCLAIMER: There are known *seed-dependent* multicollisions here due to
2831 * multiplication by zero, affecting hashes of lengths 17 to 240.
2832 *
2833 * However, they are very unlikely.
2834 *
2835 * Keep this in mind when using the unseeded XXH3_64bits() variant: As with all
2836 * unseeded non-cryptographic hashes, it does not attempt to defend itself
2837 * against specially crafted inputs, only random inputs.
2838 *
2839 * Compared to classic UMAC where a 1 in 2^31 chance of 4 consecutive bytes
2840 * cancelling out the secret is taken an arbitrary number of times (addressed
2841 * in XXH3_accumulate_512), this collision is very unlikely with random inputs
2842 * and/or proper seeding:
2843 *
2844 * This only has a 1 in 2^63 chance of 8 consecutive bytes cancelling out, in a
2845 * function that is only called up to 16 times per hash with up to 240 bytes of
2846 * input.
2847 *
2848 * This is not too bad for a non-cryptographic hash function, especially with
2849 * only 64 bit outputs.
2850 *
2851 * The 128-bit variant (which trades some speed for strength) is NOT affected
2852 * by this, although it is always a good idea to use a proper seed if you care
2853 * about strength.
2854 */
2855XXH_FORCE_INLINE xxh_u64 XXH3_mix16B(const xxh_u8* XXH_RESTRICT input,
2856 const xxh_u8* XXH_RESTRICT secret, xxh_u64 seed64)
2857{
2858#if defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \
2859 && defined(__i386__) && defined(__SSE2__) /* x86 + SSE2 */ \
2860 && !defined(XXH_ENABLE_AUTOVECTORIZE) /* Define to disable like XXH32 hack */
2861 /*
2862 * UGLY HACK:
2863 * GCC for x86 tends to autovectorize the 128-bit multiply, resulting in
2864 * slower code.
2865 *
2866 * By forcing seed64 into a register, we disrupt the cost model and
2867 * cause it to scalarize. See `XXH32_round()`
2868 *
2869 * FIXME: Clang's output is still _much_ faster -- On an AMD Ryzen 3600,
2870 * XXH3_64bits @ len=240 runs at 4.6 GB/s with Clang 9, but 3.3 GB/s on
2871 * GCC 9.2, despite both emitting scalar code.
2872 *
2873 * GCC generates much better scalar code than Clang for the rest of XXH3,
2874 * which is why finding a more optimal codepath is an interest.
2875 */
2876 __asm__ ("" : "+r" (seed64));
2877#endif
2878 { xxh_u64 const input_lo = XXH_readLE64(input);
2879 xxh_u64 const input_hi = XXH_readLE64(input+8);
2880 return XXH3_mul128_fold64(
2881 input_lo ^ (XXH_readLE64(secret) + seed64),
2882 input_hi ^ (XXH_readLE64(secret+8) - seed64)
2883 );
2884 }
2885}
2886
2887/* For mid range keys, XXH3 uses a Mum-hash variant. */
2888XXH_FORCE_INLINE XXH64_hash_t
2889XXH3_len_17to128_64b(const xxh_u8* XXH_RESTRICT input, size_t len,
2890 const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
2891 XXH64_hash_t seed)
2892{
2893 XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
2894 XXH_ASSERT(16 < len && len <= 128);
2895
2896 { xxh_u64 acc = len * XXH_PRIME64_1;
2897 if (len > 32) {
2898 if (len > 64) {
2899 if (len > 96) {
2900 acc += XXH3_mix16B(input+48, secret+96, seed);
2901 acc += XXH3_mix16B(input+len-64, secret+112, seed);
2902 }
2903 acc += XXH3_mix16B(input+32, secret+64, seed);
2904 acc += XXH3_mix16B(input+len-48, secret+80, seed);
2905 }
2906 acc += XXH3_mix16B(input+16, secret+32, seed);
2907 acc += XXH3_mix16B(input+len-32, secret+48, seed);
2908 }
2909 acc += XXH3_mix16B(input+0, secret+0, seed);
2910 acc += XXH3_mix16B(input+len-16, secret+16, seed);
2911
2912 return XXH3_avalanche(acc);
2913 }
2914}
2915
2916#define XXH3_MIDSIZE_MAX 240
2917
2918XXH_NO_INLINE XXH64_hash_t
2919XXH3_len_129to240_64b(const xxh_u8* XXH_RESTRICT input, size_t len,
2920 const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
2921 XXH64_hash_t seed)
2922{
2923 XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
2924 XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX);
2925
2926 #define XXH3_MIDSIZE_STARTOFFSET 3
2927 #define XXH3_MIDSIZE_LASTOFFSET 17
2928
2929 { xxh_u64 acc = len * XXH_PRIME64_1;
2930 int const nbRounds = (int)len / 16;
2931 int i;
2932 for (i=0; i<8; i++) {
2933 acc += XXH3_mix16B(input+(16*i), secret+(16*i), seed);
2934 }
2935 acc = XXH3_avalanche(acc);
2936 XXH_ASSERT(nbRounds >= 8);
2937#if defined(__clang__) /* Clang */ \
2938 && (defined(__ARM_NEON) || defined(__ARM_NEON__)) /* NEON */ \
2939 && !defined(XXH_ENABLE_AUTOVECTORIZE) /* Define to disable */
2940 /*
2941 * UGLY HACK:
2942 * Clang for ARMv7-A tries to vectorize this loop, similar to GCC x86.
2943 * In everywhere else, it uses scalar code.
2944 *
2945 * For 64->128-bit multiplies, even if the NEON was 100% optimal, it
2946 * would still be slower than UMAAL (see XXH_mult64to128).
2947 *
2948 * Unfortunately, Clang doesn't handle the long multiplies properly and
2949 * converts them to the nonexistent "vmulq_u64" intrinsic, which is then
2950 * scalarized into an ugly mess of VMOV.32 instructions.
2951 *
2952 * This mess is difficult to avoid without turning autovectorization
2953 * off completely, but they are usually relatively minor and/or not
2954 * worth it to fix.
2955 *
2956 * This loop is the easiest to fix, as unlike XXH32, this pragma
2957 * _actually works_ because it is a loop vectorization instead of an
2958 * SLP vectorization.
2959 */
2960 #pragma clang loop vectorize(disable)
2961#endif
2962 for (i=8 ; i < nbRounds; i++) {
2963 acc += XXH3_mix16B(input+(16*i), secret+(16*(i-8)) + XXH3_MIDSIZE_STARTOFFSET, seed);
2964 }
2965 /* last bytes */
2966 acc += XXH3_mix16B(input + len - 16, secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET, seed);
2967 return XXH3_avalanche(acc);
2968 }
2969}
2970
2971
2972/* ======= Long Keys ======= */
2973
2974#define XXH_STRIPE_LEN 64
2975#define XXH_SECRET_CONSUME_RATE 8 /* nb of secret bytes consumed at each accumulation */
2976#define XXH_ACC_NB (XXH_STRIPE_LEN / sizeof(xxh_u64))
2977
2978#ifdef XXH_OLD_NAMES
2979# define STRIPE_LEN XXH_STRIPE_LEN
2980# define ACC_NB XXH_ACC_NB
2981#endif
2982
2983XXH_FORCE_INLINE void XXH_writeLE64(void* dst, xxh_u64 v64)
2984{
2985 if (!XXH_CPU_LITTLE_ENDIAN) v64 = XXH_swap64(v64);
2986 memcpy(dst, &v64, sizeof(v64));
2987}
2988
2989/* Several intrinsic functions below are supposed to accept __int64 as argument,
2990 * as documented in https://software.intel.com/sites/landingpage/IntrinsicsGuide/ .
2991 * However, several environments do not define __int64 type,
2992 * requiring a workaround.
2993 */
2994#if !defined (__VMS) \
2995 && (defined (__cplusplus) \
2996 || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
2997 typedef int64_t xxh_i64;
2998#else
2999 /* the following type must have a width of 64-bit */
3000 typedef long long xxh_i64;
3001#endif
3002
3003/*
3004 * XXH3_accumulate_512 is the tightest loop for long inputs, and it is the most optimized.
3005 *
3006 * It is a hardened version of UMAC, based off of FARSH's implementation.
3007 *
3008 * This was chosen because it adapts quite well to 32-bit, 64-bit, and SIMD
3009 * implementations, and it is ridiculously fast.
3010 *
3011 * We harden it by mixing the original input to the accumulators as well as the product.
3012 *
3013 * This means that in the (relatively likely) case of a multiply by zero, the
3014 * original input is preserved.
3015 *
3016 * On 128-bit inputs, we swap 64-bit pairs when we add the input to improve
3017 * cross-pollination, as otherwise the upper and lower halves would be
3018 * essentially independent.
3019 *
3020 * This doesn't matter on 64-bit hashes since they all get merged together in
3021 * the end, so we skip the extra step.
3022 *
3023 * Both XXH3_64bits and XXH3_128bits use this subroutine.
3024 */
3025
3026#if (XXH_VECTOR == XXH_AVX512) || defined(XXH_X86DISPATCH)
3027
3028#ifndef XXH_TARGET_AVX512
3029# define XXH_TARGET_AVX512 /* disable attribute target */
3030#endif
3031
3032XXH_FORCE_INLINE XXH_TARGET_AVX512 void
3033XXH3_accumulate_512_avx512(void* XXH_RESTRICT acc,
3034 const void* XXH_RESTRICT input,
3035 const void* XXH_RESTRICT secret)
3036{
3037 XXH_ALIGN(64) __m512i* const xacc = (__m512i *) acc;
3038 XXH_ASSERT((((size_t)acc) & 63) == 0);
3039 XXH_STATIC_ASSERT(XXH_STRIPE_LEN == sizeof(__m512i));
3040
3041 {
3042 /* data_vec = input[0]; */
3043 __m512i const data_vec = _mm512_loadu_si512 (input);
3044 /* key_vec = secret[0]; */
3045 __m512i const key_vec = _mm512_loadu_si512 (secret);
3046 /* data_key = data_vec ^ key_vec; */
3047 __m512i const data_key = _mm512_xor_si512 (data_vec, key_vec);
3048 /* data_key_lo = data_key >> 32; */
3049 __m512i const data_key_lo = _mm512_shuffle_epi32 (data_key, (_MM_PERM_ENUM)_MM_SHUFFLE(0, 3, 0, 1));
3050 /* product = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */
3051 __m512i const product = _mm512_mul_epu32 (data_key, data_key_lo);
3052 /* xacc[0] += swap(data_vec); */
3053 __m512i const data_swap = _mm512_shuffle_epi32(data_vec, (_MM_PERM_ENUM)_MM_SHUFFLE(1, 0, 3, 2));
3054 __m512i const sum = _mm512_add_epi64(*xacc, data_swap);
3055 /* xacc[0] += product; */
3056 *xacc = _mm512_add_epi64(product, sum);
3057 }
3058}
3059
3060/*
3061 * XXH3_scrambleAcc: Scrambles the accumulators to improve mixing.
3062 *
3063 * Multiplication isn't perfect, as explained by Google in HighwayHash:
3064 *
3065 * // Multiplication mixes/scrambles bytes 0-7 of the 64-bit result to
3066 * // varying degrees. In descending order of goodness, bytes
3067 * // 3 4 2 5 1 6 0 7 have quality 228 224 164 160 100 96 36 32.
3068 * // As expected, the upper and lower bytes are much worse.
3069 *
3070 * Source: https://github.com/google/highwayhash/blob/0aaf66b/highwayhash/hh_avx2.h#L291
3071 *
3072 * Since our algorithm uses a pseudorandom secret to add some variance into the
3073 * mix, we don't need to (or want to) mix as often or as much as HighwayHash does.
3074 *
3075 * This isn't as tight as XXH3_accumulate, but still written in SIMD to avoid
3076 * extraction.
3077 *
3078 * Both XXH3_64bits and XXH3_128bits use this subroutine.
3079 */
3080
3081XXH_FORCE_INLINE XXH_TARGET_AVX512 void
3082XXH3_scrambleAcc_avx512(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
3083{
3084 XXH_ASSERT((((size_t)acc) & 63) == 0);
3085 XXH_STATIC_ASSERT(XXH_STRIPE_LEN == sizeof(__m512i));
3086 { XXH_ALIGN(64) __m512i* const xacc = (__m512i*) acc;
3087 const __m512i prime32 = _mm512_set1_epi32((int)XXH_PRIME32_1);
3088
3089 /* xacc[0] ^= (xacc[0] >> 47) */
3090 __m512i const acc_vec = *xacc;
3091 __m512i const shifted = _mm512_srli_epi64 (acc_vec, 47);
3092 __m512i const data_vec = _mm512_xor_si512 (acc_vec, shifted);
3093 /* xacc[0] ^= secret; */
3094 __m512i const key_vec = _mm512_loadu_si512 (secret);
3095 __m512i const data_key = _mm512_xor_si512 (data_vec, key_vec);
3096
3097 /* xacc[0] *= XXH_PRIME32_1; */
3098 __m512i const data_key_hi = _mm512_shuffle_epi32 (data_key, (_MM_PERM_ENUM)_MM_SHUFFLE(0, 3, 0, 1));
3099 __m512i const prod_lo = _mm512_mul_epu32 (data_key, prime32);
3100 __m512i const prod_hi = _mm512_mul_epu32 (data_key_hi, prime32);
3101 *xacc = _mm512_add_epi64(prod_lo, _mm512_slli_epi64(prod_hi, 32));
3102 }
3103}
3104
3105XXH_FORCE_INLINE XXH_TARGET_AVX512 void
3106XXH3_initCustomSecret_avx512(void* XXH_RESTRICT customSecret, xxh_u64 seed64)
3107{
3108 XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 63) == 0);
3109 XXH_STATIC_ASSERT(XXH_SEC_ALIGN == 64);
3110 XXH_ASSERT(((size_t)customSecret & 63) == 0);
3111 (void)(&XXH_writeLE64);
3112 { int const nbRounds = XXH_SECRET_DEFAULT_SIZE / sizeof(__m512i);
3113 __m512i const seed = _mm512_mask_set1_epi64(_mm512_set1_epi64((xxh_i64)seed64), 0xAA, -(xxh_i64)seed64);
3114
3115 XXH_ALIGN(64) const __m512i* const src = (const __m512i*) XXH3_kSecret;
3116 XXH_ALIGN(64) __m512i* const dest = ( __m512i*) customSecret;
3117 int i;
3118 for (i=0; i < nbRounds; ++i) {
3119 /* GCC has a bug, _mm512_stream_load_si512 accepts 'void*', not 'void const*',
3120 * this will warn "discards ‘const’ qualifier". */
3121 union {
3122 XXH_ALIGN(64) const __m512i* cp;
3123 XXH_ALIGN(64) void* p;
3124 } remote_const_void;
3125 remote_const_void.cp = src + i;
3126 dest[i] = _mm512_add_epi64(_mm512_stream_load_si512(remote_const_void.p), seed);
3127 } }
3128}
3129
3130#endif
3131
3132#if (XXH_VECTOR == XXH_AVX2) || defined(XXH_X86DISPATCH)
3133
3134#ifndef XXH_TARGET_AVX2
3135# define XXH_TARGET_AVX2 /* disable attribute target */
3136#endif
3137
3138XXH_FORCE_INLINE XXH_TARGET_AVX2 void
3139XXH3_accumulate_512_avx2( void* XXH_RESTRICT acc,
3140 const void* XXH_RESTRICT input,
3141 const void* XXH_RESTRICT secret)
3142{
3143 XXH_ASSERT((((size_t)acc) & 31) == 0);
3144 { XXH_ALIGN(32) __m256i* const xacc = (__m256i *) acc;
3145 /* Unaligned. This is mainly for pointer arithmetic, and because
3146 * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */
3147 const __m256i* const xinput = (const __m256i *) input;
3148 /* Unaligned. This is mainly for pointer arithmetic, and because
3149 * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */
3150 const __m256i* const xsecret = (const __m256i *) secret;
3151
3152 size_t i;
3153 for (i=0; i < XXH_STRIPE_LEN/sizeof(__m256i); i++) {
3154 /* data_vec = xinput[i]; */
3155 __m256i const data_vec = _mm256_loadu_si256 (xinput+i);
3156 /* key_vec = xsecret[i]; */
3157 __m256i const key_vec = _mm256_loadu_si256 (xsecret+i);
3158 /* data_key = data_vec ^ key_vec; */
3159 __m256i const data_key = _mm256_xor_si256 (data_vec, key_vec);
3160 /* data_key_lo = data_key >> 32; */
3161 __m256i const data_key_lo = _mm256_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1));
3162 /* product = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */
3163 __m256i const product = _mm256_mul_epu32 (data_key, data_key_lo);
3164 /* xacc[i] += swap(data_vec); */
3165 __m256i const data_swap = _mm256_shuffle_epi32(data_vec, _MM_SHUFFLE(1, 0, 3, 2));
3166 __m256i const sum = _mm256_add_epi64(xacc[i], data_swap);
3167 /* xacc[i] += product; */
3168 xacc[i] = _mm256_add_epi64(product, sum);
3169 } }
3170}
3171
3172XXH_FORCE_INLINE XXH_TARGET_AVX2 void
3173XXH3_scrambleAcc_avx2(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
3174{
3175 XXH_ASSERT((((size_t)acc) & 31) == 0);
3176 { XXH_ALIGN(32) __m256i* const xacc = (__m256i*) acc;
3177 /* Unaligned. This is mainly for pointer arithmetic, and because
3178 * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */
3179 const __m256i* const xsecret = (const __m256i *) secret;
3180 const __m256i prime32 = _mm256_set1_epi32((int)XXH_PRIME32_1);
3181
3182 size_t i;
3183 for (i=0; i < XXH_STRIPE_LEN/sizeof(__m256i); i++) {
3184 /* xacc[i] ^= (xacc[i] >> 47) */
3185 __m256i const acc_vec = xacc[i];
3186 __m256i const shifted = _mm256_srli_epi64 (acc_vec, 47);
3187 __m256i const data_vec = _mm256_xor_si256 (acc_vec, shifted);
3188 /* xacc[i] ^= xsecret; */
3189 __m256i const key_vec = _mm256_loadu_si256 (xsecret+i);
3190 __m256i const data_key = _mm256_xor_si256 (data_vec, key_vec);
3191
3192 /* xacc[i] *= XXH_PRIME32_1; */
3193 __m256i const data_key_hi = _mm256_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1));
3194 __m256i const prod_lo = _mm256_mul_epu32 (data_key, prime32);
3195 __m256i const prod_hi = _mm256_mul_epu32 (data_key_hi, prime32);
3196 xacc[i] = _mm256_add_epi64(prod_lo, _mm256_slli_epi64(prod_hi, 32));
3197 }
3198 }
3199}
3200
3201XXH_FORCE_INLINE XXH_TARGET_AVX2 void XXH3_initCustomSecret_avx2(void* XXH_RESTRICT customSecret, xxh_u64 seed64)
3202{
3203 XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 31) == 0);
3204 XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE / sizeof(__m256i)) == 6);
3205 XXH_STATIC_ASSERT(XXH_SEC_ALIGN <= 64);
3206 (void)(&XXH_writeLE64);
3207 XXH_PREFETCH(customSecret);
3208 { __m256i const seed = _mm256_set_epi64x(-(xxh_i64)seed64, (xxh_i64)seed64, -(xxh_i64)seed64, (xxh_i64)seed64);
3209
3210 XXH_ALIGN(64) const __m256i* const src = (const __m256i*) XXH3_kSecret;
3211 XXH_ALIGN(64) __m256i* dest = ( __m256i*) customSecret;
3212
3213# if defined(__GNUC__) || defined(__clang__)
3214 /*
3215 * On GCC & Clang, marking 'dest' as modified will cause the compiler:
3216 * - do not extract the secret from sse registers in the internal loop
3217 * - use less common registers, and avoid pushing these reg into stack
3218 * The asm hack causes Clang to assume that XXH3_kSecretPtr aliases with
3219 * customSecret, and on aarch64, this prevented LDP from merging two
3220 * loads together for free. Putting the loads together before the stores
3221 * properly generates LDP.
3222 */
3223 __asm__("" : "+r" (dest));
3224# endif
3225
3226 /* GCC -O2 need unroll loop manually */
3227 dest[0] = _mm256_add_epi64(_mm256_stream_load_si256(src+0), seed);
3228 dest[1] = _mm256_add_epi64(_mm256_stream_load_si256(src+1), seed);
3229 dest[2] = _mm256_add_epi64(_mm256_stream_load_si256(src+2), seed);
3230 dest[3] = _mm256_add_epi64(_mm256_stream_load_si256(src+3), seed);
3231 dest[4] = _mm256_add_epi64(_mm256_stream_load_si256(src+4), seed);
3232 dest[5] = _mm256_add_epi64(_mm256_stream_load_si256(src+5), seed);
3233 }
3234}
3235
3236#endif
3237
3238#if (XXH_VECTOR == XXH_SSE2) || defined(XXH_X86DISPATCH)
3239
3240#ifndef XXH_TARGET_SSE2
3241# define XXH_TARGET_SSE2 /* disable attribute target */
3242#endif
3243
3244XXH_FORCE_INLINE XXH_TARGET_SSE2 void
3245XXH3_accumulate_512_sse2( void* XXH_RESTRICT acc,
3246 const void* XXH_RESTRICT input,
3247 const void* XXH_RESTRICT secret)
3248{
3249 /* SSE2 is just a half-scale version of the AVX2 version. */
3250 XXH_ASSERT((((size_t)acc) & 15) == 0);
3251 { XXH_ALIGN(16) __m128i* const xacc = (__m128i *) acc;
3252 /* Unaligned. This is mainly for pointer arithmetic, and because
3253 * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */
3254 const __m128i* const xinput = (const __m128i *) input;
3255 /* Unaligned. This is mainly for pointer arithmetic, and because
3256 * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */
3257 const __m128i* const xsecret = (const __m128i *) secret;
3258
3259 size_t i;
3260 for (i=0; i < XXH_STRIPE_LEN/sizeof(__m128i); i++) {
3261 /* data_vec = xinput[i]; */
3262 __m128i const data_vec = _mm_loadu_si128 (xinput+i);
3263 /* key_vec = xsecret[i]; */
3264 __m128i const key_vec = _mm_loadu_si128 (xsecret+i);
3265 /* data_key = data_vec ^ key_vec; */
3266 __m128i const data_key = _mm_xor_si128 (data_vec, key_vec);
3267 /* data_key_lo = data_key >> 32; */
3268 __m128i const data_key_lo = _mm_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1));
3269 /* product = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */
3270 __m128i const product = _mm_mul_epu32 (data_key, data_key_lo);
3271 /* xacc[i] += swap(data_vec); */
3272 __m128i const data_swap = _mm_shuffle_epi32(data_vec, _MM_SHUFFLE(1,0,3,2));
3273 __m128i const sum = _mm_add_epi64(xacc[i], data_swap);
3274 /* xacc[i] += product; */
3275 xacc[i] = _mm_add_epi64(product, sum);
3276 } }
3277}
3278
3279XXH_FORCE_INLINE XXH_TARGET_SSE2 void
3280XXH3_scrambleAcc_sse2(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
3281{
3282 XXH_ASSERT((((size_t)acc) & 15) == 0);
3283 { XXH_ALIGN(16) __m128i* const xacc = (__m128i*) acc;
3284 /* Unaligned. This is mainly for pointer arithmetic, and because
3285 * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */
3286 const __m128i* const xsecret = (const __m128i *) secret;
3287 const __m128i prime32 = _mm_set1_epi32((int)XXH_PRIME32_1);
3288
3289 size_t i;
3290 for (i=0; i < XXH_STRIPE_LEN/sizeof(__m128i); i++) {
3291 /* xacc[i] ^= (xacc[i] >> 47) */
3292 __m128i const acc_vec = xacc[i];
3293 __m128i const shifted = _mm_srli_epi64 (acc_vec, 47);
3294 __m128i const data_vec = _mm_xor_si128 (acc_vec, shifted);
3295 /* xacc[i] ^= xsecret[i]; */
3296 __m128i const key_vec = _mm_loadu_si128 (xsecret+i);
3297 __m128i const data_key = _mm_xor_si128 (data_vec, key_vec);
3298
3299 /* xacc[i] *= XXH_PRIME32_1; */
3300 __m128i const data_key_hi = _mm_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1));
3301 __m128i const prod_lo = _mm_mul_epu32 (data_key, prime32);
3302 __m128i const prod_hi = _mm_mul_epu32 (data_key_hi, prime32);
3303 xacc[i] = _mm_add_epi64(prod_lo, _mm_slli_epi64(prod_hi, 32));
3304 }
3305 }
3306}
3307
3308XXH_FORCE_INLINE XXH_TARGET_SSE2 void XXH3_initCustomSecret_sse2(void* XXH_RESTRICT customSecret, xxh_u64 seed64)
3309{
3310 XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 15) == 0);
3311 (void)(&XXH_writeLE64);
3312 { int const nbRounds = XXH_SECRET_DEFAULT_SIZE / sizeof(__m128i);
3313
3314# if defined(_MSC_VER) && defined(_M_IX86) && _MSC_VER < 1900
3315 // MSVC 32bit mode does not support _mm_set_epi64x before 2015
3316 XXH_ALIGN(16) const xxh_i64 seed64x2[2] = { (xxh_i64)seed64, -(xxh_i64)seed64 };
3317 __m128i const seed = _mm_load_si128((__m128i const*)seed64x2);
3318# else
3319 __m128i const seed = _mm_set_epi64x(-(xxh_i64)seed64, (xxh_i64)seed64);
3320# endif
3321 int i;
3322
3323 XXH_ALIGN(64) const float* const src = (float const*) XXH3_kSecret;
3324 XXH_ALIGN(XXH_SEC_ALIGN) __m128i* dest = (__m128i*) customSecret;
3325# if defined(__GNUC__) || defined(__clang__)
3326 /*
3327 * On GCC & Clang, marking 'dest' as modified will cause the compiler:
3328 * - do not extract the secret from sse registers in the internal loop
3329 * - use less common registers, and avoid pushing these reg into stack
3330 */
3331 __asm__("" : "+r" (dest));
3332# endif
3333
3334 for (i=0; i < nbRounds; ++i) {
3335 dest[i] = _mm_add_epi64(_mm_castps_si128(_mm_load_ps(src+i*4)), seed);
3336 } }
3337}
3338
3339#endif
3340
3341#if (XXH_VECTOR == XXH_NEON)
3342
3343XXH_FORCE_INLINE void
3344XXH3_accumulate_512_neon( void* XXH_RESTRICT acc,
3345 const void* XXH_RESTRICT input,
3346 const void* XXH_RESTRICT secret)
3347{
3348 XXH_ASSERT((((size_t)acc) & 15) == 0);
3349 {
3350 XXH_ALIGN(16) uint64x2_t* const xacc = (uint64x2_t *) acc;
3351 /* We don't use a uint32x4_t pointer because it causes bus errors on ARMv7. */
3352 uint8_t const* const xinput = (const uint8_t *) input;
3353 uint8_t const* const xsecret = (const uint8_t *) secret;
3354
3355 size_t i;
3356 for (i=0; i < XXH_STRIPE_LEN / sizeof(uint64x2_t); i++) {
3357 /* data_vec = xinput[i]; */
3358 uint8x16_t data_vec = vld1q_u8(xinput + (i * 16));
3359 /* key_vec = xsecret[i]; */
3360 uint8x16_t key_vec = vld1q_u8(xsecret + (i * 16));
3361 uint64x2_t data_key;
3362 uint32x2_t data_key_lo, data_key_hi;
3363 /* xacc[i] += swap(data_vec); */
3364 uint64x2_t const data64 = vreinterpretq_u64_u8(data_vec);
3365 uint64x2_t const swapped = vextq_u64(data64, data64, 1);
3366 xacc[i] = vaddq_u64 (xacc[i], swapped);
3367 /* data_key = data_vec ^ key_vec; */
3368 data_key = vreinterpretq_u64_u8(veorq_u8(data_vec, key_vec));
3369 /* data_key_lo = (uint32x2_t) (data_key & 0xFFFFFFFF);
3370 * data_key_hi = (uint32x2_t) (data_key >> 32);
3371 * data_key = UNDEFINED; */
3372 XXH_SPLIT_IN_PLACE(data_key, data_key_lo, data_key_hi);
3373 /* xacc[i] += (uint64x2_t) data_key_lo * (uint64x2_t) data_key_hi; */
3374 xacc[i] = vmlal_u32 (xacc[i], data_key_lo, data_key_hi);
3375
3376 }
3377 }
3378}
3379
3380XXH_FORCE_INLINE void
3381XXH3_scrambleAcc_neon(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
3382{
3383 XXH_ASSERT((((size_t)acc) & 15) == 0);
3384
3385 { uint64x2_t* xacc = (uint64x2_t*) acc;
3386 uint8_t const* xsecret = (uint8_t const*) secret;
3387 uint32x2_t prime = vdup_n_u32 (XXH_PRIME32_1);
3388
3389 size_t i;
3390 for (i=0; i < XXH_STRIPE_LEN/sizeof(uint64x2_t); i++) {
3391 /* xacc[i] ^= (xacc[i] >> 47); */
3392 uint64x2_t acc_vec = xacc[i];
3393 uint64x2_t shifted = vshrq_n_u64 (acc_vec, 47);
3394 uint64x2_t data_vec = veorq_u64 (acc_vec, shifted);
3395
3396 /* xacc[i] ^= xsecret[i]; */
3397 uint8x16_t key_vec = vld1q_u8(xsecret + (i * 16));
3398 uint64x2_t data_key = veorq_u64(data_vec, vreinterpretq_u64_u8(key_vec));
3399
3400 /* xacc[i] *= XXH_PRIME32_1 */
3401 uint32x2_t data_key_lo, data_key_hi;
3402 /* data_key_lo = (uint32x2_t) (xacc[i] & 0xFFFFFFFF);
3403 * data_key_hi = (uint32x2_t) (xacc[i] >> 32);
3404 * xacc[i] = UNDEFINED; */
3405 XXH_SPLIT_IN_PLACE(data_key, data_key_lo, data_key_hi);
3406 { /*
3407 * prod_hi = (data_key >> 32) * XXH_PRIME32_1;
3408 *
3409 * Avoid vmul_u32 + vshll_n_u32 since Clang 6 and 7 will
3410 * incorrectly "optimize" this:
3411 * tmp = vmul_u32(vmovn_u64(a), vmovn_u64(b));
3412 * shifted = vshll_n_u32(tmp, 32);
3413 * to this:
3414 * tmp = "vmulq_u64"(a, b); // no such thing!
3415 * shifted = vshlq_n_u64(tmp, 32);
3416 *
3417 * However, unlike SSE, Clang lacks a 64-bit multiply routine
3418 * for NEON, and it scalarizes two 64-bit multiplies instead.
3419 *
3420 * vmull_u32 has the same timing as vmul_u32, and it avoids
3421 * this bug completely.
3422 * See https://bugs.llvm.org/show_bug.cgi?id=39967
3423 */
3424 uint64x2_t prod_hi = vmull_u32 (data_key_hi, prime);
3425 /* xacc[i] = prod_hi << 32; */
3426 xacc[i] = vshlq_n_u64(prod_hi, 32);
3427 /* xacc[i] += (prod_hi & 0xFFFFFFFF) * XXH_PRIME32_1; */
3428 xacc[i] = vmlal_u32(xacc[i], data_key_lo, prime);
3429 }
3430 } }
3431}
3432
3433#endif
3434
3435#if (XXH_VECTOR == XXH_VSX)
3436
3437XXH_FORCE_INLINE void
3438XXH3_accumulate_512_vsx( void* XXH_RESTRICT acc,
3439 const void* XXH_RESTRICT input,
3440 const void* XXH_RESTRICT secret)
3441{
3442 xxh_u64x2* const xacc = (xxh_u64x2*) acc; /* presumed aligned */
3443 xxh_u64x2 const* const xinput = (xxh_u64x2 const*) input; /* no alignment restriction */
3444 xxh_u64x2 const* const xsecret = (xxh_u64x2 const*) secret; /* no alignment restriction */
3445 xxh_u64x2 const v32 = { 32, 32 };
3446 size_t i;
3447 for (i = 0; i < XXH_STRIPE_LEN / sizeof(xxh_u64x2); i++) {
3448 /* data_vec = xinput[i]; */
3449 xxh_u64x2 const data_vec = XXH_vec_loadu(xinput + i);
3450 /* key_vec = xsecret[i]; */
3451 xxh_u64x2 const key_vec = XXH_vec_loadu(xsecret + i);
3452 xxh_u64x2 const data_key = data_vec ^ key_vec;
3453 /* shuffled = (data_key << 32) | (data_key >> 32); */
3454 xxh_u32x4 const shuffled = (xxh_u32x4)vec_rl(data_key, v32);
3455 /* product = ((xxh_u64x2)data_key & 0xFFFFFFFF) * ((xxh_u64x2)shuffled & 0xFFFFFFFF); */
3456 xxh_u64x2 const product = XXH_vec_mulo((xxh_u32x4)data_key, shuffled);
3457 xacc[i] += product;
3458
3459 /* swap high and low halves */
3460#ifdef __s390x__
3461 xacc[i] += vec_permi(data_vec, data_vec, 2);
3462#else
3463 xacc[i] += vec_xxpermdi(data_vec, data_vec, 2);
3464#endif
3465 }
3466}
3467
3468XXH_FORCE_INLINE void
3469XXH3_scrambleAcc_vsx(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
3470{
3471 XXH_ASSERT((((size_t)acc) & 15) == 0);
3472
3473 { xxh_u64x2* const xacc = (xxh_u64x2*) acc;
3474 const xxh_u64x2* const xsecret = (const xxh_u64x2*) secret;
3475 /* constants */
3476 xxh_u64x2 const v32 = { 32, 32 };
3477 xxh_u64x2 const v47 = { 47, 47 };
3478 xxh_u32x4 const prime = { XXH_PRIME32_1, XXH_PRIME32_1, XXH_PRIME32_1, XXH_PRIME32_1 };
3479 size_t i;
3480 for (i = 0; i < XXH_STRIPE_LEN / sizeof(xxh_u64x2); i++) {
3481 /* xacc[i] ^= (xacc[i] >> 47); */
3482 xxh_u64x2 const acc_vec = xacc[i];
3483 xxh_u64x2 const data_vec = acc_vec ^ (acc_vec >> v47);
3484
3485 /* xacc[i] ^= xsecret[i]; */
3486 xxh_u64x2 const key_vec = XXH_vec_loadu(xsecret + i);
3487 xxh_u64x2 const data_key = data_vec ^ key_vec;
3488
3489 /* xacc[i] *= XXH_PRIME32_1 */
3490 /* prod_lo = ((xxh_u64x2)data_key & 0xFFFFFFFF) * ((xxh_u64x2)prime & 0xFFFFFFFF); */
3491 xxh_u64x2 const prod_even = XXH_vec_mule((xxh_u32x4)data_key, prime);
3492 /* prod_hi = ((xxh_u64x2)data_key >> 32) * ((xxh_u64x2)prime >> 32); */
3493 xxh_u64x2 const prod_odd = XXH_vec_mulo((xxh_u32x4)data_key, prime);
3494 xacc[i] = prod_odd + (prod_even << v32);
3495 } }
3496}
3497
3498#endif
3499
3500/* scalar variants - universal */
3501
3502XXH_FORCE_INLINE void
3503XXH3_accumulate_512_scalar(void* XXH_RESTRICT acc,
3504 const void* XXH_RESTRICT input,
3505 const void* XXH_RESTRICT secret)
3506{
3507 XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64* const xacc = (xxh_u64*) acc; /* presumed aligned */
3508 const xxh_u8* const xinput = (const xxh_u8*) input; /* no alignment restriction */
3509 const xxh_u8* const xsecret = (const xxh_u8*) secret; /* no alignment restriction */
3510 size_t i;
3511 XXH_ASSERT(((size_t)acc & (XXH_ACC_ALIGN-1)) == 0);
3512 for (i=0; i < XXH_ACC_NB; i++) {
3513 xxh_u64 const data_val = XXH_readLE64(xinput + 8*i);
3514 xxh_u64 const data_key = data_val ^ XXH_readLE64(xsecret + i*8);
3515 xacc[i ^ 1] += data_val; /* swap adjacent lanes */
3516 xacc[i] += XXH_mult32to64(data_key & 0xFFFFFFFF, data_key >> 32);
3517 }
3518}
3519
3520XXH_FORCE_INLINE void
3521XXH3_scrambleAcc_scalar(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
3522{
3523 XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64* const xacc = (xxh_u64*) acc; /* presumed aligned */
3524 const xxh_u8* const xsecret = (const xxh_u8*) secret; /* no alignment restriction */
3525 size_t i;
3526 XXH_ASSERT((((size_t)acc) & (XXH_ACC_ALIGN-1)) == 0);
3527 for (i=0; i < XXH_ACC_NB; i++) {
3528 xxh_u64 const key64 = XXH_readLE64(xsecret + 8*i);
3529 xxh_u64 acc64 = xacc[i];
3530 acc64 = XXH_xorshift64(acc64, 47);
3531 acc64 ^= key64;
3532 acc64 *= XXH_PRIME32_1;
3533 xacc[i] = acc64;
3534 }
3535}
3536
3537XXH_FORCE_INLINE void
3538XXH3_initCustomSecret_scalar(void* XXH_RESTRICT customSecret, xxh_u64 seed64)
3539{
3540 /*
3541 * We need a separate pointer for the hack below,
3542 * which requires a non-const pointer.
3543 * Any decent compiler will optimize this out otherwise.
3544 */
3545 const xxh_u8* kSecretPtr = XXH3_kSecret;
3546 XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 15) == 0);
3547
3548#if defined(__clang__) && defined(__aarch64__)
3549 /*
3550 * UGLY HACK:
3551 * Clang generates a bunch of MOV/MOVK pairs for aarch64, and they are
3552 * placed sequentially, in order, at the top of the unrolled loop.
3553 *
3554 * While MOVK is great for generating constants (2 cycles for a 64-bit
3555 * constant compared to 4 cycles for LDR), long MOVK chains stall the
3556 * integer pipelines:
3557 * I L S
3558 * MOVK
3559 * MOVK
3560 * MOVK
3561 * MOVK
3562 * ADD
3563 * SUB STR
3564 * STR
3565 * By forcing loads from memory (as the asm line causes Clang to assume
3566 * that XXH3_kSecretPtr has been changed), the pipelines are used more
3567 * efficiently:
3568 * I L S
3569 * LDR
3570 * ADD LDR
3571 * SUB STR
3572 * STR
3573 * XXH3_64bits_withSeed, len == 256, Snapdragon 835
3574 * without hack: 2654.4 MB/s
3575 * with hack: 3202.9 MB/s
3576 */
3577 __asm__("" : "+r" (kSecretPtr));
3578#endif
3579 /*
3580 * Note: in debug mode, this overrides the asm optimization
3581 * and Clang will emit MOVK chains again.
3582 */
3583 XXH_ASSERT(kSecretPtr == XXH3_kSecret);
3584
3585 { int const nbRounds = XXH_SECRET_DEFAULT_SIZE / 16;
3586 int i;
3587 for (i=0; i < nbRounds; i++) {
3588 /*
3589 * The asm hack causes Clang to assume that kSecretPtr aliases with
3590 * customSecret, and on aarch64, this prevented LDP from merging two
3591 * loads together for free. Putting the loads together before the stores
3592 * properly generates LDP.
3593 */
3594 xxh_u64 lo = XXH_readLE64(kSecretPtr + 16*i) + seed64;
3595 xxh_u64 hi = XXH_readLE64(kSecretPtr + 16*i + 8) - seed64;
3596 XXH_writeLE64((xxh_u8*)customSecret + 16*i, lo);
3597 XXH_writeLE64((xxh_u8*)customSecret + 16*i + 8, hi);
3598 } }
3599}
3600
3601
3602typedef void (*XXH3_f_accumulate_512)(void* XXH_RESTRICT, const void*, const void*);
3603typedef void (*XXH3_f_scrambleAcc)(void* XXH_RESTRICT, const void*);
3604typedef void (*XXH3_f_initCustomSecret)(void* XXH_RESTRICT, xxh_u64);
3605
3606
3607#if (XXH_VECTOR == XXH_AVX512)
3608
3609#define XXH3_accumulate_512 XXH3_accumulate_512_avx512
3610#define XXH3_scrambleAcc XXH3_scrambleAcc_avx512
3611#define XXH3_initCustomSecret XXH3_initCustomSecret_avx512
3612
3613#elif (XXH_VECTOR == XXH_AVX2)
3614
3615#define XXH3_accumulate_512 XXH3_accumulate_512_avx2
3616#define XXH3_scrambleAcc XXH3_scrambleAcc_avx2
3617#define XXH3_initCustomSecret XXH3_initCustomSecret_avx2
3618
3619#elif (XXH_VECTOR == XXH_SSE2)
3620
3621#define XXH3_accumulate_512 XXH3_accumulate_512_sse2
3622#define XXH3_scrambleAcc XXH3_scrambleAcc_sse2
3623#define XXH3_initCustomSecret XXH3_initCustomSecret_sse2
3624
3625#elif (XXH_VECTOR == XXH_NEON)
3626
3627#define XXH3_accumulate_512 XXH3_accumulate_512_neon
3628#define XXH3_scrambleAcc XXH3_scrambleAcc_neon
3629#define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
3630
3631#elif (XXH_VECTOR == XXH_VSX)
3632
3633#define XXH3_accumulate_512 XXH3_accumulate_512_vsx
3634#define XXH3_scrambleAcc XXH3_scrambleAcc_vsx
3635#define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
3636
3637#else /* scalar */
3638
3639#define XXH3_accumulate_512 XXH3_accumulate_512_scalar
3640#define XXH3_scrambleAcc XXH3_scrambleAcc_scalar
3641#define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
3642
3643#endif
3644
3645
3646
3647#ifndef XXH_PREFETCH_DIST
3648# ifdef __clang__
3649# define XXH_PREFETCH_DIST 320
3650# else
3651# if (XXH_VECTOR == XXH_AVX512)
3652# define XXH_PREFETCH_DIST 512
3653# else
3654# define XXH_PREFETCH_DIST 384
3655# endif
3656# endif /* __clang__ */
3657#endif /* XXH_PREFETCH_DIST */
3658
3659/*
3660 * XXH3_accumulate()
3661 * Loops over XXH3_accumulate_512().
3662 * Assumption: nbStripes will not overflow the secret size
3663 */
3664XXH_FORCE_INLINE void
3665XXH3_accumulate( xxh_u64* XXH_RESTRICT acc,
3666 const xxh_u8* XXH_RESTRICT input,
3667 const xxh_u8* XXH_RESTRICT secret,
3668 size_t nbStripes,
3669 XXH3_f_accumulate_512 f_acc512)
3670{
3671 size_t n;
3672 for (n = 0; n < nbStripes; n++ ) {
3673 const xxh_u8* const in = input + n*XXH_STRIPE_LEN;
3674 XXH_PREFETCH(in + XXH_PREFETCH_DIST);
3675 f_acc512(acc,
3676 in,
3677 secret + n*XXH_SECRET_CONSUME_RATE);
3678 }
3679}
3680
3681XXH_FORCE_INLINE void
3682XXH3_hashLong_internal_loop(xxh_u64* XXH_RESTRICT acc,
3683 const xxh_u8* XXH_RESTRICT input, size_t len,
3684 const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
3685 XXH3_f_accumulate_512 f_acc512,
3686 XXH3_f_scrambleAcc f_scramble)
3687{
3688 size_t const nbStripesPerBlock = (secretSize - XXH_STRIPE_LEN) / XXH_SECRET_CONSUME_RATE;
3689 size_t const block_len = XXH_STRIPE_LEN * nbStripesPerBlock;
3690 size_t const nb_blocks = (len - 1) / block_len;
3691
3692 size_t n;
3693
3694 XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
3695
3696 for (n = 0; n < nb_blocks; n++) {
3697 XXH3_accumulate(acc, input + n*block_len, secret, nbStripesPerBlock, f_acc512);
3698 f_scramble(acc, secret + secretSize - XXH_STRIPE_LEN);
3699 }
3700
3701 /* last partial block */
3702 XXH_ASSERT(len > XXH_STRIPE_LEN);
3703 { size_t const nbStripes = ((len - 1) - (block_len * nb_blocks)) / XXH_STRIPE_LEN;
3704 XXH_ASSERT(nbStripes <= (secretSize / XXH_SECRET_CONSUME_RATE));
3705 XXH3_accumulate(acc, input + nb_blocks*block_len, secret, nbStripes, f_acc512);
3706
3707 /* last stripe */
3708 { const xxh_u8* const p = input + len - XXH_STRIPE_LEN;
3709#define XXH_SECRET_LASTACC_START 7 /* not aligned on 8, last secret is different from acc & scrambler */
3710 f_acc512(acc, p, secret + secretSize - XXH_STRIPE_LEN - XXH_SECRET_LASTACC_START);
3711 } }
3712}
3713
3714XXH_FORCE_INLINE xxh_u64
3715XXH3_mix2Accs(const xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT secret)
3716{
3717 return XXH3_mul128_fold64(
3718 acc[0] ^ XXH_readLE64(secret),
3719 acc[1] ^ XXH_readLE64(secret+8) );
3720}
3721
3722static XXH64_hash_t
3723XXH3_mergeAccs(const xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT secret, xxh_u64 start)
3724{
3725 xxh_u64 result64 = start;
3726 size_t i = 0;
3727
3728 for (i = 0; i < 4; i++) {
3729 result64 += XXH3_mix2Accs(acc+2*i, secret + 16*i);
3730#if defined(__clang__) /* Clang */ \
3731 && (defined(__arm__) || defined(__thumb__)) /* ARMv7 */ \
3732 && (defined(__ARM_NEON) || defined(__ARM_NEON__)) /* NEON */ \
3733 && !defined(XXH_ENABLE_AUTOVECTORIZE) /* Define to disable */
3734 /*
3735 * UGLY HACK:
3736 * Prevent autovectorization on Clang ARMv7-a. Exact same problem as
3737 * the one in XXH3_len_129to240_64b. Speeds up shorter keys > 240b.
3738 * XXH3_64bits, len == 256, Snapdragon 835:
3739 * without hack: 2063.7 MB/s
3740 * with hack: 2560.7 MB/s
3741 */
3742 __asm__("" : "+r" (result64));
3743#endif
3744 }
3745
3746 return XXH3_avalanche(result64);
3747}
3748
3749#define XXH3_INIT_ACC { XXH_PRIME32_3, XXH_PRIME64_1, XXH_PRIME64_2, XXH_PRIME64_3, \
3750 XXH_PRIME64_4, XXH_PRIME32_2, XXH_PRIME64_5, XXH_PRIME32_1 }
3751
3752XXH_FORCE_INLINE XXH64_hash_t
3753XXH3_hashLong_64b_internal(const void* XXH_RESTRICT input, size_t len,
3754 const void* XXH_RESTRICT secret, size_t secretSize,
3755 XXH3_f_accumulate_512 f_acc512,
3756 XXH3_f_scrambleAcc f_scramble)
3757{
3758 XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[XXH_ACC_NB] = XXH3_INIT_ACC;
3759
3760 XXH3_hashLong_internal_loop(acc, (const xxh_u8*)input, len, (const xxh_u8*)secret, secretSize, f_acc512, f_scramble);
3761
3762 /* converge into final hash */
3763 XXH_STATIC_ASSERT(sizeof(acc) == 64);
3764 /* do not align on 8, so that the secret is different from the accumulator */
3765#define XXH_SECRET_MERGEACCS_START 11
3766 XXH_ASSERT(secretSize >= sizeof(acc) + XXH_SECRET_MERGEACCS_START);
3767 return XXH3_mergeAccs(acc, (const xxh_u8*)secret + XXH_SECRET_MERGEACCS_START, (xxh_u64)len * XXH_PRIME64_1);
3768}
3769
3770/*
3771 * It's important for performance that XXH3_hashLong is not inlined.
3772 */
3773XXH_NO_INLINE XXH64_hash_t
3774XXH3_hashLong_64b_withSecret(const void* XXH_RESTRICT input, size_t len,
3775 XXH64_hash_t seed64, const xxh_u8* XXH_RESTRICT secret, size_t secretLen)
3776{
3777 (void)seed64;
3778 return XXH3_hashLong_64b_internal(input, len, secret, secretLen, XXH3_accumulate_512, XXH3_scrambleAcc);
3779}
3780
3781/*
3782 * It's important for performance that XXH3_hashLong is not inlined.
3783 * Since the function is not inlined, the compiler may not be able to understand that,
3784 * in some scenarios, its `secret` argument is actually a compile time constant.
3785 * This variant enforces that the compiler can detect that,
3786 * and uses this opportunity to streamline the generated code for better performance.
3787 */
3788XXH_NO_INLINE XXH64_hash_t
3789XXH3_hashLong_64b_default(const void* XXH_RESTRICT input, size_t len,
3790 XXH64_hash_t seed64, const xxh_u8* XXH_RESTRICT secret, size_t secretLen)
3791{
3792 (void)seed64; (void)secret; (void)secretLen;
3793 return XXH3_hashLong_64b_internal(input, len, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_accumulate_512, XXH3_scrambleAcc);
3794}
3795
3796/*
3797 * XXH3_hashLong_64b_withSeed():
3798 * Generate a custom key based on alteration of default XXH3_kSecret with the seed,
3799 * and then use this key for long mode hashing.
3800 *
3801 * This operation is decently fast but nonetheless costs a little bit of time.
3802 * Try to avoid it whenever possible (typically when seed==0).
3803 *
3804 * It's important for performance that XXH3_hashLong is not inlined. Not sure
3805 * why (uop cache maybe?), but the difference is large and easily measurable.
3806 */
3807XXH_FORCE_INLINE XXH64_hash_t
3808XXH3_hashLong_64b_withSeed_internal(const void* input, size_t len,
3809 XXH64_hash_t seed,
3810 XXH3_f_accumulate_512 f_acc512,
3811 XXH3_f_scrambleAcc f_scramble,
3812 XXH3_f_initCustomSecret f_initSec)
3813{
3814 if (seed == 0)
3815 return XXH3_hashLong_64b_internal(input, len,
3816 XXH3_kSecret, sizeof(XXH3_kSecret),
3817 f_acc512, f_scramble);
3818 { XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE];
3819 f_initSec(secret, seed);
3820 return XXH3_hashLong_64b_internal(input, len, secret, sizeof(secret),
3821 f_acc512, f_scramble);
3822 }
3823}
3824
3825/*
3826 * It's important for performance that XXH3_hashLong is not inlined.
3827 */
3828XXH_NO_INLINE XXH64_hash_t
3829XXH3_hashLong_64b_withSeed(const void* input, size_t len,
3830 XXH64_hash_t seed, const xxh_u8* secret, size_t secretLen)
3831{
3832 (void)secret; (void)secretLen;
3833 return XXH3_hashLong_64b_withSeed_internal(input, len, seed,
3834 XXH3_accumulate_512, XXH3_scrambleAcc, XXH3_initCustomSecret);
3835}
3836
3837
3838typedef XXH64_hash_t (*XXH3_hashLong64_f)(const void* XXH_RESTRICT, size_t,
3839 XXH64_hash_t, const xxh_u8* XXH_RESTRICT, size_t);
3840
3841XXH_FORCE_INLINE XXH64_hash_t
3842XXH3_64bits_internal(const void* XXH_RESTRICT input, size_t len,
3843 XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen,
3844 XXH3_hashLong64_f f_hashLong)
3845{
3846 XXH_ASSERT(secretLen >= XXH3_SECRET_SIZE_MIN);
3847 /*
3848 * If an action is to be taken if `secretLen` condition is not respected,
3849 * it should be done here.
3850 * For now, it's a contract pre-condition.
3851 * Adding a check and a branch here would cost performance at every hash.
3852 * Also, note that function signature doesn't offer room to return an error.
3853 */
3854 if (len <= 16)
3855 return XXH3_len_0to16_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, seed64);
3856 if (len <= 128)
3857 return XXH3_len_17to128_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64);
3858 if (len <= XXH3_MIDSIZE_MAX)
3859 return XXH3_len_129to240_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64);
3860 return f_hashLong(input, len, seed64, (const xxh_u8*)secret, secretLen);
3861}
3862
3863
3864/* === Public entry point === */
3865
3866XXH_PUBLIC_API XXH64_hash_t XXH3_64bits(const void* input, size_t len)
3867{
3868 return XXH3_64bits_internal(input, len, 0, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_hashLong_64b_default);
3869}
3870
3871XXH_PUBLIC_API XXH64_hash_t
3872XXH3_64bits_withSecret(const void* input, size_t len, const void* secret, size_t secretSize)
3873{
3874 return XXH3_64bits_internal(input, len, 0, secret, secretSize, XXH3_hashLong_64b_withSecret);
3875}
3876
3877XXH_PUBLIC_API XXH64_hash_t
3878XXH3_64bits_withSeed(const void* input, size_t len, XXH64_hash_t seed)
3879{
3880 return XXH3_64bits_internal(input, len, seed, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_hashLong_64b_withSeed);
3881}
3882
3883
3884/* === XXH3 streaming === */
3885
3886/*
3887 * Malloc's a pointer that is always aligned to align.
3888 *
3889 * This must be freed with `XXH_alignedFree()`.
3890 *
3891 * malloc typically guarantees 16 byte alignment on 64-bit systems and 8 byte
3892 * alignment on 32-bit. This isn't enough for the 32 byte aligned loads in AVX2
3893 * or on 32-bit, the 16 byte aligned loads in SSE2 and NEON.
3894 *
3895 * This underalignment previously caused a rather obvious crash which went
3896 * completely unnoticed due to XXH3_createState() not actually being tested.
3897 * Credit to RedSpah for noticing this bug.
3898 *
3899 * The alignment is done manually: Functions like posix_memalign or _mm_malloc
3900 * are avoided: To maintain portability, we would have to write a fallback
3901 * like this anyways, and besides, testing for the existence of library
3902 * functions without relying on external build tools is impossible.
3903 *
3904 * The method is simple: Overallocate, manually align, and store the offset
3905 * to the original behind the returned pointer.
3906 *
3907 * Align must be a power of 2 and 8 <= align <= 128.
3908 */
3909static void* XXH_alignedMalloc(size_t s, size_t align)
3910{
3911 XXH_ASSERT(align <= 128 && align >= 8); /* range check */
3912 XXH_ASSERT((align & (align-1)) == 0); /* power of 2 */
3913 XXH_ASSERT(s != 0 && s < (s + align)); /* empty/overflow */
3914 { /* Overallocate to make room for manual realignment and an offset byte */
3915 xxh_u8* base = (xxh_u8*)XXH_malloc(s + align);
3916 if (base != NULL) {
3917 /*
3918 * Get the offset needed to align this pointer.
3919 *
3920 * Even if the returned pointer is aligned, there will always be
3921 * at least one byte to store the offset to the original pointer.
3922 */
3923 size_t offset = align - ((size_t)base & (align - 1)); /* base % align */
3924 /* Add the offset for the now-aligned pointer */
3925 xxh_u8* ptr = base + offset;
3926
3927 XXH_ASSERT((size_t)ptr % align == 0);
3928
3929 /* Store the offset immediately before the returned pointer. */
3930 ptr[-1] = (xxh_u8)offset;
3931 return ptr;
3932 }
3933 return NULL;
3934 }
3935}
3936/*
3937 * Frees an aligned pointer allocated by XXH_alignedMalloc(). Don't pass
3938 * normal malloc'd pointers, XXH_alignedMalloc has a specific data layout.
3939 */
3940static void XXH_alignedFree(void* p)
3941{
3942 if (p != NULL) {
3943 xxh_u8* ptr = (xxh_u8*)p;
3944 /* Get the offset byte we added in XXH_malloc. */
3945 xxh_u8 offset = ptr[-1];
3946 /* Free the original malloc'd pointer */
3947 xxh_u8* base = ptr - offset;
3948 XXH_free(base);
3949 }
3950}
3951XXH_PUBLIC_API XXH3_state_t* XXH3_createState(void)
3952{
3953 XXH3_state_t* const state = (XXH3_state_t*)XXH_alignedMalloc(sizeof(XXH3_state_t), 64);
3954 if (state==NULL) return NULL;
3955 XXH3_INITSTATE(state);
3956 return state;
3957}
3958
3959XXH_PUBLIC_API XXH_errorcode XXH3_freeState(XXH3_state_t* statePtr)
3960{
3961 XXH_alignedFree(statePtr);
3962 return XXH_OK;
3963}
3964
3965XXH_PUBLIC_API void
3966XXH3_copyState(XXH3_state_t* dst_state, const XXH3_state_t* src_state)
3967{
3968 memcpy(dst_state, src_state, sizeof(*dst_state));
3969}
3970
3971static void
3972XXH3_64bits_reset_internal(XXH3_state_t* statePtr,
3973 XXH64_hash_t seed,
3974 const void* secret, size_t secretSize)
3975{
3976 size_t const initStart = offsetof(XXH3_state_t, bufferedSize);
3977 size_t const initLength = offsetof(XXH3_state_t, nbStripesPerBlock) - initStart;
3978 XXH_ASSERT(offsetof(XXH3_state_t, nbStripesPerBlock) > initStart);
3979 XXH_ASSERT(statePtr != NULL);
3980 /* set members from bufferedSize to nbStripesPerBlock (excluded) to 0 */
3981 memset((char*)statePtr + initStart, 0, initLength);
3982 statePtr->acc[0] = XXH_PRIME32_3;
3983 statePtr->acc[1] = XXH_PRIME64_1;
3984 statePtr->acc[2] = XXH_PRIME64_2;
3985 statePtr->acc[3] = XXH_PRIME64_3;
3986 statePtr->acc[4] = XXH_PRIME64_4;
3987 statePtr->acc[5] = XXH_PRIME32_2;
3988 statePtr->acc[6] = XXH_PRIME64_5;
3989 statePtr->acc[7] = XXH_PRIME32_1;
3990 statePtr->seed = seed;
3991 statePtr->extSecret = (const unsigned char*)secret;
3992 XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
3993 statePtr->secretLimit = secretSize - XXH_STRIPE_LEN;
3994 statePtr->nbStripesPerBlock = statePtr->secretLimit / XXH_SECRET_CONSUME_RATE;
3995}
3996
3997XXH_PUBLIC_API XXH_errorcode
3998XXH3_64bits_reset(XXH3_state_t* statePtr)
3999{
4000 if (statePtr == NULL) return XXH_ERROR;
4001 XXH3_64bits_reset_internal(statePtr, 0, XXH3_kSecret, XXH_SECRET_DEFAULT_SIZE);
4002 return XXH_OK;
4003}
4004
4005XXH_PUBLIC_API XXH_errorcode
4006XXH3_64bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize)
4007{
4008 if (statePtr == NULL) return XXH_ERROR;
4009 XXH3_64bits_reset_internal(statePtr, 0, secret, secretSize);
4010 if (secret == NULL) return XXH_ERROR;
4011 if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR;
4012 return XXH_OK;
4013}
4014
4015XXH_PUBLIC_API XXH_errorcode
4016XXH3_64bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed)
4017{
4018 if (statePtr == NULL) return XXH_ERROR;
4019 if (seed==0) return XXH3_64bits_reset(statePtr);
4020 if (seed != statePtr->seed) XXH3_initCustomSecret(statePtr->customSecret, seed);
4021 XXH3_64bits_reset_internal(statePtr, seed, NULL, XXH_SECRET_DEFAULT_SIZE);
4022 return XXH_OK;
4023}
4024
4025/* Note : when XXH3_consumeStripes() is invoked,
4026 * there must be a guarantee that at least one more byte must be consumed from input
4027 * so that the function can blindly consume all stripes using the "normal" secret segment */
4028XXH_FORCE_INLINE void
4029XXH3_consumeStripes(xxh_u64* XXH_RESTRICT acc,
4030 size_t* XXH_RESTRICT nbStripesSoFarPtr, size_t nbStripesPerBlock,
4031 const xxh_u8* XXH_RESTRICT input, size_t nbStripes,
4032 const xxh_u8* XXH_RESTRICT secret, size_t secretLimit,
4033 XXH3_f_accumulate_512 f_acc512,
4034 XXH3_f_scrambleAcc f_scramble)
4035{
4036 XXH_ASSERT(nbStripes <= nbStripesPerBlock); /* can handle max 1 scramble per invocation */
4037 XXH_ASSERT(*nbStripesSoFarPtr < nbStripesPerBlock);
4038 if (nbStripesPerBlock - *nbStripesSoFarPtr <= nbStripes) {
4039 /* need a scrambling operation */
4040 size_t const nbStripesToEndofBlock = nbStripesPerBlock - *nbStripesSoFarPtr;
4041 size_t const nbStripesAfterBlock = nbStripes - nbStripesToEndofBlock;
4042 XXH3_accumulate(acc, input, secret + nbStripesSoFarPtr[0] * XXH_SECRET_CONSUME_RATE, nbStripesToEndofBlock, f_acc512);
4043 f_scramble(acc, secret + secretLimit);
4044 XXH3_accumulate(acc, input + nbStripesToEndofBlock * XXH_STRIPE_LEN, secret, nbStripesAfterBlock, f_acc512);
4045 *nbStripesSoFarPtr = nbStripesAfterBlock;
4046 } else {
4047 XXH3_accumulate(acc, input, secret + nbStripesSoFarPtr[0] * XXH_SECRET_CONSUME_RATE, nbStripes, f_acc512);
4048 *nbStripesSoFarPtr += nbStripes;
4049 }
4050}
4051
4052/*
4053 * Both XXH3_64bits_update and XXH3_128bits_update use this routine.
4054 */
4055XXH_FORCE_INLINE XXH_errorcode
4056XXH3_update(XXH3_state_t* state,
4057 const xxh_u8* input, size_t len,
4058 XXH3_f_accumulate_512 f_acc512,
4059 XXH3_f_scrambleAcc f_scramble)
4060{
4061 if (input==NULL)
4062#if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1)
4063 return XXH_OK;
4064#else
4065 return XXH_ERROR;
4066#endif
4067
4068 { const xxh_u8* const bEnd = input + len;
4069 const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret;
4070
4071 state->totalLen += len;
4072
4073 if (state->bufferedSize + len <= XXH3_INTERNALBUFFER_SIZE) { /* fill in tmp buffer */
4074 XXH_memcpy(state->buffer + state->bufferedSize, input, len);
4075 state->bufferedSize += (XXH32_hash_t)len;
4076 return XXH_OK;
4077 }
4078 /* total input is now > XXH3_INTERNALBUFFER_SIZE */
4079
4080 #define XXH3_INTERNALBUFFER_STRIPES (XXH3_INTERNALBUFFER_SIZE / XXH_STRIPE_LEN)
4081 XXH_STATIC_ASSERT(XXH3_INTERNALBUFFER_SIZE % XXH_STRIPE_LEN == 0); /* clean multiple */
4082
4083 /*
4084 * Internal buffer is partially filled (always, except at beginning)
4085 * Complete it, then consume it.
4086 */
4087 if (state->bufferedSize) {
4088 size_t const loadSize = XXH3_INTERNALBUFFER_SIZE - state->bufferedSize;
4089 XXH_memcpy(state->buffer + state->bufferedSize, input, loadSize);
4090 input += loadSize;
4091 XXH3_consumeStripes(state->acc,
4092 &state->nbStripesSoFar, state->nbStripesPerBlock,
4093 state->buffer, XXH3_INTERNALBUFFER_STRIPES,
4094 secret, state->secretLimit,
4095 f_acc512, f_scramble);
4096 state->bufferedSize = 0;
4097 }
4098 XXH_ASSERT(input < bEnd);
4099
4100 /* Consume input by a multiple of internal buffer size */
4101 if (input+XXH3_INTERNALBUFFER_SIZE < bEnd) {
4102 const xxh_u8* const limit = bEnd - XXH3_INTERNALBUFFER_SIZE;
4103 do {
4104 XXH3_consumeStripes(state->acc,
4105 &state->nbStripesSoFar, state->nbStripesPerBlock,
4106 input, XXH3_INTERNALBUFFER_STRIPES,
4107 secret, state->secretLimit,
4108 f_acc512, f_scramble);
4109 input += XXH3_INTERNALBUFFER_SIZE;
4110 } while (input<limit);
4111 /* for last partial stripe */
4112 memcpy(state->buffer + sizeof(state->buffer) - XXH_STRIPE_LEN, input - XXH_STRIPE_LEN, XXH_STRIPE_LEN);
4113 }
4114 XXH_ASSERT(input < bEnd);
4115
4116 /* Some remaining input (always) : buffer it */
4117 XXH_memcpy(state->buffer, input, (size_t)(bEnd-input));
4118 state->bufferedSize = (XXH32_hash_t)(bEnd-input);
4119 }
4120
4121 return XXH_OK;
4122}
4123
4124XXH_PUBLIC_API XXH_errorcode
4125XXH3_64bits_update(XXH3_state_t* state, const void* input, size_t len)
4126{
4127 return XXH3_update(state, (const xxh_u8*)input, len,
4128 XXH3_accumulate_512, XXH3_scrambleAcc);
4129}
4130
4131
4132XXH_FORCE_INLINE void
4133XXH3_digest_long (XXH64_hash_t* acc,
4134 const XXH3_state_t* state,
4135 const unsigned char* secret)
4136{
4137 /*
4138 * Digest on a local copy. This way, the state remains unaltered, and it can
4139 * continue ingesting more input afterwards.
4140 */
4141 memcpy(acc, state->acc, sizeof(state->acc));
4142 if (state->bufferedSize >= XXH_STRIPE_LEN) {
4143 size_t const nbStripes = (state->bufferedSize - 1) / XXH_STRIPE_LEN;
4144 size_t nbStripesSoFar = state->nbStripesSoFar;
4145 XXH3_consumeStripes(acc,
4146 &nbStripesSoFar, state->nbStripesPerBlock,
4147 state->buffer, nbStripes,
4148 secret, state->secretLimit,
4149 XXH3_accumulate_512, XXH3_scrambleAcc);
4150 /* last stripe */
4151 XXH3_accumulate_512(acc,
4152 state->buffer + state->bufferedSize - XXH_STRIPE_LEN,
4153 secret + state->secretLimit - XXH_SECRET_LASTACC_START);
4154 } else { /* bufferedSize < XXH_STRIPE_LEN */
4155 xxh_u8 lastStripe[XXH_STRIPE_LEN];
4156 size_t const catchupSize = XXH_STRIPE_LEN - state->bufferedSize;
4157 XXH_ASSERT(state->bufferedSize > 0); /* there is always some input buffered */
4158 memcpy(lastStripe, state->buffer + sizeof(state->buffer) - catchupSize, catchupSize);
4159 memcpy(lastStripe + catchupSize, state->buffer, state->bufferedSize);
4160 XXH3_accumulate_512(acc,
4161 lastStripe,
4162 secret + state->secretLimit - XXH_SECRET_LASTACC_START);
4163 }
4164}
4165
4166XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_digest (const XXH3_state_t* state)
4167{
4168 const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret;
4169 if (state->totalLen > XXH3_MIDSIZE_MAX) {
4170 XXH_ALIGN(XXH_ACC_ALIGN) XXH64_hash_t acc[XXH_ACC_NB];
4171 XXH3_digest_long(acc, state, secret);
4172 return XXH3_mergeAccs(acc,
4173 secret + XXH_SECRET_MERGEACCS_START,
4174 (xxh_u64)state->totalLen * XXH_PRIME64_1);
4175 }
4176 /* totalLen <= XXH3_MIDSIZE_MAX: digesting a short input */
4177 if (state->seed)
4178 return XXH3_64bits_withSeed(state->buffer, (size_t)state->totalLen, state->seed);
4179 return XXH3_64bits_withSecret(state->buffer, (size_t)(state->totalLen),
4180 secret, state->secretLimit + XXH_STRIPE_LEN);
4181}
4182
4183
4184#define XXH_MIN(x, y) (((x) > (y)) ? (y) : (x))
4185
4186XXH_PUBLIC_API void
4187XXH3_generateSecret(void* secretBuffer, const void* customSeed, size_t customSeedSize)
4188{
4189 XXH_ASSERT(secretBuffer != NULL);
4190 if (customSeedSize == 0) {
4191 memcpy(secretBuffer, XXH3_kSecret, XXH_SECRET_DEFAULT_SIZE);
4192 return;
4193 }
4194 XXH_ASSERT(customSeed != NULL);
4195
4196 { size_t const segmentSize = sizeof(XXH128_hash_t);
4197 size_t const nbSegments = XXH_SECRET_DEFAULT_SIZE / segmentSize;
4198 XXH128_canonical_t scrambler;
4199 XXH64_hash_t seeds[12];
4200 size_t segnb;
4201 XXH_ASSERT(nbSegments == 12);
4202 XXH_ASSERT(segmentSize * nbSegments == XXH_SECRET_DEFAULT_SIZE); /* exact multiple */
4203 XXH128_canonicalFromHash(&scrambler, XXH128(customSeed, customSeedSize, 0));
4204
4205 /*
4206 * Copy customSeed to seeds[], truncating or repeating as necessary.
4207 */
4208 { size_t toFill = XXH_MIN(customSeedSize, sizeof(seeds));
4209 size_t filled = toFill;
4210 memcpy(seeds, customSeed, toFill);
4211 while (filled < sizeof(seeds)) {
4212 toFill = XXH_MIN(filled, sizeof(seeds) - filled);
4213 memcpy((char*)seeds + filled, seeds, toFill);
4214 filled += toFill;
4215 } }
4216
4217 /* generate secret */
4218 memcpy(secretBuffer, &scrambler, sizeof(scrambler));
4219 for (segnb=1; segnb < nbSegments; segnb++) {
4220 size_t const segmentStart = segnb * segmentSize;
4221 XXH128_canonical_t segment;
4222 XXH128_canonicalFromHash(&segment,
4223 XXH128(&scrambler, sizeof(scrambler), XXH_readLE64(seeds + segnb) + segnb) );
4224 memcpy((char*)secretBuffer + segmentStart, &segment, sizeof(segment));
4225 } }
4226}
4227
4228
4229/* ==========================================
4230 * XXH3 128 bits (a.k.a XXH128)
4231 * ==========================================
4232 * XXH3's 128-bit variant has better mixing and strength than the 64-bit variant,
4233 * even without counting the significantly larger output size.
4234 *
4235 * For example, extra steps are taken to avoid the seed-dependent collisions
4236 * in 17-240 byte inputs (See XXH3_mix16B and XXH128_mix32B).
4237 *
4238 * This strength naturally comes at the cost of some speed, especially on short
4239 * lengths. Note that longer hashes are about as fast as the 64-bit version
4240 * due to it using only a slight modification of the 64-bit loop.
4241 *
4242 * XXH128 is also more oriented towards 64-bit machines. It is still extremely
4243 * fast for a _128-bit_ hash on 32-bit (it usually clears XXH64).
4244 */
4245
4246XXH_FORCE_INLINE XXH128_hash_t
4247XXH3_len_1to3_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
4248{
4249 /* A doubled version of 1to3_64b with different constants. */
4250 XXH_ASSERT(input != NULL);
4251 XXH_ASSERT(1 <= len && len <= 3);
4252 XXH_ASSERT(secret != NULL);
4253 /*
4254 * len = 1: combinedl = { input[0], 0x01, input[0], input[0] }
4255 * len = 2: combinedl = { input[1], 0x02, input[0], input[1] }
4256 * len = 3: combinedl = { input[2], 0x03, input[0], input[1] }
4257 */
4258 { xxh_u8 const c1 = input[0];
4259 xxh_u8 const c2 = input[len >> 1];
4260 xxh_u8 const c3 = input[len - 1];
4261 xxh_u32 const combinedl = ((xxh_u32)c1 <<16) | ((xxh_u32)c2 << 24)
4262 | ((xxh_u32)c3 << 0) | ((xxh_u32)len << 8);
4263 xxh_u32 const combinedh = XXH_rotl32(XXH_swap32(combinedl), 13);
4264 xxh_u64 const bitflipl = (XXH_readLE32(secret) ^ XXH_readLE32(secret+4)) + seed;
4265 xxh_u64 const bitfliph = (XXH_readLE32(secret+8) ^ XXH_readLE32(secret+12)) - seed;
4266 xxh_u64 const keyed_lo = (xxh_u64)combinedl ^ bitflipl;
4267 xxh_u64 const keyed_hi = (xxh_u64)combinedh ^ bitfliph;
4268 XXH128_hash_t h128;
4269 h128.low64 = XXH64_avalanche(keyed_lo);
4270 h128.high64 = XXH64_avalanche(keyed_hi);
4271 return h128;
4272 }
4273}
4274
4275XXH_FORCE_INLINE XXH128_hash_t
4276XXH3_len_4to8_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
4277{
4278 XXH_ASSERT(input != NULL);
4279 XXH_ASSERT(secret != NULL);
4280 XXH_ASSERT(4 <= len && len <= 8);
4281 seed ^= (xxh_u64)XXH_swap32((xxh_u32)seed) << 32;
4282 { xxh_u32 const input_lo = XXH_readLE32(input);
4283 xxh_u32 const input_hi = XXH_readLE32(input + len - 4);
4284 xxh_u64 const input_64 = input_lo + ((xxh_u64)input_hi << 32);
4285 xxh_u64 const bitflip = (XXH_readLE64(secret+16) ^ XXH_readLE64(secret+24)) + seed;
4286 xxh_u64 const keyed = input_64 ^ bitflip;
4287
4288 /* Shift len to the left to ensure it is even, this avoids even multiplies. */
4289 XXH128_hash_t m128 = XXH_mult64to128(keyed, XXH_PRIME64_1 + (len << 2));
4290
4291 m128.high64 += (m128.low64 << 1);
4292 m128.low64 ^= (m128.high64 >> 3);
4293
4294 m128.low64 = XXH_xorshift64(m128.low64, 35);
4295 m128.low64 *= 0x9FB21C651E98DF25ULL;
4296 m128.low64 = XXH_xorshift64(m128.low64, 28);
4297 m128.high64 = XXH3_avalanche(m128.high64);
4298 return m128;
4299 }
4300}
4301
4302XXH_FORCE_INLINE XXH128_hash_t
4303XXH3_len_9to16_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
4304{
4305 XXH_ASSERT(input != NULL);
4306 XXH_ASSERT(secret != NULL);
4307 XXH_ASSERT(9 <= len && len <= 16);
4308 { xxh_u64 const bitflipl = (XXH_readLE64(secret+32) ^ XXH_readLE64(secret+40)) - seed;
4309 xxh_u64 const bitfliph = (XXH_readLE64(secret+48) ^ XXH_readLE64(secret+56)) + seed;
4310 xxh_u64 const input_lo = XXH_readLE64(input);
4311 xxh_u64 input_hi = XXH_readLE64(input + len - 8);
4312 XXH128_hash_t m128 = XXH_mult64to128(input_lo ^ input_hi ^ bitflipl, XXH_PRIME64_1);
4313 /*
4314 * Put len in the middle of m128 to ensure that the length gets mixed to
4315 * both the low and high bits in the 128x64 multiply below.
4316 */
4317 m128.low64 += (xxh_u64)(len - 1) << 54;
4318 input_hi ^= bitfliph;
4319 /*
4320 * Add the high 32 bits of input_hi to the high 32 bits of m128, then
4321 * add the long product of the low 32 bits of input_hi and XXH_PRIME32_2 to
4322 * the high 64 bits of m128.
4323 *
4324 * The best approach to this operation is different on 32-bit and 64-bit.
4325 */
4326 if (sizeof(void *) < sizeof(xxh_u64)) { /* 32-bit */
4327 /*
4328 * 32-bit optimized version, which is more readable.
4329 *
4330 * On 32-bit, it removes an ADC and delays a dependency between the two
4331 * halves of m128.high64, but it generates an extra mask on 64-bit.
4332 */
4333 m128.high64 += (input_hi & 0xFFFFFFFF00000000ULL) + XXH_mult32to64((xxh_u32)input_hi, XXH_PRIME32_2);
4334 } else {
4335 /*
4336 * 64-bit optimized (albeit more confusing) version.
4337 *
4338 * Uses some properties of addition and multiplication to remove the mask:
4339 *
4340 * Let:
4341 * a = input_hi.lo = (input_hi & 0x00000000FFFFFFFF)
4342 * b = input_hi.hi = (input_hi & 0xFFFFFFFF00000000)
4343 * c = XXH_PRIME32_2
4344 *
4345 * a + (b * c)
4346 * Inverse Property: x + y - x == y
4347 * a + (b * (1 + c - 1))
4348 * Distributive Property: x * (y + z) == (x * y) + (x * z)
4349 * a + (b * 1) + (b * (c - 1))
4350 * Identity Property: x * 1 == x
4351 * a + b + (b * (c - 1))
4352 *
4353 * Substitute a, b, and c:
4354 * input_hi.hi + input_hi.lo + ((xxh_u64)input_hi.lo * (XXH_PRIME32_2 - 1))
4355 *
4356 * Since input_hi.hi + input_hi.lo == input_hi, we get this:
4357 * input_hi + ((xxh_u64)input_hi.lo * (XXH_PRIME32_2 - 1))
4358 */
4359 m128.high64 += input_hi + XXH_mult32to64((xxh_u32)input_hi, XXH_PRIME32_2 - 1);
4360 }
4361 /* m128 ^= XXH_swap64(m128 >> 64); */
4362 m128.low64 ^= XXH_swap64(m128.high64);
4363
4364 { /* 128x64 multiply: h128 = m128 * XXH_PRIME64_2; */
4365 XXH128_hash_t h128 = XXH_mult64to128(m128.low64, XXH_PRIME64_2);
4366 h128.high64 += m128.high64 * XXH_PRIME64_2;
4367
4368 h128.low64 = XXH3_avalanche(h128.low64);
4369 h128.high64 = XXH3_avalanche(h128.high64);
4370 return h128;
4371 } }
4372}
4373
4374/*
4375 * Assumption: `secret` size is >= XXH3_SECRET_SIZE_MIN
4376 */
4377XXH_FORCE_INLINE XXH128_hash_t
4378XXH3_len_0to16_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
4379{
4380 XXH_ASSERT(len <= 16);
4381 { if (len > 8) return XXH3_len_9to16_128b(input, len, secret, seed);
4382 if (len >= 4) return XXH3_len_4to8_128b(input, len, secret, seed);
4383 if (len) return XXH3_len_1to3_128b(input, len, secret, seed);
4384 { XXH128_hash_t h128;
4385 xxh_u64 const bitflipl = XXH_readLE64(secret+64) ^ XXH_readLE64(secret+72);
4386 xxh_u64 const bitfliph = XXH_readLE64(secret+80) ^ XXH_readLE64(secret+88);
4387 h128.low64 = XXH64_avalanche(seed ^ bitflipl);
4388 h128.high64 = XXH64_avalanche( seed ^ bitfliph);
4389 return h128;
4390 } }
4391}
4392
4393/*
4394 * A bit slower than XXH3_mix16B, but handles multiply by zero better.
4395 */
4396XXH_FORCE_INLINE XXH128_hash_t
4397XXH128_mix32B(XXH128_hash_t acc, const xxh_u8* input_1, const xxh_u8* input_2,
4398 const xxh_u8* secret, XXH64_hash_t seed)
4399{
4400 acc.low64 += XXH3_mix16B (input_1, secret+0, seed);
4401 acc.low64 ^= XXH_readLE64(input_2) + XXH_readLE64(input_2 + 8);
4402 acc.high64 += XXH3_mix16B (input_2, secret+16, seed);
4403 acc.high64 ^= XXH_readLE64(input_1) + XXH_readLE64(input_1 + 8);
4404 return acc;
4405}
4406
4407
4408XXH_FORCE_INLINE XXH128_hash_t
4409XXH3_len_17to128_128b(const xxh_u8* XXH_RESTRICT input, size_t len,
4410 const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
4411 XXH64_hash_t seed)
4412{
4413 XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
4414 XXH_ASSERT(16 < len && len <= 128);
4415
4416 { XXH128_hash_t acc;
4417 acc.low64 = len * XXH_PRIME64_1;
4418 acc.high64 = 0;
4419 if (len > 32) {
4420 if (len > 64) {
4421 if (len > 96) {
4422 acc = XXH128_mix32B(acc, input+48, input+len-64, secret+96, seed);
4423 }
4424 acc = XXH128_mix32B(acc, input+32, input+len-48, secret+64, seed);
4425 }
4426 acc = XXH128_mix32B(acc, input+16, input+len-32, secret+32, seed);
4427 }
4428 acc = XXH128_mix32B(acc, input, input+len-16, secret, seed);
4429 { XXH128_hash_t h128;
4430 h128.low64 = acc.low64 + acc.high64;
4431 h128.high64 = (acc.low64 * XXH_PRIME64_1)
4432 + (acc.high64 * XXH_PRIME64_4)
4433 + ((len - seed) * XXH_PRIME64_2);
4434 h128.low64 = XXH3_avalanche(h128.low64);
4435 h128.high64 = (XXH64_hash_t)0 - XXH3_avalanche(h128.high64);
4436 return h128;
4437 }
4438 }
4439}
4440
4441XXH_NO_INLINE XXH128_hash_t
4442XXH3_len_129to240_128b(const xxh_u8* XXH_RESTRICT input, size_t len,
4443 const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
4444 XXH64_hash_t seed)
4445{
4446 XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
4447 XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX);
4448
4449 { XXH128_hash_t acc;
4450 int const nbRounds = (int)len / 32;
4451 int i;
4452 acc.low64 = len * XXH_PRIME64_1;
4453 acc.high64 = 0;
4454 for (i=0; i<4; i++) {
4455 acc = XXH128_mix32B(acc,
4456 input + (32 * i),
4457 input + (32 * i) + 16,
4458 secret + (32 * i),
4459 seed);
4460 }
4461 acc.low64 = XXH3_avalanche(acc.low64);
4462 acc.high64 = XXH3_avalanche(acc.high64);
4463 XXH_ASSERT(nbRounds >= 4);
4464 for (i=4 ; i < nbRounds; i++) {
4465 acc = XXH128_mix32B(acc,
4466 input + (32 * i),
4467 input + (32 * i) + 16,
4468 secret + XXH3_MIDSIZE_STARTOFFSET + (32 * (i - 4)),
4469 seed);
4470 }
4471 /* last bytes */
4472 acc = XXH128_mix32B(acc,
4473 input + len - 16,
4474 input + len - 32,
4475 secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET - 16,
4476 0ULL - seed);
4477
4478 { XXH128_hash_t h128;
4479 h128.low64 = acc.low64 + acc.high64;
4480 h128.high64 = (acc.low64 * XXH_PRIME64_1)
4481 + (acc.high64 * XXH_PRIME64_4)
4482 + ((len - seed) * XXH_PRIME64_2);
4483 h128.low64 = XXH3_avalanche(h128.low64);
4484 h128.high64 = (XXH64_hash_t)0 - XXH3_avalanche(h128.high64);
4485 return h128;
4486 }
4487 }
4488}
4489
4490XXH_FORCE_INLINE XXH128_hash_t
4491XXH3_hashLong_128b_internal(const void* XXH_RESTRICT input, size_t len,
4492 const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
4493 XXH3_f_accumulate_512 f_acc512,
4494 XXH3_f_scrambleAcc f_scramble)
4495{
4496 XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[XXH_ACC_NB] = XXH3_INIT_ACC;
4497
4498 XXH3_hashLong_internal_loop(acc, (const xxh_u8*)input, len, secret, secretSize, f_acc512, f_scramble);
4499
4500 /* converge into final hash */
4501 XXH_STATIC_ASSERT(sizeof(acc) == 64);
4502 XXH_ASSERT(secretSize >= sizeof(acc) + XXH_SECRET_MERGEACCS_START);
4503 { XXH128_hash_t h128;
4504 h128.low64 = XXH3_mergeAccs(acc,
4505 secret + XXH_SECRET_MERGEACCS_START,
4506 (xxh_u64)len * XXH_PRIME64_1);
4507 h128.high64 = XXH3_mergeAccs(acc,
4508 secret + secretSize
4509 - sizeof(acc) - XXH_SECRET_MERGEACCS_START,
4510 ~((xxh_u64)len * XXH_PRIME64_2));
4511 return h128;
4512 }
4513}
4514
4515/*
4516 * It's important for performance that XXH3_hashLong is not inlined.
4517 */
4518XXH_NO_INLINE XXH128_hash_t
4519XXH3_hashLong_128b_default(const void* XXH_RESTRICT input, size_t len,
4520 XXH64_hash_t seed64,
4521 const void* XXH_RESTRICT secret, size_t secretLen)
4522{
4523 (void)seed64; (void)secret; (void)secretLen;
4524 return XXH3_hashLong_128b_internal(input, len, XXH3_kSecret, sizeof(XXH3_kSecret),
4525 XXH3_accumulate_512, XXH3_scrambleAcc);
4526}
4527
4528/*
4529 * It's important for performance that XXH3_hashLong is not inlined.
4530 */
4531XXH_NO_INLINE XXH128_hash_t
4532XXH3_hashLong_128b_withSecret(const void* XXH_RESTRICT input, size_t len,
4533 XXH64_hash_t seed64,
4534 const void* XXH_RESTRICT secret, size_t secretLen)
4535{
4536 (void)seed64;
4537 return XXH3_hashLong_128b_internal(input, len, (const xxh_u8*)secret, secretLen,
4538 XXH3_accumulate_512, XXH3_scrambleAcc);
4539}
4540
4541XXH_FORCE_INLINE XXH128_hash_t
4542XXH3_hashLong_128b_withSeed_internal(const void* XXH_RESTRICT input, size_t len,
4543 XXH64_hash_t seed64,
4544 XXH3_f_accumulate_512 f_acc512,
4545 XXH3_f_scrambleAcc f_scramble,
4546 XXH3_f_initCustomSecret f_initSec)
4547{
4548 if (seed64 == 0)
4549 return XXH3_hashLong_128b_internal(input, len,
4550 XXH3_kSecret, sizeof(XXH3_kSecret),
4551 f_acc512, f_scramble);
4552 { XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE];
4553 f_initSec(secret, seed64);
4554 return XXH3_hashLong_128b_internal(input, len, (const xxh_u8*)secret, sizeof(secret),
4555 f_acc512, f_scramble);
4556 }
4557}
4558
4559/*
4560 * It's important for performance that XXH3_hashLong is not inlined.
4561 */
4562XXH_NO_INLINE XXH128_hash_t
4563XXH3_hashLong_128b_withSeed(const void* input, size_t len,
4564 XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen)
4565{
4566 (void)secret; (void)secretLen;
4567 return XXH3_hashLong_128b_withSeed_internal(input, len, seed64,
4568 XXH3_accumulate_512, XXH3_scrambleAcc, XXH3_initCustomSecret);
4569}
4570
4571typedef XXH128_hash_t (*XXH3_hashLong128_f)(const void* XXH_RESTRICT, size_t,
4572 XXH64_hash_t, const void* XXH_RESTRICT, size_t);
4573
4574XXH_FORCE_INLINE XXH128_hash_t
4575XXH3_128bits_internal(const void* input, size_t len,
4576 XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen,
4577 XXH3_hashLong128_f f_hl128)
4578{
4579 XXH_ASSERT(secretLen >= XXH3_SECRET_SIZE_MIN);
4580 /*
4581 * If an action is to be taken if `secret` conditions are not respected,
4582 * it should be done here.
4583 * For now, it's a contract pre-condition.
4584 * Adding a check and a branch here would cost performance at every hash.
4585 */
4586 if (len <= 16)
4587 return XXH3_len_0to16_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, seed64);
4588 if (len <= 128)
4589 return XXH3_len_17to128_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64);
4590 if (len <= XXH3_MIDSIZE_MAX)
4591 return XXH3_len_129to240_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64);
4592 return f_hl128(input, len, seed64, secret, secretLen);
4593}
4594
4595
4596/* === Public XXH128 API === */
4597
4598XXH_PUBLIC_API XXH128_hash_t XXH3_128bits(const void* input, size_t len)
4599{
4600 return XXH3_128bits_internal(input, len, 0,
4601 XXH3_kSecret, sizeof(XXH3_kSecret),
4602 XXH3_hashLong_128b_default);
4603}
4604
4605XXH_PUBLIC_API XXH128_hash_t
4606XXH3_128bits_withSecret(const void* input, size_t len, const void* secret, size_t secretSize)
4607{
4608 return XXH3_128bits_internal(input, len, 0,
4609 (const xxh_u8*)secret, secretSize,
4610 XXH3_hashLong_128b_withSecret);
4611}
4612
4613XXH_PUBLIC_API XXH128_hash_t
4614XXH3_128bits_withSeed(const void* input, size_t len, XXH64_hash_t seed)
4615{
4616 return XXH3_128bits_internal(input, len, seed,
4617 XXH3_kSecret, sizeof(XXH3_kSecret),
4618 XXH3_hashLong_128b_withSeed);
4619}
4620
4621XXH_PUBLIC_API XXH128_hash_t
4622XXH128(const void* input, size_t len, XXH64_hash_t seed)
4623{
4624 return XXH3_128bits_withSeed(input, len, seed);
4625}
4626
4627
4628/* === XXH3 128-bit streaming === */
4629
4630/*
4631 * All the functions are actually the same as for 64-bit streaming variant.
4632 * The only difference is the finalizatiom routine.
4633 */
4634
4635static void
4636XXH3_128bits_reset_internal(XXH3_state_t* statePtr,
4637 XXH64_hash_t seed,
4638 const void* secret, size_t secretSize)
4639{
4640 XXH3_64bits_reset_internal(statePtr, seed, secret, secretSize);
4641}
4642
4643XXH_PUBLIC_API XXH_errorcode
4644XXH3_128bits_reset(XXH3_state_t* statePtr)
4645{
4646 if (statePtr == NULL) return XXH_ERROR;
4647 XXH3_128bits_reset_internal(statePtr, 0, XXH3_kSecret, XXH_SECRET_DEFAULT_SIZE);
4648 return XXH_OK;
4649}
4650
4651XXH_PUBLIC_API XXH_errorcode
4652XXH3_128bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize)
4653{
4654 if (statePtr == NULL) return XXH_ERROR;
4655 XXH3_128bits_reset_internal(statePtr, 0, secret, secretSize);
4656 if (secret == NULL) return XXH_ERROR;
4657 if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR;
4658 return XXH_OK;
4659}
4660
4661XXH_PUBLIC_API XXH_errorcode
4662XXH3_128bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed)
4663{
4664 if (statePtr == NULL) return XXH_ERROR;
4665 if (seed==0) return XXH3_128bits_reset(statePtr);
4666 if (seed != statePtr->seed) XXH3_initCustomSecret(statePtr->customSecret, seed);
4667 XXH3_128bits_reset_internal(statePtr, seed, NULL, XXH_SECRET_DEFAULT_SIZE);
4668 return XXH_OK;
4669}
4670
4671XXH_PUBLIC_API XXH_errorcode
4672XXH3_128bits_update(XXH3_state_t* state, const void* input, size_t len)
4673{
4674 return XXH3_update(state, (const xxh_u8*)input, len,
4675 XXH3_accumulate_512, XXH3_scrambleAcc);
4676}
4677
4678XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_digest (const XXH3_state_t* state)
4679{
4680 const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret;
4681 if (state->totalLen > XXH3_MIDSIZE_MAX) {
4682 XXH_ALIGN(XXH_ACC_ALIGN) XXH64_hash_t acc[XXH_ACC_NB];
4683 XXH3_digest_long(acc, state, secret);
4684 XXH_ASSERT(state->secretLimit + XXH_STRIPE_LEN >= sizeof(acc) + XXH_SECRET_MERGEACCS_START);
4685 { XXH128_hash_t h128;
4686 h128.low64 = XXH3_mergeAccs(acc,
4687 secret + XXH_SECRET_MERGEACCS_START,
4688 (xxh_u64)state->totalLen * XXH_PRIME64_1);
4689 h128.high64 = XXH3_mergeAccs(acc,
4690 secret + state->secretLimit + XXH_STRIPE_LEN
4691 - sizeof(acc) - XXH_SECRET_MERGEACCS_START,
4692 ~((xxh_u64)state->totalLen * XXH_PRIME64_2));
4693 return h128;
4694 }
4695 }
4696 /* len <= XXH3_MIDSIZE_MAX : short code */
4697 if (state->seed)
4698 return XXH3_128bits_withSeed(state->buffer, (size_t)state->totalLen, state->seed);
4699 return XXH3_128bits_withSecret(state->buffer, (size_t)(state->totalLen),
4700 secret, state->secretLimit + XXH_STRIPE_LEN);
4701}
4702
4703/* 128-bit utility functions */
4704
4705#include <string.h> /* memcmp, memcpy */
4706
4707/* return : 1 is equal, 0 if different */
4708XXH_PUBLIC_API int XXH128_isEqual(XXH128_hash_t h1, XXH128_hash_t h2)
4709{
4710 /* note : XXH128_hash_t is compact, it has no padding byte */
4711 return !(memcmp(&h1, &h2, sizeof(h1)));
4712}
4713
4714/* This prototype is compatible with stdlib's qsort().
4715 * return : >0 if *h128_1 > *h128_2
4716 * <0 if *h128_1 < *h128_2
4717 * =0 if *h128_1 == *h128_2 */
4718XXH_PUBLIC_API int XXH128_cmp(const void* h128_1, const void* h128_2)
4719{
4720 XXH128_hash_t const h1 = *(const XXH128_hash_t*)h128_1;
4721 XXH128_hash_t const h2 = *(const XXH128_hash_t*)h128_2;
4722 int const hcmp = (h1.high64 > h2.high64) - (h2.high64 > h1.high64);
4723 /* note : bets that, in most cases, hash values are different */
4724 if (hcmp) return hcmp;
4725 return (h1.low64 > h2.low64) - (h2.low64 > h1.low64);
4726}
4727
4728
4729/*====== Canonical representation ======*/
4730XXH_PUBLIC_API void
4731XXH128_canonicalFromHash(XXH128_canonical_t* dst, XXH128_hash_t hash)
4732{
4733 XXH_STATIC_ASSERT(sizeof(XXH128_canonical_t) == sizeof(XXH128_hash_t));
4734 if (XXH_CPU_LITTLE_ENDIAN) {
4735 hash.high64 = XXH_swap64(hash.high64);
4736 hash.low64 = XXH_swap64(hash.low64);
4737 }
4738 memcpy(dst, &hash.high64, sizeof(hash.high64));
4739 memcpy((char*)dst + sizeof(hash.high64), &hash.low64, sizeof(hash.low64));
4740}
4741
4742XXH_PUBLIC_API XXH128_hash_t
4743XXH128_hashFromCanonical(const XXH128_canonical_t* src)
4744{
4745 XXH128_hash_t h;
4746 h.high64 = XXH_readBE64(src);
4747 h.low64 = XXH_readBE64(src->digest + 8);
4748 return h;
4749}
4750
4751/* Pop our optimization override from above */
4752#if XXH_VECTOR == XXH_AVX2 /* AVX2 */ \
4753 && defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \
4754 && defined(__OPTIMIZE__) && !defined(__OPTIMIZE_SIZE__) /* respect -O0 and -Os */
4755# pragma GCC pop_options
4756#endif
4757
4758#endif /* XXH_NO_LONG_LONG */
4759
4760
4761#endif /* XXH_IMPLEMENTATION */
Willy Tarreaub5684e02015-04-27 11:59:40 +02004762
4763
4764#if defined (__cplusplus)
4765}
4766#endif