| /* |
| * Generic code for native (BSD-compatible) sockets |
| * |
| * Copyright 2000-2020 Willy Tarreau <w@1wt.eu> |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| * |
| */ |
| |
| #define _GNU_SOURCE |
| #include <ctype.h> |
| #include <errno.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <time.h> |
| |
| #include <sys/param.h> |
| #include <sys/socket.h> |
| #include <sys/types.h> |
| |
| #include <net/if.h> |
| |
| #include <haproxy/api.h> |
| #include <haproxy/activity.h> |
| #include <haproxy/connection.h> |
| #include <haproxy/listener.h> |
| #include <haproxy/log.h> |
| #include <haproxy/namespace.h> |
| #include <haproxy/protocol-t.h> |
| #include <haproxy/proto_sockpair.h> |
| #include <haproxy/sock.h> |
| #include <haproxy/sock_inet.h> |
| #include <haproxy/tools.h> |
| |
| #define SOCK_XFER_OPT_FOREIGN 0x000000001 |
| #define SOCK_XFER_OPT_V6ONLY 0x000000002 |
| #define SOCK_XFER_OPT_DGRAM 0x000000004 |
| |
| /* the list of remaining sockets transferred from an older process */ |
| struct xfer_sock_list { |
| int fd; |
| int options; /* socket options as SOCK_XFER_OPT_* */ |
| char *iface; |
| char *namespace; |
| int if_namelen; |
| int ns_namelen; |
| struct xfer_sock_list *prev; |
| struct xfer_sock_list *next; |
| struct sockaddr_storage addr; |
| }; |
| |
| static struct xfer_sock_list *xfer_sock_list; |
| |
| |
| /* Accept an incoming connection from listener <l>, and return it, as well as |
| * a CO_AC_* status code into <status> if not null. Null is returned on error. |
| * <l> must be a valid listener with a valid frontend. |
| */ |
| struct connection *sock_accept_conn(struct listener *l, int *status) |
| { |
| #ifdef USE_ACCEPT4 |
| static int accept4_broken; |
| #endif |
| struct proxy *p = l->bind_conf->frontend; |
| struct connection *conn = NULL; |
| struct sockaddr_storage *addr = NULL; |
| socklen_t laddr; |
| int ret; |
| int cfd; |
| |
| if (!sockaddr_alloc(&addr, NULL, 0)) |
| goto fail_addr; |
| |
| /* accept() will mark all accepted FDs O_NONBLOCK and the ones accepted |
| * in the master process as FD_CLOEXEC. It's not done for workers |
| * because 1) workers are not supposed to execute anything so there's |
| * no reason for uselessly slowing down everything, and 2) that would |
| * prevent us from implementing fd passing in the future. |
| */ |
| #ifdef USE_ACCEPT4 |
| laddr = sizeof(*conn->src); |
| |
| /* only call accept4() if it's known to be safe, otherwise fallback to |
| * the legacy accept() + fcntl(). |
| */ |
| if (unlikely(accept4_broken) || |
| (((cfd = accept4(l->rx.fd, (struct sockaddr*)addr, &laddr, |
| SOCK_NONBLOCK | (master ? SOCK_CLOEXEC : 0))) == -1) && |
| (errno == ENOSYS || errno == EINVAL || errno == EBADF) && |
| ((accept4_broken = 1)))) |
| #endif |
| { |
| laddr = sizeof(*conn->src); |
| if ((cfd = accept(l->rx.fd, (struct sockaddr*)addr, &laddr)) != -1) { |
| fd_set_nonblock(cfd); |
| if (master) |
| fd_set_cloexec(cfd); |
| } |
| } |
| |
| if (likely(cfd != -1)) { |
| if (unlikely(cfd >= global.maxsock)) { |
| send_log(p, LOG_EMERG, |
| "Proxy %s reached the configured maximum connection limit. Please check the global 'maxconn' value.\n", |
| p->id); |
| goto fail_conn; |
| } |
| |
| if (unlikely(port_is_restricted(addr, HA_PROTO_TCP))) |
| goto fail_conn; |
| |
| /* Perfect, the connection was accepted */ |
| conn = conn_new(&l->obj_type); |
| if (!conn) |
| goto fail_conn; |
| |
| conn->src = addr; |
| conn->handle.fd = cfd; |
| ret = CO_AC_DONE; |
| goto done; |
| } |
| |
| /* error conditions below */ |
| sockaddr_free(&addr); |
| |
| switch (errno) { |
| #if defined(EWOULDBLOCK) && defined(EAGAIN) && EWOULDBLOCK != EAGAIN |
| case EWOULDBLOCK: |
| #endif |
| case EAGAIN: |
| ret = CO_AC_DONE; /* nothing more to accept */ |
| if (fdtab[l->rx.fd].state & (FD_POLL_HUP|FD_POLL_ERR)) { |
| /* the listening socket might have been disabled in a shared |
| * process and we're a collateral victim. We'll just pause for |
| * a while in case it comes back. In the mean time, we need to |
| * clear this sticky flag. |
| */ |
| _HA_ATOMIC_AND(&fdtab[l->rx.fd].state, ~(FD_POLL_HUP|FD_POLL_ERR)); |
| ret = CO_AC_PAUSE; |
| } |
| fd_cant_recv(l->rx.fd); |
| break; |
| |
| case EINVAL: |
| /* might be trying to accept on a shut fd (eg: soft stop) */ |
| ret = CO_AC_PAUSE; |
| break; |
| |
| case EINTR: |
| case ECONNABORTED: |
| ret = CO_AC_RETRY; |
| break; |
| |
| case ENFILE: |
| if (p) |
| send_log(p, LOG_EMERG, |
| "Proxy %s reached system FD limit (maxsock=%d). Please check system tunables.\n", |
| p->id, global.maxsock); |
| ret = CO_AC_PAUSE; |
| break; |
| |
| case EMFILE: |
| if (p) |
| send_log(p, LOG_EMERG, |
| "Proxy %s reached process FD limit (maxsock=%d). Please check 'ulimit-n' and restart.\n", |
| p->id, global.maxsock); |
| ret = CO_AC_PAUSE; |
| break; |
| |
| case ENOBUFS: |
| case ENOMEM: |
| if (p) |
| send_log(p, LOG_EMERG, |
| "Proxy %s reached system memory limit (maxsock=%d). Please check system tunables.\n", |
| p->id, global.maxsock); |
| ret = CO_AC_PAUSE; |
| break; |
| |
| default: |
| /* unexpected result, let's give up and let other tasks run */ |
| ret = CO_AC_YIELD; |
| } |
| done: |
| if (status) |
| *status = ret; |
| return conn; |
| |
| fail_conn: |
| sockaddr_free(&addr); |
| /* The accept call already succeeded by the time we try to allocate the connection, |
| * we need to close it in case of failure. */ |
| close(cfd); |
| fail_addr: |
| ret = CO_AC_PAUSE; |
| goto done; |
| } |
| |
| /* Create a socket to connect to the server in conn->dst (which MUST be valid), |
| * using the configured namespace if needed, or the one passed by the proxy |
| * protocol if required to do so. It ultimately calls socket() or socketat() |
| * and returns the FD or error code. |
| */ |
| int sock_create_server_socket(struct connection *conn) |
| { |
| const struct netns_entry *ns = NULL; |
| |
| #ifdef USE_NS |
| if (objt_server(conn->target)) { |
| if (__objt_server(conn->target)->flags & SRV_F_USE_NS_FROM_PP) |
| ns = conn->proxy_netns; |
| else |
| ns = __objt_server(conn->target)->netns; |
| } |
| #endif |
| return my_socketat(ns, conn->dst->ss_family, SOCK_STREAM, 0); |
| } |
| |
| /* Enables receiving on receiver <rx> once already bound. */ |
| void sock_enable(struct receiver *rx) |
| { |
| if (rx->flags & RX_F_BOUND) |
| fd_want_recv_safe(rx->fd); |
| } |
| |
| /* Disables receiving on receiver <rx> once already bound. */ |
| void sock_disable(struct receiver *rx) |
| { |
| if (rx->flags & RX_F_BOUND) |
| fd_stop_recv(rx->fd); |
| } |
| |
| /* stops, unbinds and possibly closes the FD associated with receiver rx */ |
| void sock_unbind(struct receiver *rx) |
| { |
| /* There are a number of situations where we prefer to keep the FD and |
| * not to close it (unless we're stopping, of course): |
| * - worker process unbinding from a worker's non-suspendable FD (ABNS) => close |
| * - worker process unbinding from a worker's FD with socket transfer enabled => keep |
| * - master process unbinding from a master's inherited FD => keep |
| * - master process unbinding from a master's FD => close |
| * - master process unbinding from a worker's inherited FD => keep |
| * - master process unbinding from a worker's FD => close |
| * - worker process unbinding from a master's FD => close |
| * - worker process unbinding from a worker's FD => close |
| */ |
| if (rx->flags & RX_F_BOUND) |
| rx->proto->rx_disable(rx); |
| |
| if (!stopping && !master && |
| !(rx->flags & RX_F_MWORKER) && |
| !(rx->flags & RX_F_NON_SUSPENDABLE) && |
| (global.tune.options & GTUNE_SOCKET_TRANSFER)) |
| return; |
| |
| if (!stopping && master && |
| rx->flags & RX_F_INHERITED) |
| return; |
| |
| rx->flags &= ~RX_F_BOUND; |
| if (rx->fd != -1) |
| fd_delete(rx->fd); |
| rx->fd = -1; |
| } |
| |
| /* |
| * Retrieves the source address for the socket <fd>, with <dir> indicating |
| * if we're a listener (=0) or an initiator (!=0). It returns 0 in case of |
| * success, -1 in case of error. The socket's source address is stored in |
| * <sa> for <salen> bytes. |
| */ |
| int sock_get_src(int fd, struct sockaddr *sa, socklen_t salen, int dir) |
| { |
| if (dir) |
| return getsockname(fd, sa, &salen); |
| else |
| return getpeername(fd, sa, &salen); |
| } |
| |
| /* |
| * Retrieves the original destination address for the socket <fd>, with <dir> |
| * indicating if we're a listener (=0) or an initiator (!=0). It returns 0 in |
| * case of success, -1 in case of error. The socket's source address is stored |
| * in <sa> for <salen> bytes. |
| */ |
| int sock_get_dst(int fd, struct sockaddr *sa, socklen_t salen, int dir) |
| { |
| if (dir) |
| return getpeername(fd, sa, &salen); |
| else |
| return getsockname(fd, sa, &salen); |
| } |
| |
| /* Try to retrieve exported sockets from worker at CLI <unixsocket>. These |
| * ones will be placed into the xfer_sock_list for later use by function |
| * sock_find_compatible_fd(). Returns 0 on success, -1 on failure. |
| */ |
| int sock_get_old_sockets(const char *unixsocket) |
| { |
| char *cmsgbuf = NULL, *tmpbuf = NULL; |
| int *tmpfd = NULL; |
| struct sockaddr_un addr; |
| struct cmsghdr *cmsg; |
| struct msghdr msghdr; |
| struct iovec iov; |
| struct xfer_sock_list *xfer_sock = NULL; |
| struct timeval tv = { .tv_sec = 1, .tv_usec = 0 }; |
| int sock = -1; |
| int ret = -1; |
| int ret2 = -1; |
| int fd_nb; |
| int got_fd = 0; |
| int cur_fd = 0; |
| size_t maxoff = 0, curoff = 0; |
| |
| if (strncmp("sockpair@", unixsocket, strlen("sockpair@")) == 0) { |
| /* sockpair for master-worker usage */ |
| int sv[2]; |
| int dst_fd; |
| |
| dst_fd = strtoll(unixsocket + strlen("sockpair@"), NULL, 0); |
| |
| if (socketpair(PF_UNIX, SOCK_STREAM, 0, sv) == -1) { |
| ha_warning("socketpair(): Cannot create socketpair. Giving up.\n"); |
| } |
| |
| if (send_fd_uxst(dst_fd, sv[0]) == -1) { |
| ha_alert("socketpair: Cannot transfer the fd %d over sockpair@%d. Giving up.\n", sv[0], dst_fd); |
| close(sv[0]); |
| close(sv[1]); |
| goto out; |
| } |
| |
| close(sv[0]); /* we don't need this side anymore */ |
| sock = sv[1]; |
| |
| } else { |
| /* Unix socket */ |
| |
| sock = socket(PF_UNIX, SOCK_STREAM, 0); |
| if (sock < 0) { |
| ha_warning("Failed to connect to the old process socket '%s'\n", unixsocket); |
| goto out; |
| } |
| |
| strncpy(addr.sun_path, unixsocket, sizeof(addr.sun_path) - 1); |
| addr.sun_path[sizeof(addr.sun_path) - 1] = 0; |
| addr.sun_family = PF_UNIX; |
| |
| ret = connect(sock, (struct sockaddr *)&addr, sizeof(addr)); |
| if (ret < 0) { |
| ha_warning("Failed to connect to the old process socket '%s'\n", unixsocket); |
| goto out; |
| } |
| |
| } |
| memset(&msghdr, 0, sizeof(msghdr)); |
| cmsgbuf = malloc(CMSG_SPACE(sizeof(int)) * MAX_SEND_FD); |
| if (!cmsgbuf) { |
| ha_warning("Failed to allocate memory to send sockets\n"); |
| goto out; |
| } |
| |
| setsockopt(sock, SOL_SOCKET, SO_RCVTIMEO, (void *)&tv, sizeof(tv)); |
| iov.iov_base = &fd_nb; |
| iov.iov_len = sizeof(fd_nb); |
| msghdr.msg_iov = &iov; |
| msghdr.msg_iovlen = 1; |
| |
| if (send(sock, "_getsocks\n", strlen("_getsocks\n"), 0) != strlen("_getsocks\n")) { |
| ha_warning("Failed to get the number of sockets to be transferred !\n"); |
| goto out; |
| } |
| |
| /* First, get the number of file descriptors to be received */ |
| if (recvmsg(sock, &msghdr, MSG_WAITALL) != sizeof(fd_nb)) { |
| ha_warning("Failed to get the number of sockets to be transferred !\n"); |
| goto out; |
| } |
| |
| if (fd_nb == 0) { |
| ret2 = 0; |
| goto out; |
| } |
| |
| tmpbuf = malloc(fd_nb * (1 + MAXPATHLEN + 1 + IFNAMSIZ + sizeof(int))); |
| if (tmpbuf == NULL) { |
| ha_warning("Failed to allocate memory while receiving sockets\n"); |
| goto out; |
| } |
| |
| tmpfd = malloc(fd_nb * sizeof(int)); |
| if (tmpfd == NULL) { |
| ha_warning("Failed to allocate memory while receiving sockets\n"); |
| goto out; |
| } |
| |
| msghdr.msg_control = cmsgbuf; |
| msghdr.msg_controllen = CMSG_SPACE(sizeof(int)) * MAX_SEND_FD; |
| iov.iov_len = MAX_SEND_FD * (1 + MAXPATHLEN + 1 + IFNAMSIZ + sizeof(int)); |
| |
| do { |
| int ret3; |
| |
| iov.iov_base = tmpbuf + curoff; |
| |
| ret = recvmsg(sock, &msghdr, 0); |
| |
| if (ret == -1 && errno == EINTR) |
| continue; |
| |
| if (ret <= 0) |
| break; |
| |
| /* Send an ack to let the sender know we got the sockets |
| * and it can send some more |
| */ |
| do { |
| ret3 = send(sock, &got_fd, sizeof(got_fd), 0); |
| } while (ret3 == -1 && errno == EINTR); |
| |
| for (cmsg = CMSG_FIRSTHDR(&msghdr); cmsg != NULL; cmsg = CMSG_NXTHDR(&msghdr, cmsg)) { |
| if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_RIGHTS) { |
| size_t totlen = cmsg->cmsg_len - CMSG_LEN(0); |
| |
| if (totlen / sizeof(int) + got_fd > fd_nb) { |
| ha_warning("Got to many sockets !\n"); |
| goto out; |
| } |
| |
| /* |
| * Be paranoid and use memcpy() to avoid any |
| * potential alignment issue. |
| */ |
| memcpy(&tmpfd[got_fd], CMSG_DATA(cmsg), totlen); |
| got_fd += totlen / sizeof(int); |
| } |
| } |
| curoff += ret; |
| } while (got_fd < fd_nb); |
| |
| if (got_fd != fd_nb) { |
| ha_warning("We didn't get the expected number of sockets (expecting %d got %d)\n", |
| fd_nb, got_fd); |
| goto out; |
| } |
| |
| maxoff = curoff; |
| curoff = 0; |
| |
| for (cur_fd = 0; cur_fd < got_fd; cur_fd++) { |
| int fd = tmpfd[cur_fd]; |
| socklen_t socklen; |
| int val; |
| int len; |
| |
| xfer_sock = calloc(1, sizeof(*xfer_sock)); |
| if (!xfer_sock) { |
| ha_warning("Failed to allocate memory in get_old_sockets() !\n"); |
| break; |
| } |
| xfer_sock->fd = -1; |
| |
| socklen = sizeof(xfer_sock->addr); |
| if (getsockname(fd, (struct sockaddr *)&xfer_sock->addr, &socklen) != 0) { |
| ha_warning("Failed to get socket address\n"); |
| ha_free(&xfer_sock); |
| continue; |
| } |
| |
| if (curoff >= maxoff) { |
| ha_warning("Inconsistency while transferring sockets\n"); |
| goto out; |
| } |
| |
| len = tmpbuf[curoff++]; |
| if (len > 0) { |
| /* We have a namespace */ |
| if (curoff + len > maxoff) { |
| ha_warning("Inconsistency while transferring sockets\n"); |
| goto out; |
| } |
| xfer_sock->namespace = malloc(len + 1); |
| if (!xfer_sock->namespace) { |
| ha_warning("Failed to allocate memory while transferring sockets\n"); |
| goto out; |
| } |
| memcpy(xfer_sock->namespace, &tmpbuf[curoff], len); |
| xfer_sock->namespace[len] = 0; |
| xfer_sock->ns_namelen = len; |
| curoff += len; |
| } |
| |
| if (curoff >= maxoff) { |
| ha_warning("Inconsistency while transferring sockets\n"); |
| goto out; |
| } |
| |
| len = tmpbuf[curoff++]; |
| if (len > 0) { |
| /* We have an interface */ |
| if (curoff + len > maxoff) { |
| ha_warning("Inconsistency while transferring sockets\n"); |
| goto out; |
| } |
| xfer_sock->iface = malloc(len + 1); |
| if (!xfer_sock->iface) { |
| ha_warning("Failed to allocate memory while transferring sockets\n"); |
| goto out; |
| } |
| memcpy(xfer_sock->iface, &tmpbuf[curoff], len); |
| xfer_sock->iface[len] = 0; |
| xfer_sock->if_namelen = len; |
| curoff += len; |
| } |
| |
| if (curoff + sizeof(int) > maxoff) { |
| ha_warning("Inconsistency while transferring sockets\n"); |
| goto out; |
| } |
| |
| /* we used to have 32 bits of listener options here but we don't |
| * use them anymore. |
| */ |
| curoff += sizeof(int); |
| |
| /* determine the foreign status directly from the socket itself */ |
| if (sock_inet_is_foreign(fd, xfer_sock->addr.ss_family)) |
| xfer_sock->options |= SOCK_XFER_OPT_FOREIGN; |
| |
| socklen = sizeof(val); |
| if (getsockopt(fd, SOL_SOCKET, SO_TYPE, &val, &socklen) == 0 && val == SOCK_DGRAM) |
| xfer_sock->options |= SOCK_XFER_OPT_DGRAM; |
| |
| #if defined(IPV6_V6ONLY) |
| /* keep only the v6only flag depending on what's currently |
| * active on the socket, and always drop the v4v6 one. |
| */ |
| socklen = sizeof(val); |
| if (xfer_sock->addr.ss_family == AF_INET6 && |
| getsockopt(fd, IPPROTO_IPV6, IPV6_V6ONLY, &val, &socklen) == 0 && val > 0) |
| xfer_sock->options |= SOCK_XFER_OPT_V6ONLY; |
| #endif |
| |
| xfer_sock->fd = fd; |
| if (xfer_sock_list) |
| xfer_sock_list->prev = xfer_sock; |
| xfer_sock->next = xfer_sock_list; |
| xfer_sock->prev = NULL; |
| xfer_sock_list = xfer_sock; |
| xfer_sock = NULL; |
| } |
| |
| ret2 = 0; |
| out: |
| /* If we failed midway make sure to close the remaining |
| * file descriptors |
| */ |
| if (tmpfd != NULL && cur_fd < got_fd) { |
| for (; cur_fd < got_fd; cur_fd++) { |
| close(tmpfd[cur_fd]); |
| } |
| } |
| |
| free(tmpbuf); |
| free(tmpfd); |
| free(cmsgbuf); |
| |
| if (sock != -1) |
| close(sock); |
| |
| if (xfer_sock) { |
| free(xfer_sock->namespace); |
| free(xfer_sock->iface); |
| if (xfer_sock->fd != -1) |
| close(xfer_sock->fd); |
| free(xfer_sock); |
| } |
| return (ret2); |
| } |
| |
| /* When binding the receivers, check if a socket has been sent to us by the |
| * previous process that we could reuse, instead of creating a new one. Note |
| * that some address family-specific options are checked on the listener and |
| * on the socket. Typically for AF_INET and AF_INET6, we check for transparent |
| * mode, and for AF_INET6 we also check for "v4v6" or "v6only". The reused |
| * socket is automatically removed from the list so that it's not proposed |
| * anymore. |
| */ |
| int sock_find_compatible_fd(const struct receiver *rx) |
| { |
| struct xfer_sock_list *xfer_sock = xfer_sock_list; |
| int options = 0; |
| int if_namelen = 0; |
| int ns_namelen = 0; |
| int ret = -1; |
| |
| if (!rx->proto->fam->addrcmp) |
| return -1; |
| |
| if (rx->proto->proto_type == PROTO_TYPE_DGRAM) |
| options |= SOCK_XFER_OPT_DGRAM; |
| |
| if (rx->settings->options & RX_O_FOREIGN) |
| options |= SOCK_XFER_OPT_FOREIGN; |
| |
| if (rx->addr.ss_family == AF_INET6) { |
| /* Prepare to match the v6only option against what we really want. Note |
| * that sadly the two options are not exclusive to each other and that |
| * v6only is stronger than v4v6. |
| */ |
| if ((rx->settings->options & RX_O_V6ONLY) || |
| (sock_inet6_v6only_default && !(rx->settings->options & RX_O_V4V6))) |
| options |= SOCK_XFER_OPT_V6ONLY; |
| } |
| |
| if (rx->settings->interface) |
| if_namelen = strlen(rx->settings->interface); |
| #ifdef USE_NS |
| if (rx->settings->netns) |
| ns_namelen = rx->settings->netns->name_len; |
| #endif |
| |
| while (xfer_sock) { |
| if ((options == xfer_sock->options) && |
| (if_namelen == xfer_sock->if_namelen) && |
| (ns_namelen == xfer_sock->ns_namelen) && |
| (!if_namelen || strcmp(rx->settings->interface, xfer_sock->iface) == 0) && |
| #ifdef USE_NS |
| (!ns_namelen || strcmp(rx->settings->netns->node.key, xfer_sock->namespace) == 0) && |
| #endif |
| rx->proto->fam->addrcmp(&xfer_sock->addr, &rx->addr) == 0) |
| break; |
| xfer_sock = xfer_sock->next; |
| } |
| |
| if (xfer_sock != NULL) { |
| ret = xfer_sock->fd; |
| if (xfer_sock == xfer_sock_list) |
| xfer_sock_list = xfer_sock->next; |
| if (xfer_sock->prev) |
| xfer_sock->prev->next = xfer_sock->next; |
| if (xfer_sock->next) |
| xfer_sock->next->prev = xfer_sock->prev; |
| free(xfer_sock->iface); |
| free(xfer_sock->namespace); |
| free(xfer_sock); |
| } |
| return ret; |
| } |
| |
| /* After all protocols are bound, there may remain some old sockets that have |
| * been removed between the previous config and the new one. These ones must |
| * be dropped, otherwise they will remain open and may prevent a service from |
| * restarting. |
| */ |
| void sock_drop_unused_old_sockets() |
| { |
| while (xfer_sock_list != NULL) { |
| struct xfer_sock_list *tmpxfer = xfer_sock_list->next; |
| |
| close(xfer_sock_list->fd); |
| free(xfer_sock_list->iface); |
| free(xfer_sock_list->namespace); |
| free(xfer_sock_list); |
| xfer_sock_list = tmpxfer; |
| } |
| } |
| |
| /* Tests if the receiver supports accepting connections. Returns positive on |
| * success, 0 if not possible, negative if the socket is non-recoverable. The |
| * rationale behind this is that inherited FDs may be broken and that shared |
| * FDs might have been paused by another process. |
| */ |
| int sock_accepting_conn(const struct receiver *rx) |
| { |
| int opt_val = 0; |
| socklen_t opt_len = sizeof(opt_val); |
| |
| if (getsockopt(rx->fd, SOL_SOCKET, SO_ACCEPTCONN, &opt_val, &opt_len) == -1) |
| return -1; |
| |
| return opt_val; |
| } |
| |
| /* This is the FD handler IO callback for stream sockets configured for |
| * accepting incoming connections. It's a pass-through to listener_accept() |
| * which will iterate over the listener protocol's accept_conn() function. |
| * The FD's owner must be a listener. |
| */ |
| void sock_accept_iocb(int fd) |
| { |
| struct listener *l = fdtab[fd].owner; |
| |
| if (!l) |
| return; |
| |
| BUG_ON(!!master != !!(l->rx.flags & RX_F_MWORKER)); |
| listener_accept(l); |
| } |
| |
| /* This completes the initialization of connection <conn> by inserting its FD |
| * into the fdtab, associating it with the regular connection handler. It will |
| * be bound to the current thread only. This call cannot fail. |
| */ |
| void sock_conn_ctrl_init(struct connection *conn) |
| { |
| BUG_ON(conn->flags & CO_FL_FDLESS); |
| fd_insert(conn->handle.fd, conn, sock_conn_iocb, tgid, ti->ltid_bit); |
| } |
| |
| /* This completes the release of connection <conn> by removing its FD from the |
| * fdtab and deleting it. The connection must not use the FD anymore past this |
| * point. The FD may be modified in the connection. |
| */ |
| void sock_conn_ctrl_close(struct connection *conn) |
| { |
| BUG_ON(conn->flags & CO_FL_FDLESS); |
| fd_delete(conn->handle.fd); |
| conn->handle.fd = DEAD_FD_MAGIC; |
| } |
| |
| /* This is the callback which is set when a connection establishment is pending |
| * and we have nothing to send. It may update the FD polling status to indicate |
| * !READY. It returns 0 if it fails in a fatal way or needs to poll to go |
| * further, otherwise it returns non-zero and removes the CO_FL_WAIT_L4_CONN |
| * flag from the connection's flags. In case of error, it sets CO_FL_ERROR and |
| * leaves the error code in errno. |
| */ |
| int sock_conn_check(struct connection *conn) |
| { |
| struct sockaddr_storage *addr; |
| int fd = conn->handle.fd; |
| |
| if (conn->flags & CO_FL_ERROR) |
| return 0; |
| |
| if (!conn_ctrl_ready(conn)) |
| return 0; |
| |
| if (!(conn->flags & CO_FL_WAIT_L4_CONN)) |
| return 1; /* strange we were called while ready */ |
| |
| BUG_ON(conn->flags & CO_FL_FDLESS); |
| |
| if (!fd_send_ready(fd) && !(fdtab[fd].state & (FD_POLL_ERR|FD_POLL_HUP))) |
| return 0; |
| |
| /* Here we have 2 cases : |
| * - modern pollers, able to report ERR/HUP. If these ones return any |
| * of these flags then it's likely a failure, otherwise it possibly |
| * is a success (i.e. there may have been data received just before |
| * the error was reported). |
| * - select, which doesn't report these and with which it's always |
| * necessary either to try connect() again or to check for SO_ERROR. |
| * In order to simplify everything, we double-check using connect() as |
| * soon as we meet either of these delicate situations. Note that |
| * SO_ERROR would clear the error after reporting it! |
| */ |
| if (cur_poller.flags & HAP_POLL_F_ERRHUP) { |
| /* modern poller, able to report ERR/HUP */ |
| if ((fdtab[fd].state & (FD_POLL_IN|FD_POLL_ERR|FD_POLL_HUP)) == FD_POLL_IN) |
| goto done; |
| if ((fdtab[fd].state & (FD_POLL_OUT|FD_POLL_ERR|FD_POLL_HUP)) == FD_POLL_OUT) |
| goto done; |
| if (!(fdtab[fd].state & (FD_POLL_ERR|FD_POLL_HUP))) |
| goto wait; |
| /* error present, fall through common error check path */ |
| } |
| |
| /* Use connect() to check the state of the socket. This has the double |
| * advantage of *not* clearing the error (so that health checks can |
| * still use getsockopt(SO_ERROR)) and giving us the following info : |
| * - error |
| * - connecting (EALREADY, EINPROGRESS) |
| * - connected (EISCONN, 0) |
| */ |
| addr = conn->dst; |
| if ((conn->flags & CO_FL_SOCKS4) && obj_type(conn->target) == OBJ_TYPE_SERVER) |
| addr = &objt_server(conn->target)->socks4_addr; |
| |
| if (connect(fd, (const struct sockaddr *)addr, get_addr_len(addr)) == -1) { |
| if (errno == EALREADY || errno == EINPROGRESS) |
| goto wait; |
| |
| if (errno && errno != EISCONN) |
| goto out_error; |
| } |
| |
| done: |
| /* The FD is ready now, we'll mark the connection as complete and |
| * forward the event to the transport layer which will notify the |
| * data layer. |
| */ |
| conn->flags &= ~CO_FL_WAIT_L4_CONN; |
| fd_may_send(fd); |
| fd_cond_recv(fd); |
| errno = 0; // make health checks happy |
| return 1; |
| |
| out_error: |
| /* Write error on the file descriptor. Report it to the connection |
| * and disable polling on this FD. |
| */ |
| conn->flags |= CO_FL_ERROR | CO_FL_SOCK_RD_SH | CO_FL_SOCK_WR_SH; |
| HA_ATOMIC_AND(&fdtab[fd].state, ~FD_LINGER_RISK); |
| fd_stop_both(fd); |
| return 0; |
| |
| wait: |
| /* we may arrive here due to connect() misleadingly reporting EALREADY |
| * in some corner cases while the system disagrees and reports an error |
| * on the FD. |
| */ |
| if (fdtab[fd].state & FD_POLL_ERR) |
| goto out_error; |
| |
| fd_cant_send(fd); |
| fd_want_send(fd); |
| return 0; |
| } |
| |
| /* I/O callback for fd-based connections. It calls the read/write handlers |
| * provided by the connection's sock_ops, which must be valid. |
| */ |
| void sock_conn_iocb(int fd) |
| { |
| struct connection *conn = fdtab[fd].owner; |
| unsigned int flags; |
| int need_wake = 0; |
| struct tasklet *t; |
| |
| if (unlikely(!conn)) { |
| activity[tid].conn_dead++; |
| return; |
| } |
| |
| flags = conn->flags & ~CO_FL_ERROR; /* ensure to call the wake handler upon error */ |
| |
| if (unlikely(conn->flags & CO_FL_WAIT_L4_CONN) && |
| ((fd_send_ready(fd) && fd_send_active(fd)) || |
| (fd_recv_ready(fd) && fd_recv_active(fd)))) { |
| /* Still waiting for a connection to establish and nothing was |
| * attempted yet to probe the connection. this will clear the |
| * CO_FL_WAIT_L4_CONN flag on success. |
| */ |
| if (!sock_conn_check(conn)) |
| goto leave; |
| need_wake = 1; |
| } |
| |
| if (fd_send_ready(fd) && fd_send_active(fd)) { |
| /* force reporting of activity by clearing the previous flags : |
| * we'll have at least ERROR or CONNECTED at the end of an I/O, |
| * both of which will be detected below. |
| */ |
| flags = 0; |
| if (conn->subs && conn->subs->events & SUB_RETRY_SEND) { |
| t = conn->subs->tasklet; |
| need_wake = 0; // wake will be called after this I/O |
| conn->subs->events &= ~SUB_RETRY_SEND; |
| if (!conn->subs->events) |
| conn->subs = NULL; |
| tasklet_wakeup(t); |
| } |
| fd_stop_send(fd); |
| } |
| |
| /* The data transfer starts here and stops on error and handshakes. Note |
| * that we must absolutely test conn->xprt at each step in case it suddenly |
| * changes due to a quick unexpected close(). |
| */ |
| if (fd_recv_ready(fd) && fd_recv_active(fd)) { |
| /* force reporting of activity by clearing the previous flags : |
| * we'll have at least ERROR or CONNECTED at the end of an I/O, |
| * both of which will be detected below. |
| */ |
| flags = 0; |
| if (conn->subs && conn->subs->events & SUB_RETRY_RECV) { |
| t = conn->subs->tasklet; |
| need_wake = 0; // wake will be called after this I/O |
| conn->subs->events &= ~SUB_RETRY_RECV; |
| if (!conn->subs->events) |
| conn->subs = NULL; |
| tasklet_wakeup(t); |
| } |
| fd_stop_recv(fd); |
| } |
| |
| leave: |
| /* we may have to finish to install a mux or to wake it up based on |
| * what was just done above. It may kill the connection so we have to |
| * be prpared not to use it anymore. |
| */ |
| if (conn_notify_mux(conn, flags, need_wake) < 0) |
| return; |
| |
| /* commit polling changes in case of error. |
| * WT: it seems that the last case where this could still be relevant |
| * is if a mux wake function above report a connection error but does |
| * not stop polling. Shouldn't we enforce this into the mux instead of |
| * having to deal with this ? |
| */ |
| if (unlikely(conn->flags & CO_FL_ERROR)) { |
| if (conn_ctrl_ready(conn)) |
| fd_stop_both(fd); |
| |
| if (conn->subs) { |
| t = conn->subs->tasklet; |
| conn->subs->events = 0; |
| if (!conn->subs->events) |
| conn->subs = NULL; |
| tasklet_wakeup(t); |
| } |
| } |
| } |
| |
| /* Drains possibly pending incoming data on the file descriptor attached to the |
| * connection. This is used to know whether we need to disable lingering on |
| * close. Returns non-zero if it is safe to close without disabling lingering, |
| * otherwise zero. |
| */ |
| int sock_drain(struct connection *conn) |
| { |
| int turns = 2; |
| int fd = conn->handle.fd; |
| int len; |
| |
| BUG_ON(conn->flags & CO_FL_FDLESS); |
| |
| if (fdtab[fd].state & (FD_POLL_ERR|FD_POLL_HUP)) |
| goto shut; |
| |
| if (!(conn->flags & CO_FL_WANT_DRAIN) && !fd_recv_ready(fd)) |
| return 0; |
| |
| /* no drain function defined, use the generic one */ |
| |
| while (turns) { |
| #ifdef MSG_TRUNC_CLEARS_INPUT |
| len = recv(fd, NULL, INT_MAX, MSG_DONTWAIT | MSG_NOSIGNAL | MSG_TRUNC); |
| if (len == -1 && errno == EFAULT) |
| #endif |
| len = recv(fd, trash.area, trash.size, MSG_DONTWAIT | MSG_NOSIGNAL); |
| |
| if (len == 0) |
| goto shut; |
| |
| if (len < 0) { |
| if (errno == EAGAIN || errno == EWOULDBLOCK) { |
| /* connection not closed yet */ |
| fd_cant_recv(fd); |
| break; |
| } |
| if (errno == EINTR) /* oops, try again */ |
| continue; |
| /* other errors indicate a dead connection, fine. */ |
| goto shut; |
| } |
| /* OK we read some data, let's try again once */ |
| turns--; |
| } |
| |
| /* some data are still present, give up */ |
| return 0; |
| |
| shut: |
| /* we're certain the connection was shut down */ |
| HA_ATOMIC_AND(&fdtab[fd].state, ~FD_LINGER_RISK); |
| return 1; |
| } |
| |
| /* Checks the connection's FD for readiness of events <event_type>, which may |
| * only be a combination of SUB_RETRY_RECV and SUB_RETRY_SEND. Those which are |
| * ready are returned. The ones that are not ready are enabled. The caller is |
| * expected to do what is needed to handle ready events and to deal with |
| * subsequent wakeups caused by the requested events' readiness. |
| */ |
| int sock_check_events(struct connection *conn, int event_type) |
| { |
| int ret = 0; |
| |
| BUG_ON(conn->flags & CO_FL_FDLESS); |
| |
| if (event_type & SUB_RETRY_RECV) { |
| if (fd_recv_ready(conn->handle.fd)) |
| ret |= SUB_RETRY_RECV; |
| else |
| fd_want_recv(conn->handle.fd); |
| } |
| |
| if (event_type & SUB_RETRY_SEND) { |
| if (fd_send_ready(conn->handle.fd)) |
| ret |= SUB_RETRY_SEND; |
| else |
| fd_want_send(conn->handle.fd); |
| } |
| |
| return ret; |
| } |
| |
| /* Ignore readiness events from connection's FD for events of types <event_type> |
| * which may only be a combination of SUB_RETRY_RECV and SUB_RETRY_SEND. |
| */ |
| void sock_ignore_events(struct connection *conn, int event_type) |
| { |
| BUG_ON(conn->flags & CO_FL_FDLESS); |
| |
| if (event_type & SUB_RETRY_RECV) |
| fd_stop_recv(conn->handle.fd); |
| |
| if (event_type & SUB_RETRY_SEND) |
| fd_stop_send(conn->handle.fd); |
| } |
| |
| /* Live check to see if a socket type supports SO_REUSEPORT for the specified |
| * family and socket() settings. Returns non-zero on success, 0 on failure. Use |
| * protocol_supports_flag() instead, which checks cached flags. |
| */ |
| int _sock_supports_reuseport(const struct proto_fam *fam, int type, int protocol) |
| { |
| int ret = 0; |
| #ifdef SO_REUSEPORT |
| struct sockaddr_storage ss; |
| socklen_t sl = sizeof(ss); |
| int fd1, fd2; |
| |
| /* for the check, we'll need two sockets */ |
| fd1 = fd2 = -1; |
| |
| /* ignore custom sockets */ |
| if (!fam || fam->sock_domain >= AF_MAX) |
| goto leave; |
| |
| fd1 = socket(fam->sock_domain, type, protocol); |
| if (fd1 < 0) |
| goto leave; |
| |
| if (setsockopt(fd1, SOL_SOCKET, SO_REUSEPORT, &one, sizeof(one)) < 0) |
| goto leave; |
| |
| /* bind to any address assigned by the kernel, we'll then try to do it twice */ |
| memset(&ss, 0, sizeof(ss)); |
| ss.ss_family = fam->sock_family; |
| if (bind(fd1, (struct sockaddr *)&ss, fam->sock_addrlen) < 0) |
| goto leave; |
| |
| if (getsockname(fd1, (struct sockaddr *)&ss, &sl) < 0) |
| goto leave; |
| |
| fd2 = socket(fam->sock_domain, type, protocol); |
| if (fd2 < 0) |
| goto leave; |
| |
| if (setsockopt(fd2, SOL_SOCKET, SO_REUSEPORT, &one, sizeof(one)) < 0) |
| goto leave; |
| |
| if (bind(fd2, (struct sockaddr *)&ss, sl) < 0) |
| goto leave; |
| |
| /* OK we could bind twice to the same address:port, REUSEPORT |
| * is supported for this protocol. |
| */ |
| ret = 1; |
| |
| leave: |
| if (fd2 >= 0) |
| close(fd2); |
| if (fd1 >= 0) |
| close(fd1); |
| #endif |
| return ret; |
| } |
| |
| /* |
| * Local variables: |
| * c-indent-level: 8 |
| * c-basic-offset: 8 |
| * End: |
| */ |