| /* |
| * Configuration condition preprocessor |
| * |
| * Copyright 2000-2021 Willy Tarreau <w@1wt.eu> |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| * |
| */ |
| |
| #include <haproxy/api.h> |
| #include <haproxy/arg.h> |
| #include <haproxy/cfgcond.h> |
| #include <haproxy/global.h> |
| #include <haproxy/proto_tcp.h> |
| #include <haproxy/tools.h> |
| |
| /* supported condition predicates */ |
| const struct cond_pred_kw cond_predicates[] = { |
| { "defined", CFG_PRED_DEFINED, ARG1(1, STR) }, |
| { "feature", CFG_PRED_FEATURE, ARG1(1, STR) }, |
| { "streq", CFG_PRED_STREQ, ARG2(2, STR, STR) }, |
| { "strneq", CFG_PRED_STRNEQ, ARG2(2, STR, STR) }, |
| { "strstr", CFG_PRED_STRSTR, ARG2(2, STR, STR) }, |
| { "version_atleast", CFG_PRED_VERSION_ATLEAST, ARG1(1, STR) }, |
| { "version_before", CFG_PRED_VERSION_BEFORE, ARG1(1, STR) }, |
| { "openssl_version_atleast", CFG_PRED_OSSL_VERSION_ATLEAST, ARG1(1, STR) }, |
| { "openssl_version_before", CFG_PRED_OSSL_VERSION_BEFORE, ARG1(1, STR) }, |
| { "ssllib_name_startswith", CFG_PRED_SSLLIB_NAME_STARTSWITH, ARG1(1, STR) }, |
| { "enabled", CFG_PRED_ENABLED, ARG1(1, STR) }, |
| { NULL, CFG_PRED_NONE, 0 } |
| }; |
| |
| /* looks up a cond predicate matching the keyword in <str>, possibly followed |
| * by a parenthesis. Returns a pointer to it or NULL if not found. |
| */ |
| const struct cond_pred_kw *cfg_lookup_cond_pred(const char *str) |
| { |
| const struct cond_pred_kw *ret; |
| int len = strcspn(str, " ("); |
| |
| for (ret = &cond_predicates[0]; ret->word; ret++) { |
| if (len != strlen(ret->word)) |
| continue; |
| if (strncmp(str, ret->word, len) != 0) |
| continue; |
| return ret; |
| } |
| return NULL; |
| } |
| |
| /* Frees <term> and its args. NULL is supported and does nothing. */ |
| void cfg_free_cond_term(struct cfg_cond_term *term) |
| { |
| if (!term) |
| return; |
| |
| if (term->type == CCTT_PAREN) { |
| cfg_free_cond_expr(term->expr); |
| term->expr = NULL; |
| } |
| |
| free_args(term->args); |
| free(term->args); |
| free(term); |
| } |
| |
| /* Parse an indirect input text as a possible config condition term. |
| * Returns <0 on parsing error, 0 if the parser is desynchronized, or >0 on |
| * success. <term> is allocated and filled with the parsed info, and <text> |
| * is updated on success to point to the first unparsed character, or is left |
| * untouched on failure. On success, the caller must free <term> using |
| * cfg_free_cond_term(). An error will be set in <err> on error, and only |
| * in this case. In this case the first bad character will be reported in |
| * <errptr>. <maxdepth> corresponds to the maximum recursion depth permitted, |
| * it is decremented on each recursive call and the parsing will fail one |
| * reaching <= 0. |
| */ |
| int cfg_parse_cond_term(const char **text, struct cfg_cond_term **term, char **err, const char **errptr, int maxdepth) |
| { |
| struct cfg_cond_term *t; |
| const char *in = *text; |
| const char *end_ptr; |
| int err_arg; |
| int nbargs; |
| char *end; |
| long val; |
| |
| while (*in == ' ' || *in == '\t') |
| in++; |
| |
| if (!*in) /* empty term does not parse */ |
| return 0; |
| |
| *term = NULL; |
| if (maxdepth <= 0) |
| goto fail0; |
| |
| t = *term = calloc(1, sizeof(**term)); |
| if (!t) { |
| memprintf(err, "memory allocation error while parsing conditional expression '%s'", *text); |
| goto fail1; |
| } |
| |
| t->type = CCTT_NONE; |
| t->args = NULL; |
| t->neg = 0; |
| |
| /* !<term> negates the term. White spaces permitted */ |
| while (*in == '!') { |
| t->neg = !t->neg; |
| do { in++; } while (*in == ' ' || *in == '\t'); |
| } |
| |
| val = strtol(in, &end, 0); |
| if (end != in) { |
| t->type = val ? CCTT_TRUE : CCTT_FALSE; |
| *text = end; |
| return 1; |
| } |
| |
| /* Try to parse '(' EXPR ')' */ |
| if (*in == '(') { |
| int ret; |
| |
| t->type = CCTT_PAREN; |
| t->args = NULL; |
| |
| do { in++; } while (*in == ' ' || *in == '\t'); |
| ret = cfg_parse_cond_expr(&in, &t->expr, err, errptr, maxdepth - 1); |
| if (ret == -1) |
| goto fail2; |
| if (ret == 0) |
| goto fail0; |
| |
| /* find the closing ')' */ |
| while (*in == ' ' || *in == '\t') |
| in++; |
| if (*in != ')') { |
| memprintf(err, "expected ')' after conditional expression '%s'", *text); |
| goto fail1; |
| } |
| do { in++; } while (*in == ' ' || *in == '\t'); |
| *text = in; |
| return 1; |
| } |
| |
| /* below we'll likely all make_arg_list() so we must return only via |
| * the <done> label which frees the arg list. |
| */ |
| t->pred = cfg_lookup_cond_pred(in); |
| if (t->pred) { |
| t->type = CCTT_PRED; |
| nbargs = make_arg_list(in + strlen(t->pred->word), -1, |
| t->pred->arg_mask, &t->args, err, |
| &end_ptr, &err_arg, NULL); |
| if (nbargs < 0) { |
| memprintf(err, "%s in argument %d of predicate '%s' used in conditional expression", *err, err_arg, t->pred->word); |
| if (errptr) |
| *errptr = end_ptr; |
| goto fail2; |
| } |
| *text = end_ptr; |
| return 1; |
| } |
| |
| fail0: |
| memprintf(err, "unparsable conditional expression '%s'", *text); |
| fail1: |
| if (errptr) |
| *errptr = *text; |
| fail2: |
| cfg_free_cond_term(*term); |
| *term = NULL; |
| return -1; |
| } |
| |
| /* evaluate a "enabled" expression. Only a subset of options are matched. It |
| * returns 1 if the option is enabled. 0 is returned is the option is not |
| * enabled or if it is not recognized. |
| */ |
| static int cfg_eval_cond_enabled(const char *str) |
| { |
| if (strcmp(str, "POLL") == 0) |
| return !!(global.tune.options & GTUNE_USE_POLL); |
| else if (strcmp(str, "EPOLL") == 0) |
| return !!(global.tune.options & GTUNE_USE_EPOLL); |
| else if (strcmp(str, "KQUEUE") == 0) |
| return !!(global.tune.options & GTUNE_USE_EPOLL); |
| else if (strcmp(str, "EVPORTS") == 0) |
| return !!(global.tune.options & GTUNE_USE_EVPORTS); |
| else if (strcmp(str, "SPLICE") == 0) |
| return !!(global.tune.options & GTUNE_USE_SPLICE); |
| else if (strcmp(str, "GETADDRINFO") == 0) |
| return !!(global.tune.options & GTUNE_USE_GAI); |
| else if (strcmp(str, "REUSEPORT") == 0) |
| return !!(proto_tcpv4.flags & PROTO_F_REUSEPORT_SUPPORTED); |
| else if (strcmp(str, "FAST-FORWARD") == 0) |
| return !!(global.tune.options & GTUNE_USE_FAST_FWD); |
| else if (strcmp(str, "SERVER-SSL-VERIFY-NONE") == 0) |
| return !!(global.ssl_server_verify == SSL_SERVER_VERIFY_NONE); |
| return 0; |
| } |
| |
| /* evaluate a condition term on a .if/.elif line. The condition was already |
| * parsed in <term>. Returns -1 on error (in which case err is filled with a |
| * message, and only in this case), 0 if the condition is false, 1 if it's |
| * true. |
| */ |
| int cfg_eval_cond_term(const struct cfg_cond_term *term, char **err) |
| { |
| int ret = -1; |
| |
| if (term->type == CCTT_FALSE) |
| ret = 0; |
| else if (term->type == CCTT_TRUE) |
| ret = 1; |
| else if (term->type == CCTT_PRED) { |
| /* here we know we have a valid predicate with valid arguments |
| * placed in term->args (which the caller will free). |
| */ |
| switch (term->pred->prd) { |
| case CFG_PRED_DEFINED: // checks if arg exists as an environment variable |
| ret = getenv(term->args[0].data.str.area) != NULL; |
| break; |
| |
| case CFG_PRED_FEATURE: { // checks if the arg matches an enabled feature |
| const char *p; |
| |
| ret = 0; // assume feature not found |
| for (p = build_features; (p = strstr(p, term->args[0].data.str.area)); p++) { |
| if (p > build_features && |
| (p[term->args[0].data.str.data] == ' ' || |
| p[term->args[0].data.str.data] == 0)) { |
| if (*(p-1) == '+') { // e.g. "+OPENSSL" |
| ret = 1; |
| break; |
| } |
| else if (*(p-1) == '-') { // e.g. "-OPENSSL" |
| ret = 0; |
| break; |
| } |
| /* it was a sub-word, let's restart from next place */ |
| } |
| } |
| break; |
| } |
| case CFG_PRED_STREQ: // checks if the two arg are equal |
| ret = strcmp(term->args[0].data.str.area, term->args[1].data.str.area) == 0; |
| break; |
| |
| case CFG_PRED_STRNEQ: // checks if the two arg are different |
| ret = strcmp(term->args[0].data.str.area, term->args[1].data.str.area) != 0; |
| break; |
| |
| case CFG_PRED_STRSTR: // checks if the 2nd arg is found in the first one |
| ret = strstr(term->args[0].data.str.area, term->args[1].data.str.area) != NULL; |
| break; |
| |
| case CFG_PRED_VERSION_ATLEAST: // checks if the current version is at least this one |
| ret = compare_current_version(term->args[0].data.str.area) <= 0; |
| break; |
| |
| case CFG_PRED_VERSION_BEFORE: // checks if the current version is older than this one |
| ret = compare_current_version(term->args[0].data.str.area) > 0; |
| break; |
| |
| case CFG_PRED_OSSL_VERSION_ATLEAST: { // checks if the current openssl version is at least this one |
| int opensslret = openssl_compare_current_version(term->args[0].data.str.area); |
| |
| if (opensslret < -1) /* can't parse the string or no openssl available */ |
| ret = -1; |
| else |
| ret = opensslret <= 0; |
| break; |
| } |
| case CFG_PRED_OSSL_VERSION_BEFORE: { // checks if the current openssl version is older than this one |
| int opensslret = openssl_compare_current_version(term->args[0].data.str.area); |
| |
| if (opensslret < -1) /* can't parse the string or no openssl available */ |
| ret = -1; |
| else |
| ret = opensslret > 0; |
| break; |
| } |
| case CFG_PRED_SSLLIB_NAME_STARTSWITH: { // checks if the current SSL library's name starts with a specified string (can be used to distinguish OpenSSL from LibreSSL or BoringSSL) |
| ret = openssl_compare_current_name(term->args[0].data.str.area) == 0; |
| break; |
| } |
| case CFG_PRED_ENABLED: { // checks if the arg matches on a subset of enabled options |
| ret = cfg_eval_cond_enabled(term->args[0].data.str.area) != 0; |
| break; |
| } |
| default: |
| memprintf(err, "internal error: unhandled conditional expression predicate '%s'", term->pred->word); |
| break; |
| } |
| } |
| else if (term->type == CCTT_PAREN) { |
| ret = cfg_eval_cond_expr(term->expr, err); |
| } |
| else { |
| memprintf(err, "internal error: unhandled condition term type %d", (int)term->type); |
| } |
| |
| if (ret >= 0 && term->neg) |
| ret = !ret; |
| return ret; |
| } |
| |
| |
| /* Frees <expr> and its terms and args. NULL is supported and does nothing. */ |
| void cfg_free_cond_and(struct cfg_cond_and *expr) |
| { |
| struct cfg_cond_and *prev; |
| |
| while (expr) { |
| cfg_free_cond_term(expr->left); |
| prev = expr; |
| expr = expr->right; |
| free(prev); |
| } |
| } |
| |
| /* Frees <expr> and its terms and args. NULL is supported and does nothing. */ |
| void cfg_free_cond_expr(struct cfg_cond_expr *expr) |
| { |
| struct cfg_cond_expr *prev; |
| |
| while (expr) { |
| cfg_free_cond_and(expr->left); |
| prev = expr; |
| expr = expr->right; |
| free(prev); |
| } |
| } |
| |
| /* Parse an indirect input text as a possible config condition sub-expr. |
| * Returns <0 on parsing error, 0 if the parser is desynchronized, or >0 on |
| * success. <expr> is filled with the parsed info, and <text> is updated on |
| * success to point to the first unparsed character, or is left untouched |
| * on failure. On success, the caller will have to free all lower-level |
| * allocated structs using cfg_free_cond_expr(). An error will be set in |
| * <err> on error, and only in this case. In this case the first bad |
| * character will be reported in <errptr>. <maxdepth> corresponds to the |
| * maximum recursion depth permitted, it is decremented on each recursive |
| * call and the parsing will fail one reaching <= 0. |
| */ |
| int cfg_parse_cond_and(const char **text, struct cfg_cond_and **expr, char **err, const char **errptr, int maxdepth) |
| { |
| struct cfg_cond_and *e; |
| const char *in = *text; |
| int ret = -1; |
| |
| if (!*in) /* empty expr does not parse */ |
| return 0; |
| |
| *expr = NULL; |
| if (maxdepth <= 0) { |
| memprintf(err, "unparsable conditional sub-expression '%s'", in); |
| if (errptr) |
| *errptr = in; |
| goto done; |
| } |
| |
| e = *expr = calloc(1, sizeof(**expr)); |
| if (!e) { |
| memprintf(err, "memory allocation error while parsing conditional expression '%s'", *text); |
| goto done; |
| } |
| |
| ret = cfg_parse_cond_term(&in, &e->left, err, errptr, maxdepth - 1); |
| if (ret == -1) // parse error, error already reported |
| goto done; |
| |
| if (ret == 0) { |
| /* ret == 0, no other way to parse this */ |
| memprintf(err, "unparsable conditional sub-expression '%s'", in); |
| if (errptr) |
| *errptr = in; |
| ret = -1; |
| goto done; |
| } |
| |
| /* ret=1, we have a term in the left hand set */ |
| |
| /* find an optional '&&' */ |
| while (*in == ' ' || *in == '\t') |
| in++; |
| |
| *text = in; |
| if (in[0] != '&' || in[1] != '&') |
| goto done; |
| |
| /* we have a '&&', let's parse the right handset's subexp */ |
| in += 2; |
| while (*in == ' ' || *in == '\t') |
| in++; |
| |
| ret = cfg_parse_cond_and(&in, &e->right, err, errptr, maxdepth - 1); |
| if (ret > 0) |
| *text = in; |
| done: |
| if (ret < 0) { |
| cfg_free_cond_and(*expr); |
| *expr = NULL; |
| } |
| return ret; |
| } |
| |
| /* Parse an indirect input text as a possible config condition term. |
| * Returns <0 on parsing error, 0 if the parser is desynchronized, or >0 on |
| * success. <expr> is filled with the parsed info, and <text> is updated on |
| * success to point to the first unparsed character, or is left untouched |
| * on failure. On success, the caller will have to free all lower-level |
| * allocated structs using cfg_free_cond_expr(). An error will be set in |
| * <err> on error, and only in this case. In this case the first bad |
| * character will be reported in <errptr>. <maxdepth> corresponds to the |
| * maximum recursion depth permitted, it is decremented on each recursive call |
| * and the parsing will fail one reaching <= 0. |
| */ |
| int cfg_parse_cond_expr(const char **text, struct cfg_cond_expr **expr, char **err, const char **errptr, int maxdepth) |
| { |
| struct cfg_cond_expr *e; |
| const char *in = *text; |
| int ret = -1; |
| |
| if (!*in) /* empty expr does not parse */ |
| return 0; |
| |
| *expr = NULL; |
| if (maxdepth <= 0) { |
| memprintf(err, "unparsable conditional expression '%s'", in); |
| if (errptr) |
| *errptr = in; |
| goto done; |
| } |
| |
| e = *expr = calloc(1, sizeof(**expr)); |
| if (!e) { |
| memprintf(err, "memory allocation error while parsing conditional expression '%s'", *text); |
| goto done; |
| } |
| |
| ret = cfg_parse_cond_and(&in, &e->left, err, errptr, maxdepth - 1); |
| if (ret == -1) // parse error, error already reported |
| goto done; |
| |
| if (ret == 0) { |
| /* ret == 0, no other way to parse this */ |
| memprintf(err, "unparsable conditional expression '%s'", in); |
| if (errptr) |
| *errptr = in; |
| ret = -1; |
| goto done; |
| } |
| |
| /* ret=1, we have a sub-expr in the left hand set */ |
| |
| /* find an optional '||' */ |
| while (*in == ' ' || *in == '\t') |
| in++; |
| |
| *text = in; |
| if (in[0] != '|' || in[1] != '|') |
| goto done; |
| |
| /* we have a '||', let's parse the right handset's subexp */ |
| in += 2; |
| while (*in == ' ' || *in == '\t') |
| in++; |
| |
| ret = cfg_parse_cond_expr(&in, &e->right, err, errptr, maxdepth - 1); |
| if (ret > 0) |
| *text = in; |
| done: |
| if (ret < 0) { |
| cfg_free_cond_expr(*expr); |
| *expr = NULL; |
| } |
| return ret; |
| } |
| |
| /* evaluate an sub-expression on a .if/.elif line. The expression is valid and |
| * was already parsed in <expr>. Returns -1 on error (in which case err is |
| * filled with a message, and only in this case), 0 if the condition is false, |
| * 1 if it's true. |
| */ |
| int cfg_eval_cond_and(struct cfg_cond_and *expr, char **err) |
| { |
| int ret; |
| |
| /* AND: loop on terms and sub-exp's terms as long as they're TRUE |
| * (stop on FALSE and ERROR). |
| */ |
| while ((ret = cfg_eval_cond_term(expr->left, err)) > 0 && expr->right) |
| expr = expr->right; |
| return ret; |
| } |
| |
| /* evaluate an expression on a .if/.elif line. The expression is valid and was |
| * already parsed in <expr>. Returns -1 on error (in which case err is filled |
| * with a message, and only in this case), 0 if the condition is false, 1 if |
| * it's true. |
| */ |
| int cfg_eval_cond_expr(struct cfg_cond_expr *expr, char **err) |
| { |
| int ret; |
| |
| /* OR: loop on sub-exps as long as they're FALSE (stop on TRUE and ERROR) */ |
| while ((ret = cfg_eval_cond_and(expr->left, err)) == 0 && expr->right) |
| expr = expr->right; |
| return ret; |
| } |
| |
| /* evaluate a condition on a .if/.elif line. The condition is already tokenized |
| * in <err>. Returns -1 on error (in which case err is filled with a message, |
| * and only in this case), 0 if the condition is false, 1 if it's true. If |
| * <errptr> is not NULL, it's set to the first invalid character on error. |
| */ |
| int cfg_eval_condition(char **args, char **err, const char **errptr) |
| { |
| struct cfg_cond_expr *expr = NULL; |
| const char *text = args[0]; |
| int ret = -1; |
| |
| if (!*text) /* note: empty = false */ |
| return 0; |
| |
| ret = cfg_parse_cond_expr(&text, &expr, err, errptr, MAX_CFG_RECURSION); |
| if (ret != 0) { |
| if (ret == -1) // parse error, error already reported |
| goto done; |
| while (*text == ' ' || *text == '\t') |
| text++; |
| |
| if (*text) { |
| ret = -1; |
| memprintf(err, "unexpected character '%c' at the end of conditional expression '%s'", |
| *text, args[0]); |
| goto fail; |
| } |
| |
| ret = cfg_eval_cond_expr(expr, err); |
| goto done; |
| } |
| |
| /* ret == 0, no other way to parse this */ |
| ret = -1; |
| memprintf(err, "unparsable conditional expression '%s'", args[0]); |
| fail: |
| if (errptr) |
| *errptr = text; |
| done: |
| cfg_free_cond_expr(expr); |
| return ret; |
| } |