| /* |
| * xxHash - Extremely Fast Hash algorithm |
| * Header File |
| * Copyright (C) 2012-2021 Yann Collet |
| * |
| * BSD 2-Clause License (https://www.opensource.org/licenses/bsd-license.php) |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are |
| * met: |
| * |
| * * Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * * Redistributions in binary form must reproduce the above |
| * copyright notice, this list of conditions and the following disclaimer |
| * in the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| * |
| * You can contact the author at: |
| * - xxHash homepage: https://www.xxhash.com |
| * - xxHash source repository: https://github.com/Cyan4973/xxHash |
| */ |
| |
| /*! |
| * @mainpage xxHash |
| * |
| * xxHash is an extremely fast non-cryptographic hash algorithm, working at RAM speed |
| * limits. |
| * |
| * It is proposed in four flavors, in three families: |
| * 1. @ref XXH32_family |
| * - Classic 32-bit hash function. Simple, compact, and runs on almost all |
| * 32-bit and 64-bit systems. |
| * 2. @ref XXH64_family |
| * - Classic 64-bit adaptation of XXH32. Just as simple, and runs well on most |
| * 64-bit systems (but _not_ 32-bit systems). |
| * 3. @ref XXH3_family |
| * - Modern 64-bit and 128-bit hash function family which features improved |
| * strength and performance across the board, especially on smaller data. |
| * It benefits greatly from SIMD and 64-bit without requiring it. |
| * |
| * Benchmarks |
| * --- |
| * The reference system uses an Intel i7-9700K CPU, and runs Ubuntu x64 20.04. |
| * The open source benchmark program is compiled with clang v10.0 using -O3 flag. |
| * |
| * | Hash Name | ISA ext | Width | Large Data Speed | Small Data Velocity | |
| * | -------------------- | ------- | ----: | ---------------: | ------------------: | |
| * | XXH3_64bits() | @b AVX2 | 64 | 59.4 GB/s | 133.1 | |
| * | MeowHash | AES-NI | 128 | 58.2 GB/s | 52.5 | |
| * | XXH3_128bits() | @b AVX2 | 128 | 57.9 GB/s | 118.1 | |
| * | CLHash | PCLMUL | 64 | 37.1 GB/s | 58.1 | |
| * | XXH3_64bits() | @b SSE2 | 64 | 31.5 GB/s | 133.1 | |
| * | XXH3_128bits() | @b SSE2 | 128 | 29.6 GB/s | 118.1 | |
| * | RAM sequential read | | N/A | 28.0 GB/s | N/A | |
| * | ahash | AES-NI | 64 | 22.5 GB/s | 107.2 | |
| * | City64 | | 64 | 22.0 GB/s | 76.6 | |
| * | T1ha2 | | 64 | 22.0 GB/s | 99.0 | |
| * | City128 | | 128 | 21.7 GB/s | 57.7 | |
| * | FarmHash | AES-NI | 64 | 21.3 GB/s | 71.9 | |
| * | XXH64() | | 64 | 19.4 GB/s | 71.0 | |
| * | SpookyHash | | 64 | 19.3 GB/s | 53.2 | |
| * | Mum | | 64 | 18.0 GB/s | 67.0 | |
| * | CRC32C | SSE4.2 | 32 | 13.0 GB/s | 57.9 | |
| * | XXH32() | | 32 | 9.7 GB/s | 71.9 | |
| * | City32 | | 32 | 9.1 GB/s | 66.0 | |
| * | Blake3* | @b AVX2 | 256 | 4.4 GB/s | 8.1 | |
| * | Murmur3 | | 32 | 3.9 GB/s | 56.1 | |
| * | SipHash* | | 64 | 3.0 GB/s | 43.2 | |
| * | Blake3* | @b SSE2 | 256 | 2.4 GB/s | 8.1 | |
| * | HighwayHash | | 64 | 1.4 GB/s | 6.0 | |
| * | FNV64 | | 64 | 1.2 GB/s | 62.7 | |
| * | Blake2* | | 256 | 1.1 GB/s | 5.1 | |
| * | SHA1* | | 160 | 0.8 GB/s | 5.6 | |
| * | MD5* | | 128 | 0.6 GB/s | 7.8 | |
| * @note |
| * - Hashes which require a specific ISA extension are noted. SSE2 is also noted, |
| * even though it is mandatory on x64. |
| * - Hashes with an asterisk are cryptographic. Note that MD5 is non-cryptographic |
| * by modern standards. |
| * - Small data velocity is a rough average of algorithm's efficiency for small |
| * data. For more accurate information, see the wiki. |
| * - More benchmarks and strength tests are found on the wiki: |
| * https://github.com/Cyan4973/xxHash/wiki |
| * |
| * Usage |
| * ------ |
| * All xxHash variants use a similar API. Changing the algorithm is a trivial |
| * substitution. |
| * |
| * @pre |
| * For functions which take an input and length parameter, the following |
| * requirements are assumed: |
| * - The range from [`input`, `input + length`) is valid, readable memory. |
| * - The only exception is if the `length` is `0`, `input` may be `NULL`. |
| * - For C++, the objects must have the *TriviallyCopyable* property, as the |
| * functions access bytes directly as if it was an array of `unsigned char`. |
| * |
| * @anchor single_shot_example |
| * **Single Shot** |
| * |
| * These functions are stateless functions which hash a contiguous block of memory, |
| * immediately returning the result. They are the easiest and usually the fastest |
| * option. |
| * |
| * XXH32(), XXH64(), XXH3_64bits(), XXH3_128bits() |
| * |
| * @code{.c} |
| * #include <string.h> |
| * #include "xxhash.h" |
| * |
| * // Example for a function which hashes a null terminated string with XXH32(). |
| * XXH32_hash_t hash_string(const char* string, XXH32_hash_t seed) |
| * { |
| * // NULL pointers are only valid if the length is zero |
| * size_t length = (string == NULL) ? 0 : strlen(string); |
| * return XXH32(string, length, seed); |
| * } |
| * @endcode |
| * |
| * @anchor streaming_example |
| * **Streaming** |
| * |
| * These groups of functions allow incremental hashing of unknown size, even |
| * more than what would fit in a size_t. |
| * |
| * XXH32_reset(), XXH64_reset(), XXH3_64bits_reset(), XXH3_128bits_reset() |
| * |
| * @code{.c} |
| * #include <stdio.h> |
| * #include <assert.h> |
| * #include "xxhash.h" |
| * // Example for a function which hashes a FILE incrementally with XXH3_64bits(). |
| * XXH64_hash_t hashFile(FILE* f) |
| * { |
| * // Allocate a state struct. Do not just use malloc() or new. |
| * XXH3_state_t* state = XXH3_createState(); |
| * assert(state != NULL && "Out of memory!"); |
| * // Reset the state to start a new hashing session. |
| * XXH3_64bits_reset(state); |
| * char buffer[4096]; |
| * size_t count; |
| * // Read the file in chunks |
| * while ((count = fread(buffer, 1, sizeof(buffer), f)) != 0) { |
| * // Run update() as many times as necessary to process the data |
| * XXH3_64bits_update(state, buffer, count); |
| * } |
| * // Retrieve the finalized hash. This will not change the state. |
| * XXH64_hash_t result = XXH3_64bits_digest(state); |
| * // Free the state. Do not use free(). |
| * XXH3_freeState(state); |
| * return result; |
| * } |
| * @endcode |
| * |
| * @file xxhash.h |
| * xxHash prototypes and implementation |
| */ |
| |
| #if defined (__cplusplus) |
| extern "C" { |
| #endif |
| |
| /* **************************** |
| * INLINE mode |
| ******************************/ |
| /*! |
| * @defgroup public Public API |
| * Contains details on the public xxHash functions. |
| * @{ |
| */ |
| #ifdef XXH_DOXYGEN |
| /*! |
| * @brief Gives access to internal state declaration, required for static allocation. |
| * |
| * Incompatible with dynamic linking, due to risks of ABI changes. |
| * |
| * Usage: |
| * @code{.c} |
| * #define XXH_STATIC_LINKING_ONLY |
| * #include "xxhash.h" |
| * @endcode |
| */ |
| # define XXH_STATIC_LINKING_ONLY |
| /* Do not undef XXH_STATIC_LINKING_ONLY for Doxygen */ |
| |
| /*! |
| * @brief Gives access to internal definitions. |
| * |
| * Usage: |
| * @code{.c} |
| * #define XXH_STATIC_LINKING_ONLY |
| * #define XXH_IMPLEMENTATION |
| * #include "xxhash.h" |
| * @endcode |
| */ |
| # define XXH_IMPLEMENTATION |
| /* Do not undef XXH_IMPLEMENTATION for Doxygen */ |
| |
| /*! |
| * @brief Exposes the implementation and marks all functions as `inline`. |
| * |
| * Use these build macros to inline xxhash into the target unit. |
| * Inlining improves performance on small inputs, especially when the length is |
| * expressed as a compile-time constant: |
| * |
| * https://fastcompression.blogspot.com/2018/03/xxhash-for-small-keys-impressive-power.html |
| * |
| * It also keeps xxHash symbols private to the unit, so they are not exported. |
| * |
| * Usage: |
| * @code{.c} |
| * #define XXH_INLINE_ALL |
| * #include "xxhash.h" |
| * @endcode |
| * Do not compile and link xxhash.o as a separate object, as it is not useful. |
| */ |
| # define XXH_INLINE_ALL |
| # undef XXH_INLINE_ALL |
| /*! |
| * @brief Exposes the implementation without marking functions as inline. |
| */ |
| # define XXH_PRIVATE_API |
| # undef XXH_PRIVATE_API |
| /*! |
| * @brief Emulate a namespace by transparently prefixing all symbols. |
| * |
| * If you want to include _and expose_ xxHash functions from within your own |
| * library, but also want to avoid symbol collisions with other libraries which |
| * may also include xxHash, you can use @ref XXH_NAMESPACE to automatically prefix |
| * any public symbol from xxhash library with the value of @ref XXH_NAMESPACE |
| * (therefore, avoid empty or numeric values). |
| * |
| * Note that no change is required within the calling program as long as it |
| * includes `xxhash.h`: Regular symbol names will be automatically translated |
| * by this header. |
| */ |
| # define XXH_NAMESPACE /* YOUR NAME HERE */ |
| # undef XXH_NAMESPACE |
| #endif |
| |
| #if (defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API)) \ |
| && !defined(XXH_INLINE_ALL_31684351384) |
| /* this section should be traversed only once */ |
| # define XXH_INLINE_ALL_31684351384 |
| /* give access to the advanced API, required to compile implementations */ |
| # undef XXH_STATIC_LINKING_ONLY /* avoid macro redef */ |
| # define XXH_STATIC_LINKING_ONLY |
| /* make all functions private */ |
| # undef XXH_PUBLIC_API |
| # if defined(__GNUC__) |
| # define XXH_PUBLIC_API static __inline __attribute__((unused)) |
| # elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) |
| # define XXH_PUBLIC_API static inline |
| # elif defined(_MSC_VER) |
| # define XXH_PUBLIC_API static __inline |
| # else |
| /* note: this version may generate warnings for unused static functions */ |
| # define XXH_PUBLIC_API static |
| # endif |
| |
| /* |
| * This part deals with the special case where a unit wants to inline xxHash, |
| * but "xxhash.h" has previously been included without XXH_INLINE_ALL, |
| * such as part of some previously included *.h header file. |
| * Without further action, the new include would just be ignored, |
| * and functions would effectively _not_ be inlined (silent failure). |
| * The following macros solve this situation by prefixing all inlined names, |
| * avoiding naming collision with previous inclusions. |
| */ |
| /* Before that, we unconditionally #undef all symbols, |
| * in case they were already defined with XXH_NAMESPACE. |
| * They will then be redefined for XXH_INLINE_ALL |
| */ |
| # undef XXH_versionNumber |
| /* XXH32 */ |
| # undef XXH32 |
| # undef XXH32_createState |
| # undef XXH32_freeState |
| # undef XXH32_reset |
| # undef XXH32_update |
| # undef XXH32_digest |
| # undef XXH32_copyState |
| # undef XXH32_canonicalFromHash |
| # undef XXH32_hashFromCanonical |
| /* XXH64 */ |
| # undef XXH64 |
| # undef XXH64_createState |
| # undef XXH64_freeState |
| # undef XXH64_reset |
| # undef XXH64_update |
| # undef XXH64_digest |
| # undef XXH64_copyState |
| # undef XXH64_canonicalFromHash |
| # undef XXH64_hashFromCanonical |
| /* XXH3_64bits */ |
| # undef XXH3_64bits |
| # undef XXH3_64bits_withSecret |
| # undef XXH3_64bits_withSeed |
| # undef XXH3_64bits_withSecretandSeed |
| # undef XXH3_createState |
| # undef XXH3_freeState |
| # undef XXH3_copyState |
| # undef XXH3_64bits_reset |
| # undef XXH3_64bits_reset_withSeed |
| # undef XXH3_64bits_reset_withSecret |
| # undef XXH3_64bits_update |
| # undef XXH3_64bits_digest |
| # undef XXH3_generateSecret |
| /* XXH3_128bits */ |
| # undef XXH128 |
| # undef XXH3_128bits |
| # undef XXH3_128bits_withSeed |
| # undef XXH3_128bits_withSecret |
| # undef XXH3_128bits_reset |
| # undef XXH3_128bits_reset_withSeed |
| # undef XXH3_128bits_reset_withSecret |
| # undef XXH3_128bits_reset_withSecretandSeed |
| # undef XXH3_128bits_update |
| # undef XXH3_128bits_digest |
| # undef XXH128_isEqual |
| # undef XXH128_cmp |
| # undef XXH128_canonicalFromHash |
| # undef XXH128_hashFromCanonical |
| /* Finally, free the namespace itself */ |
| # undef XXH_NAMESPACE |
| |
| /* employ the namespace for XXH_INLINE_ALL */ |
| # define XXH_NAMESPACE XXH_INLINE_ |
| /* |
| * Some identifiers (enums, type names) are not symbols, |
| * but they must nonetheless be renamed to avoid redeclaration. |
| * Alternative solution: do not redeclare them. |
| * However, this requires some #ifdefs, and has a more dispersed impact. |
| * Meanwhile, renaming can be achieved in a single place. |
| */ |
| # define XXH_IPREF(Id) XXH_NAMESPACE ## Id |
| # define XXH_OK XXH_IPREF(XXH_OK) |
| # define XXH_ERROR XXH_IPREF(XXH_ERROR) |
| # define XXH_errorcode XXH_IPREF(XXH_errorcode) |
| # define XXH32_canonical_t XXH_IPREF(XXH32_canonical_t) |
| # define XXH64_canonical_t XXH_IPREF(XXH64_canonical_t) |
| # define XXH128_canonical_t XXH_IPREF(XXH128_canonical_t) |
| # define XXH32_state_s XXH_IPREF(XXH32_state_s) |
| # define XXH32_state_t XXH_IPREF(XXH32_state_t) |
| # define XXH64_state_s XXH_IPREF(XXH64_state_s) |
| # define XXH64_state_t XXH_IPREF(XXH64_state_t) |
| # define XXH3_state_s XXH_IPREF(XXH3_state_s) |
| # define XXH3_state_t XXH_IPREF(XXH3_state_t) |
| # define XXH128_hash_t XXH_IPREF(XXH128_hash_t) |
| /* Ensure the header is parsed again, even if it was previously included */ |
| # undef XXHASH_H_5627135585666179 |
| # undef XXHASH_H_STATIC_13879238742 |
| #endif /* XXH_INLINE_ALL || XXH_PRIVATE_API */ |
| |
| /* **************************************************************** |
| * Stable API |
| *****************************************************************/ |
| #ifndef XXHASH_H_5627135585666179 |
| #define XXHASH_H_5627135585666179 1 |
| |
| /*! @brief Marks a global symbol. */ |
| #if !defined(XXH_INLINE_ALL) && !defined(XXH_PRIVATE_API) |
| # if defined(WIN32) && defined(_MSC_VER) && (defined(XXH_IMPORT) || defined(XXH_EXPORT)) |
| # ifdef XXH_EXPORT |
| # define XXH_PUBLIC_API __declspec(dllexport) |
| # elif XXH_IMPORT |
| # define XXH_PUBLIC_API __declspec(dllimport) |
| # endif |
| # else |
| # define XXH_PUBLIC_API /* do nothing */ |
| # endif |
| #endif |
| |
| #ifdef XXH_NAMESPACE |
| # define XXH_CAT(A,B) A##B |
| # define XXH_NAME2(A,B) XXH_CAT(A,B) |
| # define XXH_versionNumber XXH_NAME2(XXH_NAMESPACE, XXH_versionNumber) |
| /* XXH32 */ |
| # define XXH32 XXH_NAME2(XXH_NAMESPACE, XXH32) |
| # define XXH32_createState XXH_NAME2(XXH_NAMESPACE, XXH32_createState) |
| # define XXH32_freeState XXH_NAME2(XXH_NAMESPACE, XXH32_freeState) |
| # define XXH32_reset XXH_NAME2(XXH_NAMESPACE, XXH32_reset) |
| # define XXH32_update XXH_NAME2(XXH_NAMESPACE, XXH32_update) |
| # define XXH32_digest XXH_NAME2(XXH_NAMESPACE, XXH32_digest) |
| # define XXH32_copyState XXH_NAME2(XXH_NAMESPACE, XXH32_copyState) |
| # define XXH32_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH32_canonicalFromHash) |
| # define XXH32_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH32_hashFromCanonical) |
| /* XXH64 */ |
| # define XXH64 XXH_NAME2(XXH_NAMESPACE, XXH64) |
| # define XXH64_createState XXH_NAME2(XXH_NAMESPACE, XXH64_createState) |
| # define XXH64_freeState XXH_NAME2(XXH_NAMESPACE, XXH64_freeState) |
| # define XXH64_reset XXH_NAME2(XXH_NAMESPACE, XXH64_reset) |
| # define XXH64_update XXH_NAME2(XXH_NAMESPACE, XXH64_update) |
| # define XXH64_digest XXH_NAME2(XXH_NAMESPACE, XXH64_digest) |
| # define XXH64_copyState XXH_NAME2(XXH_NAMESPACE, XXH64_copyState) |
| # define XXH64_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH64_canonicalFromHash) |
| # define XXH64_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH64_hashFromCanonical) |
| /* XXH3_64bits */ |
| # define XXH3_64bits XXH_NAME2(XXH_NAMESPACE, XXH3_64bits) |
| # define XXH3_64bits_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSecret) |
| # define XXH3_64bits_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSeed) |
| # define XXH3_64bits_withSecretandSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSecretandSeed) |
| # define XXH3_createState XXH_NAME2(XXH_NAMESPACE, XXH3_createState) |
| # define XXH3_freeState XXH_NAME2(XXH_NAMESPACE, XXH3_freeState) |
| # define XXH3_copyState XXH_NAME2(XXH_NAMESPACE, XXH3_copyState) |
| # define XXH3_64bits_reset XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset) |
| # define XXH3_64bits_reset_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSeed) |
| # define XXH3_64bits_reset_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSecret) |
| # define XXH3_64bits_reset_withSecretandSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSecretandSeed) |
| # define XXH3_64bits_update XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_update) |
| # define XXH3_64bits_digest XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_digest) |
| # define XXH3_generateSecret XXH_NAME2(XXH_NAMESPACE, XXH3_generateSecret) |
| # define XXH3_generateSecret_fromSeed XXH_NAME2(XXH_NAMESPACE, XXH3_generateSecret_fromSeed) |
| /* XXH3_128bits */ |
| # define XXH128 XXH_NAME2(XXH_NAMESPACE, XXH128) |
| # define XXH3_128bits XXH_NAME2(XXH_NAMESPACE, XXH3_128bits) |
| # define XXH3_128bits_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSeed) |
| # define XXH3_128bits_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSecret) |
| # define XXH3_128bits_withSecretandSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSecretandSeed) |
| # define XXH3_128bits_reset XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset) |
| # define XXH3_128bits_reset_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSeed) |
| # define XXH3_128bits_reset_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSecret) |
| # define XXH3_128bits_reset_withSecretandSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSecretandSeed) |
| # define XXH3_128bits_update XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_update) |
| # define XXH3_128bits_digest XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_digest) |
| # define XXH128_isEqual XXH_NAME2(XXH_NAMESPACE, XXH128_isEqual) |
| # define XXH128_cmp XXH_NAME2(XXH_NAMESPACE, XXH128_cmp) |
| # define XXH128_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH128_canonicalFromHash) |
| # define XXH128_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH128_hashFromCanonical) |
| #endif |
| |
| |
| /* ************************************* |
| * Compiler specifics |
| ***************************************/ |
| |
| /* specific declaration modes for Windows */ |
| #if !defined(XXH_INLINE_ALL) && !defined(XXH_PRIVATE_API) |
| # if defined(WIN32) && defined(_MSC_VER) && (defined(XXH_IMPORT) || defined(XXH_EXPORT)) |
| # ifdef XXH_EXPORT |
| # define XXH_PUBLIC_API __declspec(dllexport) |
| # elif XXH_IMPORT |
| # define XXH_PUBLIC_API __declspec(dllimport) |
| # endif |
| # else |
| # define XXH_PUBLIC_API /* do nothing */ |
| # endif |
| #endif |
| |
| #if defined (__GNUC__) |
| # define XXH_CONSTF __attribute__((const)) |
| # define XXH_PUREF __attribute__((pure)) |
| # define XXH_MALLOCF __attribute__((malloc)) |
| #else |
| # define XXH_CONSTF /* disable */ |
| # define XXH_PUREF |
| # define XXH_MALLOCF |
| #endif |
| |
| /* ************************************* |
| * Version |
| ***************************************/ |
| #define XXH_VERSION_MAJOR 0 |
| #define XXH_VERSION_MINOR 8 |
| #define XXH_VERSION_RELEASE 2 |
| /*! @brief Version number, encoded as two digits each */ |
| #define XXH_VERSION_NUMBER (XXH_VERSION_MAJOR *100*100 + XXH_VERSION_MINOR *100 + XXH_VERSION_RELEASE) |
| |
| /*! |
| * @brief Obtains the xxHash version. |
| * |
| * This is mostly useful when xxHash is compiled as a shared library, |
| * since the returned value comes from the library, as opposed to header file. |
| * |
| * @return @ref XXH_VERSION_NUMBER of the invoked library. |
| */ |
| XXH_PUBLIC_API XXH_CONSTF unsigned XXH_versionNumber (void); |
| |
| |
| /* **************************** |
| * Common basic types |
| ******************************/ |
| #include <stddef.h> /* size_t */ |
| /*! |
| * @brief Exit code for the streaming API. |
| */ |
| typedef enum { |
| XXH_OK = 0, /*!< OK */ |
| XXH_ERROR /*!< Error */ |
| } XXH_errorcode; |
| |
| |
| /*-********************************************************************** |
| * 32-bit hash |
| ************************************************************************/ |
| #if defined(XXH_DOXYGEN) /* Don't show <stdint.h> include */ |
| /*! |
| * @brief An unsigned 32-bit integer. |
| * |
| * Not necessarily defined to `uint32_t` but functionally equivalent. |
| */ |
| typedef uint32_t XXH32_hash_t; |
| |
| #elif !defined (__VMS) \ |
| && (defined (__cplusplus) \ |
| || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) ) |
| # include <stdint.h> |
| typedef uint32_t XXH32_hash_t; |
| |
| #else |
| # include <limits.h> |
| # if UINT_MAX == 0xFFFFFFFFUL |
| typedef unsigned int XXH32_hash_t; |
| # elif ULONG_MAX == 0xFFFFFFFFUL |
| typedef unsigned long XXH32_hash_t; |
| # else |
| # error "unsupported platform: need a 32-bit type" |
| # endif |
| #endif |
| |
| /*! |
| * @} |
| * |
| * @defgroup XXH32_family XXH32 family |
| * @ingroup public |
| * Contains functions used in the classic 32-bit xxHash algorithm. |
| * |
| * @note |
| * XXH32 is useful for older platforms, with no or poor 64-bit performance. |
| * Note that the @ref XXH3_family provides competitive speed for both 32-bit |
| * and 64-bit systems, and offers true 64/128 bit hash results. |
| * |
| * @see @ref XXH64_family, @ref XXH3_family : Other xxHash families |
| * @see @ref XXH32_impl for implementation details |
| * @{ |
| */ |
| |
| /*! |
| * @brief Calculates the 32-bit hash of @p input using xxHash32. |
| * |
| * Speed on Core 2 Duo @ 3 GHz (single thread, SMHasher benchmark): 5.4 GB/s |
| * |
| * See @ref single_shot_example "Single Shot Example" for an example. |
| * |
| * @param input The block of data to be hashed, at least @p length bytes in size. |
| * @param length The length of @p input, in bytes. |
| * @param seed The 32-bit seed to alter the hash's output predictably. |
| * |
| * @pre |
| * The memory between @p input and @p input + @p length must be valid, |
| * readable, contiguous memory. However, if @p length is `0`, @p input may be |
| * `NULL`. In C++, this also must be *TriviallyCopyable*. |
| * |
| * @return The calculated 32-bit hash value. |
| * |
| * @see |
| * XXH64(), XXH3_64bits_withSeed(), XXH3_128bits_withSeed(), XXH128(): |
| * Direct equivalents for the other variants of xxHash. |
| * @see |
| * XXH32_createState(), XXH32_update(), XXH32_digest(): Streaming version. |
| */ |
| XXH_PUBLIC_API XXH_PUREF XXH32_hash_t XXH32 (const void* input, size_t length, XXH32_hash_t seed); |
| |
| #ifndef XXH_NO_STREAM |
| /*! |
| * Streaming functions generate the xxHash value from an incremental input. |
| * This method is slower than single-call functions, due to state management. |
| * For small inputs, prefer `XXH32()` and `XXH64()`, which are better optimized. |
| * |
| * An XXH state must first be allocated using `XXH*_createState()`. |
| * |
| * Start a new hash by initializing the state with a seed using `XXH*_reset()`. |
| * |
| * Then, feed the hash state by calling `XXH*_update()` as many times as necessary. |
| * |
| * The function returns an error code, with 0 meaning OK, and any other value |
| * meaning there is an error. |
| * |
| * Finally, a hash value can be produced anytime, by using `XXH*_digest()`. |
| * This function returns the nn-bits hash as an int or long long. |
| * |
| * It's still possible to continue inserting input into the hash state after a |
| * digest, and generate new hash values later on by invoking `XXH*_digest()`. |
| * |
| * When done, release the state using `XXH*_freeState()`. |
| * |
| * @see streaming_example at the top of @ref xxhash.h for an example. |
| */ |
| |
| /*! |
| * @typedef struct XXH32_state_s XXH32_state_t |
| * @brief The opaque state struct for the XXH32 streaming API. |
| * |
| * @see XXH32_state_s for details. |
| */ |
| typedef struct XXH32_state_s XXH32_state_t; |
| |
| /*! |
| * @brief Allocates an @ref XXH32_state_t. |
| * |
| * Must be freed with XXH32_freeState(). |
| * @return An allocated XXH32_state_t on success, `NULL` on failure. |
| */ |
| XXH_PUBLIC_API XXH_MALLOCF XXH32_state_t* XXH32_createState(void); |
| /*! |
| * @brief Frees an @ref XXH32_state_t. |
| * |
| * Must be allocated with XXH32_createState(). |
| * @param statePtr A pointer to an @ref XXH32_state_t allocated with @ref XXH32_createState(). |
| * @return XXH_OK. |
| */ |
| XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr); |
| /*! |
| * @brief Copies one @ref XXH32_state_t to another. |
| * |
| * @param dst_state The state to copy to. |
| * @param src_state The state to copy from. |
| * @pre |
| * @p dst_state and @p src_state must not be `NULL` and must not overlap. |
| */ |
| XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* dst_state, const XXH32_state_t* src_state); |
| |
| /*! |
| * @brief Resets an @ref XXH32_state_t to begin a new hash. |
| * |
| * This function resets and seeds a state. Call it before @ref XXH32_update(). |
| * |
| * @param statePtr The state struct to reset. |
| * @param seed The 32-bit seed to alter the hash result predictably. |
| * |
| * @pre |
| * @p statePtr must not be `NULL`. |
| * |
| * @return @ref XXH_OK on success, @ref XXH_ERROR on failure. |
| */ |
| XXH_PUBLIC_API XXH_errorcode XXH32_reset (XXH32_state_t* statePtr, XXH32_hash_t seed); |
| |
| /*! |
| * @brief Consumes a block of @p input to an @ref XXH32_state_t. |
| * |
| * Call this to incrementally consume blocks of data. |
| * |
| * @param statePtr The state struct to update. |
| * @param input The block of data to be hashed, at least @p length bytes in size. |
| * @param length The length of @p input, in bytes. |
| * |
| * @pre |
| * @p statePtr must not be `NULL`. |
| * @pre |
| * The memory between @p input and @p input + @p length must be valid, |
| * readable, contiguous memory. However, if @p length is `0`, @p input may be |
| * `NULL`. In C++, this also must be *TriviallyCopyable*. |
| * |
| * @return @ref XXH_OK on success, @ref XXH_ERROR on failure. |
| */ |
| XXH_PUBLIC_API XXH_errorcode XXH32_update (XXH32_state_t* statePtr, const void* input, size_t length); |
| |
| /*! |
| * @brief Returns the calculated hash value from an @ref XXH32_state_t. |
| * |
| * @note |
| * Calling XXH32_digest() will not affect @p statePtr, so you can update, |
| * digest, and update again. |
| * |
| * @param statePtr The state struct to calculate the hash from. |
| * |
| * @pre |
| * @p statePtr must not be `NULL`. |
| * |
| * @return The calculated xxHash32 value from that state. |
| */ |
| XXH_PUBLIC_API XXH_PUREF XXH32_hash_t XXH32_digest (const XXH32_state_t* statePtr); |
| #endif /* !XXH_NO_STREAM */ |
| |
| /******* Canonical representation *******/ |
| |
| /* |
| * The default return values from XXH functions are unsigned 32 and 64 bit |
| * integers. |
| * This the simplest and fastest format for further post-processing. |
| * |
| * However, this leaves open the question of what is the order on the byte level, |
| * since little and big endian conventions will store the same number differently. |
| * |
| * The canonical representation settles this issue by mandating big-endian |
| * convention, the same convention as human-readable numbers (large digits first). |
| * |
| * When writing hash values to storage, sending them over a network, or printing |
| * them, it's highly recommended to use the canonical representation to ensure |
| * portability across a wider range of systems, present and future. |
| * |
| * The following functions allow transformation of hash values to and from |
| * canonical format. |
| */ |
| |
| /*! |
| * @brief Canonical (big endian) representation of @ref XXH32_hash_t. |
| */ |
| typedef struct { |
| unsigned char digest[4]; /*!< Hash bytes, big endian */ |
| } XXH32_canonical_t; |
| |
| /*! |
| * @brief Converts an @ref XXH32_hash_t to a big endian @ref XXH32_canonical_t. |
| * |
| * @param dst The @ref XXH32_canonical_t pointer to be stored to. |
| * @param hash The @ref XXH32_hash_t to be converted. |
| * |
| * @pre |
| * @p dst must not be `NULL`. |
| */ |
| XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash); |
| |
| /*! |
| * @brief Converts an @ref XXH32_canonical_t to a native @ref XXH32_hash_t. |
| * |
| * @param src The @ref XXH32_canonical_t to convert. |
| * |
| * @pre |
| * @p src must not be `NULL`. |
| * |
| * @return The converted hash. |
| */ |
| XXH_PUBLIC_API XXH_PUREF XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src); |
| |
| |
| /*! @cond Doxygen ignores this part */ |
| #ifdef __has_attribute |
| # define XXH_HAS_ATTRIBUTE(x) __has_attribute(x) |
| #else |
| # define XXH_HAS_ATTRIBUTE(x) 0 |
| #endif |
| /*! @endcond */ |
| |
| /*! @cond Doxygen ignores this part */ |
| /* |
| * C23 __STDC_VERSION__ number hasn't been specified yet. For now |
| * leave as `201711L` (C17 + 1). |
| * TODO: Update to correct value when its been specified. |
| */ |
| #define XXH_C23_VN 201711L |
| /*! @endcond */ |
| |
| /*! @cond Doxygen ignores this part */ |
| /* C-language Attributes are added in C23. */ |
| #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= XXH_C23_VN) && defined(__has_c_attribute) |
| # define XXH_HAS_C_ATTRIBUTE(x) __has_c_attribute(x) |
| #else |
| # define XXH_HAS_C_ATTRIBUTE(x) 0 |
| #endif |
| /*! @endcond */ |
| |
| /*! @cond Doxygen ignores this part */ |
| #if defined(__cplusplus) && defined(__has_cpp_attribute) |
| # define XXH_HAS_CPP_ATTRIBUTE(x) __has_cpp_attribute(x) |
| #else |
| # define XXH_HAS_CPP_ATTRIBUTE(x) 0 |
| #endif |
| /*! @endcond */ |
| |
| /*! @cond Doxygen ignores this part */ |
| /* |
| * Define XXH_FALLTHROUGH macro for annotating switch case with the 'fallthrough' attribute |
| * introduced in CPP17 and C23. |
| * CPP17 : https://en.cppreference.com/w/cpp/language/attributes/fallthrough |
| * C23 : https://en.cppreference.com/w/c/language/attributes/fallthrough |
| */ |
| #if XXH_HAS_C_ATTRIBUTE(fallthrough) || XXH_HAS_CPP_ATTRIBUTE(fallthrough) |
| # define XXH_FALLTHROUGH [[fallthrough]] |
| #elif XXH_HAS_ATTRIBUTE(__fallthrough__) |
| # define XXH_FALLTHROUGH __attribute__ ((__fallthrough__)) |
| #else |
| # define XXH_FALLTHROUGH /* fallthrough */ |
| #endif |
| /*! @endcond */ |
| |
| /*! @cond Doxygen ignores this part */ |
| /* |
| * Define XXH_NOESCAPE for annotated pointers in public API. |
| * https://clang.llvm.org/docs/AttributeReference.html#noescape |
| * As of writing this, only supported by clang. |
| */ |
| #if XXH_HAS_ATTRIBUTE(noescape) |
| # define XXH_NOESCAPE __attribute__((noescape)) |
| #else |
| # define XXH_NOESCAPE |
| #endif |
| /*! @endcond */ |
| |
| |
| /*! |
| * @} |
| * @ingroup public |
| * @{ |
| */ |
| |
| #ifndef XXH_NO_LONG_LONG |
| /*-********************************************************************** |
| * 64-bit hash |
| ************************************************************************/ |
| #if defined(XXH_DOXYGEN) /* don't include <stdint.h> */ |
| /*! |
| * @brief An unsigned 64-bit integer. |
| * |
| * Not necessarily defined to `uint64_t` but functionally equivalent. |
| */ |
| typedef uint64_t XXH64_hash_t; |
| #elif !defined (__VMS) \ |
| && (defined (__cplusplus) \ |
| || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) ) |
| # include <stdint.h> |
| typedef uint64_t XXH64_hash_t; |
| #else |
| # include <limits.h> |
| # if defined(__LP64__) && ULONG_MAX == 0xFFFFFFFFFFFFFFFFULL |
| /* LP64 ABI says uint64_t is unsigned long */ |
| typedef unsigned long XXH64_hash_t; |
| # else |
| /* the following type must have a width of 64-bit */ |
| typedef unsigned long long XXH64_hash_t; |
| # endif |
| #endif |
| |
| /*! |
| * @} |
| * |
| * @defgroup XXH64_family XXH64 family |
| * @ingroup public |
| * @{ |
| * Contains functions used in the classic 64-bit xxHash algorithm. |
| * |
| * @note |
| * XXH3 provides competitive speed for both 32-bit and 64-bit systems, |
| * and offers true 64/128 bit hash results. |
| * It provides better speed for systems with vector processing capabilities. |
| */ |
| |
| /*! |
| * @brief Calculates the 64-bit hash of @p input using xxHash64. |
| * |
| * This function usually runs faster on 64-bit systems, but slower on 32-bit |
| * systems (see benchmark). |
| * |
| * @param input The block of data to be hashed, at least @p length bytes in size. |
| * @param length The length of @p input, in bytes. |
| * @param seed The 64-bit seed to alter the hash's output predictably. |
| * |
| * @pre |
| * The memory between @p input and @p input + @p length must be valid, |
| * readable, contiguous memory. However, if @p length is `0`, @p input may be |
| * `NULL`. In C++, this also must be *TriviallyCopyable*. |
| * |
| * @return The calculated 64-bit hash. |
| * |
| * @see |
| * XXH32(), XXH3_64bits_withSeed(), XXH3_128bits_withSeed(), XXH128(): |
| * Direct equivalents for the other variants of xxHash. |
| * @see |
| * XXH64_createState(), XXH64_update(), XXH64_digest(): Streaming version. |
| */ |
| XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH64(XXH_NOESCAPE const void* input, size_t length, XXH64_hash_t seed); |
| |
| /******* Streaming *******/ |
| #ifndef XXH_NO_STREAM |
| /*! |
| * @brief The opaque state struct for the XXH64 streaming API. |
| * |
| * @see XXH64_state_s for details. |
| */ |
| typedef struct XXH64_state_s XXH64_state_t; /* incomplete type */ |
| |
| /*! |
| * @brief Allocates an @ref XXH64_state_t. |
| * |
| * Must be freed with XXH64_freeState(). |
| * @return An allocated XXH64_state_t on success, `NULL` on failure. |
| */ |
| XXH_PUBLIC_API XXH_MALLOCF XXH64_state_t* XXH64_createState(void); |
| |
| /*! |
| * @brief Frees an @ref XXH64_state_t. |
| * |
| * Must be allocated with XXH64_createState(). |
| * @param statePtr A pointer to an @ref XXH64_state_t allocated with @ref XXH64_createState(). |
| * @return XXH_OK. |
| */ |
| XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr); |
| |
| /*! |
| * @brief Copies one @ref XXH64_state_t to another. |
| * |
| * @param dst_state The state to copy to. |
| * @param src_state The state to copy from. |
| * @pre |
| * @p dst_state and @p src_state must not be `NULL` and must not overlap. |
| */ |
| XXH_PUBLIC_API void XXH64_copyState(XXH_NOESCAPE XXH64_state_t* dst_state, const XXH64_state_t* src_state); |
| |
| /*! |
| * @brief Resets an @ref XXH64_state_t to begin a new hash. |
| * |
| * This function resets and seeds a state. Call it before @ref XXH64_update(). |
| * |
| * @param statePtr The state struct to reset. |
| * @param seed The 64-bit seed to alter the hash result predictably. |
| * |
| * @pre |
| * @p statePtr must not be `NULL`. |
| * |
| * @return @ref XXH_OK on success, @ref XXH_ERROR on failure. |
| */ |
| XXH_PUBLIC_API XXH_errorcode XXH64_reset (XXH_NOESCAPE XXH64_state_t* statePtr, XXH64_hash_t seed); |
| |
| /*! |
| * @brief Consumes a block of @p input to an @ref XXH64_state_t. |
| * |
| * Call this to incrementally consume blocks of data. |
| * |
| * @param statePtr The state struct to update. |
| * @param input The block of data to be hashed, at least @p length bytes in size. |
| * @param length The length of @p input, in bytes. |
| * |
| * @pre |
| * @p statePtr must not be `NULL`. |
| * @pre |
| * The memory between @p input and @p input + @p length must be valid, |
| * readable, contiguous memory. However, if @p length is `0`, @p input may be |
| * `NULL`. In C++, this also must be *TriviallyCopyable*. |
| * |
| * @return @ref XXH_OK on success, @ref XXH_ERROR on failure. |
| */ |
| XXH_PUBLIC_API XXH_errorcode XXH64_update (XXH_NOESCAPE XXH64_state_t* statePtr, XXH_NOESCAPE const void* input, size_t length); |
| |
| /*! |
| * @brief Returns the calculated hash value from an @ref XXH64_state_t. |
| * |
| * @note |
| * Calling XXH64_digest() will not affect @p statePtr, so you can update, |
| * digest, and update again. |
| * |
| * @param statePtr The state struct to calculate the hash from. |
| * |
| * @pre |
| * @p statePtr must not be `NULL`. |
| * |
| * @return The calculated xxHash64 value from that state. |
| */ |
| XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH64_digest (XXH_NOESCAPE const XXH64_state_t* statePtr); |
| #endif /* !XXH_NO_STREAM */ |
| /******* Canonical representation *******/ |
| |
| /*! |
| * @brief Canonical (big endian) representation of @ref XXH64_hash_t. |
| */ |
| typedef struct { unsigned char digest[sizeof(XXH64_hash_t)]; } XXH64_canonical_t; |
| |
| /*! |
| * @brief Converts an @ref XXH64_hash_t to a big endian @ref XXH64_canonical_t. |
| * |
| * @param dst The @ref XXH64_canonical_t pointer to be stored to. |
| * @param hash The @ref XXH64_hash_t to be converted. |
| * |
| * @pre |
| * @p dst must not be `NULL`. |
| */ |
| XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH_NOESCAPE XXH64_canonical_t* dst, XXH64_hash_t hash); |
| |
| /*! |
| * @brief Converts an @ref XXH64_canonical_t to a native @ref XXH64_hash_t. |
| * |
| * @param src The @ref XXH64_canonical_t to convert. |
| * |
| * @pre |
| * @p src must not be `NULL`. |
| * |
| * @return The converted hash. |
| */ |
| XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH64_hashFromCanonical(XXH_NOESCAPE const XXH64_canonical_t* src); |
| |
| #ifndef XXH_NO_XXH3 |
| |
| /*! |
| * @} |
| * ************************************************************************ |
| * @defgroup XXH3_family XXH3 family |
| * @ingroup public |
| * @{ |
| * |
| * XXH3 is a more recent hash algorithm featuring: |
| * - Improved speed for both small and large inputs |
| * - True 64-bit and 128-bit outputs |
| * - SIMD acceleration |
| * - Improved 32-bit viability |
| * |
| * Speed analysis methodology is explained here: |
| * |
| * https://fastcompression.blogspot.com/2019/03/presenting-xxh3.html |
| * |
| * Compared to XXH64, expect XXH3 to run approximately |
| * ~2x faster on large inputs and >3x faster on small ones, |
| * exact differences vary depending on platform. |
| * |
| * XXH3's speed benefits greatly from SIMD and 64-bit arithmetic, |
| * but does not require it. |
| * Most 32-bit and 64-bit targets that can run XXH32 smoothly can run XXH3 |
| * at competitive speeds, even without vector support. Further details are |
| * explained in the implementation. |
| * |
| * XXH3 has a fast scalar implementation, but it also includes accelerated SIMD |
| * implementations for many common platforms: |
| * - AVX512 |
| * - AVX2 |
| * - SSE2 |
| * - ARM NEON |
| * - WebAssembly SIMD128 |
| * - POWER8 VSX |
| * - s390x ZVector |
| * This can be controlled via the @ref XXH_VECTOR macro, but it automatically |
| * selects the best version according to predefined macros. For the x86 family, an |
| * automatic runtime dispatcher is included separately in @ref xxh_x86dispatch.c. |
| * |
| * XXH3 implementation is portable: |
| * it has a generic C90 formulation that can be compiled on any platform, |
| * all implementations generate exactly the same hash value on all platforms. |
| * Starting from v0.8.0, it's also labelled "stable", meaning that |
| * any future version will also generate the same hash value. |
| * |
| * XXH3 offers 2 variants, _64bits and _128bits. |
| * |
| * When only 64 bits are needed, prefer invoking the _64bits variant, as it |
| * reduces the amount of mixing, resulting in faster speed on small inputs. |
| * It's also generally simpler to manipulate a scalar return type than a struct. |
| * |
| * The API supports one-shot hashing, streaming mode, and custom secrets. |
| */ |
| /*-********************************************************************** |
| * XXH3 64-bit variant |
| ************************************************************************/ |
| |
| /*! |
| * @brief 64-bit unseeded variant of XXH3. |
| * |
| * This is equivalent to @ref XXH3_64bits_withSeed() with a seed of 0, however |
| * it may have slightly better performance due to constant propagation of the |
| * defaults. |
| * |
| * @see |
| * XXH32(), XXH64(), XXH3_128bits(): equivalent for the other xxHash algorithms |
| * @see |
| * XXH3_64bits_withSeed(), XXH3_64bits_withSecret(): other seeding variants |
| * @see |
| * XXH3_64bits_reset(), XXH3_64bits_update(), XXH3_64bits_digest(): Streaming version. |
| */ |
| XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH3_64bits(XXH_NOESCAPE const void* input, size_t length); |
| |
| /*! |
| * @brief 64-bit seeded variant of XXH3 |
| * |
| * This variant generates a custom secret on the fly based on default secret |
| * altered using the `seed` value. |
| * |
| * While this operation is decently fast, note that it's not completely free. |
| * |
| * @note |
| * seed == 0 produces the same results as @ref XXH3_64bits(). |
| * |
| * @param input The data to hash |
| * @param length The length |
| * @param seed The 64-bit seed to alter the state. |
| */ |
| XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH3_64bits_withSeed(XXH_NOESCAPE const void* input, size_t length, XXH64_hash_t seed); |
| |
| /*! |
| * The bare minimum size for a custom secret. |
| * |
| * @see |
| * XXH3_64bits_withSecret(), XXH3_64bits_reset_withSecret(), |
| * XXH3_128bits_withSecret(), XXH3_128bits_reset_withSecret(). |
| */ |
| #define XXH3_SECRET_SIZE_MIN 136 |
| |
| /*! |
| * @brief 64-bit variant of XXH3 with a custom "secret". |
| * |
| * It's possible to provide any blob of bytes as a "secret" to generate the hash. |
| * This makes it more difficult for an external actor to prepare an intentional collision. |
| * The main condition is that secretSize *must* be large enough (>= XXH3_SECRET_SIZE_MIN). |
| * However, the quality of the secret impacts the dispersion of the hash algorithm. |
| * Therefore, the secret _must_ look like a bunch of random bytes. |
| * Avoid "trivial" or structured data such as repeated sequences or a text document. |
| * Whenever in doubt about the "randomness" of the blob of bytes, |
| * consider employing "XXH3_generateSecret()" instead (see below). |
| * It will generate a proper high entropy secret derived from the blob of bytes. |
| * Another advantage of using XXH3_generateSecret() is that |
| * it guarantees that all bits within the initial blob of bytes |
| * will impact every bit of the output. |
| * This is not necessarily the case when using the blob of bytes directly |
| * because, when hashing _small_ inputs, only a portion of the secret is employed. |
| */ |
| XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH3_64bits_withSecret(XXH_NOESCAPE const void* data, size_t len, XXH_NOESCAPE const void* secret, size_t secretSize); |
| |
| |
| /******* Streaming *******/ |
| #ifndef XXH_NO_STREAM |
| /* |
| * Streaming requires state maintenance. |
| * This operation costs memory and CPU. |
| * As a consequence, streaming is slower than one-shot hashing. |
| * For better performance, prefer one-shot functions whenever applicable. |
| */ |
| |
| /*! |
| * @brief The state struct for the XXH3 streaming API. |
| * |
| * @see XXH3_state_s for details. |
| */ |
| typedef struct XXH3_state_s XXH3_state_t; |
| XXH_PUBLIC_API XXH_MALLOCF XXH3_state_t* XXH3_createState(void); |
| XXH_PUBLIC_API XXH_errorcode XXH3_freeState(XXH3_state_t* statePtr); |
| |
| /*! |
| * @brief Copies one @ref XXH3_state_t to another. |
| * |
| * @param dst_state The state to copy to. |
| * @param src_state The state to copy from. |
| * @pre |
| * @p dst_state and @p src_state must not be `NULL` and must not overlap. |
| */ |
| XXH_PUBLIC_API void XXH3_copyState(XXH_NOESCAPE XXH3_state_t* dst_state, XXH_NOESCAPE const XXH3_state_t* src_state); |
| |
| /*! |
| * @brief Resets an @ref XXH3_state_t to begin a new hash. |
| * |
| * This function resets `statePtr` and generate a secret with default parameters. Call it before @ref XXH3_64bits_update(). |
| * Digest will be equivalent to `XXH3_64bits()`. |
| * |
| * @param statePtr The state struct to reset. |
| * |
| * @pre |
| * @p statePtr must not be `NULL`. |
| * |
| * @return @ref XXH_OK on success, @ref XXH_ERROR on failure. |
| * |
| */ |
| XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset(XXH_NOESCAPE XXH3_state_t* statePtr); |
| |
| /*! |
| * @brief Resets an @ref XXH3_state_t with 64-bit seed to begin a new hash. |
| * |
| * This function resets `statePtr` and generate a secret from `seed`. Call it before @ref XXH3_64bits_update(). |
| * Digest will be equivalent to `XXH3_64bits_withSeed()`. |
| * |
| * @param statePtr The state struct to reset. |
| * @param seed The 64-bit seed to alter the state. |
| * |
| * @pre |
| * @p statePtr must not be `NULL`. |
| * |
| * @return @ref XXH_OK on success, @ref XXH_ERROR on failure. |
| * |
| */ |
| XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH64_hash_t seed); |
| |
| /*! |
| * XXH3_64bits_reset_withSecret(): |
| * `secret` is referenced, it _must outlive_ the hash streaming session. |
| * Similar to one-shot API, `secretSize` must be >= `XXH3_SECRET_SIZE_MIN`, |
| * and the quality of produced hash values depends on secret's entropy |
| * (secret's content should look like a bunch of random bytes). |
| * When in doubt about the randomness of a candidate `secret`, |
| * consider employing `XXH3_generateSecret()` instead (see below). |
| */ |
| XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSecret(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize); |
| |
| /*! |
| * @brief Consumes a block of @p input to an @ref XXH3_state_t. |
| * |
| * Call this to incrementally consume blocks of data. |
| * |
| * @param statePtr The state struct to update. |
| * @param input The block of data to be hashed, at least @p length bytes in size. |
| * @param length The length of @p input, in bytes. |
| * |
| * @pre |
| * @p statePtr must not be `NULL`. |
| * @pre |
| * The memory between @p input and @p input + @p length must be valid, |
| * readable, contiguous memory. However, if @p length is `0`, @p input may be |
| * `NULL`. In C++, this also must be *TriviallyCopyable*. |
| * |
| * @return @ref XXH_OK on success, @ref XXH_ERROR on failure. |
| */ |
| XXH_PUBLIC_API XXH_errorcode XXH3_64bits_update (XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* input, size_t length); |
| |
| /*! |
| * @brief Returns the calculated XXH3 64-bit hash value from an @ref XXH3_state_t. |
| * |
| * @note |
| * Calling XXH3_64bits_digest() will not affect @p statePtr, so you can update, |
| * digest, and update again. |
| * |
| * @param statePtr The state struct to calculate the hash from. |
| * |
| * @pre |
| * @p statePtr must not be `NULL`. |
| * |
| * @return The calculated XXH3 64-bit hash value from that state. |
| */ |
| XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH3_64bits_digest (XXH_NOESCAPE const XXH3_state_t* statePtr); |
| #endif /* !XXH_NO_STREAM */ |
| |
| /* note : canonical representation of XXH3 is the same as XXH64 |
| * since they both produce XXH64_hash_t values */ |
| |
| |
| /*-********************************************************************** |
| * XXH3 128-bit variant |
| ************************************************************************/ |
| |
| /*! |
| * @brief The return value from 128-bit hashes. |
| * |
| * Stored in little endian order, although the fields themselves are in native |
| * endianness. |
| */ |
| typedef struct { |
| XXH64_hash_t low64; /*!< `value & 0xFFFFFFFFFFFFFFFF` */ |
| XXH64_hash_t high64; /*!< `value >> 64` */ |
| } XXH128_hash_t; |
| |
| /*! |
| * @brief Unseeded 128-bit variant of XXH3 |
| * |
| * The 128-bit variant of XXH3 has more strength, but it has a bit of overhead |
| * for shorter inputs. |
| * |
| * This is equivalent to @ref XXH3_128bits_withSeed() with a seed of 0, however |
| * it may have slightly better performance due to constant propagation of the |
| * defaults. |
| * |
| * @see |
| * XXH32(), XXH64(), XXH3_64bits(): equivalent for the other xxHash algorithms |
| * @see |
| * XXH3_128bits_withSeed(), XXH3_128bits_withSecret(): other seeding variants |
| * @see |
| * XXH3_128bits_reset(), XXH3_128bits_update(), XXH3_128bits_digest(): Streaming version. |
| */ |
| XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH3_128bits(XXH_NOESCAPE const void* data, size_t len); |
| /*! @brief Seeded 128-bit variant of XXH3. @see XXH3_64bits_withSeed(). */ |
| XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH3_128bits_withSeed(XXH_NOESCAPE const void* data, size_t len, XXH64_hash_t seed); |
| /*! @brief Custom secret 128-bit variant of XXH3. @see XXH3_64bits_withSecret(). */ |
| XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH3_128bits_withSecret(XXH_NOESCAPE const void* data, size_t len, XXH_NOESCAPE const void* secret, size_t secretSize); |
| |
| /******* Streaming *******/ |
| #ifndef XXH_NO_STREAM |
| /* |
| * Streaming requires state maintenance. |
| * This operation costs memory and CPU. |
| * As a consequence, streaming is slower than one-shot hashing. |
| * For better performance, prefer one-shot functions whenever applicable. |
| * |
| * XXH3_128bits uses the same XXH3_state_t as XXH3_64bits(). |
| * Use already declared XXH3_createState() and XXH3_freeState(). |
| * |
| * All reset and streaming functions have same meaning as their 64-bit counterpart. |
| */ |
| |
| /*! |
| * @brief Resets an @ref XXH3_state_t to begin a new hash. |
| * |
| * This function resets `statePtr` and generate a secret with default parameters. Call it before @ref XXH3_128bits_update(). |
| * Digest will be equivalent to `XXH3_128bits()`. |
| * |
| * @param statePtr The state struct to reset. |
| * |
| * @pre |
| * @p statePtr must not be `NULL`. |
| * |
| * @return @ref XXH_OK on success, @ref XXH_ERROR on failure. |
| * |
| */ |
| XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset(XXH_NOESCAPE XXH3_state_t* statePtr); |
| |
| /*! |
| * @brief Resets an @ref XXH3_state_t with 64-bit seed to begin a new hash. |
| * |
| * This function resets `statePtr` and generate a secret from `seed`. Call it before @ref XXH3_128bits_update(). |
| * Digest will be equivalent to `XXH3_128bits_withSeed()`. |
| * |
| * @param statePtr The state struct to reset. |
| * @param seed The 64-bit seed to alter the state. |
| * |
| * @pre |
| * @p statePtr must not be `NULL`. |
| * |
| * @return @ref XXH_OK on success, @ref XXH_ERROR on failure. |
| * |
| */ |
| XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH64_hash_t seed); |
| /*! @brief Custom secret 128-bit variant of XXH3. @see XXH_64bits_reset_withSecret(). */ |
| XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSecret(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize); |
| |
| /*! |
| * @brief Consumes a block of @p input to an @ref XXH3_state_t. |
| * |
| * Call this to incrementally consume blocks of data. |
| * |
| * @param statePtr The state struct to update. |
| * @param input The block of data to be hashed, at least @p length bytes in size. |
| * @param length The length of @p input, in bytes. |
| * |
| * @pre |
| * @p statePtr must not be `NULL`. |
| * @pre |
| * The memory between @p input and @p input + @p length must be valid, |
| * readable, contiguous memory. However, if @p length is `0`, @p input may be |
| * `NULL`. In C++, this also must be *TriviallyCopyable*. |
| * |
| * @return @ref XXH_OK on success, @ref XXH_ERROR on failure. |
| */ |
| XXH_PUBLIC_API XXH_errorcode XXH3_128bits_update (XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* input, size_t length); |
| |
| /*! |
| * @brief Returns the calculated XXH3 128-bit hash value from an @ref XXH3_state_t. |
| * |
| * @note |
| * Calling XXH3_128bits_digest() will not affect @p statePtr, so you can update, |
| * digest, and update again. |
| * |
| * @param statePtr The state struct to calculate the hash from. |
| * |
| * @pre |
| * @p statePtr must not be `NULL`. |
| * |
| * @return The calculated XXH3 128-bit hash value from that state. |
| */ |
| XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH3_128bits_digest (XXH_NOESCAPE const XXH3_state_t* statePtr); |
| #endif /* !XXH_NO_STREAM */ |
| |
| /* Following helper functions make it possible to compare XXH128_hast_t values. |
| * Since XXH128_hash_t is a structure, this capability is not offered by the language. |
| * Note: For better performance, these functions can be inlined using XXH_INLINE_ALL */ |
| |
| /*! |
| * XXH128_isEqual(): |
| * Return: 1 if `h1` and `h2` are equal, 0 if they are not. |
| */ |
| XXH_PUBLIC_API XXH_PUREF int XXH128_isEqual(XXH128_hash_t h1, XXH128_hash_t h2); |
| |
| /*! |
| * @brief Compares two @ref XXH128_hash_t |
| * This comparator is compatible with stdlib's `qsort()`/`bsearch()`. |
| * |
| * @return: >0 if *h128_1 > *h128_2 |
| * =0 if *h128_1 == *h128_2 |
| * <0 if *h128_1 < *h128_2 |
| */ |
| XXH_PUBLIC_API XXH_PUREF int XXH128_cmp(XXH_NOESCAPE const void* h128_1, XXH_NOESCAPE const void* h128_2); |
| |
| |
| /******* Canonical representation *******/ |
| typedef struct { unsigned char digest[sizeof(XXH128_hash_t)]; } XXH128_canonical_t; |
| |
| |
| /*! |
| * @brief Converts an @ref XXH128_hash_t to a big endian @ref XXH128_canonical_t. |
| * |
| * @param dst The @ref XXH128_canonical_t pointer to be stored to. |
| * @param hash The @ref XXH128_hash_t to be converted. |
| * |
| * @pre |
| * @p dst must not be `NULL`. |
| */ |
| XXH_PUBLIC_API void XXH128_canonicalFromHash(XXH_NOESCAPE XXH128_canonical_t* dst, XXH128_hash_t hash); |
| |
| /*! |
| * @brief Converts an @ref XXH128_canonical_t to a native @ref XXH128_hash_t. |
| * |
| * @param src The @ref XXH128_canonical_t to convert. |
| * |
| * @pre |
| * @p src must not be `NULL`. |
| * |
| * @return The converted hash. |
| */ |
| XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH128_hashFromCanonical(XXH_NOESCAPE const XXH128_canonical_t* src); |
| |
| |
| #endif /* !XXH_NO_XXH3 */ |
| #endif /* XXH_NO_LONG_LONG */ |
| |
| /*! |
| * @} |
| */ |
| #endif /* XXHASH_H_5627135585666179 */ |
| |
| |
| |
| #if defined(XXH_STATIC_LINKING_ONLY) && !defined(XXHASH_H_STATIC_13879238742) |
| #define XXHASH_H_STATIC_13879238742 |
| /* **************************************************************************** |
| * This section contains declarations which are not guaranteed to remain stable. |
| * They may change in future versions, becoming incompatible with a different |
| * version of the library. |
| * These declarations should only be used with static linking. |
| * Never use them in association with dynamic linking! |
| ***************************************************************************** */ |
| |
| /* |
| * These definitions are only present to allow static allocation |
| * of XXH states, on stack or in a struct, for example. |
| * Never **ever** access their members directly. |
| */ |
| |
| /*! |
| * @internal |
| * @brief Structure for XXH32 streaming API. |
| * |
| * @note This is only defined when @ref XXH_STATIC_LINKING_ONLY, |
| * @ref XXH_INLINE_ALL, or @ref XXH_IMPLEMENTATION is defined. Otherwise it is |
| * an opaque type. This allows fields to safely be changed. |
| * |
| * Typedef'd to @ref XXH32_state_t. |
| * Do not access the members of this struct directly. |
| * @see XXH64_state_s, XXH3_state_s |
| */ |
| struct XXH32_state_s { |
| XXH32_hash_t total_len_32; /*!< Total length hashed, modulo 2^32 */ |
| XXH32_hash_t large_len; /*!< Whether the hash is >= 16 (handles @ref total_len_32 overflow) */ |
| XXH32_hash_t v[4]; /*!< Accumulator lanes */ |
| XXH32_hash_t mem32[4]; /*!< Internal buffer for partial reads. Treated as unsigned char[16]. */ |
| XXH32_hash_t memsize; /*!< Amount of data in @ref mem32 */ |
| XXH32_hash_t reserved; /*!< Reserved field. Do not read nor write to it. */ |
| }; /* typedef'd to XXH32_state_t */ |
| |
| |
| #ifndef XXH_NO_LONG_LONG /* defined when there is no 64-bit support */ |
| |
| /*! |
| * @internal |
| * @brief Structure for XXH64 streaming API. |
| * |
| * @note This is only defined when @ref XXH_STATIC_LINKING_ONLY, |
| * @ref XXH_INLINE_ALL, or @ref XXH_IMPLEMENTATION is defined. Otherwise it is |
| * an opaque type. This allows fields to safely be changed. |
| * |
| * Typedef'd to @ref XXH64_state_t. |
| * Do not access the members of this struct directly. |
| * @see XXH32_state_s, XXH3_state_s |
| */ |
| struct XXH64_state_s { |
| XXH64_hash_t total_len; /*!< Total length hashed. This is always 64-bit. */ |
| XXH64_hash_t v[4]; /*!< Accumulator lanes */ |
| XXH64_hash_t mem64[4]; /*!< Internal buffer for partial reads. Treated as unsigned char[32]. */ |
| XXH32_hash_t memsize; /*!< Amount of data in @ref mem64 */ |
| XXH32_hash_t reserved32; /*!< Reserved field, needed for padding anyways*/ |
| XXH64_hash_t reserved64; /*!< Reserved field. Do not read or write to it. */ |
| }; /* typedef'd to XXH64_state_t */ |
| |
| #ifndef XXH_NO_XXH3 |
| |
| #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) /* >= C11 */ |
| # include <stdalign.h> |
| # define XXH_ALIGN(n) alignas(n) |
| #elif defined(__cplusplus) && (__cplusplus >= 201103L) /* >= C++11 */ |
| /* In C++ alignas() is a keyword */ |
| # define XXH_ALIGN(n) alignas(n) |
| #elif defined(__GNUC__) |
| # define XXH_ALIGN(n) __attribute__ ((aligned(n))) |
| #elif defined(_MSC_VER) |
| # define XXH_ALIGN(n) __declspec(align(n)) |
| #else |
| # define XXH_ALIGN(n) /* disabled */ |
| #endif |
| |
| /* Old GCC versions only accept the attribute after the type in structures. */ |
| #if !(defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L)) /* C11+ */ \ |
| && ! (defined(__cplusplus) && (__cplusplus >= 201103L)) /* >= C++11 */ \ |
| && defined(__GNUC__) |
| # define XXH_ALIGN_MEMBER(align, type) type XXH_ALIGN(align) |
| #else |
| # define XXH_ALIGN_MEMBER(align, type) XXH_ALIGN(align) type |
| #endif |
| |
| /*! |
| * @brief The size of the internal XXH3 buffer. |
| * |
| * This is the optimal update size for incremental hashing. |
| * |
| * @see XXH3_64b_update(), XXH3_128b_update(). |
| */ |
| #define XXH3_INTERNALBUFFER_SIZE 256 |
| |
| /*! |
| * @internal |
| * @brief Default size of the secret buffer (and @ref XXH3_kSecret). |
| * |
| * This is the size used in @ref XXH3_kSecret and the seeded functions. |
| * |
| * Not to be confused with @ref XXH3_SECRET_SIZE_MIN. |
| */ |
| #define XXH3_SECRET_DEFAULT_SIZE 192 |
| |
| /*! |
| * @internal |
| * @brief Structure for XXH3 streaming API. |
| * |
| * @note This is only defined when @ref XXH_STATIC_LINKING_ONLY, |
| * @ref XXH_INLINE_ALL, or @ref XXH_IMPLEMENTATION is defined. |
| * Otherwise it is an opaque type. |
| * Never use this definition in combination with dynamic library. |
| * This allows fields to safely be changed in the future. |
| * |
| * @note ** This structure has a strict alignment requirement of 64 bytes!! ** |
| * Do not allocate this with `malloc()` or `new`, |
| * it will not be sufficiently aligned. |
| * Use @ref XXH3_createState() and @ref XXH3_freeState(), or stack allocation. |
| * |
| * Typedef'd to @ref XXH3_state_t. |
| * Do never access the members of this struct directly. |
| * |
| * @see XXH3_INITSTATE() for stack initialization. |
| * @see XXH3_createState(), XXH3_freeState(). |
| * @see XXH32_state_s, XXH64_state_s |
| */ |
| struct XXH3_state_s { |
| XXH_ALIGN_MEMBER(64, XXH64_hash_t acc[8]); |
| /*!< The 8 accumulators. See @ref XXH32_state_s::v and @ref XXH64_state_s::v */ |
| XXH_ALIGN_MEMBER(64, unsigned char customSecret[XXH3_SECRET_DEFAULT_SIZE]); |
| /*!< Used to store a custom secret generated from a seed. */ |
| XXH_ALIGN_MEMBER(64, unsigned char buffer[XXH3_INTERNALBUFFER_SIZE]); |
| /*!< The internal buffer. @see XXH32_state_s::mem32 */ |
| XXH32_hash_t bufferedSize; |
| /*!< The amount of memory in @ref buffer, @see XXH32_state_s::memsize */ |
| XXH32_hash_t useSeed; |
| /*!< Reserved field. Needed for padding on 64-bit. */ |
| size_t nbStripesSoFar; |
| /*!< Number or stripes processed. */ |
| XXH64_hash_t totalLen; |
| /*!< Total length hashed. 64-bit even on 32-bit targets. */ |
| size_t nbStripesPerBlock; |
| /*!< Number of stripes per block. */ |
| size_t secretLimit; |
| /*!< Size of @ref customSecret or @ref extSecret */ |
| XXH64_hash_t seed; |
| /*!< Seed for _withSeed variants. Must be zero otherwise, @see XXH3_INITSTATE() */ |
| XXH64_hash_t reserved64; |
| /*!< Reserved field. */ |
| const unsigned char* extSecret; |
| /*!< Reference to an external secret for the _withSecret variants, NULL |
| * for other variants. */ |
| /* note: there may be some padding at the end due to alignment on 64 bytes */ |
| }; /* typedef'd to XXH3_state_t */ |
| |
| #undef XXH_ALIGN_MEMBER |
| |
| /*! |
| * @brief Initializes a stack-allocated `XXH3_state_s`. |
| * |
| * When the @ref XXH3_state_t structure is merely emplaced on stack, |
| * it should be initialized with XXH3_INITSTATE() or a memset() |
| * in case its first reset uses XXH3_NNbits_reset_withSeed(). |
| * This init can be omitted if the first reset uses default or _withSecret mode. |
| * This operation isn't necessary when the state is created with XXH3_createState(). |
| * Note that this doesn't prepare the state for a streaming operation, |
| * it's still necessary to use XXH3_NNbits_reset*() afterwards. |
| */ |
| #define XXH3_INITSTATE(XXH3_state_ptr) \ |
| do { \ |
| XXH3_state_t* tmp_xxh3_state_ptr = (XXH3_state_ptr); \ |
| tmp_xxh3_state_ptr->seed = 0; \ |
| tmp_xxh3_state_ptr->extSecret = NULL; \ |
| } while(0) |
| |
| |
| /*! |
| * simple alias to pre-selected XXH3_128bits variant |
| */ |
| XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH128(XXH_NOESCAPE const void* data, size_t len, XXH64_hash_t seed); |
| |
| |
| /* === Experimental API === */ |
| /* Symbols defined below must be considered tied to a specific library version. */ |
| |
| /*! |
| * XXH3_generateSecret(): |
| * |
| * Derive a high-entropy secret from any user-defined content, named customSeed. |
| * The generated secret can be used in combination with `*_withSecret()` functions. |
| * The `_withSecret()` variants are useful to provide a higher level of protection |
| * than 64-bit seed, as it becomes much more difficult for an external actor to |
| * guess how to impact the calculation logic. |
| * |
| * The function accepts as input a custom seed of any length and any content, |
| * and derives from it a high-entropy secret of length @p secretSize into an |
| * already allocated buffer @p secretBuffer. |
| * |
| * The generated secret can then be used with any `*_withSecret()` variant. |
| * The functions @ref XXH3_128bits_withSecret(), @ref XXH3_64bits_withSecret(), |
| * @ref XXH3_128bits_reset_withSecret() and @ref XXH3_64bits_reset_withSecret() |
| * are part of this list. They all accept a `secret` parameter |
| * which must be large enough for implementation reasons (>= @ref XXH3_SECRET_SIZE_MIN) |
| * _and_ feature very high entropy (consist of random-looking bytes). |
| * These conditions can be a high bar to meet, so @ref XXH3_generateSecret() can |
| * be employed to ensure proper quality. |
| * |
| * @p customSeed can be anything. It can have any size, even small ones, |
| * and its content can be anything, even "poor entropy" sources such as a bunch |
| * of zeroes. The resulting `secret` will nonetheless provide all required qualities. |
| * |
| * @pre |
| * - @p secretSize must be >= @ref XXH3_SECRET_SIZE_MIN |
| * - When @p customSeedSize > 0, supplying NULL as customSeed is undefined behavior. |
| * |
| * Example code: |
| * @code{.c} |
| * #include <stdio.h> |
| * #include <stdlib.h> |
| * #include <string.h> |
| * #define XXH_STATIC_LINKING_ONLY // expose unstable API |
| * #include "xxhash.h" |
| * // Hashes argv[2] using the entropy from argv[1]. |
| * int main(int argc, char* argv[]) |
| * { |
| * char secret[XXH3_SECRET_SIZE_MIN]; |
| * if (argv != 3) { return 1; } |
| * XXH3_generateSecret(secret, sizeof(secret), argv[1], strlen(argv[1])); |
| * XXH64_hash_t h = XXH3_64bits_withSecret( |
| * argv[2], strlen(argv[2]), |
| * secret, sizeof(secret) |
| * ); |
| * printf("%016llx\n", (unsigned long long) h); |
| * } |
| * @endcode |
| */ |
| XXH_PUBLIC_API XXH_errorcode XXH3_generateSecret(XXH_NOESCAPE void* secretBuffer, size_t secretSize, XXH_NOESCAPE const void* customSeed, size_t customSeedSize); |
| |
| /*! |
| * @brief Generate the same secret as the _withSeed() variants. |
| * |
| * The generated secret can be used in combination with |
| *`*_withSecret()` and `_withSecretandSeed()` variants. |
| * |
| * Example C++ `std::string` hash class: |
| * @code{.cpp} |
| * #include <string> |
| * #define XXH_STATIC_LINKING_ONLY // expose unstable API |
| * #include "xxhash.h" |
| * // Slow, seeds each time |
| * class HashSlow { |
| * XXH64_hash_t seed; |
| * public: |
| * HashSlow(XXH64_hash_t s) : seed{s} {} |
| * size_t operator()(const std::string& x) const { |
| * return size_t{XXH3_64bits_withSeed(x.c_str(), x.length(), seed)}; |
| * } |
| * }; |
| * // Fast, caches the seeded secret for future uses. |
| * class HashFast { |
| * unsigned char secret[XXH3_SECRET_SIZE_MIN]; |
| * public: |
| * HashFast(XXH64_hash_t s) { |
| * XXH3_generateSecret_fromSeed(secret, seed); |
| * } |
| * size_t operator()(const std::string& x) const { |
| * return size_t{ |
| * XXH3_64bits_withSecret(x.c_str(), x.length(), secret, sizeof(secret)) |
| * }; |
| * } |
| * }; |
| * @endcode |
| * @param secretBuffer A writable buffer of @ref XXH3_SECRET_SIZE_MIN bytes |
| * @param seed The seed to seed the state. |
| */ |
| XXH_PUBLIC_API void XXH3_generateSecret_fromSeed(XXH_NOESCAPE void* secretBuffer, XXH64_hash_t seed); |
| |
| /*! |
| * These variants generate hash values using either |
| * @p seed for "short" keys (< XXH3_MIDSIZE_MAX = 240 bytes) |
| * or @p secret for "large" keys (>= XXH3_MIDSIZE_MAX). |
| * |
| * This generally benefits speed, compared to `_withSeed()` or `_withSecret()`. |
| * `_withSeed()` has to generate the secret on the fly for "large" keys. |
| * It's fast, but can be perceptible for "not so large" keys (< 1 KB). |
| * `_withSecret()` has to generate the masks on the fly for "small" keys, |
| * which requires more instructions than _withSeed() variants. |
| * Therefore, _withSecretandSeed variant combines the best of both worlds. |
| * |
| * When @p secret has been generated by XXH3_generateSecret_fromSeed(), |
| * this variant produces *exactly* the same results as `_withSeed()` variant, |
| * hence offering only a pure speed benefit on "large" input, |
| * by skipping the need to regenerate the secret for every large input. |
| * |
| * Another usage scenario is to hash the secret to a 64-bit hash value, |
| * for example with XXH3_64bits(), which then becomes the seed, |
| * and then employ both the seed and the secret in _withSecretandSeed(). |
| * On top of speed, an added benefit is that each bit in the secret |
| * has a 50% chance to swap each bit in the output, via its impact to the seed. |
| * |
| * This is not guaranteed when using the secret directly in "small data" scenarios, |
| * because only portions of the secret are employed for small data. |
| */ |
| XXH_PUBLIC_API XXH_PUREF XXH64_hash_t |
| XXH3_64bits_withSecretandSeed(XXH_NOESCAPE const void* data, size_t len, |
| XXH_NOESCAPE const void* secret, size_t secretSize, |
| XXH64_hash_t seed); |
| /*! @copydoc XXH3_64bits_withSecretandSeed() */ |
| XXH_PUBLIC_API XXH_PUREF XXH128_hash_t |
| XXH3_128bits_withSecretandSeed(XXH_NOESCAPE const void* input, size_t length, |
| XXH_NOESCAPE const void* secret, size_t secretSize, |
| XXH64_hash_t seed64); |
| #ifndef XXH_NO_STREAM |
| /*! @copydoc XXH3_64bits_withSecretandSeed() */ |
| XXH_PUBLIC_API XXH_errorcode |
| XXH3_64bits_reset_withSecretandSeed(XXH_NOESCAPE XXH3_state_t* statePtr, |
| XXH_NOESCAPE const void* secret, size_t secretSize, |
| XXH64_hash_t seed64); |
| /*! @copydoc XXH3_64bits_withSecretandSeed() */ |
| XXH_PUBLIC_API XXH_errorcode |
| XXH3_128bits_reset_withSecretandSeed(XXH_NOESCAPE XXH3_state_t* statePtr, |
| XXH_NOESCAPE const void* secret, size_t secretSize, |
| XXH64_hash_t seed64); |
| #endif /* !XXH_NO_STREAM */ |
| |
| #endif /* !XXH_NO_XXH3 */ |
| #endif /* XXH_NO_LONG_LONG */ |
| #if defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API) |
| # define XXH_IMPLEMENTATION |
| #endif |
| |
| #endif /* defined(XXH_STATIC_LINKING_ONLY) && !defined(XXHASH_H_STATIC_13879238742) */ |
| |
| |
| /* ======================================================================== */ |
| /* ======================================================================== */ |
| /* ======================================================================== */ |
| |
| |
| /*-********************************************************************** |
| * xxHash implementation |
| *-********************************************************************** |
| * xxHash's implementation used to be hosted inside xxhash.c. |
| * |
| * However, inlining requires implementation to be visible to the compiler, |
| * hence be included alongside the header. |
| * Previously, implementation was hosted inside xxhash.c, |
| * which was then #included when inlining was activated. |
| * This construction created issues with a few build and install systems, |
| * as it required xxhash.c to be stored in /include directory. |
| * |
| * xxHash implementation is now directly integrated within xxhash.h. |
| * As a consequence, xxhash.c is no longer needed in /include. |
| * |
| * xxhash.c is still available and is still useful. |
| * In a "normal" setup, when xxhash is not inlined, |
| * xxhash.h only exposes the prototypes and public symbols, |
| * while xxhash.c can be built into an object file xxhash.o |
| * which can then be linked into the final binary. |
| ************************************************************************/ |
| |
| #if ( defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API) \ |
| || defined(XXH_IMPLEMENTATION) ) && !defined(XXH_IMPLEM_13a8737387) |
| # define XXH_IMPLEM_13a8737387 |
| |
| /* ************************************* |
| * Tuning parameters |
| ***************************************/ |
| |
| /*! |
| * @defgroup tuning Tuning parameters |
| * @{ |
| * |
| * Various macros to control xxHash's behavior. |
| */ |
| #ifdef XXH_DOXYGEN |
| /*! |
| * @brief Define this to disable 64-bit code. |
| * |
| * Useful if only using the @ref XXH32_family and you have a strict C90 compiler. |
| */ |
| # define XXH_NO_LONG_LONG |
| # undef XXH_NO_LONG_LONG /* don't actually */ |
| /*! |
| * @brief Controls how unaligned memory is accessed. |
| * |
| * By default, access to unaligned memory is controlled by `memcpy()`, which is |
| * safe and portable. |
| * |
| * Unfortunately, on some target/compiler combinations, the generated assembly |
| * is sub-optimal. |
| * |
| * The below switch allow selection of a different access method |
| * in the search for improved performance. |
| * |
| * @par Possible options: |
| * |
| * - `XXH_FORCE_MEMORY_ACCESS=0` (default): `memcpy` |
| * @par |
| * Use `memcpy()`. Safe and portable. Note that most modern compilers will |
| * eliminate the function call and treat it as an unaligned access. |
| * |
| * - `XXH_FORCE_MEMORY_ACCESS=1`: `__attribute__((aligned(1)))` |
| * @par |
| * Depends on compiler extensions and is therefore not portable. |
| * This method is safe _if_ your compiler supports it, |
| * and *generally* as fast or faster than `memcpy`. |
| * |
| * - `XXH_FORCE_MEMORY_ACCESS=2`: Direct cast |
| * @par |
| * Casts directly and dereferences. This method doesn't depend on the |
| * compiler, but it violates the C standard as it directly dereferences an |
| * unaligned pointer. It can generate buggy code on targets which do not |
| * support unaligned memory accesses, but in some circumstances, it's the |
| * only known way to get the most performance. |
| * |
| * - `XXH_FORCE_MEMORY_ACCESS=3`: Byteshift |
| * @par |
| * Also portable. This can generate the best code on old compilers which don't |
| * inline small `memcpy()` calls, and it might also be faster on big-endian |
| * systems which lack a native byteswap instruction. However, some compilers |
| * will emit literal byteshifts even if the target supports unaligned access. |
| * |
| * |
| * @warning |
| * Methods 1 and 2 rely on implementation-defined behavior. Use these with |
| * care, as what works on one compiler/platform/optimization level may cause |
| * another to read garbage data or even crash. |
| * |
| * See https://fastcompression.blogspot.com/2015/08/accessing-unaligned-memory.html for details. |
| * |
| * Prefer these methods in priority order (0 > 3 > 1 > 2) |
| */ |
| # define XXH_FORCE_MEMORY_ACCESS 0 |
| |
| /*! |
| * @def XXH_SIZE_OPT |
| * @brief Controls how much xxHash optimizes for size. |
| * |
| * xxHash, when compiled, tends to result in a rather large binary size. This |
| * is mostly due to heavy usage to forced inlining and constant folding of the |
| * @ref XXH3_family to increase performance. |
| * |
| * However, some developers prefer size over speed. This option can |
| * significantly reduce the size of the generated code. When using the `-Os` |
| * or `-Oz` options on GCC or Clang, this is defined to 1 by default, |
| * otherwise it is defined to 0. |
| * |
| * Most of these size optimizations can be controlled manually. |
| * |
| * This is a number from 0-2. |
| * - `XXH_SIZE_OPT` == 0: Default. xxHash makes no size optimizations. Speed |
| * comes first. |
| * - `XXH_SIZE_OPT` == 1: Default for `-Os` and `-Oz`. xxHash is more |
| * conservative and disables hacks that increase code size. It implies the |
| * options @ref XXH_NO_INLINE_HINTS == 1, @ref XXH_FORCE_ALIGN_CHECK == 0, |
| * and @ref XXH3_NEON_LANES == 8 if they are not already defined. |
| * - `XXH_SIZE_OPT` == 2: xxHash tries to make itself as small as possible. |
| * Performance may cry. For example, the single shot functions just use the |
| * streaming API. |
| */ |
| # define XXH_SIZE_OPT 0 |
| |
| /*! |
| * @def XXH_FORCE_ALIGN_CHECK |
| * @brief If defined to non-zero, adds a special path for aligned inputs (XXH32() |
| * and XXH64() only). |
| * |
| * This is an important performance trick for architectures without decent |
| * unaligned memory access performance. |
| * |
| * It checks for input alignment, and when conditions are met, uses a "fast |
| * path" employing direct 32-bit/64-bit reads, resulting in _dramatically |
| * faster_ read speed. |
| * |
| * The check costs one initial branch per hash, which is generally negligible, |
| * but not zero. |
| * |
| * Moreover, it's not useful to generate an additional code path if memory |
| * access uses the same instruction for both aligned and unaligned |
| * addresses (e.g. x86 and aarch64). |
| * |
| * In these cases, the alignment check can be removed by setting this macro to 0. |
| * Then the code will always use unaligned memory access. |
| * Align check is automatically disabled on x86, x64, ARM64, and some ARM chips |
| * which are platforms known to offer good unaligned memory accesses performance. |
| * |
| * It is also disabled by default when @ref XXH_SIZE_OPT >= 1. |
| * |
| * This option does not affect XXH3 (only XXH32 and XXH64). |
| */ |
| # define XXH_FORCE_ALIGN_CHECK 0 |
| |
| /*! |
| * @def XXH_NO_INLINE_HINTS |
| * @brief When non-zero, sets all functions to `static`. |
| * |
| * By default, xxHash tries to force the compiler to inline almost all internal |
| * functions. |
| * |
| * This can usually improve performance due to reduced jumping and improved |
| * constant folding, but significantly increases the size of the binary which |
| * might not be favorable. |
| * |
| * Additionally, sometimes the forced inlining can be detrimental to performance, |
| * depending on the architecture. |
| * |
| * XXH_NO_INLINE_HINTS marks all internal functions as static, giving the |
| * compiler full control on whether to inline or not. |
| * |
| * When not optimizing (-O0), using `-fno-inline` with GCC or Clang, or if |
| * @ref XXH_SIZE_OPT >= 1, this will automatically be defined. |
| */ |
| # define XXH_NO_INLINE_HINTS 0 |
| |
| /*! |
| * @def XXH3_INLINE_SECRET |
| * @brief Determines whether to inline the XXH3 withSecret code. |
| * |
| * When the secret size is known, the compiler can improve the performance |
| * of XXH3_64bits_withSecret() and XXH3_128bits_withSecret(). |
| * |
| * However, if the secret size is not known, it doesn't have any benefit. This |
| * happens when xxHash is compiled into a global symbol. Therefore, if |
| * @ref XXH_INLINE_ALL is *not* defined, this will be defined to 0. |
| * |
| * Additionally, this defaults to 0 on GCC 12+, which has an issue with function pointers |
| * that are *sometimes* force inline on -Og, and it is impossible to automatically |
| * detect this optimization level. |
| */ |
| # define XXH3_INLINE_SECRET 0 |
| |
| /*! |
| * @def XXH32_ENDJMP |
| * @brief Whether to use a jump for `XXH32_finalize`. |
| * |
| * For performance, `XXH32_finalize` uses multiple branches in the finalizer. |
| * This is generally preferable for performance, |
| * but depending on exact architecture, a jmp may be preferable. |
| * |
| * This setting is only possibly making a difference for very small inputs. |
| */ |
| # define XXH32_ENDJMP 0 |
| |
| /*! |
| * @internal |
| * @brief Redefines old internal names. |
| * |
| * For compatibility with code that uses xxHash's internals before the names |
| * were changed to improve namespacing. There is no other reason to use this. |
| */ |
| # define XXH_OLD_NAMES |
| # undef XXH_OLD_NAMES /* don't actually use, it is ugly. */ |
| |
| /*! |
| * @def XXH_NO_STREAM |
| * @brief Disables the streaming API. |
| * |
| * When xxHash is not inlined and the streaming functions are not used, disabling |
| * the streaming functions can improve code size significantly, especially with |
| * the @ref XXH3_family which tends to make constant folded copies of itself. |
| */ |
| # define XXH_NO_STREAM |
| # undef XXH_NO_STREAM /* don't actually */ |
| #endif /* XXH_DOXYGEN */ |
| /*! |
| * @} |
| */ |
| |
| #ifndef XXH_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */ |
| /* prefer __packed__ structures (method 1) for GCC |
| * < ARMv7 with unaligned access (e.g. Raspbian armhf) still uses byte shifting, so we use memcpy |
| * which for some reason does unaligned loads. */ |
| # if defined(__GNUC__) && !(defined(__ARM_ARCH) && __ARM_ARCH < 7 && defined(__ARM_FEATURE_UNALIGNED)) |
| # define XXH_FORCE_MEMORY_ACCESS 1 |
| # endif |
| #endif |
| |
| #ifndef XXH_SIZE_OPT |
| /* default to 1 for -Os or -Oz */ |
| # if (defined(__GNUC__) || defined(__clang__)) && defined(__OPTIMIZE_SIZE__) |
| # define XXH_SIZE_OPT 1 |
| # else |
| # define XXH_SIZE_OPT 0 |
| # endif |
| #endif |
| |
| #ifndef XXH_FORCE_ALIGN_CHECK /* can be defined externally */ |
| /* don't check on sizeopt, x86, aarch64, or arm when unaligned access is available */ |
| # if XXH_SIZE_OPT >= 1 || \ |
| defined(__i386) || defined(__x86_64__) || defined(__aarch64__) || defined(__ARM_FEATURE_UNALIGNED) \ |
| || defined(_M_IX86) || defined(_M_X64) || defined(_M_ARM64) || defined(_M_ARM) /* visual */ |
| # define XXH_FORCE_ALIGN_CHECK 0 |
| # else |
| # define XXH_FORCE_ALIGN_CHECK 1 |
| # endif |
| #endif |
| |
| #ifndef XXH_NO_INLINE_HINTS |
| # if XXH_SIZE_OPT >= 1 || defined(__NO_INLINE__) /* -O0, -fno-inline */ |
| # define XXH_NO_INLINE_HINTS 1 |
| # else |
| # define XXH_NO_INLINE_HINTS 0 |
| # endif |
| #endif |
| |
| #ifndef XXH3_INLINE_SECRET |
| # if (defined(__GNUC__) && !defined(__clang__) && __GNUC__ >= 12) \ |
| || !defined(XXH_INLINE_ALL) |
| # define XXH3_INLINE_SECRET 0 |
| # else |
| # define XXH3_INLINE_SECRET 1 |
| # endif |
| #endif |
| |
| #ifndef XXH32_ENDJMP |
| /* generally preferable for performance */ |
| # define XXH32_ENDJMP 0 |
| #endif |
| |
| /*! |
| * @defgroup impl Implementation |
| * @{ |
| */ |
| |
| |
| /* ************************************* |
| * Includes & Memory related functions |
| ***************************************/ |
| #if defined(XXH_NO_STREAM) |
| /* nothing */ |
| #elif defined(XXH_NO_STDLIB) |
| |
| /* When requesting to disable any mention of stdlib, |
| * the library loses the ability to invoked malloc / free. |
| * In practice, it means that functions like `XXH*_createState()` |
| * will always fail, and return NULL. |
| * This flag is useful in situations where |
| * xxhash.h is integrated into some kernel, embedded or limited environment |
| * without access to dynamic allocation. |
| */ |
| |
| static XXH_CONSTF void* XXH_malloc(size_t s) { (void)s; return NULL; } |
| static void XXH_free(void* p) { (void)p; } |
| |
| #else |
| |
| /* |
| * Modify the local functions below should you wish to use |
| * different memory routines for malloc() and free() |
| */ |
| #include <stdlib.h> |
| |
| /*! |
| * @internal |
| * @brief Modify this function to use a different routine than malloc(). |
| */ |
| static XXH_MALLOCF void* XXH_malloc(size_t s) { return malloc(s); } |
| |
| /*! |
| * @internal |
| * @brief Modify this function to use a different routine than free(). |
| */ |
| static void XXH_free(void* p) { free(p); } |
| |
| #endif /* XXH_NO_STDLIB */ |
| |
| #include <string.h> |
| |
| /*! |
| * @internal |
| * @brief Modify this function to use a different routine than memcpy(). |
| */ |
| static void* XXH_memcpy(void* dest, const void* src, size_t size) |
| { |
| return memcpy(dest,src,size); |
| } |
| |
| #include <limits.h> /* ULLONG_MAX */ |
| |
| |
| /* ************************************* |
| * Compiler Specific Options |
| ***************************************/ |
| #ifdef _MSC_VER /* Visual Studio warning fix */ |
| # pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */ |
| #endif |
| |
| #if XXH_NO_INLINE_HINTS /* disable inlining hints */ |
| # if defined(__GNUC__) || defined(__clang__) |
| # define XXH_FORCE_INLINE static __attribute__((unused)) |
| # else |
| # define XXH_FORCE_INLINE static |
| # endif |
| # define XXH_NO_INLINE static |
| /* enable inlining hints */ |
| #elif defined(__GNUC__) || defined(__clang__) |
| # define XXH_FORCE_INLINE static __inline__ __attribute__((always_inline, unused)) |
| # define XXH_NO_INLINE static __attribute__((noinline)) |
| #elif defined(_MSC_VER) /* Visual Studio */ |
| # define XXH_FORCE_INLINE static __forceinline |
| # define XXH_NO_INLINE static __declspec(noinline) |
| #elif defined (__cplusplus) \ |
| || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L)) /* C99 */ |
| # define XXH_FORCE_INLINE static inline |
| # define XXH_NO_INLINE static |
| #else |
| # define XXH_FORCE_INLINE static |
| # define XXH_NO_INLINE static |
| #endif |
| |
| #if XXH3_INLINE_SECRET |
| # define XXH3_WITH_SECRET_INLINE XXH_FORCE_INLINE |
| #else |
| # define XXH3_WITH_SECRET_INLINE XXH_NO_INLINE |
| #endif |
| |
| |
| /* ************************************* |
| * Debug |
| ***************************************/ |
| /*! |
| * @ingroup tuning |
| * @def XXH_DEBUGLEVEL |
| * @brief Sets the debugging level. |
| * |
| * XXH_DEBUGLEVEL is expected to be defined externally, typically via the |
| * compiler's command line options. The value must be a number. |
| */ |
| #ifndef XXH_DEBUGLEVEL |
| # ifdef DEBUGLEVEL /* backwards compat */ |
| # define XXH_DEBUGLEVEL DEBUGLEVEL |
| # else |
| # define XXH_DEBUGLEVEL 0 |
| # endif |
| #endif |
| |
| #if (XXH_DEBUGLEVEL>=1) |
| # include <assert.h> /* note: can still be disabled with NDEBUG */ |
| # define XXH_ASSERT(c) assert(c) |
| #else |
| # if defined(__INTEL_COMPILER) |
| # define XXH_ASSERT(c) XXH_ASSUME((unsigned char) (c)) |
| # else |
| # define XXH_ASSERT(c) XXH_ASSUME(c) |
| # endif |
| #endif |
| |
| /* note: use after variable declarations */ |
| #ifndef XXH_STATIC_ASSERT |
| # if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) /* C11 */ |
| # define XXH_STATIC_ASSERT_WITH_MESSAGE(c,m) do { _Static_assert((c),m); } while(0) |
| # elif defined(__cplusplus) && (__cplusplus >= 201103L) /* C++11 */ |
| # define XXH_STATIC_ASSERT_WITH_MESSAGE(c,m) do { static_assert((c),m); } while(0) |
| # else |
| # define XXH_STATIC_ASSERT_WITH_MESSAGE(c,m) do { struct xxh_sa { char x[(c) ? 1 : -1]; }; } while(0) |
| # endif |
| # define XXH_STATIC_ASSERT(c) XXH_STATIC_ASSERT_WITH_MESSAGE((c),#c) |
| #endif |
| |
| /*! |
| * @internal |
| * @def XXH_COMPILER_GUARD(var) |
| * @brief Used to prevent unwanted optimizations for @p var. |
| * |
| * It uses an empty GCC inline assembly statement with a register constraint |
| * which forces @p var into a general purpose register (eg eax, ebx, ecx |
| * on x86) and marks it as modified. |
| * |
| * This is used in a few places to avoid unwanted autovectorization (e.g. |
| * XXH32_round()). All vectorization we want is explicit via intrinsics, |
| * and _usually_ isn't wanted elsewhere. |
| * |
| * We also use it to prevent unwanted constant folding for AArch64 in |
| * XXH3_initCustomSecret_scalar(). |
| */ |
| #if defined(__GNUC__) || defined(__clang__) |
| # define XXH_COMPILER_GUARD(var) __asm__("" : "+r" (var)) |
| #else |
| # define XXH_COMPILER_GUARD(var) ((void)0) |
| #endif |
| |
| /* Specifically for NEON vectors which use the "w" constraint, on |
| * Clang. */ |
| #if defined(__clang__) && defined(__ARM_ARCH) && !defined(__wasm__) |
| # define XXH_COMPILER_GUARD_CLANG_NEON(var) __asm__("" : "+w" (var)) |
| #else |
| # define XXH_COMPILER_GUARD_CLANG_NEON(var) ((void)0) |
| #endif |
| |
| /* ************************************* |
| * Basic Types |
| ***************************************/ |
| #if !defined (__VMS) \ |
| && (defined (__cplusplus) \ |
| || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) ) |
| # include <stdint.h> |
| typedef uint8_t xxh_u8; |
| #else |
| typedef unsigned char xxh_u8; |
| #endif |
| typedef XXH32_hash_t xxh_u32; |
| |
| #ifdef XXH_OLD_NAMES |
| # warning "XXH_OLD_NAMES is planned to be removed starting v0.9. If the program depends on it, consider moving away from it by employing newer type names directly" |
| # define BYTE xxh_u8 |
| # define U8 xxh_u8 |
| # define U32 xxh_u32 |
| #endif |
| |
| /* *** Memory access *** */ |
| |
| /*! |
| * @internal |
| * @fn xxh_u32 XXH_read32(const void* ptr) |
| * @brief Reads an unaligned 32-bit integer from @p ptr in native endianness. |
| * |
| * Affected by @ref XXH_FORCE_MEMORY_ACCESS. |
| * |
| * @param ptr The pointer to read from. |
| * @return The 32-bit native endian integer from the bytes at @p ptr. |
| */ |
| |
| /*! |
| * @internal |
| * @fn xxh_u32 XXH_readLE32(const void* ptr) |
| * @brief Reads an unaligned 32-bit little endian integer from @p ptr. |
| * |
| * Affected by @ref XXH_FORCE_MEMORY_ACCESS. |
| * |
| * @param ptr The pointer to read from. |
| * @return The 32-bit little endian integer from the bytes at @p ptr. |
| */ |
| |
| /*! |
| * @internal |
| * @fn xxh_u32 XXH_readBE32(const void* ptr) |
| * @brief Reads an unaligned 32-bit big endian integer from @p ptr. |
| * |
| * Affected by @ref XXH_FORCE_MEMORY_ACCESS. |
| * |
| * @param ptr The pointer to read from. |
| * @return The 32-bit big endian integer from the bytes at @p ptr. |
| */ |
| |
| /*! |
| * @internal |
| * @fn xxh_u32 XXH_readLE32_align(const void* ptr, XXH_alignment align) |
| * @brief Like @ref XXH_readLE32(), but has an option for aligned reads. |
| * |
| * Affected by @ref XXH_FORCE_MEMORY_ACCESS. |
| * Note that when @ref XXH_FORCE_ALIGN_CHECK == 0, the @p align parameter is |
| * always @ref XXH_alignment::XXH_unaligned. |
| * |
| * @param ptr The pointer to read from. |
| * @param align Whether @p ptr is aligned. |
| * @pre |
| * If @p align == @ref XXH_alignment::XXH_aligned, @p ptr must be 4 byte |
| * aligned. |
| * @return The 32-bit little endian integer from the bytes at @p ptr. |
| */ |
| |
| #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3)) |
| /* |
| * Manual byteshift. Best for old compilers which don't inline memcpy. |
| * We actually directly use XXH_readLE32 and XXH_readBE32. |
| */ |
| #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2)) |
| |
| /* |
| * Force direct memory access. Only works on CPU which support unaligned memory |
| * access in hardware. |
| */ |
| static xxh_u32 XXH_read32(const void* memPtr) { return *(const xxh_u32*) memPtr; } |
| |
| #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1)) |
| |
| /* |
| * __attribute__((aligned(1))) is supported by gcc and clang. Originally the |
| * documentation claimed that it only increased the alignment, but actually it |
| * can decrease it on gcc, clang, and icc: |
| * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=69502, |
| * https://gcc.godbolt.org/z/xYez1j67Y. |
| */ |
| #ifdef XXH_OLD_NAMES |
| typedef union { xxh_u32 u32; } __attribute__((packed)) unalign; |
| #endif |
| static xxh_u32 XXH_read32(const void* ptr) |
| { |
| typedef __attribute__((aligned(1))) xxh_u32 xxh_unalign32; |
| return *((const xxh_unalign32*)ptr); |
| } |
| |
| #else |
| |
| /* |
| * Portable and safe solution. Generally efficient. |
| * see: https://fastcompression.blogspot.com/2015/08/accessing-unaligned-memory.html |
| */ |
| static xxh_u32 XXH_read32(const void* memPtr) |
| { |
| xxh_u32 val; |
| XXH_memcpy(&val, memPtr, sizeof(val)); |
| return val; |
| } |
| |
| #endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */ |
| |
| |
| /* *** Endianness *** */ |
| |
| /*! |
| * @ingroup tuning |
| * @def XXH_CPU_LITTLE_ENDIAN |
| * @brief Whether the target is little endian. |
| * |
| * Defined to 1 if the target is little endian, or 0 if it is big endian. |
| * It can be defined externally, for example on the compiler command line. |
| * |
| * If it is not defined, |
| * a runtime check (which is usually constant folded) is used instead. |
| * |
| * @note |
| * This is not necessarily defined to an integer constant. |
| * |
| * @see XXH_isLittleEndian() for the runtime check. |
| */ |
| #ifndef XXH_CPU_LITTLE_ENDIAN |
| /* |
| * Try to detect endianness automatically, to avoid the nonstandard behavior |
| * in `XXH_isLittleEndian()` |
| */ |
| # if defined(_WIN32) /* Windows is always little endian */ \ |
| || defined(__LITTLE_ENDIAN__) \ |
| || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) |
| # define XXH_CPU_LITTLE_ENDIAN 1 |
| # elif defined(__BIG_ENDIAN__) \ |
| || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) |
| # define XXH_CPU_LITTLE_ENDIAN 0 |
| # else |
| /*! |
| * @internal |
| * @brief Runtime check for @ref XXH_CPU_LITTLE_ENDIAN. |
| * |
| * Most compilers will constant fold this. |
| */ |
| static int XXH_isLittleEndian(void) |
| { |
| /* |
| * Portable and well-defined behavior. |
| * Don't use static: it is detrimental to performance. |
| */ |
| const union { xxh_u32 u; xxh_u8 c[4]; } one = { 1 }; |
| return one.c[0]; |
| } |
| # define XXH_CPU_LITTLE_ENDIAN XXH_isLittleEndian() |
| # endif |
| #endif |
| |
| |
| |
| |
| /* **************************************** |
| * Compiler-specific Functions and Macros |
| ******************************************/ |
| #define XXH_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__) |
| |
| #ifdef __has_builtin |
| # define XXH_HAS_BUILTIN(x) __has_builtin(x) |
| #else |
| # define XXH_HAS_BUILTIN(x) 0 |
| #endif |
| |
| |
| |
| /* |
| * C23 and future versions have standard "unreachable()". |
| * Once it has been implemented reliably we can add it as an |
| * additional case: |
| * |
| * ``` |
| * #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= XXH_C23_VN) |
| * # include <stddef.h> |
| * # ifdef unreachable |
| * # define XXH_UNREACHABLE() unreachable() |
| * # endif |
| * #endif |
| * ``` |
| * |
| * Note C++23 also has std::unreachable() which can be detected |
| * as follows: |
| * ``` |
| * #if defined(__cpp_lib_unreachable) && (__cpp_lib_unreachable >= 202202L) |
| * # include <utility> |
| * # define XXH_UNREACHABLE() std::unreachable() |
| * #endif |
| * ``` |
| * NB: `__cpp_lib_unreachable` is defined in the `<version>` header. |
| * We don't use that as including `<utility>` in `extern "C"` blocks |
| * doesn't work on GCC12 |
| */ |
| |
| #if XXH_HAS_BUILTIN(__builtin_unreachable) |
| # define XXH_UNREACHABLE() __builtin_unreachable() |
| |
| #elif defined(_MSC_VER) |
| # define XXH_UNREACHABLE() __assume(0) |
| |
| #else |
| # define XXH_UNREACHABLE() |
| #endif |
| |
| #if XXH_HAS_BUILTIN(__builtin_assume) |
| # define XXH_ASSUME(c) __builtin_assume(c) |
| #else |
| # define XXH_ASSUME(c) if (!(c)) { XXH_UNREACHABLE(); } |
| #endif |
| |
| /*! |
| * @internal |
| * @def XXH_rotl32(x,r) |
| * @brief 32-bit rotate left. |
| * |
| * @param x The 32-bit integer to be rotated. |
| * @param r The number of bits to rotate. |
| * @pre |
| * @p r > 0 && @p r < 32 |
| * @note |
| * @p x and @p r may be evaluated multiple times. |
| * @return The rotated result. |
| */ |
| #if !defined(NO_CLANG_BUILTIN) && XXH_HAS_BUILTIN(__builtin_rotateleft32) \ |
| && XXH_HAS_BUILTIN(__builtin_rotateleft64) |
| # define XXH_rotl32 __builtin_rotateleft32 |
| # define XXH_rotl64 __builtin_rotateleft64 |
| /* Note: although _rotl exists for minGW (GCC under windows), performance seems poor */ |
| #elif defined(_MSC_VER) |
| # define XXH_rotl32(x,r) _rotl(x,r) |
| # define XXH_rotl64(x,r) _rotl64(x,r) |
| #else |
| # define XXH_rotl32(x,r) (((x) << (r)) | ((x) >> (32 - (r)))) |
| # define XXH_rotl64(x,r) (((x) << (r)) | ((x) >> (64 - (r)))) |
| #endif |
| |
| /*! |
| * @internal |
| * @fn xxh_u32 XXH_swap32(xxh_u32 x) |
| * @brief A 32-bit byteswap. |
| * |
| * @param x The 32-bit integer to byteswap. |
| * @return @p x, byteswapped. |
| */ |
| #if defined(_MSC_VER) /* Visual Studio */ |
| # define XXH_swap32 _byteswap_ulong |
| #elif XXH_GCC_VERSION >= 403 |
| # define XXH_swap32 __builtin_bswap32 |
| #else |
| static xxh_u32 XXH_swap32 (xxh_u32 x) |
| { |
| return ((x << 24) & 0xff000000 ) | |
| ((x << 8) & 0x00ff0000 ) | |
| ((x >> 8) & 0x0000ff00 ) | |
| ((x >> 24) & 0x000000ff ); |
| } |
| #endif |
| |
| |
| /* *************************** |
| * Memory reads |
| *****************************/ |
| |
| /*! |
| * @internal |
| * @brief Enum to indicate whether a pointer is aligned. |
| */ |
| typedef enum { |
| XXH_aligned, /*!< Aligned */ |
| XXH_unaligned /*!< Possibly unaligned */ |
| } XXH_alignment; |
| |
| /* |
| * XXH_FORCE_MEMORY_ACCESS==3 is an endian-independent byteshift load. |
| * |
| * This is ideal for older compilers which don't inline memcpy. |
| */ |
| #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3)) |
| |
| XXH_FORCE_INLINE xxh_u32 XXH_readLE32(const void* memPtr) |
| { |
| const xxh_u8* bytePtr = (const xxh_u8 *)memPtr; |
| return bytePtr[0] |
| | ((xxh_u32)bytePtr[1] << 8) |
| | ((xxh_u32)bytePtr[2] << 16) |
| | ((xxh_u32)bytePtr[3] << 24); |
| } |
| |
| XXH_FORCE_INLINE xxh_u32 XXH_readBE32(const void* memPtr) |
| { |
| const xxh_u8* bytePtr = (const xxh_u8 *)memPtr; |
| return bytePtr[3] |
| | ((xxh_u32)bytePtr[2] << 8) |
| | ((xxh_u32)bytePtr[1] << 16) |
| | ((xxh_u32)bytePtr[0] << 24); |
| } |
| |
| #else |
| XXH_FORCE_INLINE xxh_u32 XXH_readLE32(const void* ptr) |
| { |
| return XXH_CPU_LITTLE_ENDIAN ? XXH_read32(ptr) : XXH_swap32(XXH_read32(ptr)); |
| } |
| |
| static xxh_u32 XXH_readBE32(const void* ptr) |
| { |
| return XXH_CPU_LITTLE_ENDIAN ? XXH_swap32(XXH_read32(ptr)) : XXH_read32(ptr); |
| } |
| #endif |
| |
| XXH_FORCE_INLINE xxh_u32 |
| XXH_readLE32_align(const void* ptr, XXH_alignment align) |
| { |
| if (align==XXH_unaligned) { |
| return XXH_readLE32(ptr); |
| } else { |
| return XXH_CPU_LITTLE_ENDIAN ? *(const xxh_u32*)ptr : XXH_swap32(*(const xxh_u32*)ptr); |
| } |
| } |
| |
| |
| /* ************************************* |
| * Misc |
| ***************************************/ |
| /*! @ingroup public */ |
| XXH_PUBLIC_API unsigned XXH_versionNumber (void) { return XXH_VERSION_NUMBER; } |
| |
| |
| /* ******************************************************************* |
| * 32-bit hash functions |
| *********************************************************************/ |
| /*! |
| * @} |
| * @defgroup XXH32_impl XXH32 implementation |
| * @ingroup impl |
| * |
| * Details on the XXH32 implementation. |
| * @{ |
| */ |
| /* #define instead of static const, to be used as initializers */ |
| #define XXH_PRIME32_1 0x9E3779B1U /*!< 0b10011110001101110111100110110001 */ |
| #define XXH_PRIME32_2 0x85EBCA77U /*!< 0b10000101111010111100101001110111 */ |
| #define XXH_PRIME32_3 0xC2B2AE3DU /*!< 0b11000010101100101010111000111101 */ |
| #define XXH_PRIME32_4 0x27D4EB2FU /*!< 0b00100111110101001110101100101111 */ |
| #define XXH_PRIME32_5 0x165667B1U /*!< 0b00010110010101100110011110110001 */ |
| |
| #ifdef XXH_OLD_NAMES |
| # define PRIME32_1 XXH_PRIME32_1 |
| # define PRIME32_2 XXH_PRIME32_2 |
| # define PRIME32_3 XXH_PRIME32_3 |
| # define PRIME32_4 XXH_PRIME32_4 |
| # define PRIME32_5 XXH_PRIME32_5 |
| #endif |
| |
| /*! |
| * @internal |
| * @brief Normal stripe processing routine. |
| * |
| * This shuffles the bits so that any bit from @p input impacts several bits in |
| * @p acc. |
| * |
| * @param acc The accumulator lane. |
| * @param input The stripe of input to mix. |
| * @return The mixed accumulator lane. |
| */ |
| static xxh_u32 XXH32_round(xxh_u32 acc, xxh_u32 input) |
| { |
| acc += input * XXH_PRIME32_2; |
| acc = XXH_rotl32(acc, 13); |
| acc *= XXH_PRIME32_1; |
| #if (defined(__SSE4_1__) || defined(__aarch64__) || defined(__wasm_simd128__)) && !defined(XXH_ENABLE_AUTOVECTORIZE) |
| /* |
| * UGLY HACK: |
| * A compiler fence is the only thing that prevents GCC and Clang from |
| * autovectorizing the XXH32 loop (pragmas and attributes don't work for some |
| * reason) without globally disabling SSE4.1. |
| * |
| * The reason we want to avoid vectorization is because despite working on |
| * 4 integers at a time, there are multiple factors slowing XXH32 down on |
| * SSE4: |
| * - There's a ridiculous amount of lag from pmulld (10 cycles of latency on |
| * newer chips!) making it slightly slower to multiply four integers at |
| * once compared to four integers independently. Even when pmulld was |
| * fastest, Sandy/Ivy Bridge, it is still not worth it to go into SSE |
| * just to multiply unless doing a long operation. |
| * |
| * - Four instructions are required to rotate, |
| * movqda tmp, v // not required with VEX encoding |
| * pslld tmp, 13 // tmp <<= 13 |
| * psrld v, 19 // x >>= 19 |
| * por v, tmp // x |= tmp |
| * compared to one for scalar: |
| * roll v, 13 // reliably fast across the board |
| * shldl v, v, 13 // Sandy Bridge and later prefer this for some reason |
| * |
| * - Instruction level parallelism is actually more beneficial here because |
| * the SIMD actually serializes this operation: While v1 is rotating, v2 |
| * can load data, while v3 can multiply. SSE forces them to operate |
| * together. |
| * |
| * This is also enabled on AArch64, as Clang is *very aggressive* in vectorizing |
| * the loop. NEON is only faster on the A53, and with the newer cores, it is less |
| * than half the speed. |
| * |
| * Additionally, this is used on WASM SIMD128 because it JITs to the same |
| * SIMD instructions and has the same issue. |
| */ |
| XXH_COMPILER_GUARD(acc); |
| #endif |
| return acc; |
| } |
| |
| /*! |
| * @internal |
| * @brief Mixes all bits to finalize the hash. |
| * |
| * The final mix ensures that all input bits have a chance to impact any bit in |
| * the output digest, resulting in an unbiased distribution. |
| * |
| * @param hash The hash to avalanche. |
| * @return The avalanched hash. |
| */ |
| static xxh_u32 XXH32_avalanche(xxh_u32 hash) |
| { |
| hash ^= hash >> 15; |
| hash *= XXH_PRIME32_2; |
| hash ^= hash >> 13; |
| hash *= XXH_PRIME32_3; |
| hash ^= hash >> 16; |
| return hash; |
| } |
| |
| #define XXH_get32bits(p) XXH_readLE32_align(p, align) |
| |
| /*! |
| * @internal |
| * @brief Processes the last 0-15 bytes of @p ptr. |
| * |
| * There may be up to 15 bytes remaining to consume from the input. |
| * This final stage will digest them to ensure that all input bytes are present |
| * in the final mix. |
| * |
| * @param hash The hash to finalize. |
| * @param ptr The pointer to the remaining input. |
| * @param len The remaining length, modulo 16. |
| * @param align Whether @p ptr is aligned. |
| * @return The finalized hash. |
| * @see XXH64_finalize(). |
| */ |
| static XXH_PUREF xxh_u32 |
| XXH32_finalize(xxh_u32 hash, const xxh_u8* ptr, size_t len, XXH_alignment align) |
| { |
| #define XXH_PROCESS1 do { \ |
| hash += (*ptr++) * XXH_PRIME32_5; \ |
| hash = XXH_rotl32(hash, 11) * XXH_PRIME32_1; \ |
| } while (0) |
| |
| #define XXH_PROCESS4 do { \ |
| hash += XXH_get32bits(ptr) * XXH_PRIME32_3; \ |
| ptr += 4; \ |
| hash = XXH_rotl32(hash, 17) * XXH_PRIME32_4; \ |
| } while (0) |
| |
| if (ptr==NULL) XXH_ASSERT(len == 0); |
| |
| /* Compact rerolled version; generally faster */ |
| if (!XXH32_ENDJMP) { |
| len &= 15; |
| while (len >= 4) { |
| XXH_PROCESS4; |
| len -= 4; |
| } |
| while (len > 0) { |
| XXH_PROCESS1; |
| --len; |
| } |
| return XXH32_avalanche(hash); |
| } else { |
| switch(len&15) /* or switch(bEnd - p) */ { |
| case 12: XXH_PROCESS4; |
| XXH_FALLTHROUGH; /* fallthrough */ |
| case 8: XXH_PROCESS4; |
| XXH_FALLTHROUGH; /* fallthrough */ |
| case 4: XXH_PROCESS4; |
| return XXH32_avalanche(hash); |
| |
| case 13: XXH_PROCESS4; |
| XXH_FALLTHROUGH; /* fallthrough */ |
| case 9: XXH_PROCESS4; |
| XXH_FALLTHROUGH; /* fallthrough */ |
| case 5: XXH_PROCESS4; |
| XXH_PROCESS1; |
| return XXH32_avalanche(hash); |
| |
| case 14: XXH_PROCESS4; |
| XXH_FALLTHROUGH; /* fallthrough */ |
| case 10: XXH_PROCESS4; |
| XXH_FALLTHROUGH; /* fallthrough */ |
| case 6: XXH_PROCESS4; |
| XXH_PROCESS1; |
| XXH_PROCESS1; |
| return XXH32_avalanche(hash); |
| |
| case 15: XXH_PROCESS4; |
| XXH_FALLTHROUGH; /* fallthrough */ |
| case 11: XXH_PROCESS4; |
| XXH_FALLTHROUGH; /* fallthrough */ |
| case 7: XXH_PROCESS4; |
| XXH_FALLTHROUGH; /* fallthrough */ |
| case 3: XXH_PROCESS1; |
| XXH_FALLTHROUGH; /* fallthrough */ |
| case 2: XXH_PROCESS1; |
| XXH_FALLTHROUGH; /* fallthrough */ |
| case 1: XXH_PROCESS1; |
| XXH_FALLTHROUGH; /* fallthrough */ |
| case 0: return XXH32_avalanche(hash); |
| } |
| XXH_ASSERT(0); |
| return hash; /* reaching this point is deemed impossible */ |
| } |
| } |
| |
| #ifdef XXH_OLD_NAMES |
| # define PROCESS1 XXH_PROCESS1 |
| # define PROCESS4 XXH_PROCESS4 |
| #else |
| # undef XXH_PROCESS1 |
| # undef XXH_PROCESS4 |
| #endif |
| |
| /*! |
| * @internal |
| * @brief The implementation for @ref XXH32(). |
| * |
| * @param input , len , seed Directly passed from @ref XXH32(). |
| * @param align Whether @p input is aligned. |
| * @return The calculated hash. |
| */ |
| XXH_FORCE_INLINE XXH_PUREF xxh_u32 |
| XXH32_endian_align(const xxh_u8* input, size_t len, xxh_u32 seed, XXH_alignment align) |
| { |
| xxh_u32 h32; |
| |
| if (input==NULL) XXH_ASSERT(len == 0); |
| |
| if (len>=16) { |
| const xxh_u8* const bEnd = input + len; |
| const xxh_u8* const limit = bEnd - 15; |
| xxh_u32 v1 = seed + XXH_PRIME32_1 + XXH_PRIME32_2; |
| xxh_u32 v2 = seed + XXH_PRIME32_2; |
| xxh_u32 v3 = seed + 0; |
| xxh_u32 v4 = seed - XXH_PRIME32_1; |
| |
| do { |
| v1 = XXH32_round(v1, XXH_get32bits(input)); input += 4; |
| v2 = XXH32_round(v2, XXH_get32bits(input)); input += 4; |
| v3 = XXH32_round(v3, XXH_get32bits(input)); input += 4; |
| v4 = XXH32_round(v4, XXH_get32bits(input)); input += 4; |
| } while (input < limit); |
| |
| h32 = XXH_rotl32(v1, 1) + XXH_rotl32(v2, 7) |
| + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18); |
| } else { |
| h32 = seed + XXH_PRIME32_5; |
| } |
| |
| h32 += (xxh_u32)len; |
| |
| return XXH32_finalize(h32, input, len&15, align); |
| } |
| |
| /*! @ingroup XXH32_family */ |
| XXH_PUBLIC_API XXH32_hash_t XXH32 (const void* input, size_t len, XXH32_hash_t seed) |
| { |
| #if !defined(XXH_NO_STREAM) && XXH_SIZE_OPT >= 2 |
| /* Simple version, good for code maintenance, but unfortunately slow for small inputs */ |
| XXH32_state_t state; |
| XXH32_reset(&state, seed); |
| XXH32_update(&state, (const xxh_u8*)input, len); |
| return XXH32_digest(&state); |
| #else |
| if (XXH_FORCE_ALIGN_CHECK) { |
| if ((((size_t)input) & 3) == 0) { /* Input is 4-bytes aligned, leverage the speed benefit */ |
| return XXH32_endian_align((const xxh_u8*)input, len, seed, XXH_aligned); |
| } } |
| |
| return XXH32_endian_align((const xxh_u8*)input, len, seed, XXH_unaligned); |
| #endif |
| } |
| |
| |
| |
| /******* Hash streaming *******/ |
| #ifndef XXH_NO_STREAM |
| /*! @ingroup XXH32_family */ |
| XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void) |
| { |
| return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t)); |
| } |
| /*! @ingroup XXH32_family */ |
| XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr) |
| { |
| XXH_free(statePtr); |
| return XXH_OK; |
| } |
| |
| /*! @ingroup XXH32_family */ |
| XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* dstState, const XXH32_state_t* srcState) |
| { |
| XXH_memcpy(dstState, srcState, sizeof(*dstState)); |
| } |
| |
| /*! @ingroup XXH32_family */ |
| XXH_PUBLIC_API XXH_errorcode XXH32_reset(XXH32_state_t* statePtr, XXH32_hash_t seed) |
| { |
| XXH_ASSERT(statePtr != NULL); |
| memset(statePtr, 0, sizeof(*statePtr)); |
| statePtr->v[0] = seed + XXH_PRIME32_1 + XXH_PRIME32_2; |
| statePtr->v[1] = seed + XXH_PRIME32_2; |
| statePtr->v[2] = seed + 0; |
| statePtr->v[3] = seed - XXH_PRIME32_1; |
| return XXH_OK; |
| } |
| |
| |
| /*! @ingroup XXH32_family */ |
| XXH_PUBLIC_API XXH_errorcode |
| XXH32_update(XXH32_state_t* state, const void* input, size_t len) |
| { |
| if (input==NULL) { |
| XXH_ASSERT(len == 0); |
| return XXH_OK; |
| } |
| |
| { const xxh_u8* p = (const xxh_u8*)input; |
| const xxh_u8* const bEnd = p + len; |
| |
| state->total_len_32 += (XXH32_hash_t)len; |
| state->large_len |= (XXH32_hash_t)((len>=16) | (state->total_len_32>=16)); |
| |
| if (state->memsize + len < 16) { /* fill in tmp buffer */ |
| XXH_memcpy((xxh_u8*)(state->mem32) + state->memsize, input, len); |
| state->memsize += (XXH32_hash_t)len; |
| return XXH_OK; |
| } |
| |
| if (state->memsize) { /* some data left from previous update */ |
| XXH_memcpy((xxh_u8*)(state->mem32) + state->memsize, input, 16-state->memsize); |
| { const xxh_u32* p32 = state->mem32; |
| state->v[0] = XXH32_round(state->v[0], XXH_readLE32(p32)); p32++; |
| state->v[1] = XXH32_round(state->v[1], XXH_readLE32(p32)); p32++; |
| state->v[2] = XXH32_round(state->v[2], XXH_readLE32(p32)); p32++; |
| state->v[3] = XXH32_round(state->v[3], XXH_readLE32(p32)); |
| } |
| p += 16-state->memsize; |
| state->memsize = 0; |
| } |
| |
| if (p <= bEnd-16) { |
| const xxh_u8* const limit = bEnd - 16; |
| |
| do { |
| state->v[0] = XXH32_round(state->v[0], XXH_readLE32(p)); p+=4; |
| state->v[1] = XXH32_round(state->v[1], XXH_readLE32(p)); p+=4; |
| state->v[2] = XXH32_round(state->v[2], XXH_readLE32(p)); p+=4; |
| state->v[3] = XXH32_round(state->v[3], XXH_readLE32(p)); p+=4; |
| } while (p<=limit); |
| |
| } |
| |
| if (p < bEnd) { |
| XXH_memcpy(state->mem32, p, (size_t)(bEnd-p)); |
| state->memsize = (unsigned)(bEnd-p); |
| } |
| } |
| |
| return XXH_OK; |
| } |
| |
| |
| /*! @ingroup XXH32_family */ |
| XXH_PUBLIC_API XXH32_hash_t XXH32_digest(const XXH32_state_t* state) |
| { |
| xxh_u32 h32; |
| |
| if (state->large_len) { |
| h32 = XXH_rotl32(state->v[0], 1) |
| + XXH_rotl32(state->v[1], 7) |
| + XXH_rotl32(state->v[2], 12) |
| + XXH_rotl32(state->v[3], 18); |
| } else { |
| h32 = state->v[2] /* == seed */ + XXH_PRIME32_5; |
| } |
| |
| h32 += state->total_len_32; |
| |
| return XXH32_finalize(h32, (const xxh_u8*)state->mem32, state->memsize, XXH_aligned); |
| } |
| #endif /* !XXH_NO_STREAM */ |
| |
| /******* Canonical representation *******/ |
| |
| /*! |
| * @ingroup XXH32_family |
| * The default return values from XXH functions are unsigned 32 and 64 bit |
| * integers. |
| * |
| * The canonical representation uses big endian convention, the same convention |
| * as human-readable numbers (large digits first). |
| * |
| * This way, hash values can be written into a file or buffer, remaining |
| * comparable across different systems. |
| * |
| * The following functions allow transformation of hash values to and from their |
| * canonical format. |
| */ |
| XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash) |
| { |
| XXH_STATIC_ASSERT(sizeof(XXH32_canonical_t) == sizeof(XXH32_hash_t)); |
| if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap32(hash); |
| XXH_memcpy(dst, &hash, sizeof(*dst)); |
| } |
| /*! @ingroup XXH32_family */ |
| XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src) |
| { |
| return XXH_readBE32(src); |
| } |
| |
| |
| #ifndef XXH_NO_LONG_LONG |
| |
| /* ******************************************************************* |
| * 64-bit hash functions |
| *********************************************************************/ |
| /*! |
| * @} |
| * @ingroup impl |
| * @{ |
| */ |
| /******* Memory access *******/ |
| |
| typedef XXH64_hash_t xxh_u64; |
| |
| #ifdef XXH_OLD_NAMES |
| # define U64 xxh_u64 |
| #endif |
| |
| #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3)) |
| /* |
| * Manual byteshift. Best for old compilers which don't inline memcpy. |
| * We actually directly use XXH_readLE64 and XXH_readBE64. |
| */ |
| #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2)) |
| |
| /* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */ |
| static xxh_u64 XXH_read64(const void* memPtr) |
| { |
| return *(const xxh_u64*) memPtr; |
| } |
| |
| #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1)) |
| |
| /* |
| * __attribute__((aligned(1))) is supported by gcc and clang. Originally the |
| * documentation claimed that it only increased the alignment, but actually it |
| * can decrease it on gcc, clang, and icc: |
| * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=69502, |
| * https://gcc.godbolt.org/z/xYez1j67Y. |
| */ |
| #ifdef XXH_OLD_NAMES |
| typedef union { xxh_u32 u32; xxh_u64 u64; } __attribute__((packed)) unalign64; |
| #endif |
| static xxh_u64 XXH_read64(const void* ptr) |
| { |
| typedef __attribute__((aligned(1))) xxh_u64 xxh_unalign64; |
| return *((const xxh_unalign64*)ptr); |
| } |
| |
| #else |
| |
| /* |
| * Portable and safe solution. Generally efficient. |
| * see: https://fastcompression.blogspot.com/2015/08/accessing-unaligned-memory.html |
| */ |
| static xxh_u64 XXH_read64(const void* memPtr) |
| { |
| xxh_u64 val; |
| XXH_memcpy(&val, memPtr, sizeof(val)); |
| return val; |
| } |
| |
| #endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */ |
| |
| #if defined(_MSC_VER) /* Visual Studio */ |
| # define XXH_swap64 _byteswap_uint64 |
| #elif XXH_GCC_VERSION >= 403 |
| # define XXH_swap64 __builtin_bswap64 |
| #else |
| static xxh_u64 XXH_swap64(xxh_u64 x) |
| { |
| return ((x << 56) & 0xff00000000000000ULL) | |
| ((x << 40) & 0x00ff000000000000ULL) | |
| ((x << 24) & 0x0000ff0000000000ULL) | |
| ((x << 8) & 0x000000ff00000000ULL) | |
| ((x >> 8) & 0x00000000ff000000ULL) | |
| ((x >> 24) & 0x0000000000ff0000ULL) | |
| ((x >> 40) & 0x000000000000ff00ULL) | |
| ((x >> 56) & 0x00000000000000ffULL); |
| } |
| #endif |
| |
| |
| /* XXH_FORCE_MEMORY_ACCESS==3 is an endian-independent byteshift load. */ |
| #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3)) |
| |
| XXH_FORCE_INLINE xxh_u64 XXH_readLE64(const void* memPtr) |
| { |
| const xxh_u8* bytePtr = (const xxh_u8 *)memPtr; |
| return bytePtr[0] |
| | ((xxh_u64)bytePtr[1] << 8) |
| | ((xxh_u64)bytePtr[2] << 16) |
| | ((xxh_u64)bytePtr[3] << 24) |
| | ((xxh_u64)bytePtr[4] << 32) |
| | ((xxh_u64)bytePtr[5] << 40) |
| | ((xxh_u64)bytePtr[6] << 48) |
| | ((xxh_u64)bytePtr[7] << 56); |
| } |
| |
| XXH_FORCE_INLINE xxh_u64 XXH_readBE64(const void* memPtr) |
| { |
| const xxh_u8* bytePtr = (const xxh_u8 *)memPtr; |
| return bytePtr[7] |
| | ((xxh_u64)bytePtr[6] << 8) |
| | ((xxh_u64)bytePtr[5] << 16) |
| | ((xxh_u64)bytePtr[4] << 24) |
| | ((xxh_u64)bytePtr[3] << 32) |
| | ((xxh_u64)bytePtr[2] << 40) |
| | ((xxh_u64)bytePtr[1] << 48) |
| | ((xxh_u64)bytePtr[0] << 56); |
| } |
| |
| #else |
| XXH_FORCE_INLINE xxh_u64 XXH_readLE64(const void* ptr) |
| { |
| return XXH_CPU_LITTLE_ENDIAN ? XXH_read64(ptr) : XXH_swap64(XXH_read64(ptr)); |
| } |
| |
| static xxh_u64 XXH_readBE64(const void* ptr) |
| { |
| return XXH_CPU_LITTLE_ENDIAN ? XXH_swap64(XXH_read64(ptr)) : XXH_read64(ptr); |
| } |
| #endif |
| |
| XXH_FORCE_INLINE xxh_u64 |
| XXH_readLE64_align(const void* ptr, XXH_alignment align) |
| { |
| if (align==XXH_unaligned) |
| return XXH_readLE64(ptr); |
| else |
| return XXH_CPU_LITTLE_ENDIAN ? *(const xxh_u64*)ptr : XXH_swap64(*(const xxh_u64*)ptr); |
| } |
| |
| |
| /******* xxh64 *******/ |
| /*! |
| * @} |
| * @defgroup XXH64_impl XXH64 implementation |
| * @ingroup impl |
| * |
| * Details on the XXH64 implementation. |
| * @{ |
| */ |
| /* #define rather that static const, to be used as initializers */ |
| #define XXH_PRIME64_1 0x9E3779B185EBCA87ULL /*!< 0b1001111000110111011110011011000110000101111010111100101010000111 */ |
| #define XXH_PRIME64_2 0xC2B2AE3D27D4EB4FULL /*!< 0b1100001010110010101011100011110100100111110101001110101101001111 */ |
| #define XXH_PRIME64_3 0x165667B19E3779F9ULL /*!< 0b0001011001010110011001111011000110011110001101110111100111111001 */ |
| #define XXH_PRIME64_4 0x85EBCA77C2B2AE63ULL /*!< 0b1000010111101011110010100111011111000010101100101010111001100011 */ |
| #define XXH_PRIME64_5 0x27D4EB2F165667C5ULL /*!< 0b0010011111010100111010110010111100010110010101100110011111000101 */ |
| |
| #ifdef XXH_OLD_NAMES |
| # define PRIME64_1 XXH_PRIME64_1 |
| # define PRIME64_2 XXH_PRIME64_2 |
| # define PRIME64_3 XXH_PRIME64_3 |
| # define PRIME64_4 XXH_PRIME64_4 |
| # define PRIME64_5 XXH_PRIME64_5 |
| #endif |
| |
| /*! @copydoc XXH32_round */ |
| static xxh_u64 XXH64_round(xxh_u64 acc, xxh_u64 input) |
| { |
| acc += input * XXH_PRIME64_2; |
| acc = XXH_rotl64(acc, 31); |
| acc *= XXH_PRIME64_1; |
| return acc; |
| } |
| |
| static xxh_u64 XXH64_mergeRound(xxh_u64 acc, xxh_u64 val) |
| { |
| val = XXH64_round(0, val); |
| acc ^= val; |
| acc = acc * XXH_PRIME64_1 + XXH_PRIME64_4; |
| return acc; |
| } |
| |
| /*! @copydoc XXH32_avalanche */ |
| static xxh_u64 XXH64_avalanche(xxh_u64 hash) |
| { |
| hash ^= hash >> 33; |
| hash *= XXH_PRIME64_2; |
| hash ^= hash >> 29; |
| hash *= XXH_PRIME64_3; |
| hash ^= hash >> 32; |
| return hash; |
| } |
| |
| |
| #define XXH_get64bits(p) XXH_readLE64_align(p, align) |
| |
| /*! |
| * @internal |
| * @brief Processes the last 0-31 bytes of @p ptr. |
| * |
| * There may be up to 31 bytes remaining to consume from the input. |
| * This final stage will digest them to ensure that all input bytes are present |
| * in the final mix. |
| * |
| * @param hash The hash to finalize. |
| * @param ptr The pointer to the remaining input. |
| * @param len The remaining length, modulo 32. |
| * @param align Whether @p ptr is aligned. |
| * @return The finalized hash |
| * @see XXH32_finalize(). |
| */ |
| static XXH_PUREF xxh_u64 |
| XXH64_finalize(xxh_u64 hash, const xxh_u8* ptr, size_t len, XXH_alignment align) |
| { |
| if (ptr==NULL) XXH_ASSERT(len == 0); |
| len &= 31; |
| while (len >= 8) { |
| xxh_u64 const k1 = XXH64_round(0, XXH_get64bits(ptr)); |
| ptr += 8; |
| hash ^= k1; |
| hash = XXH_rotl64(hash,27) * XXH_PRIME64_1 + XXH_PRIME64_4; |
| len -= 8; |
| } |
| if (len >= 4) { |
| hash ^= (xxh_u64)(XXH_get32bits(ptr)) * XXH_PRIME64_1; |
| ptr += 4; |
| hash = XXH_rotl64(hash, 23) * XXH_PRIME64_2 + XXH_PRIME64_3; |
| len -= 4; |
| } |
| while (len > 0) { |
| hash ^= (*ptr++) * XXH_PRIME64_5; |
| hash = XXH_rotl64(hash, 11) * XXH_PRIME64_1; |
| --len; |
| } |
| return XXH64_avalanche(hash); |
| } |
| |
| #ifdef XXH_OLD_NAMES |
| # define PROCESS1_64 XXH_PROCESS1_64 |
| # define PROCESS4_64 XXH_PROCESS4_64 |
| # define PROCESS8_64 XXH_PROCESS8_64 |
| #else |
| # undef XXH_PROCESS1_64 |
| # undef XXH_PROCESS4_64 |
| # undef XXH_PROCESS8_64 |
| #endif |
| |
| /*! |
| * @internal |
| * @brief The implementation for @ref XXH64(). |
| * |
| * @param input , len , seed Directly passed from @ref XXH64(). |
| * @param align Whether @p input is aligned. |
| * @return The calculated hash. |
| */ |
| XXH_FORCE_INLINE XXH_PUREF xxh_u64 |
| XXH64_endian_align(const xxh_u8* input, size_t len, xxh_u64 seed, XXH_alignment align) |
| { |
| xxh_u64 h64; |
| if (input==NULL) XXH_ASSERT(len == 0); |
| |
| if (len>=32) { |
| const xxh_u8* const bEnd = input + len; |
| const xxh_u8* const limit = bEnd - 31; |
| xxh_u64 v1 = seed + XXH_PRIME64_1 + XXH_PRIME64_2; |
| xxh_u64 v2 = seed + XXH_PRIME64_2; |
| xxh_u64 v3 = seed + 0; |
| xxh_u64 v4 = seed - XXH_PRIME64_1; |
| |
| do { |
| v1 = XXH64_round(v1, XXH_get64bits(input)); input+=8; |
| v2 = XXH64_round(v2, XXH_get64bits(input)); input+=8; |
| v3 = XXH64_round(v3, XXH_get64bits(input)); input+=8; |
| v4 = XXH64_round(v4, XXH_get64bits(input)); input+=8; |
| } while (input<limit); |
| |
| h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18); |
| h64 = XXH64_mergeRound(h64, v1); |
| h64 = XXH64_mergeRound(h64, v2); |
| h64 = XXH64_mergeRound(h64, v3); |
| h64 = XXH64_mergeRound(h64, v4); |
| |
| } else { |
| h64 = seed + XXH_PRIME64_5; |
| } |
| |
| h64 += (xxh_u64) len; |
| |
| return XXH64_finalize(h64, input, len, align); |
| } |
| |
| |
| /*! @ingroup XXH64_family */ |
| XXH_PUBLIC_API XXH64_hash_t XXH64 (XXH_NOESCAPE const void* input, size_t len, XXH64_hash_t seed) |
| { |
| #if !defined(XXH_NO_STREAM) && XXH_SIZE_OPT >= 2 |
| /* Simple version, good for code maintenance, but unfortunately slow for small inputs */ |
| XXH64_state_t state; |
| XXH64_reset(&state, seed); |
| XXH64_update(&state, (const xxh_u8*)input, len); |
| return XXH64_digest(&state); |
| #else |
| if (XXH_FORCE_ALIGN_CHECK) { |
| if ((((size_t)input) & 7)==0) { /* Input is aligned, let's leverage the speed advantage */ |
| return XXH64_endian_align((const xxh_u8*)input, len, seed, XXH_aligned); |
| } } |
| |
| return XXH64_endian_align((const xxh_u8*)input, len, seed, XXH_unaligned); |
| |
| #endif |
| } |
| |
| /******* Hash Streaming *******/ |
| #ifndef XXH_NO_STREAM |
| /*! @ingroup XXH64_family*/ |
| XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void) |
| { |
| return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t)); |
| } |
| /*! @ingroup XXH64_family */ |
| XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr) |
| { |
| XXH_free(statePtr); |
| return XXH_OK; |
| } |
| |
| /*! @ingroup XXH64_family */ |
| XXH_PUBLIC_API void XXH64_copyState(XXH_NOESCAPE XXH64_state_t* dstState, const XXH64_state_t* srcState) |
| { |
| XXH_memcpy(dstState, srcState, sizeof(*dstState)); |
| } |
| |
| /*! @ingroup XXH64_family */ |
| XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH_NOESCAPE XXH64_state_t* statePtr, XXH64_hash_t seed) |
| { |
| XXH_ASSERT(statePtr != NULL); |
| memset(statePtr, 0, sizeof(*statePtr)); |
| statePtr->v[0] = seed + XXH_PRIME64_1 + XXH_PRIME64_2; |
| statePtr->v[1] = seed + XXH_PRIME64_2; |
| statePtr->v[2] = seed + 0; |
| statePtr->v[3] = seed - XXH_PRIME64_1; |
| return XXH_OK; |
| } |
| |
| /*! @ingroup XXH64_family */ |
| XXH_PUBLIC_API XXH_errorcode |
| XXH64_update (XXH_NOESCAPE XXH64_state_t* state, XXH_NOESCAPE const void* input, size_t len) |
| { |
| if (input==NULL) { |
| XXH_ASSERT(len == 0); |
| return XXH_OK; |
| } |
| |
| { const xxh_u8* p = (const xxh_u8*)input; |
| const xxh_u8* const bEnd = p + len; |
| |
| state->total_len += len; |
| |
| if (state->memsize + len < 32) { /* fill in tmp buffer */ |
| XXH_memcpy(((xxh_u8*)state->mem64) + state->memsize, input, len); |
| state->memsize += (xxh_u32)len; |
| return XXH_OK; |
| } |
| |
| if (state->memsize) { /* tmp buffer is full */ |
| XXH_memcpy(((xxh_u8*)state->mem64) + state->memsize, input, 32-state->memsize); |
| state->v[0] = XXH64_round(state->v[0], XXH_readLE64(state->mem64+0)); |
| state->v[1] = XXH64_round(state->v[1], XXH_readLE64(state->mem64+1)); |
| state->v[2] = XXH64_round(state->v[2], XXH_readLE64(state->mem64+2)); |
| state->v[3] = XXH64_round(state->v[3], XXH_readLE64(state->mem64+3)); |
| p += 32 - state->memsize; |
| state->memsize = 0; |
| } |
| |
| if (p+32 <= bEnd) { |
| const xxh_u8* const limit = bEnd - 32; |
| |
| do { |
| state->v[0] = XXH64_round(state->v[0], XXH_readLE64(p)); p+=8; |
| state->v[1] = XXH64_round(state->v[1], XXH_readLE64(p)); p+=8; |
| state->v[2] = XXH64_round(state->v[2], XXH_readLE64(p)); p+=8; |
| state->v[3] = XXH64_round(state->v[3], XXH_readLE64(p)); p+=8; |
| } while (p<=limit); |
| |
| } |
| |
| if (p < bEnd) { |
| XXH_memcpy(state->mem64, p, (size_t)(bEnd-p)); |
| state->memsize = (unsigned)(bEnd-p); |
| } |
| } |
| |
| return XXH_OK; |
| } |
| |
| |
| /*! @ingroup XXH64_family */ |
| XXH_PUBLIC_API XXH64_hash_t XXH64_digest(XXH_NOESCAPE const XXH64_state_t* state) |
| { |
| xxh_u64 h64; |
| |
| if (state->total_len >= 32) { |
| h64 = XXH_rotl64(state->v[0], 1) + XXH_rotl64(state->v[1], 7) + XXH_rotl64(state->v[2], 12) + XXH_rotl64(state->v[3], 18); |
| h64 = XXH64_mergeRound(h64, state->v[0]); |
| h64 = XXH64_mergeRound(h64, state->v[1]); |
| h64 = XXH64_mergeRound(h64, state->v[2]); |
| h64 = XXH64_mergeRound(h64, state->v[3]); |
| } else { |
| h64 = state->v[2] /*seed*/ + XXH_PRIME64_5; |
| } |
| |
| h64 += (xxh_u64) state->total_len; |
| |
| return XXH64_finalize(h64, (const xxh_u8*)state->mem64, (size_t)state->total_len, XXH_aligned); |
| } |
| #endif /* !XXH_NO_STREAM */ |
| |
| /******* Canonical representation *******/ |
| |
| /*! @ingroup XXH64_family */ |
| XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH_NOESCAPE XXH64_canonical_t* dst, XXH64_hash_t hash) |
| { |
| XXH_STATIC_ASSERT(sizeof(XXH64_canonical_t) == sizeof(XXH64_hash_t)); |
| if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap64(hash); |
| XXH_memcpy(dst, &hash, sizeof(*dst)); |
| } |
| |
| /*! @ingroup XXH64_family */ |
| XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(XXH_NOESCAPE const XXH64_canonical_t* src) |
| { |
| return XXH_readBE64(src); |
| } |
| |
| #ifndef XXH_NO_XXH3 |
| |
| /* ********************************************************************* |
| * XXH3 |
| * New generation hash designed for speed on small keys and vectorization |
| ************************************************************************ */ |
| /*! |
| * @} |
| * @defgroup XXH3_impl XXH3 implementation |
| * @ingroup impl |
| * @{ |
| */ |
| |
| /* === Compiler specifics === */ |
| |
| #if ((defined(sun) || defined(__sun)) && __cplusplus) /* Solaris includes __STDC_VERSION__ with C++. Tested with GCC 5.5 */ |
| # define XXH_RESTRICT /* disable */ |
| #elif defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* >= C99 */ |
| # define XXH_RESTRICT restrict |
| #elif (defined (__GNUC__) && ((__GNUC__ > 3) || (__GNUC__ == 3 && __GNUC_MINOR__ >= 1))) \ |
| || (defined (__clang__)) \ |
| || (defined (_MSC_VER) && (_MSC_VER >= 1400)) \ |
| || (defined (__INTEL_COMPILER) && (__INTEL_COMPILER >= 1300)) |
| /* |
| * There are a LOT more compilers that recognize __restrict but this |
| * covers the major ones. |
| */ |
| # define XXH_RESTRICT __restrict |
| #else |
| # define XXH_RESTRICT /* disable */ |
| #endif |
| |
| #if (defined(__GNUC__) && (__GNUC__ >= 3)) \ |
| || (defined(__INTEL_COMPILER) && (__INTEL_COMPILER >= 800)) \ |
| || defined(__clang__) |
| # define XXH_likely(x) __builtin_expect(x, 1) |
| # define XXH_unlikely(x) __builtin_expect(x, 0) |
| #else |
| # define XXH_likely(x) (x) |
| # define XXH_unlikely(x) (x) |
| #endif |
| |
| #ifndef XXH_HAS_INCLUDE |
| # ifdef __has_include |
| # define XXH_HAS_INCLUDE(x) __has_include(x) |
| # else |
| # define XXH_HAS_INCLUDE(x) 0 |
| # endif |
| #endif |
| |
| #if defined(__GNUC__) || defined(__clang__) |
| # if defined(__ARM_FEATURE_SVE) |
| # include <arm_sve.h> |
| # endif |
| # if defined(__ARM_NEON__) || defined(__ARM_NEON) \ |
| || (defined(_M_ARM) && _M_ARM >= 7) \ |
| || defined(_M_ARM64) || defined(_M_ARM64EC) \ |
| || (defined(__wasm_simd128__) && XXH_HAS_INCLUDE(<arm_neon.h>)) /* WASM SIMD128 via SIMDe */ |
| # define inline __inline__ /* circumvent a clang bug */ |
| # include <arm_neon.h> |
| # undef inline |
| # elif defined(__AVX2__) |
| # include <immintrin.h> |
| # elif defined(__SSE2__) |
| # include <emmintrin.h> |
| # endif |
| #endif |
| |
| #if defined(_MSC_VER) |
| # include <intrin.h> |
| #endif |
| |
| /* |
| * One goal of XXH3 is to make it fast on both 32-bit and 64-bit, while |
| * remaining a true 64-bit/128-bit hash function. |
| * |
| * This is done by prioritizing a subset of 64-bit operations that can be |
| * emulated without too many steps on the average 32-bit machine. |
| * |
| * For example, these two lines seem similar, and run equally fast on 64-bit: |
| * |
| * xxh_u64 x; |
| * x ^= (x >> 47); // good |
| * x ^= (x >> 13); // bad |
| * |
| * However, to a 32-bit machine, there is a major difference. |
| * |
| * x ^= (x >> 47) looks like this: |
| * |
| * x.lo ^= (x.hi >> (47 - 32)); |
| * |
| * while x ^= (x >> 13) looks like this: |
| * |
| * // note: funnel shifts are not usually cheap. |
| * x.lo ^= (x.lo >> 13) | (x.hi << (32 - 13)); |
| * x.hi ^= (x.hi >> 13); |
| * |
| * The first one is significantly faster than the second, simply because the |
| * shift is larger than 32. This means: |
| * - All the bits we need are in the upper 32 bits, so we can ignore the lower |
| * 32 bits in the shift. |
| * - The shift result will always fit in the lower 32 bits, and therefore, |
| * we can ignore the upper 32 bits in the xor. |
| * |
| * Thanks to this optimization, XXH3 only requires these features to be efficient: |
| * |
| * - Usable unaligned access |
| * - A 32-bit or 64-bit ALU |
| * - If 32-bit, a decent ADC instruction |
| * - A 32 or 64-bit multiply with a 64-bit result |
| * - For the 128-bit variant, a decent byteswap helps short inputs. |
| * |
| * The first two are already required by XXH32, and almost all 32-bit and 64-bit |
| * platforms which can run XXH32 can run XXH3 efficiently. |
| * |
| * Thumb-1, the classic 16-bit only subset of ARM's instruction set, is one |
| * notable exception. |
| * |
| * First of all, Thumb-1 lacks support for the UMULL instruction which |
| * performs the important long multiply. This means numerous __aeabi_lmul |
| * calls. |
| * |
| * Second of all, the 8 functional registers are just not enough. |
| * Setup for __aeabi_lmul, byteshift loads, pointers, and all arithmetic need |
| * Lo registers, and this shuffling results in thousands more MOVs than A32. |
| * |
| * A32 and T32 don't have this limitation. They can access all 14 registers, |
| * do a 32->64 multiply with UMULL, and the flexible operand allowing free |
| * shifts is helpful, too. |
| * |
| * Therefore, we do a quick sanity check. |
| * |
| * If compiling Thumb-1 for a target which supports ARM instructions, we will |
| * emit a warning, as it is not a "sane" platform to compile for. |
| * |
| * Usually, if this happens, it is because of an accident and you probably need |
| * to specify -march, as you likely meant to compile for a newer architecture. |
| * |
| * Credit: large sections of the vectorial and asm source code paths |
| * have been contributed by @easyaspi314 |
| */ |
| #if defined(__thumb__) && !defined(__thumb2__) && defined(__ARM_ARCH_ISA_ARM) |
| # warning "XXH3 is highly inefficient without ARM or Thumb-2." |
| #endif |
| |
| /* ========================================== |
| * Vectorization detection |
| * ========================================== */ |
| |
| #ifdef XXH_DOXYGEN |
| /*! |
| * @ingroup tuning |
| * @brief Overrides the vectorization implementation chosen for XXH3. |
| * |
| * Can be defined to 0 to disable SIMD or any of the values mentioned in |
| * @ref XXH_VECTOR_TYPE. |
| * |
| * If this is not defined, it uses predefined macros to determine the best |
| * implementation. |
| */ |
| # define XXH_VECTOR XXH_SCALAR |
| /*! |
| * @ingroup tuning |
| * @brief Possible values for @ref XXH_VECTOR. |
| * |
| * Note that these are actually implemented as macros. |
| * |
| * If this is not defined, it is detected automatically. |
| * internal macro XXH_X86DISPATCH overrides this. |
| */ |
| enum XXH_VECTOR_TYPE /* fake enum */ { |
| XXH_SCALAR = 0, /*!< Portable scalar version */ |
| XXH_SSE2 = 1, /*!< |
| * SSE2 for Pentium 4, Opteron, all x86_64. |
| * |
| * @note SSE2 is also guaranteed on Windows 10, macOS, and |
| * Android x86. |
| */ |
| XXH_AVX2 = 2, /*!< AVX2 for Haswell and Bulldozer */ |
| XXH_AVX512 = 3, /*!< AVX512 for Skylake and Icelake */ |
| XXH_NEON = 4, /*!< |
| * NEON for most ARMv7-A, all AArch64, and WASM SIMD128 |
| * via the SIMDeverywhere polyfill provided with the |
| * Emscripten SDK. |
| */ |
| XXH_VSX = 5, /*!< VSX and ZVector for POWER8/z13 (64-bit) */ |
| XXH_SVE = 6, /*!< SVE for some ARMv8-A and ARMv9-A */ |
| }; |
| /*! |
| * @ingroup tuning |
| * @brief Selects the minimum alignment for XXH3's accumulators. |
| * |
| * When using SIMD, this should match the alignment required for said vector |
| * type, so, for example, 32 for AVX2. |
| * |
| * Default: Auto detected. |
| */ |
| # define XXH_ACC_ALIGN 8 |
| #endif |
| |
| /* Actual definition */ |
| #ifndef XXH_DOXYGEN |
| # define XXH_SCALAR 0 |
| # define XXH_SSE2 1 |
| # define XXH_AVX2 2 |
| # define XXH_AVX512 3 |
| # define XXH_NEON 4 |
| # define XXH_VSX 5 |
| # define XXH_SVE 6 |
| #endif |
| |
| #ifndef XXH_VECTOR /* can be defined on command line */ |
| # if defined(__ARM_FEATURE_SVE) |
| # define XXH_VECTOR XXH_SVE |
| # elif ( \ |
| defined(__ARM_NEON__) || defined(__ARM_NEON) /* gcc */ \ |
| || defined(_M_ARM) || defined(_M_ARM64) || defined(_M_ARM64EC) /* msvc */ \ |
| || (defined(__wasm_simd128__) && XXH_HAS_INCLUDE(<arm_neon.h>)) /* wasm simd128 via SIMDe */ \ |
| ) && ( \ |
| defined(_WIN32) || defined(__LITTLE_ENDIAN__) /* little endian only */ \ |
| || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \ |
| ) |
| # define XXH_VECTOR XXH_NEON |
| # elif defined(__AVX512F__) |
| # define XXH_VECTOR XXH_AVX512 |
| # elif defined(__AVX2__) |
| # define XXH_VECTOR XXH_AVX2 |
| # elif defined(__SSE2__) || defined(_M_AMD64) || defined(_M_X64) || (defined(_M_IX86_FP) && (_M_IX86_FP == 2)) |
| # define XXH_VECTOR XXH_SSE2 |
| # elif (defined(__PPC64__) && defined(__POWER8_VECTOR__)) \ |
| || (defined(__s390x__) && defined(__VEC__)) \ |
| && defined(__GNUC__) /* TODO: IBM XL */ |
| # define XXH_VECTOR XXH_VSX |
| # else |
| # define XXH_VECTOR XXH_SCALAR |
| # endif |
| #endif |
| |
| /* __ARM_FEATURE_SVE is only supported by GCC & Clang. */ |
| #if (XXH_VECTOR == XXH_SVE) && !defined(__ARM_FEATURE_SVE) |
| # ifdef _MSC_VER |
| # pragma warning(once : 4606) |
| # else |
| # warning "__ARM_FEATURE_SVE isn't supported. Use SCALAR instead." |
| # endif |
| # undef XXH_VECTOR |
| # define XXH_VECTOR XXH_SCALAR |
| #endif |
| |
| /* |
| * Controls the alignment of the accumulator, |
| * for compatibility with aligned vector loads, which are usually faster. |
| */ |
| #ifndef XXH_ACC_ALIGN |
| # if defined(XXH_X86DISPATCH) |
| # define XXH_ACC_ALIGN 64 /* for compatibility with avx512 */ |
| # elif XXH_VECTOR == XXH_SCALAR /* scalar */ |
| # define XXH_ACC_ALIGN 8 |
| # elif XXH_VECTOR == XXH_SSE2 /* sse2 */ |
| # define XXH_ACC_ALIGN 16 |
| # elif XXH_VECTOR == XXH_AVX2 /* avx2 */ |
| # define XXH_ACC_ALIGN 32 |
| # elif XXH_VECTOR == XXH_NEON /* neon */ |
| # define XXH_ACC_ALIGN 16 |
| # elif XXH_VECTOR == XXH_VSX /* vsx */ |
| # define XXH_ACC_ALIGN 16 |
| # elif XXH_VECTOR == XXH_AVX512 /* avx512 */ |
| # define XXH_ACC_ALIGN 64 |
| # elif XXH_VECTOR == XXH_SVE /* sve */ |
| # define XXH_ACC_ALIGN 64 |
| # endif |
| #endif |
| |
| #if defined(XXH_X86DISPATCH) || XXH_VECTOR == XXH_SSE2 \ |
| || XXH_VECTOR == XXH_AVX2 || XXH_VECTOR == XXH_AVX512 |
| # define XXH_SEC_ALIGN XXH_ACC_ALIGN |
| #elif XXH_VECTOR == XXH_SVE |
| # define XXH_SEC_ALIGN XXH_ACC_ALIGN |
| #else |
| # define XXH_SEC_ALIGN 8 |
| #endif |
| |
| #if defined(__GNUC__) || defined(__clang__) |
| # define XXH_ALIASING __attribute__((may_alias)) |
| #else |
| # define XXH_ALIASING /* nothing */ |
| #endif |
| |
| /* |
| * UGLY HACK: |
| * GCC usually generates the best code with -O3 for xxHash. |
| * |
| * However, when targeting AVX2, it is overzealous in its unrolling resulting |
| * in code roughly 3/4 the speed of Clang. |
| * |
| * There are other issues, such as GCC splitting _mm256_loadu_si256 into |
| * _mm_loadu_si128 + _mm256_inserti128_si256. This is an optimization which |
| * only applies to Sandy and Ivy Bridge... which don't even support AVX2. |
| * |
| * That is why when compiling the AVX2 version, it is recommended to use either |
| * -O2 -mavx2 -march=haswell |
| * or |
| * -O2 -mavx2 -mno-avx256-split-unaligned-load |
| * for decent performance, or to use Clang instead. |
| * |
| * Fortunately, we can control the first one with a pragma that forces GCC into |
| * -O2, but the other one we can't control without "failed to inline always |
| * inline function due to target mismatch" warnings. |
| */ |
| #if XXH_VECTOR == XXH_AVX2 /* AVX2 */ \ |
| && defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \ |
| && defined(__OPTIMIZE__) && XXH_SIZE_OPT <= 0 /* respect -O0 and -Os */ |
| # pragma GCC push_options |
| # pragma GCC optimize("-O2") |
| #endif |
| |
| #if XXH_VECTOR == XXH_NEON |
| |
| /* |
| * UGLY HACK: While AArch64 GCC on Linux does not seem to care, on macOS, GCC -O3 |
| * optimizes out the entire hashLong loop because of the aliasing violation. |
| * |
| * However, GCC is also inefficient at load-store optimization with vld1q/vst1q, |
| * so the only option is to mark it as aliasing. |
| */ |
| typedef uint64x2_t xxh_aliasing_uint64x2_t XXH_ALIASING; |
| |
| /*! |
| * @internal |
| * @brief `vld1q_u64` but faster and alignment-safe. |
| * |
| * On AArch64, unaligned access is always safe, but on ARMv7-a, it is only |
| * *conditionally* safe (`vld1` has an alignment bit like `movdq[ua]` in x86). |
| * |
| * GCC for AArch64 sees `vld1q_u8` as an intrinsic instead of a load, so it |
| * prohibits load-store optimizations. Therefore, a direct dereference is used. |
| * |
| * Otherwise, `vld1q_u8` is used with `vreinterpretq_u8_u64` to do a safe |
| * unaligned load. |
| */ |
| #if defined(__aarch64__) && defined(__GNUC__) && !defined(__clang__) |
| XXH_FORCE_INLINE uint64x2_t XXH_vld1q_u64(void const* ptr) /* silence -Wcast-align */ |
| { |
| return *(xxh_aliasing_uint64x2_t const *)ptr; |
| } |
| #else |
| XXH_FORCE_INLINE uint64x2_t XXH_vld1q_u64(void const* ptr) |
| { |
| return vreinterpretq_u64_u8(vld1q_u8((uint8_t const*)ptr)); |
| } |
| #endif |
| |
| /*! |
| * @internal |
| * @brief `vmlal_u32` on low and high halves of a vector. |
| * |
| * This is a workaround for AArch64 GCC < 11 which implemented arm_neon.h with |
| * inline assembly and were therefore incapable of merging the `vget_{low, high}_u32` |
| * with `vmlal_u32`. |
| */ |
| #if defined(__aarch64__) && defined(__GNUC__) && !defined(__clang__) && __GNUC__ < 11 |
| XXH_FORCE_INLINE uint64x2_t |
| XXH_vmlal_low_u32(uint64x2_t acc, uint32x4_t lhs, uint32x4_t rhs) |
| { |
| /* Inline assembly is the only way */ |
| __asm__("umlal %0.2d, %1.2s, %2.2s" : "+w" (acc) : "w" (lhs), "w" (rhs)); |
| return acc; |
| } |
| XXH_FORCE_INLINE uint64x2_t |
| XXH_vmlal_high_u32(uint64x2_t acc, uint32x4_t lhs, uint32x4_t rhs) |
| { |
| /* This intrinsic works as expected */ |
| return vmlal_high_u32(acc, lhs, rhs); |
| } |
| #else |
| /* Portable intrinsic versions */ |
| XXH_FORCE_INLINE uint64x2_t |
| XXH_vmlal_low_u32(uint64x2_t acc, uint32x4_t lhs, uint32x4_t rhs) |
| { |
| return vmlal_u32(acc, vget_low_u32(lhs), vget_low_u32(rhs)); |
| } |
| /*! @copydoc XXH_vmlal_low_u32 |
| * Assume the compiler converts this to vmlal_high_u32 on aarch64 */ |
| XXH_FORCE_INLINE uint64x2_t |
| XXH_vmlal_high_u32(uint64x2_t acc, uint32x4_t lhs, uint32x4_t rhs) |
| { |
| return vmlal_u32(acc, vget_high_u32(lhs), vget_high_u32(rhs)); |
| } |
| #endif |
| |
| /*! |
| * @ingroup tuning |
| * @brief Controls the NEON to scalar ratio for XXH3 |
| * |
| * This can be set to 2, 4, 6, or 8. |
| * |
| * ARM Cortex CPUs are _very_ sensitive to how their pipelines are used. |
| * |
| * For example, the Cortex-A73 can dispatch 3 micro-ops per cycle, but only 2 of those |
| * can be NEON. If you are only using NEON instructions, you are only using 2/3 of the CPU |
| * bandwidth. |
| * |
| * This is even more noticeable on the more advanced cores like the Cortex-A76 which |
| * can dispatch 8 micro-ops per cycle, but still only 2 NEON micro-ops at once. |
| * |
| * Therefore, to make the most out of the pipeline, it is beneficial to run 6 NEON lanes |
| * and 2 scalar lanes, which is chosen by default. |
| * |
| * This does not apply to Apple processors or 32-bit processors, which run better with |
| * full NEON. These will default to 8. Additionally, size-optimized builds run 8 lanes. |
| * |
| * This change benefits CPUs with large micro-op buffers without negatively affecting |
| * most other CPUs: |
| * |
| * | Chipset | Dispatch type | NEON only | 6:2 hybrid | Diff. | |
| * |:----------------------|:--------------------|----------:|-----------:|------:| |
| * | Snapdragon 730 (A76) | 2 NEON/8 micro-ops | 8.8 GB/s | 10.1 GB/s | ~16% | |
| * | Snapdragon 835 (A73) | 2 NEON/3 micro-ops | 5.1 GB/s | 5.3 GB/s | ~5% | |
| * | Marvell PXA1928 (A53) | In-order dual-issue | 1.9 GB/s | 1.9 GB/s | 0% | |
| * | Apple M1 | 4 NEON/8 micro-ops | 37.3 GB/s | 36.1 GB/s | ~-3% | |
| * |
| * It also seems to fix some bad codegen on GCC, making it almost as fast as clang. |
| * |
| * When using WASM SIMD128, if this is 2 or 6, SIMDe will scalarize 2 of the lanes meaning |
| * it effectively becomes worse 4. |
| * |
| * @see XXH3_accumulate_512_neon() |
| */ |
| # ifndef XXH3_NEON_LANES |
| # if (defined(__aarch64__) || defined(__arm64__) || defined(_M_ARM64) || defined(_M_ARM64EC)) \ |
| && !defined(__APPLE__) && XXH_SIZE_OPT <= 0 |
| # define XXH3_NEON_LANES 6 |
| # else |
| # define XXH3_NEON_LANES XXH_ACC_NB |
| # endif |
| # endif |
| #endif /* XXH_VECTOR == XXH_NEON */ |
| |
| /* |
| * VSX and Z Vector helpers. |
| * |
| * This is very messy, and any pull requests to clean this up are welcome. |
| * |
| * There are a lot of problems with supporting VSX and s390x, due to |
| * inconsistent intrinsics, spotty coverage, and multiple endiannesses. |
| */ |
| #if XXH_VECTOR == XXH_VSX |
| /* Annoyingly, these headers _may_ define three macros: `bool`, `vector`, |
| * and `pixel`. This is a problem for obvious reasons. |
| * |
| * These keywords are unnecessary; the spec literally says they are |
| * equivalent to `__bool`, `__vector`, and `__pixel` and may be undef'd |
| * after including the header. |
| * |
| * We use pragma push_macro/pop_macro to keep the namespace clean. */ |
| # pragma push_macro("bool") |
| # pragma push_macro("vector") |
| # pragma push_macro("pixel") |
| /* silence potential macro redefined warnings */ |
| # undef bool |
| # undef vector |
| # undef pixel |
| |
| # if defined(__s390x__) |
| # include <s390intrin.h> |
| # else |
| # include <altivec.h> |
| # endif |
| |
| /* Restore the original macro values, if applicable. */ |
| # pragma pop_macro("pixel") |
| # pragma pop_macro("vector") |
| # pragma pop_macro("bool") |
| |
| typedef __vector unsigned long long xxh_u64x2; |
| typedef __vector unsigned char xxh_u8x16; |
| typedef __vector unsigned xxh_u32x4; |
| |
| /* |
| * UGLY HACK: Similar to aarch64 macOS GCC, s390x GCC has the same aliasing issue. |
| */ |
| typedef xxh_u64x2 xxh_aliasing_u64x2 XXH_ALIASING; |
| |
| # ifndef XXH_VSX_BE |
| # if defined(__BIG_ENDIAN__) \ |
| || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) |
| # define XXH_VSX_BE 1 |
| # elif defined(__VEC_ELEMENT_REG_ORDER__) && __VEC_ELEMENT_REG_ORDER__ == __ORDER_BIG_ENDIAN__ |
| # warning "-maltivec=be is not recommended. Please use native endianness." |
| # define XXH_VSX_BE 1 |
| # else |
| # define XXH_VSX_BE 0 |
| # endif |
| # endif /* !defined(XXH_VSX_BE) */ |
| |
| # if XXH_VSX_BE |
| # if defined(__POWER9_VECTOR__) || (defined(__clang__) && defined(__s390x__)) |
| # define XXH_vec_revb vec_revb |
| # else |
| /*! |
| * A polyfill for POWER9's vec_revb(). |
| */ |
| XXH_FORCE_INLINE xxh_u64x2 XXH_vec_revb(xxh_u64x2 val) |
| { |
| xxh_u8x16 const vByteSwap = { 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, |
| 0x0F, 0x0E, 0x0D, 0x0C, 0x0B, 0x0A, 0x09, 0x08 }; |
| return vec_perm(val, val, vByteSwap); |
| } |
| # endif |
| # endif /* XXH_VSX_BE */ |
| |
| /*! |
| * Performs an unaligned vector load and byte swaps it on big endian. |
| */ |
| XXH_FORCE_INLINE xxh_u64x2 XXH_vec_loadu(const void *ptr) |
| { |
| xxh_u64x2 ret; |
| XXH_memcpy(&ret, ptr, sizeof(xxh_u64x2)); |
| # if XXH_VSX_BE |
| ret = XXH_vec_revb(ret); |
| # endif |
| return ret; |
| } |
| |
| /* |
| * vec_mulo and vec_mule are very problematic intrinsics on PowerPC |
| * |
| * These intrinsics weren't added until GCC 8, despite existing for a while, |
| * and they are endian dependent. Also, their meaning swap depending on version. |
| * */ |
| # if defined(__s390x__) |
| /* s390x is always big endian, no issue on this platform */ |
| # define XXH_vec_mulo vec_mulo |
| # define XXH_vec_mule vec_mule |
| # elif defined(__clang__) && XXH_HAS_BUILTIN(__builtin_altivec_vmuleuw) && !defined(__ibmxl__) |
| /* Clang has a better way to control this, we can just use the builtin which doesn't swap. */ |
| /* The IBM XL Compiler (which defined __clang__) only implements the vec_* operations */ |
| # define XXH_vec_mulo __builtin_altivec_vmulouw |
| # define XXH_vec_mule __builtin_altivec_vmuleuw |
| # else |
| /* gcc needs inline assembly */ |
| /* Adapted from https://github.com/google/highwayhash/blob/master/highwayhash/hh_vsx.h. */ |
| XXH_FORCE_INLINE xxh_u64x2 XXH_vec_mulo(xxh_u32x4 a, xxh_u32x4 b) |
| { |
| xxh_u64x2 result; |
| __asm__("vmulouw %0, %1, %2" : "=v" (result) : "v" (a), "v" (b)); |
| return result; |
| } |
| XXH_FORCE_INLINE xxh_u64x2 XXH_vec_mule(xxh_u32x4 a, xxh_u32x4 b) |
| { |
| xxh_u64x2 result; |
| __asm__("vmuleuw %0, %1, %2" : "=v" (result) : "v" (a), "v" (b)); |
| return result; |
| } |
| # endif /* XXH_vec_mulo, XXH_vec_mule */ |
| #endif /* XXH_VECTOR == XXH_VSX */ |
| |
| #if XXH_VECTOR == XXH_SVE |
| #define ACCRND(acc, offset) \ |
| do { \ |
| svuint64_t input_vec = svld1_u64(mask, xinput + offset); \ |
| svuint64_t secret_vec = svld1_u64(mask, xsecret + offset); \ |
| svuint64_t mixed = sveor_u64_x(mask, secret_vec, input_vec); \ |
| svuint64_t swapped = svtbl_u64(input_vec, kSwap); \ |
| svuint64_t mixed_lo = svextw_u64_x(mask, mixed); \ |
| svuint64_t mixed_hi = svlsr_n_u64_x(mask, mixed, 32); \ |
| svuint64_t mul = svmad_u64_x(mask, mixed_lo, mixed_hi, swapped); \ |
| acc = svadd_u64_x(mask, acc, mul); \ |
| } while (0) |
| #endif /* XXH_VECTOR == XXH_SVE */ |
| |
| /* prefetch |
| * can be disabled, by declaring XXH_NO_PREFETCH build macro */ |
| #if defined(XXH_NO_PREFETCH) |
| # define XXH_PREFETCH(ptr) (void)(ptr) /* disabled */ |
| #else |
| # if XXH_SIZE_OPT >= 1 |
| # define XXH_PREFETCH(ptr) (void)(ptr) |
| # elif defined(_MSC_VER) && (defined(_M_X64) || defined(_M_IX86)) /* _mm_prefetch() not defined outside of x86/x64 */ |
| # include <mmintrin.h> /* https://msdn.microsoft.com/fr-fr/library/84szxsww(v=vs.90).aspx */ |
| # define XXH_PREFETCH(ptr) _mm_prefetch((const char*)(ptr), _MM_HINT_T0) |
| # elif defined(__GNUC__) && ( (__GNUC__ >= 4) || ( (__GNUC__ == 3) && (__GNUC_MINOR__ >= 1) ) ) |
| # define XXH_PREFETCH(ptr) __builtin_prefetch((ptr), 0 /* rw==read */, 3 /* locality */) |
| # else |
| # define XXH_PREFETCH(ptr) (void)(ptr) /* disabled */ |
| # endif |
| #endif /* XXH_NO_PREFETCH */ |
| |
| |
| /* ========================================== |
| * XXH3 default settings |
| * ========================================== */ |
| |
| #define XXH_SECRET_DEFAULT_SIZE 192 /* minimum XXH3_SECRET_SIZE_MIN */ |
| |
| #if (XXH_SECRET_DEFAULT_SIZE < XXH3_SECRET_SIZE_MIN) |
| # error "default keyset is not large enough" |
| #endif |
| |
| /*! Pseudorandom secret taken directly from FARSH. */ |
| XXH_ALIGN(64) static const xxh_u8 XXH3_kSecret[XXH_SECRET_DEFAULT_SIZE] = { |
| 0xb8, 0xfe, 0x6c, 0x39, 0x23, 0xa4, 0x4b, 0xbe, 0x7c, 0x01, 0x81, 0x2c, 0xf7, 0x21, 0xad, 0x1c, |
| 0xde, 0xd4, 0x6d, 0xe9, 0x83, 0x90, 0x97, 0xdb, 0x72, 0x40, 0xa4, 0xa4, 0xb7, 0xb3, 0x67, 0x1f, |
| 0xcb, 0x79, 0xe6, 0x4e, 0xcc, 0xc0, 0xe5, 0x78, 0x82, 0x5a, 0xd0, 0x7d, 0xcc, 0xff, 0x72, 0x21, |
| 0xb8, 0x08, 0x46, 0x74, 0xf7, 0x43, 0x24, 0x8e, 0xe0, 0x35, 0x90, 0xe6, 0x81, 0x3a, 0x26, 0x4c, |
| 0x3c, 0x28, 0x52, 0xbb, 0x91, 0xc3, 0x00, 0xcb, 0x88, 0xd0, 0x65, 0x8b, 0x1b, 0x53, 0x2e, 0xa3, |
| 0x71, 0x64, 0x48, 0x97, 0xa2, 0x0d, 0xf9, 0x4e, 0x38, 0x19, 0xef, 0x46, 0xa9, 0xde, 0xac, 0xd8, |
| 0xa8, 0xfa, 0x76, 0x3f, 0xe3, 0x9c, 0x34, 0x3f, 0xf9, 0xdc, 0xbb, 0xc7, 0xc7, 0x0b, 0x4f, 0x1d, |
| 0x8a, 0x51, 0xe0, 0x4b, 0xcd, 0xb4, 0x59, 0x31, 0xc8, 0x9f, 0x7e, 0xc9, 0xd9, 0x78, 0x73, 0x64, |
| 0xea, 0xc5, 0xac, 0x83, 0x34, 0xd3, 0xeb, 0xc3, 0xc5, 0x81, 0xa0, 0xff, 0xfa, 0x13, 0x63, 0xeb, |
| 0x17, 0x0d, 0xdd, 0x51, 0xb7, 0xf0, 0xda, 0x49, 0xd3, 0x16, 0x55, 0x26, 0x29, 0xd4, 0x68, 0x9e, |
| 0x2b, 0x16, 0xbe, 0x58, 0x7d, 0x47, 0xa1, 0xfc, 0x8f, 0xf8, 0xb8, 0xd1, 0x7a, 0xd0, 0x31, 0xce, |
| 0x45, 0xcb, 0x3a, 0x8f, 0x95, 0x16, 0x04, 0x28, 0xaf, 0xd7, 0xfb, 0xca, 0xbb, 0x4b, 0x40, 0x7e, |
| }; |
| |
| static const xxh_u64 PRIME_MX1 = 0x165667919E3779F9ULL; /*!< 0b0001011001010110011001111001000110011110001101110111100111111001 */ |
| static const xxh_u64 PRIME_MX2 = 0x9FB21C651E98DF25ULL; /*!< 0b1001111110110010000111000110010100011110100110001101111100100101 */ |
| |
| #ifdef XXH_OLD_NAMES |
| # define kSecret XXH3_kSecret |
| #endif |
| |
| #ifdef XXH_DOXYGEN |
| /*! |
| * @brief Calculates a 32-bit to 64-bit long multiply. |
| * |
| * Implemented as a macro. |
| * |
| * Wraps `__emulu` on MSVC x86 because it tends to call `__allmul` when it doesn't |
| * need to (but it shouldn't need to anyways, it is about 7 instructions to do |
| * a 64x64 multiply...). Since we know that this will _always_ emit `MULL`, we |
| * use that instead of the normal method. |
| * |
| * If you are compiling for platforms like Thumb-1 and don't have a better option, |
| * you may also want to write your own long multiply routine here. |
| * |
| * @param x, y Numbers to be multiplied |
| * @return 64-bit product of the low 32 bits of @p x and @p y. |
| */ |
| XXH_FORCE_INLINE xxh_u64 |
| XXH_mult32to64(xxh_u64 x, xxh_u64 y) |
| { |
| return (x & 0xFFFFFFFF) * (y & 0xFFFFFFFF); |
| } |
| #elif defined(_MSC_VER) && defined(_M_IX86) |
| # define XXH_mult32to64(x, y) __emulu((unsigned)(x), (unsigned)(y)) |
| #else |
| /* |
| * Downcast + upcast is usually better than masking on older compilers like |
| * GCC 4.2 (especially 32-bit ones), all without affecting newer compilers. |
| * |
| * The other method, (x & 0xFFFFFFFF) * (y & 0xFFFFFFFF), will AND both operands |
| * and perform a full 64x64 multiply -- entirely redundant on 32-bit. |
| */ |
| # define XXH_mult32to64(x, y) ((xxh_u64)(xxh_u32)(x) * (xxh_u64)(xxh_u32)(y)) |
| #endif |
| |
| /*! |
| * @brief Calculates a 64->128-bit long multiply. |
| * |
| * Uses `__uint128_t` and `_umul128` if available, otherwise uses a scalar |
| * version. |
| * |
| * @param lhs , rhs The 64-bit integers to be multiplied |
| * @return The 128-bit result represented in an @ref XXH128_hash_t. |
| */ |
| static XXH128_hash_t |
| XXH_mult64to128(xxh_u64 lhs, xxh_u64 rhs) |
| { |
| /* |
| * GCC/Clang __uint128_t method. |
| * |
| * On most 64-bit targets, GCC and Clang define a __uint128_t type. |
| * This is usually the best way as it usually uses a native long 64-bit |
| * multiply, such as MULQ on x86_64 or MUL + UMULH on aarch64. |
| * |
| * Usually. |
| * |
| * Despite being a 32-bit platform, Clang (and emscripten) define this type |
| * despite not having the arithmetic for it. This results in a laggy |
| * compiler builtin call which calculates a full 128-bit multiply. |
| * In that case it is best to use the portable one. |
| * https://github.com/Cyan4973/xxHash/issues/211#issuecomment-515575677 |
| */ |
| #if (defined(__GNUC__) || defined(__clang__)) && !defined(__wasm__) \ |
| && defined(__SIZEOF_INT128__) \ |
| || (defined(_INTEGRAL_MAX_BITS) && _INTEGRAL_MAX_BITS >= 128) |
| |
| __uint128_t const product = (__uint128_t)lhs * (__uint128_t)rhs; |
| XXH128_hash_t r128; |
| r128.low64 = (xxh_u64)(product); |
| r128.high64 = (xxh_u64)(product >> 64); |
| return r128; |
| |
| /* |
| * MSVC for x64's _umul128 method. |
| * |
| * xxh_u64 _umul128(xxh_u64 Multiplier, xxh_u64 Multiplicand, xxh_u64 *HighProduct); |
| * |
| * This compiles to single operand MUL on x64. |
| */ |
| #elif (defined(_M_X64) || defined(_M_IA64)) && !defined(_M_ARM64EC) |
| |
| #ifndef _MSC_VER |
| # pragma intrinsic(_umul128) |
| #endif |
| xxh_u64 product_high; |
| xxh_u64 const product_low = _umul128(lhs, rhs, &product_high); |
| XXH128_hash_t r128; |
| r128.low64 = product_low; |
| r128.high64 = product_high; |
| return r128; |
| |
| /* |
| * MSVC for ARM64's __umulh method. |
| * |
| * This compiles to the same MUL + UMULH as GCC/Clang's __uint128_t method. |
| */ |
| #elif defined(_M_ARM64) || defined(_M_ARM64EC) |
| |
| #ifndef _MSC_VER |
| # pragma intrinsic(__umulh) |
| #endif |
| XXH128_hash_t r128; |
| r128.low64 = lhs * rhs; |
| r128.high64 = __umulh(lhs, rhs); |
| return r128; |
| |
| #else |
| /* |
| * Portable scalar method. Optimized for 32-bit and 64-bit ALUs. |
| * |
| * This is a fast and simple grade school multiply, which is shown below |
| * with base 10 arithmetic instead of base 0x100000000. |
| * |
| * 9 3 // D2 lhs = 93 |
| * x 7 5 // D2 rhs = 75 |
| * ---------- |
| * 1 5 // D2 lo_lo = (93 % 10) * (75 % 10) = 15 |
| * 4 5 | // D2 hi_lo = (93 / 10) * (75 % 10) = 45 |
| * 2 1 | // D2 lo_hi = (93 % 10) * (75 / 10) = 21 |
| * + 6 3 | | // D2 hi_hi = (93 / 10) * (75 / 10) = 63 |
| * --------- |
| * 2 7 | // D2 cross = (15 / 10) + (45 % 10) + 21 = 27 |
| * + 6 7 | | // D2 upper = (27 / 10) + (45 / 10) + 63 = 67 |
| * --------- |
| * 6 9 7 5 // D4 res = (27 * 10) + (15 % 10) + (67 * 100) = 6975 |
| * |
| * The reasons for adding the products like this are: |
| * 1. It avoids manual carry tracking. Just like how |
| * (9 * 9) + 9 + 9 = 99, the same applies with this for UINT64_MAX. |
| * This avoids a lot of complexity. |
| * |
| * 2. It hints for, and on Clang, compiles to, the powerful UMAAL |
| * instruction available in ARM's Digital Signal Processing extension |
| * in 32-bit ARMv6 and later, which is shown below: |
| * |
| * void UMAAL(xxh_u32 *RdLo, xxh_u32 *RdHi, xxh_u32 Rn, xxh_u32 Rm) |
| * { |
| * xxh_u64 product = (xxh_u64)*RdLo * (xxh_u64)*RdHi + Rn + Rm; |
| * *RdLo = (xxh_u32)(product & 0xFFFFFFFF); |
| * *RdHi = (xxh_u32)(product >> 32); |
| * } |
| * |
| * This instruction was designed for efficient long multiplication, and |
| * allows this to be calculated in only 4 instructions at speeds |
| * comparable to some 64-bit ALUs. |
| * |
| * 3. It isn't terrible on other platforms. Usually this will be a couple |
| * of 32-bit ADD/ADCs. |
| */ |
| |
| /* First calculate all of the cross products. */ |
| xxh_u64 const lo_lo = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs & 0xFFFFFFFF); |
| xxh_u64 const hi_lo = XXH_mult32to64(lhs >> 32, rhs & 0xFFFFFFFF); |
| xxh_u64 const lo_hi = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs >> 32); |
| xxh_u64 const hi_hi = XXH_mult32to64(lhs >> 32, rhs >> 32); |
| |
| /* Now add the products together. These will never overflow. */ |
| xxh_u64 const cross = (lo_lo >> 32) + (hi_lo & 0xFFFFFFFF) + lo_hi; |
| xxh_u64 const upper = (hi_lo >> 32) + (cross >> 32) + hi_hi; |
| xxh_u64 const lower = (cross << 32) | (lo_lo & 0xFFFFFFFF); |
| |
| XXH128_hash_t r128; |
| r128.low64 = lower; |
| r128.high64 = upper; |
| return r128; |
| #endif |
| } |
| |
| /*! |
| * @brief Calculates a 64-bit to 128-bit multiply, then XOR folds it. |
| * |
| * The reason for the separate function is to prevent passing too many structs |
| * around by value. This will hopefully inline the multiply, but we don't force it. |
| * |
| * @param lhs , rhs The 64-bit integers to multiply |
| * @return The low 64 bits of the product XOR'd by the high 64 bits. |
| * @see XXH_mult64to128() |
| */ |
| static xxh_u64 |
| XXH3_mul128_fold64(xxh_u64 lhs, xxh_u64 rhs) |
| { |
| XXH128_hash_t product = XXH_mult64to128(lhs, rhs); |
| return product.low64 ^ product.high64; |
| } |
| |
| /*! Seems to produce slightly better code on GCC for some reason. */ |
| XXH_FORCE_INLINE XXH_CONSTF xxh_u64 XXH_xorshift64(xxh_u64 v64, int shift) |
| { |
| XXH_ASSERT(0 <= shift && shift < 64); |
| return v64 ^ (v64 >> shift); |
| } |
| |
| /* |
| * This is a fast avalanche stage, |
| * suitable when input bits are already partially mixed |
| */ |
| static XXH64_hash_t XXH3_avalanche(xxh_u64 h64) |
| { |
| h64 = XXH_xorshift64(h64, 37); |
| h64 *= PRIME_MX1; |
| h64 = XXH_xorshift64(h64, 32); |
| return h64; |
| } |
| |
| /* |
| * This is a stronger avalanche, |
| * inspired by Pelle Evensen's rrmxmx |
| * preferable when input has not been previously mixed |
| */ |
| static XXH64_hash_t XXH3_rrmxmx(xxh_u64 h64, xxh_u64 len) |
| { |
| /* this mix is inspired by Pelle Evensen's rrmxmx */ |
| h64 ^= XXH_rotl64(h64, 49) ^ XXH_rotl64(h64, 24); |
| h64 *= PRIME_MX2; |
| h64 ^= (h64 >> 35) + len ; |
| h64 *= PRIME_MX2; |
| return XXH_xorshift64(h64, 28); |
| } |
| |
| |
| /* ========================================== |
| * Short keys |
| * ========================================== |
| * One of the shortcomings of XXH32 and XXH64 was that their performance was |
| * sub-optimal on short lengths. It used an iterative algorithm which strongly |
| * favored lengths that were a multiple of 4 or 8. |
| * |
| * Instead of iterating over individual inputs, we use a set of single shot |
| * functions which piece together a range of lengths and operate in constant time. |
| * |
| * Additionally, the number of multiplies has been significantly reduced. This |
| * reduces latency, especially when emulating 64-bit multiplies on 32-bit. |
| * |
| * Depending on the platform, this may or may not be faster than XXH32, but it |
| * is almost guaranteed to be faster than XXH64. |
| */ |
| |
| /* |
| * At very short lengths, there isn't enough input to fully hide secrets, or use |
| * the entire secret. |
| * |
| * There is also only a limited amount of mixing we can do before significantly |
| * impacting performance. |
| * |
| * Therefore, we use different sections of the secret and always mix two secret |
| * samples with an XOR. This should have no effect on performance on the |
| * seedless or withSeed variants because everything _should_ be constant folded |
| * by modern compilers. |
| * |
| * The XOR mixing hides individual parts of the secret and increases entropy. |
| * |
| * This adds an extra layer of strength for custom secrets. |
| */ |
| XXH_FORCE_INLINE XXH_PUREF XXH64_hash_t |
| XXH3_len_1to3_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) |
| { |
| XXH_ASSERT(input != NULL); |
| XXH_ASSERT(1 <= len && len <= 3); |
| XXH_ASSERT(secret != NULL); |
| /* |
| * len = 1: combined = { input[0], 0x01, input[0], input[0] } |
| * len = 2: combined = { input[1], 0x02, input[0], input[1] } |
| * len = 3: combined = { input[2], 0x03, input[0], input[1] } |
| */ |
| { xxh_u8 const c1 = input[0]; |
| xxh_u8 const c2 = input[len >> 1]; |
| xxh_u8 const c3 = input[len - 1]; |
| xxh_u32 const combined = ((xxh_u32)c1 << 16) | ((xxh_u32)c2 << 24) |
| | ((xxh_u32)c3 << 0) | ((xxh_u32)len << 8); |
| xxh_u64 const bitflip = (XXH_readLE32(secret) ^ XXH_readLE32(secret+4)) + seed; |
| xxh_u64 const keyed = (xxh_u64)combined ^ bitflip; |
| return XXH64_avalanche(keyed); |
| } |
| } |
| |
| XXH_FORCE_INLINE XXH_PUREF XXH64_hash_t |
| XXH3_len_4to8_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) |
| { |
| XXH_ASSERT(input != NULL); |
| XXH_ASSERT(secret != NULL); |
| XXH_ASSERT(4 <= len && len <= 8); |
| seed ^= (xxh_u64)XXH_swap32((xxh_u32)seed) << 32; |
| { xxh_u32 const input1 = XXH_readLE32(input); |
| xxh_u32 const input2 = XXH_readLE32(input + len - 4); |
| xxh_u64 const bitflip = (XXH_readLE64(secret+8) ^ XXH_readLE64(secret+16)) - seed; |
| xxh_u64 const input64 = input2 + (((xxh_u64)input1) << 32); |
| xxh_u64 const keyed = input64 ^ bitflip; |
| return XXH3_rrmxmx(keyed, len); |
| } |
| } |
| |
| XXH_FORCE_INLINE XXH_PUREF XXH64_hash_t |
| XXH3_len_9to16_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) |
| { |
| XXH_ASSERT(input != NULL); |
| XXH_ASSERT(secret != NULL); |
| XXH_ASSERT(9 <= len && len <= 16); |
| { xxh_u64 const bitflip1 = (XXH_readLE64(secret+24) ^ XXH_readLE64(secret+32)) + seed; |
| xxh_u64 const bitflip2 = (XXH_readLE64(secret+40) ^ XXH_readLE64(secret+48)) - seed; |
| xxh_u64 const input_lo = XXH_readLE64(input) ^ bitflip1; |
| xxh_u64 const input_hi = XXH_readLE64(input + len - 8) ^ bitflip2; |
| xxh_u64 const acc = len |
| + XXH_swap64(input_lo) + input_hi |
| + XXH3_mul128_fold64(input_lo, input_hi); |
| return XXH3_avalanche(acc); |
| } |
| } |
| |
| XXH_FORCE_INLINE XXH_PUREF XXH64_hash_t |
| XXH3_len_0to16_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) |
| { |
| XXH_ASSERT(len <= 16); |
| { if (XXH_likely(len > 8)) return XXH3_len_9to16_64b(input, len, secret, seed); |
| if (XXH_likely(len >= 4)) return XXH3_len_4to8_64b(input, len, secret, seed); |
| if (len) return XXH3_len_1to3_64b(input, len, secret, seed); |
| return XXH64_avalanche(seed ^ (XXH_readLE64(secret+56) ^ XXH_readLE64(secret+64))); |
| } |
| } |
| |
| /* |
| * DISCLAIMER: There are known *seed-dependent* multicollisions here due to |
| * multiplication by zero, affecting hashes of lengths 17 to 240. |
| * |
| * However, they are very unlikely. |
| * |
| * Keep this in mind when using the unseeded XXH3_64bits() variant: As with all |
| * unseeded non-cryptographic hashes, it does not attempt to defend itself |
| * against specially crafted inputs, only random inputs. |
| * |
| * Compared to classic UMAC where a 1 in 2^31 chance of 4 consecutive bytes |
| * cancelling out the secret is taken an arbitrary number of times (addressed |
| * in XXH3_accumulate_512), this collision is very unlikely with random inputs |
| * and/or proper seeding: |
| * |
| * This only has a 1 in 2^63 chance of 8 consecutive bytes cancelling out, in a |
| * function that is only called up to 16 times per hash with up to 240 bytes of |
| * input. |
| * |
| * This is not too bad for a non-cryptographic hash function, especially with |
| * only 64 bit outputs. |
| * |
| * The 128-bit variant (which trades some speed for strength) is NOT affected |
| * by this, although it is always a good idea to use a proper seed if you care |
| * about strength. |
| */ |
| XXH_FORCE_INLINE xxh_u64 XXH3_mix16B(const xxh_u8* XXH_RESTRICT input, |
| const xxh_u8* XXH_RESTRICT secret, xxh_u64 seed64) |
| { |
| #if defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \ |
| && defined(__i386__) && defined(__SSE2__) /* x86 + SSE2 */ \ |
| && !defined(XXH_ENABLE_AUTOVECTORIZE) /* Define to disable like XXH32 hack */ |
| /* |
| * UGLY HACK: |
| * GCC for x86 tends to autovectorize the 128-bit multiply, resulting in |
| * slower code. |
| * |
| * By forcing seed64 into a register, we disrupt the cost model and |
| * cause it to scalarize. See `XXH32_round()` |
| * |
| * FIXME: Clang's output is still _much_ faster -- On an AMD Ryzen 3600, |
| * XXH3_64bits @ len=240 runs at 4.6 GB/s with Clang 9, but 3.3 GB/s on |
| * GCC 9.2, despite both emitting scalar code. |
| * |
| * GCC generates much better scalar code than Clang for the rest of XXH3, |
| * which is why finding a more optimal codepath is an interest. |
| */ |
| XXH_COMPILER_GUARD(seed64); |
| #endif |
| { xxh_u64 const input_lo = XXH_readLE64(input); |
| xxh_u64 const input_hi = XXH_readLE64(input+8); |
| return XXH3_mul128_fold64( |
| input_lo ^ (XXH_readLE64(secret) + seed64), |
| input_hi ^ (XXH_readLE64(secret+8) - seed64) |
| ); |
| } |
| } |
| |
| /* For mid range keys, XXH3 uses a Mum-hash variant. */ |
| XXH_FORCE_INLINE XXH_PUREF XXH64_hash_t |
| XXH3_len_17to128_64b(const xxh_u8* XXH_RESTRICT input, size_t len, |
| const xxh_u8* XXH_RESTRICT secret, size_t secretSize, |
| XXH64_hash_t seed) |
| { |
| XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize; |
| XXH_ASSERT(16 < len && len <= 128); |
| |
| { xxh_u64 acc = len * XXH_PRIME64_1; |
| #if XXH_SIZE_OPT >= 1 |
| /* Smaller and cleaner, but slightly slower. */ |
| unsigned int i = (unsigned int)(len - 1) / 32; |
| do { |
| acc += XXH3_mix16B(input+16 * i, secret+32*i, seed); |
| acc += XXH3_mix16B(input+len-16*(i+1), secret+32*i+16, seed); |
| } while (i-- != 0); |
| #else |
| if (len > 32) { |
| if (len > 64) { |
| if (len > 96) { |
| acc += XXH3_mix16B(input+48, secret+96, seed); |
| acc += XXH3_mix16B(input+len-64, secret+112, seed); |
| } |
| acc += XXH3_mix16B(input+32, secret+64, seed); |
| acc += XXH3_mix16B(input+len-48, secret+80, seed); |
| } |
| acc += XXH3_mix16B(input+16, secret+32, seed); |
| acc += XXH3_mix16B(input+len-32, secret+48, seed); |
| } |
| acc += XXH3_mix16B(input+0, secret+0, seed); |
| acc += XXH3_mix16B(input+len-16, secret+16, seed); |
| #endif |
| return XXH3_avalanche(acc); |
| } |
| } |
| |
| #define XXH3_MIDSIZE_MAX 240 |
| |
| XXH_NO_INLINE XXH_PUREF XXH64_hash_t |
| XXH3_len_129to240_64b(const xxh_u8* XXH_RESTRICT input, size_t len, |
| const xxh_u8* XXH_RESTRICT secret, size_t secretSize, |
| XXH64_hash_t seed) |
| { |
| XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize; |
| XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX); |
| |
| #define XXH3_MIDSIZE_STARTOFFSET 3 |
| #define XXH3_MIDSIZE_LASTOFFSET 17 |
| |
| { xxh_u64 acc = len * XXH_PRIME64_1; |
| xxh_u64 acc_end; |
| unsigned int const nbRounds = (unsigned int)len / 16; |
| unsigned int i; |
| XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX); |
| for (i=0; i<8; i++) { |
| acc += XXH3_mix16B(input+(16*i), secret+(16*i), seed); |
| } |
| /* last bytes */ |
| acc_end = XXH3_mix16B(input + len - 16, secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET, seed); |
| XXH_ASSERT(nbRounds >= 8); |
| acc = XXH3_avalanche(acc); |
| #if defined(__clang__) /* Clang */ \ |
| && (defined(__ARM_NEON) || defined(__ARM_NEON__)) /* NEON */ \ |
| && !defined(XXH_ENABLE_AUTOVECTORIZE) /* Define to disable */ |
| /* |
| * UGLY HACK: |
| * Clang for ARMv7-A tries to vectorize this loop, similar to GCC x86. |
| * In everywhere else, it uses scalar code. |
| * |
| * For 64->128-bit multiplies, even if the NEON was 100% optimal, it |
| * would still be slower than UMAAL (see XXH_mult64to128). |
| * |
| * Unfortunately, Clang doesn't handle the long multiplies properly and |
| * converts them to the nonexistent "vmulq_u64" intrinsic, which is then |
| * scalarized into an ugly mess of VMOV.32 instructions. |
| * |
| * This mess is difficult to avoid without turning autovectorization |
| * off completely, but they are usually relatively minor and/or not |
| * worth it to fix. |
| * |
| * This loop is the easiest to fix, as unlike XXH32, this pragma |
| * _actually works_ because it is a loop vectorization instead of an |
| * SLP vectorization. |
| */ |
| #pragma clang loop vectorize(disable) |
| #endif |
| for (i=8 ; i < nbRounds; i++) { |
| /* |
| * Prevents clang for unrolling the acc loop and interleaving with this one. |
| */ |
| XXH_COMPILER_GUARD(acc); |
| acc_end += XXH3_mix16B(input+(16*i), secret+(16*(i-8)) + XXH3_MIDSIZE_STARTOFFSET, seed); |
| } |
| return XXH3_avalanche(acc + acc_end); |
| } |
| } |
| |
| |
| /* ======= Long Keys ======= */ |
| |
| #define XXH_STRIPE_LEN 64 |
| #define XXH_SECRET_CONSUME_RATE 8 /* nb of secret bytes consumed at each accumulation */ |
| #define XXH_ACC_NB (XXH_STRIPE_LEN / sizeof(xxh_u64)) |
| |
| #ifdef XXH_OLD_NAMES |
| # define STRIPE_LEN XXH_STRIPE_LEN |
| # define ACC_NB XXH_ACC_NB |
| #endif |
| |
| #ifndef XXH_PREFETCH_DIST |
| # ifdef __clang__ |
| # define XXH_PREFETCH_DIST 320 |
| # else |
| # if (XXH_VECTOR == XXH_AVX512) |
| # define XXH_PREFETCH_DIST 512 |
| # else |
| # define XXH_PREFETCH_DIST 384 |
| # endif |
| # endif /* __clang__ */ |
| #endif /* XXH_PREFETCH_DIST */ |
| |
| /* |
| * These macros are to generate an XXH3_accumulate() function. |
| * The two arguments select the name suffix and target attribute. |
| * |
| * The name of this symbol is XXH3_accumulate_<name>() and it calls |
| * XXH3_accumulate_512_<name>(). |
| * |
| * It may be useful to hand implement this function if the compiler fails to |
| * optimize the inline function. |
| */ |
| #define XXH3_ACCUMULATE_TEMPLATE(name) \ |
| void \ |
| XXH3_accumulate_##name(xxh_u64* XXH_RESTRICT acc, \ |
| const xxh_u8* XXH_RESTRICT input, \ |
| const xxh_u8* XXH_RESTRICT secret, \ |
| size_t nbStripes) \ |
| { \ |
| size_t n; \ |
| for (n = 0; n < nbStripes; n++ ) { \ |
| const xxh_u8* const in = input + n*XXH_STRIPE_LEN; \ |
| XXH_PREFETCH(in + XXH_PREFETCH_DIST); \ |
| XXH3_accumulate_512_##name( \ |
| acc, \ |
| in, \ |
| secret + n*XXH_SECRET_CONSUME_RATE); \ |
| } \ |
| } |
| |
| |
| XXH_FORCE_INLINE void XXH_writeLE64(void* dst, xxh_u64 v64) |
| { |
| if (!XXH_CPU_LITTLE_ENDIAN) v64 = XXH_swap64(v64); |
| XXH_memcpy(dst, &v64, sizeof(v64)); |
| } |
| |
| /* Several intrinsic functions below are supposed to accept __int64 as argument, |
| * as documented in https://software.intel.com/sites/landingpage/IntrinsicsGuide/ . |
| * However, several environments do not define __int64 type, |
| * requiring a workaround. |
| */ |
| #if !defined (__VMS) \ |
| && (defined (__cplusplus) \ |
| || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) ) |
| typedef int64_t xxh_i64; |
| #else |
| /* the following type must have a width of 64-bit */ |
| typedef long long xxh_i64; |
| #endif |
| |
| |
| /* |
| * XXH3_accumulate_512 is the tightest loop for long inputs, and it is the most optimized. |
| * |
| * It is a hardened version of UMAC, based off of FARSH's implementation. |
| * |
| * This was chosen because it adapts quite well to 32-bit, 64-bit, and SIMD |
| * implementations, and it is ridiculously fast. |
| * |
| * We harden it by mixing the original input to the accumulators as well as the product. |
| * |
| * This means that in the (relatively likely) case of a multiply by zero, the |
| * original input is preserved. |
| * |
| * On 128-bit inputs, we swap 64-bit pairs when we add the input to improve |
| * cross-pollination, as otherwise the upper and lower halves would be |
| * essentially independent. |
| * |
| * This doesn't matter on 64-bit hashes since they all get merged together in |
| * the end, so we skip the extra step. |
| * |
| * Both XXH3_64bits and XXH3_128bits use this subroutine. |
| */ |
| |
| #if (XXH_VECTOR == XXH_AVX512) \ |
| || (defined(XXH_DISPATCH_AVX512) && XXH_DISPATCH_AVX512 != 0) |
| |
| #ifndef XXH_TARGET_AVX512 |
| # define XXH_TARGET_AVX512 /* disable attribute target */ |
| #endif |
| |
| XXH_FORCE_INLINE XXH_TARGET_AVX512 void |
| XXH3_accumulate_512_avx512(void* XXH_RESTRICT acc, |
| const void* XXH_RESTRICT input, |
| const void* XXH_RESTRICT secret) |
| { |
| __m512i* const xacc = (__m512i *) acc; |
| XXH_ASSERT((((size_t)acc) & 63) == 0); |
| XXH_STATIC_ASSERT(XXH_STRIPE_LEN == sizeof(__m512i)); |
| |
| { |
| /* data_vec = input[0]; */ |
| __m512i const data_vec = _mm512_loadu_si512 (input); |
| /* key_vec = secret[0]; */ |
| __m512i const key_vec = _mm512_loadu_si512 (secret); |
| /* data_key = data_vec ^ key_vec; */ |
| __m512i const data_key = _mm512_xor_si512 (data_vec, key_vec); |
| /* data_key_lo = data_key >> 32; */ |
| __m512i const data_key_lo = _mm512_srli_epi64 (data_key, 32); |
| /* product = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */ |
| __m512i const product = _mm512_mul_epu32 (data_key, data_key_lo); |
| /* xacc[0] += swap(data_vec); */ |
| __m512i const data_swap = _mm512_shuffle_epi32(data_vec, (_MM_PERM_ENUM)_MM_SHUFFLE(1, 0, 3, 2)); |
| __m512i const sum = _mm512_add_epi64(*xacc, data_swap); |
| /* xacc[0] += product; */ |
| *xacc = _mm512_add_epi64(product, sum); |
| } |
| } |
| XXH_FORCE_INLINE XXH_TARGET_AVX512 XXH3_ACCUMULATE_TEMPLATE(avx512) |
| |
| /* |
| * XXH3_scrambleAcc: Scrambles the accumulators to improve mixing. |
| * |
| * Multiplication isn't perfect, as explained by Google in HighwayHash: |
| * |
| * // Multiplication mixes/scrambles bytes 0-7 of the 64-bit result to |
| * // varying degrees. In descending order of goodness, bytes |
| * // 3 4 2 5 1 6 0 7 have quality 228 224 164 160 100 96 36 32. |
| * // As expected, the upper and lower bytes are much worse. |
| * |
| * Source: https://github.com/google/highwayhash/blob/0aaf66b/highwayhash/hh_avx2.h#L291 |
| * |
| * Since our algorithm uses a pseudorandom secret to add some variance into the |
| * mix, we don't need to (or want to) mix as often or as much as HighwayHash does. |
| * |
| * This isn't as tight as XXH3_accumulate, but still written in SIMD to avoid |
| * extraction. |
| * |
| * Both XXH3_64bits and XXH3_128bits use this subroutine. |
| */ |
| |
| XXH_FORCE_INLINE XXH_TARGET_AVX512 void |
| XXH3_scrambleAcc_avx512(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret) |
| { |
| XXH_ASSERT((((size_t)acc) & 63) == 0); |
| XXH_STATIC_ASSERT(XXH_STRIPE_LEN == sizeof(__m512i)); |
| { __m512i* const xacc = (__m512i*) acc; |
| const __m512i prime32 = _mm512_set1_epi32((int)XXH_PRIME32_1); |
| |
| /* xacc[0] ^= (xacc[0] >> 47) */ |
| __m512i const acc_vec = *xacc; |
| __m512i const shifted = _mm512_srli_epi64 (acc_vec, 47); |
| /* xacc[0] ^= secret; */ |
| __m512i const key_vec = _mm512_loadu_si512 (secret); |
| __m512i const data_key = _mm512_ternarylogic_epi32(key_vec, acc_vec, shifted, 0x96 /* key_vec ^ acc_vec ^ shifted */); |
| |
| /* xacc[0] *= XXH_PRIME32_1; */ |
| __m512i const data_key_hi = _mm512_srli_epi64 (data_key, 32); |
| __m512i const prod_lo = _mm512_mul_epu32 (data_key, prime32); |
| __m512i const prod_hi = _mm512_mul_epu32 (data_key_hi, prime32); |
| *xacc = _mm512_add_epi64(prod_lo, _mm512_slli_epi64(prod_hi, 32)); |
| } |
| } |
| |
| XXH_FORCE_INLINE XXH_TARGET_AVX512 void |
| XXH3_initCustomSecret_avx512(void* XXH_RESTRICT customSecret, xxh_u64 seed64) |
| { |
| XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 63) == 0); |
| XXH_STATIC_ASSERT(XXH_SEC_ALIGN == 64); |
| XXH_ASSERT(((size_t)customSecret & 63) == 0); |
| (void)(&XXH_writeLE64); |
| { int const nbRounds = XXH_SECRET_DEFAULT_SIZE / sizeof(__m512i); |
| __m512i const seed_pos = _mm512_set1_epi64((xxh_i64)seed64); |
| __m512i const seed = _mm512_mask_sub_epi64(seed_pos, 0xAA, _mm512_set1_epi8(0), seed_pos); |
| |
| const __m512i* const src = (const __m512i*) ((const void*) XXH3_kSecret); |
| __m512i* const dest = ( __m512i*) customSecret; |
| int i; |
| XXH_ASSERT(((size_t)src & 63) == 0); /* control alignment */ |
| XXH_ASSERT(((size_t)dest & 63) == 0); |
| for (i=0; i < nbRounds; ++i) { |
| dest[i] = _mm512_add_epi64(_mm512_load_si512(src + i), seed); |
| } } |
| } |
| |
| #endif |
| |
| #if (XXH_VECTOR == XXH_AVX2) \ |
| || (defined(XXH_DISPATCH_AVX2) && XXH_DISPATCH_AVX2 != 0) |
| |
| #ifndef XXH_TARGET_AVX2 |
| # define XXH_TARGET_AVX2 /* disable attribute target */ |
| #endif |
| |
| XXH_FORCE_INLINE XXH_TARGET_AVX2 void |
| XXH3_accumulate_512_avx2( void* XXH_RESTRICT acc, |
| const void* XXH_RESTRICT input, |
| const void* XXH_RESTRICT secret) |
| { |
| XXH_ASSERT((((size_t)acc) & 31) == 0); |
| { __m256i* const xacc = (__m256i *) acc; |
| /* Unaligned. This is mainly for pointer arithmetic, and because |
| * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */ |
| const __m256i* const xinput = (const __m256i *) input; |
| /* Unaligned. This is mainly for pointer arithmetic, and because |
| * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */ |
| const __m256i* const xsecret = (const __m256i *) secret; |
| |
| size_t i; |
| for (i=0; i < XXH_STRIPE_LEN/sizeof(__m256i); i++) { |
| /* data_vec = xinput[i]; */ |
| __m256i const data_vec = _mm256_loadu_si256 (xinput+i); |
| /* key_vec = xsecret[i]; */ |
| __m256i const key_vec = _mm256_loadu_si256 (xsecret+i); |
| /* data_key = data_vec ^ key_vec; */ |
| __m256i const data_key = _mm256_xor_si256 (data_vec, key_vec); |
| /* data_key_lo = data_key >> 32; */ |
| __m256i const data_key_lo = _mm256_srli_epi64 (data_key, 32); |
| /* product = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */ |
| __m256i const product = _mm256_mul_epu32 (data_key, data_key_lo); |
| /* xacc[i] += swap(data_vec); */ |
| __m256i const data_swap = _mm256_shuffle_epi32(data_vec, _MM_SHUFFLE(1, 0, 3, 2)); |
| __m256i const sum = _mm256_add_epi64(xacc[i], data_swap); |
| /* xacc[i] += product; */ |
| xacc[i] = _mm256_add_epi64(product, sum); |
| } } |
| } |
| XXH_FORCE_INLINE XXH_TARGET_AVX2 XXH3_ACCUMULATE_TEMPLATE(avx2) |
| |
| XXH_FORCE_INLINE XXH_TARGET_AVX2 void |
| XXH3_scrambleAcc_avx2(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret) |
| { |
| XXH_ASSERT((((size_t)acc) & 31) == 0); |
| { __m256i* const xacc = (__m256i*) acc; |
| /* Unaligned. This is mainly for pointer arithmetic, and because |
| * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */ |
| const __m256i* const xsecret = (const __m256i *) secret; |
| const __m256i prime32 = _mm256_set1_epi32((int)XXH_PRIME32_1); |
| |
| size_t i; |
| for (i=0; i < XXH_STRIPE_LEN/sizeof(__m256i); i++) { |
| /* xacc[i] ^= (xacc[i] >> 47) */ |
| __m256i const acc_vec = xacc[i]; |
| __m256i const shifted = _mm256_srli_epi64 (acc_vec, 47); |
| __m256i const data_vec = _mm256_xor_si256 (acc_vec, shifted); |
| /* xacc[i] ^= xsecret; */ |
| __m256i const key_vec = _mm256_loadu_si256 (xsecret+i); |
| __m256i const data_key = _mm256_xor_si256 (data_vec, key_vec); |
| |
| /* xacc[i] *= XXH_PRIME32_1; */ |
| __m256i const data_key_hi = _mm256_srli_epi64 (data_key, 32); |
| __m256i const prod_lo = _mm256_mul_epu32 (data_key, prime32); |
| __m256i const prod_hi = _mm256_mul_epu32 (data_key_hi, prime32); |
| xacc[i] = _mm256_add_epi64(prod_lo, _mm256_slli_epi64(prod_hi, 32)); |
| } |
| } |
| } |
| |
| XXH_FORCE_INLINE XXH_TARGET_AVX2 void XXH3_initCustomSecret_avx2(void* XXH_RESTRICT customSecret, xxh_u64 seed64) |
| { |
| XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 31) == 0); |
| XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE / sizeof(__m256i)) == 6); |
| XXH_STATIC_ASSERT(XXH_SEC_ALIGN <= 64); |
| (void)(&XXH_writeLE64); |
| XXH_PREFETCH(customSecret); |
| { __m256i const seed = _mm256_set_epi64x((xxh_i64)(0U - seed64), (xxh_i64)seed64, (xxh_i64)(0U - seed64), (xxh_i64)seed64); |
| |
| const __m256i* const src = (const __m256i*) ((const void*) XXH3_kSecret); |
| __m256i* dest = ( __m256i*) customSecret; |
| |
| # if defined(__GNUC__) || defined(__clang__) |
| /* |
| * On GCC & Clang, marking 'dest' as modified will cause the compiler: |
| * - do not extract the secret from sse registers in the internal loop |
| * - use less common registers, and avoid pushing these reg into stack |
| */ |
| XXH_COMPILER_GUARD(dest); |
| # endif |
| XXH_ASSERT(((size_t)src & 31) == 0); /* control alignment */ |
| XXH_ASSERT(((size_t)dest & 31) == 0); |
| |
| /* GCC -O2 need unroll loop manually */ |
| dest[0] = _mm256_add_epi64(_mm256_load_si256(src+0), seed); |
| dest[1] = _mm256_add_epi64(_mm256_load_si256(src+1), seed); |
| dest[2] = _mm256_add_epi64(_mm256_load_si256(src+2), seed); |
| dest[3] = _mm256_add_epi64(_mm256_load_si256(src+3), seed); |
| dest[4] = _mm256_add_epi64(_mm256_load_si256(src+4), seed); |
| dest[5] = _mm256_add_epi64(_mm256_load_si256(src+5), seed); |
| } |
| } |
| |
| #endif |
| |
| /* x86dispatch always generates SSE2 */ |
| #if (XXH_VECTOR == XXH_SSE2) || defined(XXH_X86DISPATCH) |
| |
| #ifndef XXH_TARGET_SSE2 |
| # define XXH_TARGET_SSE2 /* disable attribute target */ |
| #endif |
| |
| XXH_FORCE_INLINE XXH_TARGET_SSE2 void |
| XXH3_accumulate_512_sse2( void* XXH_RESTRICT acc, |
| const void* XXH_RESTRICT input, |
| const void* XXH_RESTRICT secret) |
| { |
| /* SSE2 is just a half-scale version of the AVX2 version. */ |
| XXH_ASSERT((((size_t)acc) & 15) == 0); |
| { __m128i* const xacc = (__m128i *) acc; |
| /* Unaligned. This is mainly for pointer arithmetic, and because |
| * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */ |
| const __m128i* const xinput = (const __m128i *) input; |
| /* Unaligned. This is mainly for pointer arithmetic, and because |
| * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */ |
| const __m128i* const xsecret = (const __m128i *) secret; |
| |
| size_t i; |
| for (i=0; i < XXH_STRIPE_LEN/sizeof(__m128i); i++) { |
| /* data_vec = xinput[i]; */ |
| __m128i const data_vec = _mm_loadu_si128 (xinput+i); |
| /* key_vec = xsecret[i]; */ |
| __m128i const key_vec = _mm_loadu_si128 (xsecret+i); |
| /* data_key = data_vec ^ key_vec; */ |
| __m128i const data_key = _mm_xor_si128 (data_vec, key_vec); |
| /* data_key_lo = data_key >> 32; */ |
| __m128i const data_key_lo = _mm_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1)); |
| /* product = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */ |
| __m128i const product = _mm_mul_epu32 (data_key, data_key_lo); |
| /* xacc[i] += swap(data_vec); */ |
| __m128i const data_swap = _mm_shuffle_epi32(data_vec, _MM_SHUFFLE(1,0,3,2)); |
| __m128i const sum = _mm_add_epi64(xacc[i], data_swap); |
| /* xacc[i] += product; */ |
| xacc[i] = _mm_add_epi64(product, sum); |
| } } |
| } |
| XXH_FORCE_INLINE XXH_TARGET_SSE2 XXH3_ACCUMULATE_TEMPLATE(sse2) |
| |
| XXH_FORCE_INLINE XXH_TARGET_SSE2 void |
| XXH3_scrambleAcc_sse2(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret) |
| { |
| XXH_ASSERT((((size_t)acc) & 15) == 0); |
| { __m128i* const xacc = (__m128i*) acc; |
| /* Unaligned. This is mainly for pointer arithmetic, and because |
| * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */ |
| const __m128i* const xsecret = (const __m128i *) secret; |
| const __m128i prime32 = _mm_set1_epi32((int)XXH_PRIME32_1); |
| |
| size_t i; |
| for (i=0; i < XXH_STRIPE_LEN/sizeof(__m128i); i++) { |
| /* xacc[i] ^= (xacc[i] >> 47) */ |
| __m128i const acc_vec = xacc[i]; |
| __m128i const shifted = _mm_srli_epi64 (acc_vec, 47); |
| __m128i const data_vec = _mm_xor_si128 (acc_vec, shifted); |
| /* xacc[i] ^= xsecret[i]; */ |
| __m128i const key_vec = _mm_loadu_si128 (xsecret+i); |
| __m128i const data_key = _mm_xor_si128 (data_vec, key_vec); |
| |
| /* xacc[i] *= XXH_PRIME32_1; */ |
| __m128i const data_key_hi = _mm_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1)); |
| __m128i const prod_lo = _mm_mul_epu32 (data_key, prime32); |
| __m128i const prod_hi = _mm_mul_epu32 (data_key_hi, prime32); |
| xacc[i] = _mm_add_epi64(prod_lo, _mm_slli_epi64(prod_hi, 32)); |
| } |
| } |
| } |
| |
| XXH_FORCE_INLINE XXH_TARGET_SSE2 void XXH3_initCustomSecret_sse2(void* XXH_RESTRICT customSecret, xxh_u64 seed64) |
| { |
| XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 15) == 0); |
| (void)(&XXH_writeLE64); |
| { int const nbRounds = XXH_SECRET_DEFAULT_SIZE / sizeof(__m128i); |
| |
| # if defined(_MSC_VER) && defined(_M_IX86) && _MSC_VER < 1900 |
| /* MSVC 32bit mode does not support _mm_set_epi64x before 2015 */ |
| XXH_ALIGN(16) const xxh_i64 seed64x2[2] = { (xxh_i64)seed64, (xxh_i64)(0U - seed64) }; |
| __m128i const seed = _mm_load_si128((__m128i const*)seed64x2); |
| # else |
| __m128i const seed = _mm_set_epi64x((xxh_i64)(0U - seed64), (xxh_i64)seed64); |
| # endif |
| int i; |
| |
| const void* const src16 = XXH3_kSecret; |
| __m128i* dst16 = (__m128i*) customSecret; |
| # if defined(__GNUC__) || defined(__clang__) |
| /* |
| * On GCC & Clang, marking 'dest' as modified will cause the compiler: |
| * - do not extract the secret from sse registers in the internal loop |
| * - use less common registers, and avoid pushing these reg into stack |
| */ |
| XXH_COMPILER_GUARD(dst16); |
| # endif |
| XXH_ASSERT(((size_t)src16 & 15) == 0); /* control alignment */ |
| XXH_ASSERT(((size_t)dst16 & 15) == 0); |
| |
| for (i=0; i < nbRounds; ++i) { |
| dst16[i] = _mm_add_epi64(_mm_load_si128((const __m128i *)src16+i), seed); |
| } } |
| } |
| |
| #endif |
| |
| #if (XXH_VECTOR == XXH_NEON) |
| |
| /* forward declarations for the scalar routines */ |
| XXH_FORCE_INLINE void |
| XXH3_scalarRound(void* XXH_RESTRICT acc, void const* XXH_RESTRICT input, |
| void const* XXH_RESTRICT secret, size_t lane); |
| |
| XXH_FORCE_INLINE void |
| XXH3_scalarScrambleRound(void* XXH_RESTRICT acc, |
| void const* XXH_RESTRICT secret, size_t lane); |
| |
| /*! |
| * @internal |
| * @brief The bulk processing loop for NEON and WASM SIMD128. |
| * |
| * The NEON code path is actually partially scalar when running on AArch64. This |
| * is to optimize the pipelining and can have up to 15% speedup depending on the |
| * CPU, and it also mitigates some GCC codegen issues. |
| * |
| * @see XXH3_NEON_LANES for configuring this and details about this optimization. |
| * |
| * NEON's 32-bit to 64-bit long multiply takes a half vector of 32-bit |
| * integers instead of the other platforms which mask full 64-bit vectors, |
| * so the setup is more complicated than just shifting right. |
| * |
| * Additionally, there is an optimization for 4 lanes at once noted below. |
| * |
| * Since, as stated, the most optimal amount of lanes for Cortexes is 6, |
| * there needs to be *three* versions of the accumulate operation used |
| * for the remaining 2 lanes. |
| * |
| * WASM's SIMD128 uses SIMDe's arm_neon.h polyfill because the intrinsics overlap |
| * nearly perfectly. |
| */ |
| |
| XXH_FORCE_INLINE void |
| XXH3_accumulate_512_neon( void* XXH_RESTRICT acc, |
| const void* XXH_RESTRICT input, |
| const void* XXH_RESTRICT secret) |
| { |
| XXH_ASSERT((((size_t)acc) & 15) == 0); |
| XXH_STATIC_ASSERT(XXH3_NEON_LANES > 0 && XXH3_NEON_LANES <= XXH_ACC_NB && XXH3_NEON_LANES % 2 == 0); |
| { /* GCC for darwin arm64 does not like aliasing here */ |
| xxh_aliasing_uint64x2_t* const xacc = (xxh_aliasing_uint64x2_t*) acc; |
| /* We don't use a uint32x4_t pointer because it causes bus errors on ARMv7. */ |
| uint8_t const* xinput = (const uint8_t *) input; |
| uint8_t const* xsecret = (const uint8_t *) secret; |
| |
| size_t i; |
| #ifdef __wasm_simd128__ |
| /* |
| * On WASM SIMD128, Clang emits direct address loads when XXH3_kSecret |
| * is constant propagated, which results in it converting it to this |
| * inside the loop: |
| * |
| * a = v128.load(XXH3_kSecret + 0 + $secret_offset, offset = 0) |
| * b = v128.load(XXH3_kSecret + 16 + $secret_offset, offset = 0) |
| * ... |
| * |
| * This requires a full 32-bit address immediate (and therefore a 6 byte |
| * instruction) as well as an add for each offset. |
| * |
| * Putting an asm guard prevents it from folding (at the cost of losing |
| * the alignment hint), and uses the free offset in `v128.load` instead |
| * of adding secret_offset each time which overall reduces code size by |
| * about a kilobyte and improves performance. |
| */ |
| XXH_COMPILER_GUARD(xsecret); |
| #endif |
| /* Scalar lanes use the normal scalarRound routine */ |
| for (i = XXH3_NEON_LANES; i < XXH_ACC_NB; i++) { |
| XXH3_scalarRound(acc, input, secret, i); |
| } |
| i = 0; |
| /* 4 NEON lanes at a time. */ |
| for (; i+1 < XXH3_NEON_LANES / 2; i+=2) { |
| /* data_vec = xinput[i]; */ |
| uint64x2_t data_vec_1 = XXH_vld1q_u64(xinput + (i * 16)); |
| uint64x2_t data_vec_2 = XXH_vld1q_u64(xinput + ((i+1) * 16)); |
| /* key_vec = xsecret[i]; */ |
| uint64x2_t key_vec_1 = XXH_vld1q_u64(xsecret + (i * 16)); |
| uint64x2_t key_vec_2 = XXH_vld1q_u64(xsecret + ((i+1) * 16)); |
| /* data_swap = swap(data_vec) */ |
| uint64x2_t data_swap_1 = vextq_u64(data_vec_1, data_vec_1, 1); |
| uint64x2_t data_swap_2 = vextq_u64(data_vec_2, data_vec_2, 1); |
| /* data_key = data_vec ^ key_vec; */ |
| uint64x2_t data_key_1 = veorq_u64(data_vec_1, key_vec_1); |
| uint64x2_t data_key_2 = veorq_u64(data_vec_2, key_vec_2); |
| |
| /* |
| * If we reinterpret the 64x2 vectors as 32x4 vectors, we can use a |
| * de-interleave operation for 4 lanes in 1 step with `vuzpq_u32` to |
| * get one vector with the low 32 bits of each lane, and one vector |
| * with the high 32 bits of each lane. |
| * |
| * The intrinsic returns a double vector because the original ARMv7-a |
| * instruction modified both arguments in place. AArch64 and SIMD128 emit |
| * two instructions from this intrinsic. |
| * |
| * [ dk11L | dk11H | dk12L | dk12H ] -> [ dk11L | dk12L | dk21L | dk22L ] |
| * [ dk21L | dk21H | dk22L | dk22H ] -> [ dk11H | dk12H | dk21H | dk22H ] |
| */ |
| uint32x4x2_t unzipped = vuzpq_u32( |
| vreinterpretq_u32_u64(data_key_1), |
| vreinterpretq_u32_u64(data_key_2) |
| ); |
| /* data_key_lo = data_key & 0xFFFFFFFF */ |
| uint32x4_t data_key_lo = unzipped.val[0]; |
| /* data_key_hi = data_key >> 32 */ |
| uint32x4_t data_key_hi = unzipped.val[1]; |
| /* |
| * Then, we can split the vectors horizontally and multiply which, as for most |
| * widening intrinsics, have a variant that works on both high half vectors |
| * for free on AArch64. A similar instruction is available on SIMD128. |
| * |
| * sum = data_swap + (u64x2) data_key_lo * (u64x2) data_key_hi |
| */ |
| uint64x2_t sum_1 = XXH_vmlal_low_u32(data_swap_1, data_key_lo, data_key_hi); |
| uint64x2_t sum_2 = XXH_vmlal_high_u32(data_swap_2, data_key_lo, data_key_hi); |
| /* |
| * Clang reorders |
| * a += b * c; // umlal swap.2d, dkl.2s, dkh.2s |
| * c += a; // add acc.2d, acc.2d, swap.2d |
| * to |
| * c += a; // add acc.2d, acc.2d, swap.2d |
| * c += b * c; // umlal acc.2d, dkl.2s, dkh.2s |
| * |
| * While it would make sense in theory since the addition is faster, |
| * for reasons likely related to umlal being limited to certain NEON |
| * pipelines, this is worse. A compiler guard fixes this. |
| */ |
| XXH_COMPILER_GUARD_CLANG_NEON(sum_1); |
| XXH_COMPILER_GUARD_CLANG_NEON(sum_2); |
| /* xacc[i] = acc_vec + sum; */ |
| xacc[i] = vaddq_u64(xacc[i], sum_1); |
| xacc[i+1] = vaddq_u64(xacc[i+1], sum_2); |
| } |
| /* Operate on the remaining NEON lanes 2 at a time. */ |
| for (; i < XXH3_NEON_LANES / 2; i++) { |
| /* data_vec = xinput[i]; */ |
| uint64x2_t data_vec = XXH_vld1q_u64(xinput + (i * 16)); |
| /* key_vec = xsecret[i]; */ |
| uint64x2_t key_vec = XXH_vld1q_u64(xsecret + (i * 16)); |
| /* acc_vec_2 = swap(data_vec) */ |
| uint64x2_t data_swap = vextq_u64(data_vec, data_vec, 1); |
| /* data_key = data_vec ^ key_vec; */ |
| uint64x2_t data_key = veorq_u64(data_vec, key_vec); |
| /* For two lanes, just use VMOVN and VSHRN. */ |
| /* data_key_lo = data_key & 0xFFFFFFFF; */ |
| uint32x2_t data_key_lo = vmovn_u64(data_key); |
| /* data_key_hi = data_key >> 32; */ |
| uint32x2_t data_key_hi = vshrn_n_u64(data_key, 32); |
| /* sum = data_swap + (u64x2) data_key_lo * (u64x2) data_key_hi; */ |
| uint64x2_t sum = vmlal_u32(data_swap, data_key_lo, data_key_hi); |
| /* Same Clang workaround as before */ |
| XXH_COMPILER_GUARD_CLANG_NEON(sum); |
| /* xacc[i] = acc_vec + sum; */ |
| xacc[i] = vaddq_u64 (xacc[i], sum); |
| } |
| } |
| } |
| XXH_FORCE_INLINE XXH3_ACCUMULATE_TEMPLATE(neon) |
| |
| XXH_FORCE_INLINE void |
| XXH3_scrambleAcc_neon(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret) |
| { |
| XXH_ASSERT((((size_t)acc) & 15) == 0); |
| |
| { xxh_aliasing_uint64x2_t* xacc = (xxh_aliasing_uint64x2_t*) acc; |
| uint8_t const* xsecret = (uint8_t const*) secret; |
| |
| size_t i; |
| /* WASM uses operator overloads and doesn't need these. */ |
| #ifndef __wasm_simd128__ |
| /* { prime32_1, prime32_1 } */ |
| uint32x2_t const kPrimeLo = vdup_n_u32(XXH_PRIME32_1); |
| /* { 0, prime32_1, 0, prime32_1 } */ |
| uint32x4_t const kPrimeHi = vreinterpretq_u32_u64(vdupq_n_u64((xxh_u64)XXH_PRIME32_1 << 32)); |
| #endif |
| |
| /* AArch64 uses both scalar and neon at the same time */ |
| for (i = XXH3_NEON_LANES; i < XXH_ACC_NB; i++) { |
| XXH3_scalarScrambleRound(acc, secret, i); |
| } |
| for (i=0; i < XXH3_NEON_LANES / 2; i++) { |
| /* xacc[i] ^= (xacc[i] >> 47); */ |
| uint64x2_t acc_vec = xacc[i]; |
| uint64x2_t shifted = vshrq_n_u64(acc_vec, 47); |
| uint64x2_t data_vec = veorq_u64(acc_vec, shifted); |
| |
| /* xacc[i] ^= xsecret[i]; */ |
| uint64x2_t key_vec = XXH_vld1q_u64(xsecret + (i * 16)); |
| uint64x2_t data_key = veorq_u64(data_vec, key_vec); |
| /* xacc[i] *= XXH_PRIME32_1 */ |
| #ifdef __wasm_simd128__ |
| /* SIMD128 has multiply by u64x2, use it instead of expanding and scalarizing */ |
| xacc[i] = data_key * XXH_PRIME32_1; |
| #else |
| /* |
| * Expanded version with portable NEON intrinsics |
| * |
| * lo(x) * lo(y) + (hi(x) * lo(y) << 32) |
| * |
| * prod_hi = hi(data_key) * lo(prime) << 32 |
| * |
| * Since we only need 32 bits of this multiply a trick can be used, reinterpreting the vector |
| * as a uint32x4_t and multiplying by { 0, prime, 0, prime } to cancel out the unwanted bits |
| * and avoid the shift. |
| */ |
| uint32x4_t prod_hi = vmulq_u32 (vreinterpretq_u32_u64(data_key), kPrimeHi); |
| /* Extract low bits for vmlal_u32 */ |
| uint32x2_t data_key_lo = vmovn_u64(data_key); |
| /* xacc[i] = prod_hi + lo(data_key) * XXH_PRIME32_1; */ |
| xacc[i] = vmlal_u32(vreinterpretq_u64_u32(prod_hi), data_key_lo, kPrimeLo); |
| #endif |
| } |
| } |
| } |
| #endif |
| |
| #if (XXH_VECTOR == XXH_VSX) |
| |
| XXH_FORCE_INLINE void |
| XXH3_accumulate_512_vsx( void* XXH_RESTRICT acc, |
| const void* XXH_RESTRICT input, |
| const void* XXH_RESTRICT secret) |
| { |
| /* presumed aligned */ |
| xxh_aliasing_u64x2* const xacc = (xxh_aliasing_u64x2*) acc; |
| xxh_u8 const* const xinput = (xxh_u8 const*) input; /* no alignment restriction */ |
| xxh_u8 const* const xsecret = (xxh_u8 const*) secret; /* no alignment restriction */ |
| xxh_u64x2 const v32 = { 32, 32 }; |
| size_t i; |
| for (i = 0; i < XXH_STRIPE_LEN / sizeof(xxh_u64x2); i++) { |
| /* data_vec = xinput[i]; */ |
| xxh_u64x2 const data_vec = XXH_vec_loadu(xinput + 16*i); |
| /* key_vec = xsecret[i]; */ |
| xxh_u64x2 const key_vec = XXH_vec_loadu(xsecret + 16*i); |
| xxh_u64x2 const data_key = data_vec ^ key_vec; |
| /* shuffled = (data_key << 32) | (data_key >> 32); */ |
| xxh_u32x4 const shuffled = (xxh_u32x4)vec_rl(data_key, v32); |
| /* product = ((xxh_u64x2)data_key & 0xFFFFFFFF) * ((xxh_u64x2)shuffled & 0xFFFFFFFF); */ |
| xxh_u64x2 const product = XXH_vec_mulo((xxh_u32x4)data_key, shuffled); |
| /* acc_vec = xacc[i]; */ |
| xxh_u64x2 acc_vec = xacc[i]; |
| acc_vec += product; |
| |
| /* swap high and low halves */ |
| #ifdef __s390x__ |
| acc_vec += vec_permi(data_vec, data_vec, 2); |
| #else |
| acc_vec += vec_xxpermdi(data_vec, data_vec, 2); |
| #endif |
| xacc[i] = acc_vec; |
| } |
| } |
| XXH_FORCE_INLINE XXH3_ACCUMULATE_TEMPLATE(vsx) |
| |
| XXH_FORCE_INLINE void |
| XXH3_scrambleAcc_vsx(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret) |
| { |
| XXH_ASSERT((((size_t)acc) & 15) == 0); |
| |
| { xxh_aliasing_u64x2* const xacc = (xxh_aliasing_u64x2*) acc; |
| const xxh_u8* const xsecret = (const xxh_u8*) secret; |
| /* constants */ |
| xxh_u64x2 const v32 = { 32, 32 }; |
| xxh_u64x2 const v47 = { 47, 47 }; |
| xxh_u32x4 const prime = { XXH_PRIME32_1, XXH_PRIME32_1, XXH_PRIME32_1, XXH_PRIME32_1 }; |
| size_t i; |
| for (i = 0; i < XXH_STRIPE_LEN / sizeof(xxh_u64x2); i++) { |
| /* xacc[i] ^= (xacc[i] >> 47); */ |
| xxh_u64x2 const acc_vec = xacc[i]; |
| xxh_u64x2 const data_vec = acc_vec ^ (acc_vec >> v47); |
| |
| /* xacc[i] ^= xsecret[i]; */ |
| xxh_u64x2 const key_vec = XXH_vec_loadu(xsecret + 16*i); |
| xxh_u64x2 const data_key = data_vec ^ key_vec; |
| |
| /* xacc[i] *= XXH_PRIME32_1 */ |
| /* prod_lo = ((xxh_u64x2)data_key & 0xFFFFFFFF) * ((xxh_u64x2)prime & 0xFFFFFFFF); */ |
| xxh_u64x2 const prod_even = XXH_vec_mule((xxh_u32x4)data_key, prime); |
| /* prod_hi = ((xxh_u64x2)data_key >> 32) * ((xxh_u64x2)prime >> 32); */ |
| xxh_u64x2 const prod_odd = XXH_vec_mulo((xxh_u32x4)data_key, prime); |
| xacc[i] = prod_odd + (prod_even << v32); |
| } } |
| } |
| |
| #endif |
| |
| #if (XXH_VECTOR == XXH_SVE) |
| |
| XXH_FORCE_INLINE void |
| XXH3_accumulate_512_sve( void* XXH_RESTRICT acc, |
| const void* XXH_RESTRICT input, |
| const void* XXH_RESTRICT secret) |
| { |
| uint64_t *xacc = (uint64_t *)acc; |
| const uint64_t *xinput = (const uint64_t *)(const void *)input; |
| const uint64_t *xsecret = (const uint64_t *)(const void *)secret; |
| svuint64_t kSwap = sveor_n_u64_z(svptrue_b64(), svindex_u64(0, 1), 1); |
| uint64_t element_count = svcntd(); |
| if (element_count >= 8) { |
| svbool_t mask = svptrue_pat_b64(SV_VL8); |
| svuint64_t vacc = svld1_u64(mask, xacc); |
| ACCRND(vacc, 0); |
| svst1_u64(mask, xacc, vacc); |
| } else if (element_count == 2) { /* sve128 */ |
| svbool_t mask = svptrue_pat_b64(SV_VL2); |
| svuint64_t acc0 = svld1_u64(mask, xacc + 0); |
| svuint64_t acc1 = svld1_u64(mask, xacc + 2); |
| svuint64_t acc2 = svld1_u64(mask, xacc + 4); |
| svuint64_t acc3 = svld1_u64(mask, xacc + 6); |
| ACCRND(acc0, 0); |
| ACCRND(acc1, 2); |
| ACCRND(acc2, 4); |
| ACCRND(acc3, 6); |
| svst1_u64(mask, xacc + 0, acc0); |
| svst1_u64(mask, xacc + 2, acc1); |
| svst1_u64(mask, xacc + 4, acc2); |
| svst1_u64(mask, xacc + 6, acc3); |
| } else { |
| svbool_t mask = svptrue_pat_b64(SV_VL4); |
| svuint64_t acc0 = svld1_u64(mask, xacc + 0); |
| svuint64_t acc1 = svld1_u64(mask, xacc + 4); |
| ACCRND(acc0, 0); |
| ACCRND(acc1, 4); |
| svst1_u64(mask, xacc + 0, acc0); |
| svst1_u64(mask, xacc + 4, acc1); |
| } |
| } |
| |
| XXH_FORCE_INLINE void |
| XXH3_accumulate_sve(xxh_u64* XXH_RESTRICT acc, |
| const xxh_u8* XXH_RESTRICT input, |
| const xxh_u8* XXH_RESTRICT secret, |
| size_t nbStripes) |
| { |
| if (nbStripes != 0) { |
| uint64_t *xacc = (uint64_t *)acc; |
| const uint64_t *xinput = (const uint64_t *)(const void *)input; |
| const uint64_t *xsecret = (const uint64_t *)(const void *)secret; |
| svuint64_t kSwap = sveor_n_u64_z(svptrue_b64(), svindex_u64(0, 1), 1); |
| uint64_t element_count = svcntd(); |
| if (element_count >= 8) { |
| svbool_t mask = svptrue_pat_b64(SV_VL8); |
| svuint64_t vacc = svld1_u64(mask, xacc + 0); |
| do { |
| /* svprfd(svbool_t, void *, enum svfprop); */ |
| svprfd(mask, xinput + 128, SV_PLDL1STRM); |
| ACCRND(vacc, 0); |
| xinput += 8; |
| xsecret += 1; |
| nbStripes--; |
| } while (nbStripes != 0); |
| |
| svst1_u64(mask, xacc + 0, vacc); |
| } else if (element_count == 2) { /* sve128 */ |
| svbool_t mask = svptrue_pat_b64(SV_VL2); |
| svuint64_t acc0 = svld1_u64(mask, xacc + 0); |
| svuint64_t acc1 = svld1_u64(mask, xacc + 2); |
| svuint64_t acc2 = svld1_u64(mask, xacc + 4); |
| svuint64_t acc3 = svld1_u64(mask, xacc + 6); |
| do { |
| svprfd(mask, xinput + 128, SV_PLDL1STRM); |
| ACCRND(acc0, 0); |
| ACCRND(acc1, 2); |
| ACCRND(acc2, 4); |
| ACCRND(acc3, 6); |
| xinput += 8; |
| xsecret += 1; |
| nbStripes--; |
| } while (nbStripes != 0); |
| |
| svst1_u64(mask, xacc + 0, acc0); |
| svst1_u64(mask, xacc + 2, acc1); |
| svst1_u64(mask, xacc + 4, acc2); |
| svst1_u64(mask, xacc + 6, acc3); |
| } else { |
| svbool_t mask = svptrue_pat_b64(SV_VL4); |
| svuint64_t acc0 = svld1_u64(mask, xacc + 0); |
| svuint64_t acc1 = svld1_u64(mask, xacc + 4); |
| do { |
| svprfd(mask, xinput + 128, SV_PLDL1STRM); |
| ACCRND(acc0, 0); |
| ACCRND(acc1, 4); |
| xinput += 8; |
| xsecret += 1; |
| nbStripes--; |
| } while (nbStripes != 0); |
| |
| svst1_u64(mask, xacc + 0, acc0); |
| svst1_u64(mask, xacc + 4, acc1); |
| } |
| } |
| } |
| |
| #endif |
| |
| /* scalar variants - universal */ |
| |
| #if defined(__aarch64__) && (defined(__GNUC__) || defined(__clang__)) |
| /* |
| * In XXH3_scalarRound(), GCC and Clang have a similar codegen issue, where they |
| * emit an excess mask and a full 64-bit multiply-add (MADD X-form). |
| * |
| * While this might not seem like much, as AArch64 is a 64-bit architecture, only |
| * big Cortex designs have a full 64-bit multiplier. |
| * |
| * On the little cores, the smaller 32-bit multiplier is used, and full 64-bit |
| * multiplies expand to 2-3 multiplies in microcode. This has a major penalty |
| * of up to 4 latency cycles and 2 stall cycles in the multiply pipeline. |
| * |
| * Thankfully, AArch64 still provides the 32-bit long multiply-add (UMADDL) which does |
| * not have this penalty and does the mask automatically. |
| */ |
| XXH_FORCE_INLINE xxh_u64 |
| XXH_mult32to64_add64(xxh_u64 lhs, xxh_u64 rhs, xxh_u64 acc) |
| { |
| xxh_u64 ret; |
| /* note: %x = 64-bit register, %w = 32-bit register */ |
| __asm__("umaddl %x0, %w1, %w2, %x3" : "=r" (ret) : "r" (lhs), "r" (rhs), "r" (acc)); |
| return ret; |
| } |
| #else |
| XXH_FORCE_INLINE xxh_u64 |
| XXH_mult32to64_add64(xxh_u64 lhs, xxh_u64 rhs, xxh_u64 acc) |
| { |
| return XXH_mult32to64((xxh_u32)lhs, (xxh_u32)rhs) + acc; |
| } |
| #endif |
| |
| /*! |
| * @internal |
| * @brief Scalar round for @ref XXH3_accumulate_512_scalar(). |
| * |
| * This is extracted to its own function because the NEON path uses a combination |
| * of NEON and scalar. |
| */ |
| XXH_FORCE_INLINE void |
| XXH3_scalarRound(void* XXH_RESTRICT acc, |
| void const* XXH_RESTRICT input, |
| void const* XXH_RESTRICT secret, |
| size_t lane) |
| { |
| xxh_u64* xacc = (xxh_u64*) acc; |
| xxh_u8 const* xinput = (xxh_u8 const*) input; |
| xxh_u8 const* xsecret = (xxh_u8 const*) secret; |
| XXH_ASSERT(lane < XXH_ACC_NB); |
| XXH_ASSERT(((size_t)acc & (XXH_ACC_ALIGN-1)) == 0); |
| { |
| xxh_u64 const data_val = XXH_readLE64(xinput + lane * 8); |
| xxh_u64 const data_key = data_val ^ XXH_readLE64(xsecret + lane * 8); |
| xacc[lane ^ 1] += data_val; /* swap adjacent lanes */ |
| xacc[lane] = XXH_mult32to64_add64(data_key /* & 0xFFFFFFFF */, data_key >> 32, xacc[lane]); |
| } |
| } |
| |
| /*! |
| * @internal |
| * @brief Processes a 64 byte block of data using the scalar path. |
| */ |
| XXH_FORCE_INLINE void |
| XXH3_accumulate_512_scalar(void* XXH_RESTRICT acc, |
| const void* XXH_RESTRICT input, |
| const void* XXH_RESTRICT secret) |
| { |
| size_t i; |
| /* ARM GCC refuses to unroll this loop, resulting in a 24% slowdown on ARMv6. */ |
| #if defined(__GNUC__) && !defined(__clang__) \ |
| && (defined(__arm__) || defined(__thumb2__)) \ |
| && defined(__ARM_FEATURE_UNALIGNED) /* no unaligned access just wastes bytes */ \ |
| && XXH_SIZE_OPT <= 0 |
| # pragma GCC unroll 8 |
| #endif |
| for (i=0; i < XXH_ACC_NB; i++) { |
| XXH3_scalarRound(acc, input, secret, i); |
| } |
| } |
| XXH_FORCE_INLINE XXH3_ACCUMULATE_TEMPLATE(scalar) |
| |
| /*! |
| * @internal |
| * @brief Scalar scramble step for @ref XXH3_scrambleAcc_scalar(). |
| * |
| * This is extracted to its own function because the NEON path uses a combination |
| * of NEON and scalar. |
| */ |
| XXH_FORCE_INLINE void |
| XXH3_scalarScrambleRound(void* XXH_RESTRICT acc, |
| void const* XXH_RESTRICT secret, |
| size_t lane) |
| { |
| xxh_u64* const xacc = (xxh_u64*) acc; /* presumed aligned */ |
| const xxh_u8* const xsecret = (const xxh_u8*) secret; /* no alignment restriction */ |
| XXH_ASSERT((((size_t)acc) & (XXH_ACC_ALIGN-1)) == 0); |
| XXH_ASSERT(lane < XXH_ACC_NB); |
| { |
| xxh_u64 const key64 = XXH_readLE64(xsecret + lane * 8); |
| xxh_u64 acc64 = xacc[lane]; |
| acc64 = XXH_xorshift64(acc64, 47); |
| acc64 ^= key64; |
| acc64 *= XXH_PRIME32_1; |
| xacc[lane] = acc64; |
| } |
| } |
| |
| /*! |
| * @internal |
| * @brief Scrambles the accumulators after a large chunk has been read |
| */ |
| XXH_FORCE_INLINE void |
| XXH3_scrambleAcc_scalar(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret) |
| { |
| size_t i; |
| for (i=0; i < XXH_ACC_NB; i++) { |
| XXH3_scalarScrambleRound(acc, secret, i); |
| } |
| } |
| |
| XXH_FORCE_INLINE void |
| XXH3_initCustomSecret_scalar(void* XXH_RESTRICT customSecret, xxh_u64 seed64) |
| { |
| /* |
| * We need a separate pointer for the hack below, |
| * which requires a non-const pointer. |
| * Any decent compiler will optimize this out otherwise. |
| */ |
| const xxh_u8* kSecretPtr = XXH3_kSecret; |
| XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 15) == 0); |
| |
| #if defined(__GNUC__) && defined(__aarch64__) |
| /* |
| * UGLY HACK: |
| * GCC and Clang generate a bunch of MOV/MOVK pairs for aarch64, and they are |
| * placed sequentially, in order, at the top of the unrolled loop. |
| * |
| * While MOVK is great for generating constants (2 cycles for a 64-bit |
| * constant compared to 4 cycles for LDR), it fights for bandwidth with |
| * the arithmetic instructions. |
| * |
| * I L S |
| * MOVK |
| * MOVK |
| * MOVK |
| * MOVK |
| * ADD |
| * SUB STR |
| * STR |
| * By forcing loads from memory (as the asm line causes the compiler to assume |
| * that XXH3_kSecretPtr has been changed), the pipelines are used more |
| * efficiently: |
| * I L S |
| * LDR |
| * ADD LDR |
| * SUB STR |
| * STR |
| * |
| * See XXH3_NEON_LANES for details on the pipsline. |
| * |
| * XXH3_64bits_withSeed, len == 256, Snapdragon 835 |
| * without hack: 2654.4 MB/s |
| * with hack: 3202.9 MB/s |
| */ |
| XXH_COMPILER_GUARD(kSecretPtr); |
| #endif |
| { int const nbRounds = XXH_SECRET_DEFAULT_SIZE / 16; |
| int i; |
| for (i=0; i < nbRounds; i++) { |
| /* |
| * The asm hack causes the compiler to assume that kSecretPtr aliases with |
| * customSecret, and on aarch64, this prevented LDP from merging two |
| * loads together for free. Putting the loads together before the stores |
| * properly generates LDP. |
| */ |
| xxh_u64 lo = XXH_readLE64(kSecretPtr + 16*i) + seed64; |
| xxh_u64 hi = XXH_readLE64(kSecretPtr + 16*i + 8) - seed64; |
| XXH_writeLE64((xxh_u8*)customSecret + 16*i, lo); |
| XXH_writeLE64((xxh_u8*)customSecret + 16*i + 8, hi); |
| } } |
| } |
| |
| |
| typedef void (*XXH3_f_accumulate)(xxh_u64* XXH_RESTRICT, const xxh_u8* XXH_RESTRICT, const xxh_u8* XXH_RESTRICT, size_t); |
| typedef void (*XXH3_f_scrambleAcc)(void* XXH_RESTRICT, const void*); |
| typedef void (*XXH3_f_initCustomSecret)(void* XXH_RESTRICT, xxh_u64); |
| |
| |
| #if (XXH_VECTOR == XXH_AVX512) |
| |
| #define XXH3_accumulate_512 XXH3_accumulate_512_avx512 |
| #define XXH3_accumulate XXH3_accumulate_avx512 |
| #define XXH3_scrambleAcc XXH3_scrambleAcc_avx512 |
| #define XXH3_initCustomSecret XXH3_initCustomSecret_avx512 |
| |
| #elif (XXH_VECTOR == XXH_AVX2) |
| |
| #define XXH3_accumulate_512 XXH3_accumulate_512_avx2 |
| #define XXH3_accumulate XXH3_accumulate_avx2 |
| #define XXH3_scrambleAcc XXH3_scrambleAcc_avx2 |
| #define XXH3_initCustomSecret XXH3_initCustomSecret_avx2 |
| |
| #elif (XXH_VECTOR == XXH_SSE2) |
| |
| #define XXH3_accumulate_512 XXH3_accumulate_512_sse2 |
| #define XXH3_accumulate XXH3_accumulate_sse2 |
| #define XXH3_scrambleAcc XXH3_scrambleAcc_sse2 |
| #define XXH3_initCustomSecret XXH3_initCustomSecret_sse2 |
| |
| #elif (XXH_VECTOR == XXH_NEON) |
| |
| #define XXH3_accumulate_512 XXH3_accumulate_512_neon |
| #define XXH3_accumulate XXH3_accumulate_neon |
| #define XXH3_scrambleAcc XXH3_scrambleAcc_neon |
| #define XXH3_initCustomSecret XXH3_initCustomSecret_scalar |
| |
| #elif (XXH_VECTOR == XXH_VSX) |
| |
| #define XXH3_accumulate_512 XXH3_accumulate_512_vsx |
| #define XXH3_accumulate XXH3_accumulate_vsx |
| #define XXH3_scrambleAcc XXH3_scrambleAcc_vsx |
| #define XXH3_initCustomSecret XXH3_initCustomSecret_scalar |
| |
| #elif (XXH_VECTOR == XXH_SVE) |
| #define XXH3_accumulate_512 XXH3_accumulate_512_sve |
| #define XXH3_accumulate XXH3_accumulate_sve |
| #define XXH3_scrambleAcc XXH3_scrambleAcc_scalar |
| #define XXH3_initCustomSecret XXH3_initCustomSecret_scalar |
| |
| #else /* scalar */ |
| |
| #define XXH3_accumulate_512 XXH3_accumulate_512_scalar |
| #define XXH3_accumulate XXH3_accumulate_scalar |
| #define XXH3_scrambleAcc XXH3_scrambleAcc_scalar |
| #define XXH3_initCustomSecret XXH3_initCustomSecret_scalar |
| |
| #endif |
| |
| #if XXH_SIZE_OPT >= 1 /* don't do SIMD for initialization */ |
| # undef XXH3_initCustomSecret |
| # define XXH3_initCustomSecret XXH3_initCustomSecret_scalar |
| #endif |
| |
| XXH_FORCE_INLINE void |
| XXH3_hashLong_internal_loop(xxh_u64* XXH_RESTRICT acc, |
| const xxh_u8* XXH_RESTRICT input, size_t len, |
| const xxh_u8* XXH_RESTRICT secret, size_t secretSize, |
| XXH3_f_accumulate f_acc, |
| XXH3_f_scrambleAcc f_scramble) |
| { |
| size_t const nbStripesPerBlock = (secretSize - XXH_STRIPE_LEN) / XXH_SECRET_CONSUME_RATE; |
| size_t const block_len = XXH_STRIPE_LEN * nbStripesPerBlock; |
| size_t const nb_blocks = (len - 1) / block_len; |
| |
| size_t n; |
| |
| XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); |
| |
| for (n = 0; n < nb_blocks; n++) { |
| f_acc(acc, input + n*block_len, secret, nbStripesPerBlock); |
| f_scramble(acc, secret + secretSize - XXH_STRIPE_LEN); |
| } |
| |
| /* last partial block */ |
| XXH_ASSERT(len > XXH_STRIPE_LEN); |
| { size_t const nbStripes = ((len - 1) - (block_len * nb_blocks)) / XXH_STRIPE_LEN; |
| XXH_ASSERT(nbStripes <= (secretSize / XXH_SECRET_CONSUME_RATE)); |
| f_acc(acc, input + nb_blocks*block_len, secret, nbStripes); |
| |
| /* last stripe */ |
| { const xxh_u8* const p = input + len - XXH_STRIPE_LEN; |
| #define XXH_SECRET_LASTACC_START 7 /* not aligned on 8, last secret is different from acc & scrambler */ |
| XXH3_accumulate_512(acc, p, secret + secretSize - XXH_STRIPE_LEN - XXH_SECRET_LASTACC_START); |
| } } |
| } |
| |
| XXH_FORCE_INLINE xxh_u64 |
| XXH3_mix2Accs(const xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT secret) |
| { |
| return XXH3_mul128_fold64( |
| acc[0] ^ XXH_readLE64(secret), |
| acc[1] ^ XXH_readLE64(secret+8) ); |
| } |
| |
| static XXH64_hash_t |
| XXH3_mergeAccs(const xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT secret, xxh_u64 start) |
| { |
| xxh_u64 result64 = start; |
| size_t i = 0; |
| |
| for (i = 0; i < 4; i++) { |
| result64 += XXH3_mix2Accs(acc+2*i, secret + 16*i); |
| #if defined(__clang__) /* Clang */ \ |
| && (defined(__arm__) || defined(__thumb__)) /* ARMv7 */ \ |
| && (defined(__ARM_NEON) || defined(__ARM_NEON__)) /* NEON */ \ |
| && !defined(XXH_ENABLE_AUTOVECTORIZE) /* Define to disable */ |
| /* |
| * UGLY HACK: |
| * Prevent autovectorization on Clang ARMv7-a. Exact same problem as |
| * the one in XXH3_len_129to240_64b. Speeds up shorter keys > 240b. |
| * XXH3_64bits, len == 256, Snapdragon 835: |
| * without hack: 2063.7 MB/s |
| * with hack: 2560.7 MB/s |
| */ |
| XXH_COMPILER_GUARD(result64); |
| #endif |
| } |
| |
| return XXH3_avalanche(result64); |
| } |
| |
| #define XXH3_INIT_ACC { XXH_PRIME32_3, XXH_PRIME64_1, XXH_PRIME64_2, XXH_PRIME64_3, \ |
| XXH_PRIME64_4, XXH_PRIME32_2, XXH_PRIME64_5, XXH_PRIME32_1 } |
| |
| XXH_FORCE_INLINE XXH64_hash_t |
| XXH3_hashLong_64b_internal(const void* XXH_RESTRICT input, size_t len, |
| const void* XXH_RESTRICT secret, size_t secretSize, |
| XXH3_f_accumulate f_acc, |
| XXH3_f_scrambleAcc f_scramble) |
| { |
| XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[XXH_ACC_NB] = XXH3_INIT_ACC; |
| |
| XXH3_hashLong_internal_loop(acc, (const xxh_u8*)input, len, (const xxh_u8*)secret, secretSize, f_acc, f_scramble); |
| |
| /* converge into final hash */ |
| XXH_STATIC_ASSERT(sizeof(acc) == 64); |
| /* do not align on 8, so that the secret is different from the accumulator */ |
| #define XXH_SECRET_MERGEACCS_START 11 |
| XXH_ASSERT(secretSize >= sizeof(acc) + XXH_SECRET_MERGEACCS_START); |
| return XXH3_mergeAccs(acc, (const xxh_u8*)secret + XXH_SECRET_MERGEACCS_START, (xxh_u64)len * XXH_PRIME64_1); |
| } |
| |
| /* |
| * It's important for performance to transmit secret's size (when it's static) |
| * so that the compiler can properly optimize the vectorized loop. |
| * This makes a big performance difference for "medium" keys (<1 KB) when using AVX instruction set. |
| * When the secret size is unknown, or on GCC 12 where the mix of NO_INLINE and FORCE_INLINE |
| * breaks -Og, this is XXH_NO_INLINE. |
| */ |
| XXH3_WITH_SECRET_INLINE XXH64_hash_t |
| XXH3_hashLong_64b_withSecret(const void* XXH_RESTRICT input, size_t len, |
| XXH64_hash_t seed64, const xxh_u8* XXH_RESTRICT secret, size_t secretLen) |
| { |
| (void)seed64; |
| return XXH3_hashLong_64b_internal(input, len, secret, secretLen, XXH3_accumulate, XXH3_scrambleAcc); |
| } |
| |
| /* |
| * It's preferable for performance that XXH3_hashLong is not inlined, |
| * as it results in a smaller function for small data, easier to the instruction cache. |
| * Note that inside this no_inline function, we do inline the internal loop, |
| * and provide a statically defined secret size to allow optimization of vector loop. |
| */ |
| XXH_NO_INLINE XXH_PUREF XXH64_hash_t |
| XXH3_hashLong_64b_default(const void* XXH_RESTRICT input, size_t len, |
| XXH64_hash_t seed64, const xxh_u8* XXH_RESTRICT secret, size_t secretLen) |
| { |
| (void)seed64; (void)secret; (void)secretLen; |
| return XXH3_hashLong_64b_internal(input, len, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_accumulate, XXH3_scrambleAcc); |
| } |
| |
| /* |
| * XXH3_hashLong_64b_withSeed(): |
| * Generate a custom key based on alteration of default XXH3_kSecret with the seed, |
| * and then use this key for long mode hashing. |
| * |
| * This operation is decently fast but nonetheless costs a little bit of time. |
| * Try to avoid it whenever possible (typically when seed==0). |
| * |
| * It's important for performance that XXH3_hashLong is not inlined. Not sure |
| * why (uop cache maybe?), but the difference is large and easily measurable. |
| */ |
| XXH_FORCE_INLINE XXH64_hash_t |
| XXH3_hashLong_64b_withSeed_internal(const void* input, size_t len, |
| XXH64_hash_t seed, |
| XXH3_f_accumulate f_acc, |
| XXH3_f_scrambleAcc f_scramble, |
| XXH3_f_initCustomSecret f_initSec) |
| { |
| #if XXH_SIZE_OPT <= 0 |
| if (seed == 0) |
| return XXH3_hashLong_64b_internal(input, len, |
| XXH3_kSecret, sizeof(XXH3_kSecret), |
| f_acc, f_scramble); |
| #endif |
| { XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE]; |
| f_initSec(secret, seed); |
| return XXH3_hashLong_64b_internal(input, len, secret, sizeof(secret), |
| f_acc, f_scramble); |
| } |
| } |
| |
| /* |
| * It's important for performance that XXH3_hashLong is not inlined. |
| */ |
| XXH_NO_INLINE XXH64_hash_t |
| XXH3_hashLong_64b_withSeed(const void* XXH_RESTRICT input, size_t len, |
| XXH64_hash_t seed, const xxh_u8* XXH_RESTRICT secret, size_t secretLen) |
| { |
| (void)secret; (void)secretLen; |
| return XXH3_hashLong_64b_withSeed_internal(input, len, seed, |
| XXH3_accumulate, XXH3_scrambleAcc, XXH3_initCustomSecret); |
| } |
| |
| |
| typedef XXH64_hash_t (*XXH3_hashLong64_f)(const void* XXH_RESTRICT, size_t, |
| XXH64_hash_t, const xxh_u8* XXH_RESTRICT, size_t); |
| |
| XXH_FORCE_INLINE XXH64_hash_t |
| XXH3_64bits_internal(const void* XXH_RESTRICT input, size_t len, |
| XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen, |
| XXH3_hashLong64_f f_hashLong) |
| { |
| XXH_ASSERT(secretLen >= XXH3_SECRET_SIZE_MIN); |
| /* |
| * If an action is to be taken if `secretLen` condition is not respected, |
| * it should be done here. |
| * For now, it's a contract pre-condition. |
| * Adding a check and a branch here would cost performance at every hash. |
| * Also, note that function signature doesn't offer room to return an error. |
| */ |
| if (len <= 16) |
| return XXH3_len_0to16_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, seed64); |
| if (len <= 128) |
| return XXH3_len_17to128_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64); |
| if (len <= XXH3_MIDSIZE_MAX) |
| return XXH3_len_129to240_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64); |
| return f_hashLong(input, len, seed64, (const xxh_u8*)secret, secretLen); |
| } |
| |
| |
| /* === Public entry point === */ |
| |
| /*! @ingroup XXH3_family */ |
| XXH_PUBLIC_API XXH64_hash_t XXH3_64bits(XXH_NOESCAPE const void* input, size_t length) |
| { |
| return XXH3_64bits_internal(input, length, 0, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_hashLong_64b_default); |
| } |
| |
| /*! @ingroup XXH3_family */ |
| XXH_PUBLIC_API XXH64_hash_t |
| XXH3_64bits_withSecret(XXH_NOESCAPE const void* input, size_t length, XXH_NOESCAPE const void* secret, size_t secretSize) |
| { |
| return XXH3_64bits_internal(input, length, 0, secret, secretSize, XXH3_hashLong_64b_withSecret); |
| } |
| |
| /*! @ingroup XXH3_family */ |
| XXH_PUBLIC_API XXH64_hash_t |
| XXH3_64bits_withSeed(XXH_NOESCAPE const void* input, size_t length, XXH64_hash_t seed) |
| { |
| return XXH3_64bits_internal(input, length, seed, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_hashLong_64b_withSeed); |
| } |
| |
| XXH_PUBLIC_API XXH64_hash_t |
| XXH3_64bits_withSecretandSeed(XXH_NOESCAPE const void* input, size_t length, XXH_NOESCAPE const void* secret, size_t secretSize, XXH64_hash_t seed) |
| { |
| if (length <= XXH3_MIDSIZE_MAX) |
| return XXH3_64bits_internal(input, length, seed, XXH3_kSecret, sizeof(XXH3_kSecret), NULL); |
| return XXH3_hashLong_64b_withSecret(input, length, seed, (const xxh_u8*)secret, secretSize); |
| } |
| |
| |
| /* === XXH3 streaming === */ |
| #ifndef XXH_NO_STREAM |
| /* |
| * Malloc's a pointer that is always aligned to align. |
| * |
| * This must be freed with `XXH_alignedFree()`. |
| * |
| * malloc typically guarantees 16 byte alignment on 64-bit systems and 8 byte |
| * alignment on 32-bit. This isn't enough for the 32 byte aligned loads in AVX2 |
| * or on 32-bit, the 16 byte aligned loads in SSE2 and NEON. |
| * |
| * This underalignment previously caused a rather obvious crash which went |
| * completely unnoticed due to XXH3_createState() not actually being tested. |
| * Credit to RedSpah for noticing this bug. |
| * |
| * The alignment is done manually: Functions like posix_memalign or _mm_malloc |
| * are avoided: To maintain portability, we would have to write a fallback |
| * like this anyways, and besides, testing for the existence of library |
| * functions without relying on external build tools is impossible. |
| * |
| * The method is simple: Overallocate, manually align, and store the offset |
| * to the original behind the returned pointer. |
| * |
| * Align must be a power of 2 and 8 <= align <= 128. |
| */ |
| static XXH_MALLOCF void* XXH_alignedMalloc(size_t s, size_t align) |
| { |
| XXH_ASSERT(align <= 128 && align >= 8); /* range check */ |
| XXH_ASSERT((align & (align-1)) == 0); /* power of 2 */ |
| XXH_ASSERT(s != 0 && s < (s + align)); /* empty/overflow */ |
| { /* Overallocate to make room for manual realignment and an offset byte */ |
| xxh_u8* base = (xxh_u8*)XXH_malloc(s + align); |
| if (base != NULL) { |
| /* |
| * Get the offset needed to align this pointer. |
| * |
| * Even if the returned pointer is aligned, there will always be |
| * at least one byte to store the offset to the original pointer. |
| */ |
| size_t offset = align - ((size_t)base & (align - 1)); /* base % align */ |
| /* Add the offset for the now-aligned pointer */ |
| xxh_u8* ptr = base + offset; |
| |
| XXH_ASSERT((size_t)ptr % align == 0); |
| |
| /* Store the offset immediately before the returned pointer. */ |
| ptr[-1] = (xxh_u8)offset; |
| return ptr; |
| } |
| return NULL; |
| } |
| } |
| /* |
| * Frees an aligned pointer allocated by XXH_alignedMalloc(). Don't pass |
| * normal malloc'd pointers, XXH_alignedMalloc has a specific data layout. |
| */ |
| static void XXH_alignedFree(void* p) |
| { |
| if (p != NULL) { |
| xxh_u8* ptr = (xxh_u8*)p; |
| /* Get the offset byte we added in XXH_malloc. */ |
| xxh_u8 offset = ptr[-1]; |
| /* Free the original malloc'd pointer */ |
| xxh_u8* base = ptr - offset; |
| XXH_free(base); |
| } |
| } |
| /*! @ingroup XXH3_family */ |
| /*! |
| * @brief Allocate an @ref XXH3_state_t. |
| * |
| * Must be freed with XXH3_freeState(). |
| * @return An allocated XXH3_state_t on success, `NULL` on failure. |
| */ |
| XXH_PUBLIC_API XXH3_state_t* XXH3_createState(void) |
| { |
| XXH3_state_t* const state = (XXH3_state_t*)XXH_alignedMalloc(sizeof(XXH3_state_t), 64); |
| if (state==NULL) return NULL; |
| XXH3_INITSTATE(state); |
| return state; |
| } |
| |
| /*! @ingroup XXH3_family */ |
| /*! |
| * @brief Frees an @ref XXH3_state_t. |
| * |
| * Must be allocated with XXH3_createState(). |
| * @param statePtr A pointer to an @ref XXH3_state_t allocated with @ref XXH3_createState(). |
| * @return XXH_OK. |
| */ |
| XXH_PUBLIC_API XXH_errorcode XXH3_freeState(XXH3_state_t* statePtr) |
| { |
| XXH_alignedFree(statePtr); |
| return XXH_OK; |
| } |
| |
| /*! @ingroup XXH3_family */ |
| XXH_PUBLIC_API void |
| XXH3_copyState(XXH_NOESCAPE XXH3_state_t* dst_state, XXH_NOESCAPE const XXH3_state_t* src_state) |
| { |
| XXH_memcpy(dst_state, src_state, sizeof(*dst_state)); |
| } |
| |
| static void |
| XXH3_reset_internal(XXH3_state_t* statePtr, |
| XXH64_hash_t seed, |
| const void* secret, size_t secretSize) |
| { |
| size_t const initStart = offsetof(XXH3_state_t, bufferedSize); |
| size_t const initLength = offsetof(XXH3_state_t, nbStripesPerBlock) - initStart; |
| XXH_ASSERT(offsetof(XXH3_state_t, nbStripesPerBlock) > initStart); |
| XXH_ASSERT(statePtr != NULL); |
| /* set members from bufferedSize to nbStripesPerBlock (excluded) to 0 */ |
| memset((char*)statePtr + initStart, 0, initLength); |
| statePtr->acc[0] = XXH_PRIME32_3; |
| statePtr->acc[1] = XXH_PRIME64_1; |
| statePtr->acc[2] = XXH_PRIME64_2; |
| statePtr->acc[3] = XXH_PRIME64_3; |
| statePtr->acc[4] = XXH_PRIME64_4; |
| statePtr->acc[5] = XXH_PRIME32_2; |
| statePtr->acc[6] = XXH_PRIME64_5; |
| statePtr->acc[7] = XXH_PRIME32_1; |
| statePtr->seed = seed; |
| statePtr->useSeed = (seed != 0); |
| statePtr->extSecret = (const unsigned char*)secret; |
| XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); |
| statePtr->secretLimit = secretSize - XXH_STRIPE_LEN; |
| statePtr->nbStripesPerBlock = statePtr->secretLimit / XXH_SECRET_CONSUME_RATE; |
| } |
| |
| /*! @ingroup XXH3_family */ |
| XXH_PUBLIC_API XXH_errorcode |
| XXH3_64bits_reset(XXH_NOESCAPE XXH3_state_t* statePtr) |
| { |
| if (statePtr == NULL) return XXH_ERROR; |
| XXH3_reset_internal(statePtr, 0, XXH3_kSecret, XXH_SECRET_DEFAULT_SIZE); |
| return XXH_OK; |
| } |
| |
| /*! @ingroup XXH3_family */ |
| XXH_PUBLIC_API XXH_errorcode |
| XXH3_64bits_reset_withSecret(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize) |
| { |
| if (statePtr == NULL) return XXH_ERROR; |
| XXH3_reset_internal(statePtr, 0, secret, secretSize); |
| if (secret == NULL) return XXH_ERROR; |
| if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR; |
| return XXH_OK; |
| } |
| |
| /*! @ingroup XXH3_family */ |
| XXH_PUBLIC_API XXH_errorcode |
| XXH3_64bits_reset_withSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH64_hash_t seed) |
| { |
| if (statePtr == NULL) return XXH_ERROR; |
| if (seed==0) return XXH3_64bits_reset(statePtr); |
| if ((seed != statePtr->seed) || (statePtr->extSecret != NULL)) |
| XXH3_initCustomSecret(statePtr->customSecret, seed); |
| XXH3_reset_internal(statePtr, seed, NULL, XXH_SECRET_DEFAULT_SIZE); |
| return XXH_OK; |
| } |
| |
| /*! @ingroup XXH3_family */ |
| XXH_PUBLIC_API XXH_errorcode |
| XXH3_64bits_reset_withSecretandSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize, XXH64_hash_t seed64) |
| { |
| if (statePtr == NULL) return XXH_ERROR; |
| if (secret == NULL) return XXH_ERROR; |
| if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR; |
| XXH3_reset_internal(statePtr, seed64, secret, secretSize); |
| statePtr->useSeed = 1; /* always, even if seed64==0 */ |
| return XXH_OK; |
| } |
| |
| /*! |
| * @internal |
| * @brief Processes a large input for XXH3_update() and XXH3_digest_long(). |
| * |
| * Unlike XXH3_hashLong_internal_loop(), this can process data that overlaps a block. |
| * |
| * @param acc Pointer to the 8 accumulator lanes |
| * @param nbStripesSoFarPtr In/out pointer to the number of leftover stripes in the block* |
| * @param nbStripesPerBlock Number of stripes in a block |
| * @param input Input pointer |
| * @param nbStripes Number of stripes to process |
| * @param secret Secret pointer |
| * @param secretLimit Offset of the last block in @p secret |
| * @param f_acc Pointer to an XXH3_accumulate implementation |
| * @param f_scramble Pointer to an XXH3_scrambleAcc implementation |
| * @return Pointer past the end of @p input after processing |
| */ |
| XXH_FORCE_INLINE const xxh_u8 * |
| XXH3_consumeStripes(xxh_u64* XXH_RESTRICT acc, |
| size_t* XXH_RESTRICT nbStripesSoFarPtr, size_t nbStripesPerBlock, |
| const xxh_u8* XXH_RESTRICT input, size_t nbStripes, |
| const xxh_u8* XXH_RESTRICT secret, size_t secretLimit, |
| XXH3_f_accumulate f_acc, |
| XXH3_f_scrambleAcc f_scramble) |
| { |
| const xxh_u8* initialSecret = secret + *nbStripesSoFarPtr * XXH_SECRET_CONSUME_RATE; |
| /* Process full blocks */ |
| if (nbStripes >= (nbStripesPerBlock - *nbStripesSoFarPtr)) { |
| /* Process the initial partial block... */ |
| size_t nbStripesThisIter = nbStripesPerBlock - *nbStripesSoFarPtr; |
| |
| do { |
| /* Accumulate and scramble */ |
| f_acc(acc, input, initialSecret, nbStripesThisIter); |
| f_scramble(acc, secret + secretLimit); |
| input += nbStripesThisIter * XXH_STRIPE_LEN; |
| nbStripes -= nbStripesThisIter; |
| /* Then continue the loop with the full block size */ |
| nbStripesThisIter = nbStripesPerBlock; |
| initialSecret = secret; |
| } while (nbStripes >= nbStripesPerBlock); |
| *nbStripesSoFarPtr = 0; |
| } |
| /* Process a partial block */ |
| if (nbStripes > 0) { |
| f_acc(acc, input, initialSecret, nbStripes); |
| input += nbStripes * XXH_STRIPE_LEN; |
| *nbStripesSoFarPtr += nbStripes; |
| } |
| /* Return end pointer */ |
| return input; |
| } |
| |
| #ifndef XXH3_STREAM_USE_STACK |
| # if XXH_SIZE_OPT <= 0 && !defined(__clang__) /* clang doesn't need additional stack space */ |
| # define XXH3_STREAM_USE_STACK 1 |
| # endif |
| #endif |
| /* |
| * Both XXH3_64bits_update and XXH3_128bits_update use this routine. |
| */ |
| XXH_FORCE_INLINE XXH_errorcode |
| XXH3_update(XXH3_state_t* XXH_RESTRICT const state, |
| const xxh_u8* XXH_RESTRICT input, size_t len, |
| XXH3_f_accumulate f_acc, |
| XXH3_f_scrambleAcc f_scramble) |
| { |
| if (input==NULL) { |
| XXH_ASSERT(len == 0); |
| return XXH_OK; |
| } |
| |
| XXH_ASSERT(state != NULL); |
| { const xxh_u8* const bEnd = input + len; |
| const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret; |
| #if defined(XXH3_STREAM_USE_STACK) && XXH3_STREAM_USE_STACK >= 1 |
| /* For some reason, gcc and MSVC seem to suffer greatly |
| * when operating accumulators directly into state. |
| * Operating into stack space seems to enable proper optimization. |
| * clang, on the other hand, doesn't seem to need this trick */ |
| XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[8]; |
| XXH_memcpy(acc, state->acc, sizeof(acc)); |
| #else |
| xxh_u64* XXH_RESTRICT const acc = state->acc; |
| #endif |
| state->totalLen += len; |
| XXH_ASSERT(state->bufferedSize <= XXH3_INTERNALBUFFER_SIZE); |
| |
| /* small input : just fill in tmp buffer */ |
| if (len <= XXH3_INTERNALBUFFER_SIZE - state->bufferedSize) { |
| XXH_memcpy(state->buffer + state->bufferedSize, input, len); |
| state->bufferedSize += (XXH32_hash_t)len; |
| return XXH_OK; |
| } |
| |
| /* total input is now > XXH3_INTERNALBUFFER_SIZE */ |
| #define XXH3_INTERNALBUFFER_STRIPES (XXH3_INTERNALBUFFER_SIZE / XXH_STRIPE_LEN) |
| XXH_STATIC_ASSERT(XXH3_INTERNALBUFFER_SIZE % XXH_STRIPE_LEN == 0); /* clean multiple */ |
| |
| /* |
| * Internal buffer is partially filled (always, except at beginning) |
| * Complete it, then consume it. |
| */ |
| if (state->bufferedSize) { |
| size_t const loadSize = XXH3_INTERNALBUFFER_SIZE - state->bufferedSize; |
| XXH_memcpy(state->buffer + state->bufferedSize, input, loadSize); |
| input += loadSize; |
| XXH3_consumeStripes(acc, |
| &state->nbStripesSoFar, state->nbStripesPerBlock, |
| state->buffer, XXH3_INTERNALBUFFER_STRIPES, |
| secret, state->secretLimit, |
| f_acc, f_scramble); |
| state->bufferedSize = 0; |
| } |
| XXH_ASSERT(input < bEnd); |
| if (bEnd - input > XXH3_INTERNALBUFFER_SIZE) { |
| size_t nbStripes = (size_t)(bEnd - 1 - input) / XXH_STRIPE_LEN; |
| input = XXH3_consumeStripes(acc, |
| &state->nbStripesSoFar, state->nbStripesPerBlock, |
| input, nbStripes, |
| secret, state->secretLimit, |
| f_acc, f_scramble); |
| XXH_memcpy(state->buffer + sizeof(state->buffer) - XXH_STRIPE_LEN, input - XXH_STRIPE_LEN, XXH_STRIPE_LEN); |
| |
| } |
| /* Some remaining input (always) : buffer it */ |
| XXH_ASSERT(input < bEnd); |
| XXH_ASSERT(bEnd - input <= XXH3_INTERNALBUFFER_SIZE); |
| XXH_ASSERT(state->bufferedSize == 0); |
| XXH_memcpy(state->buffer, input, (size_t)(bEnd-input)); |
| state->bufferedSize = (XXH32_hash_t)(bEnd-input); |
| #if defined(XXH3_STREAM_USE_STACK) && XXH3_STREAM_USE_STACK >= 1 |
| /* save stack accumulators into state */ |
| XXH_memcpy(state->acc, acc, sizeof(acc)); |
| #endif |
| } |
| |
| return XXH_OK; |
| } |
| |
| /*! @ingroup XXH3_family */ |
| XXH_PUBLIC_API XXH_errorcode |
| XXH3_64bits_update(XXH_NOESCAPE XXH3_state_t* state, XXH_NOESCAPE const void* input, size_t len) |
| { |
| return XXH3_update(state, (const xxh_u8*)input, len, |
| XXH3_accumulate, XXH3_scrambleAcc); |
| } |
| |
| |
| XXH_FORCE_INLINE void |
| XXH3_digest_long (XXH64_hash_t* acc, |
| const XXH3_state_t* state, |
| const unsigned char* secret) |
| { |
| xxh_u8 lastStripe[XXH_STRIPE_LEN]; |
| const xxh_u8* lastStripePtr; |
| |
| /* |
| * Digest on a local copy. This way, the state remains unaltered, and it can |
| * continue ingesting more input afterwards. |
| */ |
| XXH_memcpy(acc, state->acc, sizeof(state->acc)); |
| if (state->bufferedSize >= XXH_STRIPE_LEN) { |
| /* Consume remaining stripes then point to remaining data in buffer */ |
| size_t const nbStripes = (state->bufferedSize - 1) / XXH_STRIPE_LEN; |
| size_t nbStripesSoFar = state->nbStripesSoFar; |
| XXH3_consumeStripes(acc, |
| &nbStripesSoFar, state->nbStripesPerBlock, |
| state->buffer, nbStripes, |
| secret, state->secretLimit, |
| XXH3_accumulate, XXH3_scrambleAcc); |
| lastStripePtr = state->buffer + state->bufferedSize - XXH_STRIPE_LEN; |
| } else { /* bufferedSize < XXH_STRIPE_LEN */ |
| /* Copy to temp buffer */ |
| size_t const catchupSize = XXH_STRIPE_LEN - state->bufferedSize; |
| XXH_ASSERT(state->bufferedSize > 0); /* there is always some input buffered */ |
| XXH_memcpy(lastStripe, state->buffer + sizeof(state->buffer) - catchupSize, catchupSize); |
| XXH_memcpy(lastStripe + catchupSize, state->buffer, state->bufferedSize); |
| lastStripePtr = lastStripe; |
| } |
| /* Last stripe */ |
| XXH3_accumulate_512(acc, |
| lastStripePtr, |
| secret + state->secretLimit - XXH_SECRET_LASTACC_START); |
| } |
| |
| /*! @ingroup XXH3_family */ |
| XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_digest (XXH_NOESCAPE const XXH3_state_t* state) |
| { |
| const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret; |
| if (state->totalLen > XXH3_MIDSIZE_MAX) { |
| XXH_ALIGN(XXH_ACC_ALIGN) XXH64_hash_t acc[XXH_ACC_NB]; |
| XXH3_digest_long(acc, state, secret); |
| return XXH3_mergeAccs(acc, |
| secret + XXH_SECRET_MERGEACCS_START, |
| (xxh_u64)state->totalLen * XXH_PRIME64_1); |
| } |
| /* totalLen <= XXH3_MIDSIZE_MAX: digesting a short input */ |
| if (state->useSeed) |
| return XXH3_64bits_withSeed(state->buffer, (size_t)state->totalLen, state->seed); |
| return XXH3_64bits_withSecret(state->buffer, (size_t)(state->totalLen), |
| secret, state->secretLimit + XXH_STRIPE_LEN); |
| } |
| #endif /* !XXH_NO_STREAM */ |
| |
| |
| /* ========================================== |
| * XXH3 128 bits (a.k.a XXH128) |
| * ========================================== |
| * XXH3's 128-bit variant has better mixing and strength than the 64-bit variant, |
| * even without counting the significantly larger output size. |
| * |
| * For example, extra steps are taken to avoid the seed-dependent collisions |
| * in 17-240 byte inputs (See XXH3_mix16B and XXH128_mix32B). |
| * |
| * This strength naturally comes at the cost of some speed, especially on short |
| * lengths. Note that longer hashes are about as fast as the 64-bit version |
| * due to it using only a slight modification of the 64-bit loop. |
| * |
| * XXH128 is also more oriented towards 64-bit machines. It is still extremely |
| * fast for a _128-bit_ hash on 32-bit (it usually clears XXH64). |
| */ |
| |
| XXH_FORCE_INLINE XXH_PUREF XXH128_hash_t |
| XXH3_len_1to3_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) |
| { |
| /* A doubled version of 1to3_64b with different constants. */ |
| XXH_ASSERT(input != NULL); |
| XXH_ASSERT(1 <= len && len <= 3); |
| XXH_ASSERT(secret != NULL); |
| /* |
| * len = 1: combinedl = { input[0], 0x01, input[0], input[0] } |
| * len = 2: combinedl = { input[1], 0x02, input[0], input[1] } |
| * len = 3: combinedl = { input[2], 0x03, input[0], input[1] } |
| */ |
| { xxh_u8 const c1 = input[0]; |
| xxh_u8 const c2 = input[len >> 1]; |
| xxh_u8 const c3 = input[len - 1]; |
| xxh_u32 const combinedl = ((xxh_u32)c1 <<16) | ((xxh_u32)c2 << 24) |
| | ((xxh_u32)c3 << 0) | ((xxh_u32)len << 8); |
| xxh_u32 const combinedh = XXH_rotl32(XXH_swap32(combinedl), 13); |
| xxh_u64 const bitflipl = (XXH_readLE32(secret) ^ XXH_readLE32(secret+4)) + seed; |
| xxh_u64 const bitfliph = (XXH_readLE32(secret+8) ^ XXH_readLE32(secret+12)) - seed; |
| xxh_u64 const keyed_lo = (xxh_u64)combinedl ^ bitflipl; |
| xxh_u64 const keyed_hi = (xxh_u64)combinedh ^ bitfliph; |
| XXH128_hash_t h128; |
| h128.low64 = XXH64_avalanche(keyed_lo); |
| h128.high64 = XXH64_avalanche(keyed_hi); |
| return h128; |
| } |
| } |
| |
| XXH_FORCE_INLINE XXH_PUREF XXH128_hash_t |
| XXH3_len_4to8_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) |
| { |
| XXH_ASSERT(input != NULL); |
| XXH_ASSERT(secret != NULL); |
| XXH_ASSERT(4 <= len && len <= 8); |
| seed ^= (xxh_u64)XXH_swap32((xxh_u32)seed) << 32; |
| { xxh_u32 const input_lo = XXH_readLE32(input); |
| xxh_u32 const input_hi = XXH_readLE32(input + len - 4); |
| xxh_u64 const input_64 = input_lo + ((xxh_u64)input_hi << 32); |
| xxh_u64 const bitflip = (XXH_readLE64(secret+16) ^ XXH_readLE64(secret+24)) + seed; |
| xxh_u64 const keyed = input_64 ^ bitflip; |
| |
| /* Shift len to the left to ensure it is even, this avoids even multiplies. */ |
| XXH128_hash_t m128 = XXH_mult64to128(keyed, XXH_PRIME64_1 + (len << 2)); |
| |
| m128.high64 += (m128.low64 << 1); |
| m128.low64 ^= (m128.high64 >> 3); |
| |
| m128.low64 = XXH_xorshift64(m128.low64, 35); |
| m128.low64 *= PRIME_MX2; |
| m128.low64 = XXH_xorshift64(m128.low64, 28); |
| m128.high64 = XXH3_avalanche(m128.high64); |
| return m128; |
| } |
| } |
| |
| XXH_FORCE_INLINE XXH_PUREF XXH128_hash_t |
| XXH3_len_9to16_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) |
| { |
| XXH_ASSERT(input != NULL); |
| XXH_ASSERT(secret != NULL); |
| XXH_ASSERT(9 <= len && len <= 16); |
| { xxh_u64 const bitflipl = (XXH_readLE64(secret+32) ^ XXH_readLE64(secret+40)) - seed; |
| xxh_u64 const bitfliph = (XXH_readLE64(secret+48) ^ XXH_readLE64(secret+56)) + seed; |
| xxh_u64 const input_lo = XXH_readLE64(input); |
| xxh_u64 input_hi = XXH_readLE64(input + len - 8); |
| XXH128_hash_t m128 = XXH_mult64to128(input_lo ^ input_hi ^ bitflipl, XXH_PRIME64_1); |
| /* |
| * Put len in the middle of m128 to ensure that the length gets mixed to |
| * both the low and high bits in the 128x64 multiply below. |
| */ |
| m128.low64 += (xxh_u64)(len - 1) << 54; |
| input_hi ^= bitfliph; |
| /* |
| * Add the high 32 bits of input_hi to the high 32 bits of m128, then |
| * add the long product of the low 32 bits of input_hi and XXH_PRIME32_2 to |
| * the high 64 bits of m128. |
| * |
| * The best approach to this operation is different on 32-bit and 64-bit. |
| */ |
| if (sizeof(void *) < sizeof(xxh_u64)) { /* 32-bit */ |
| /* |
| * 32-bit optimized version, which is more readable. |
| * |
| * On 32-bit, it removes an ADC and delays a dependency between the two |
| * halves of m128.high64, but it generates an extra mask on 64-bit. |
| */ |
| m128.high64 += (input_hi & 0xFFFFFFFF00000000ULL) + XXH_mult32to64((xxh_u32)input_hi, XXH_PRIME32_2); |
| } else { |
| /* |
| * 64-bit optimized (albeit more confusing) version. |
| * |
| * Uses some properties of addition and multiplication to remove the mask: |
| * |
| * Let: |
| * a = input_hi.lo = (input_hi & 0x00000000FFFFFFFF) |
| * b = input_hi.hi = (input_hi & 0xFFFFFFFF00000000) |
| * c = XXH_PRIME32_2 |
| * |
| * a + (b * c) |
| * Inverse Property: x + y - x == y |
| * a + (b * (1 + c - 1)) |
| * Distributive Property: x * (y + z) == (x * y) + (x * z) |
| * a + (b * 1) + (b * (c - 1)) |
| * Identity Property: x * 1 == x |
| * a + b + (b * (c - 1)) |
| * |
| * Substitute a, b, and c: |
| * input_hi.hi + input_hi.lo + ((xxh_u64)input_hi.lo * (XXH_PRIME32_2 - 1)) |
| * |
| * Since input_hi.hi + input_hi.lo == input_hi, we get this: |
| * input_hi + ((xxh_u64)input_hi.lo * (XXH_PRIME32_2 - 1)) |
| */ |
| m128.high64 += input_hi + XXH_mult32to64((xxh_u32)input_hi, XXH_PRIME32_2 - 1); |
| } |
| /* m128 ^= XXH_swap64(m128 >> 64); */ |
| m128.low64 ^= XXH_swap64(m128.high64); |
| |
| { /* 128x64 multiply: h128 = m128 * XXH_PRIME64_2; */ |
| XXH128_hash_t h128 = XXH_mult64to128(m128.low64, XXH_PRIME64_2); |
| h128.high64 += m128.high64 * XXH_PRIME64_2; |
| |
| h128.low64 = XXH3_avalanche(h128.low64); |
| h128.high64 = XXH3_avalanche(h128.high64); |
| return h128; |
| } } |
| } |
| |
| /* |
| * Assumption: `secret` size is >= XXH3_SECRET_SIZE_MIN |
| */ |
| XXH_FORCE_INLINE XXH_PUREF XXH128_hash_t |
| XXH3_len_0to16_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) |
| { |
| XXH_ASSERT(len <= 16); |
| { if (len > 8) return XXH3_len_9to16_128b(input, len, secret, seed); |
| if (len >= 4) return XXH3_len_4to8_128b(input, len, secret, seed); |
| if (len) return XXH3_len_1to3_128b(input, len, secret, seed); |
| { XXH128_hash_t h128; |
| xxh_u64 const bitflipl = XXH_readLE64(secret+64) ^ XXH_readLE64(secret+72); |
| xxh_u64 const bitfliph = XXH_readLE64(secret+80) ^ XXH_readLE64(secret+88); |
| h128.low64 = XXH64_avalanche(seed ^ bitflipl); |
| h128.high64 = XXH64_avalanche( seed ^ bitfliph); |
| return h128; |
| } } |
| } |
| |
| /* |
| * A bit slower than XXH3_mix16B, but handles multiply by zero better. |
| */ |
| XXH_FORCE_INLINE XXH128_hash_t |
| XXH128_mix32B(XXH128_hash_t acc, const xxh_u8* input_1, const xxh_u8* input_2, |
| const xxh_u8* secret, XXH64_hash_t seed) |
| { |
| acc.low64 += XXH3_mix16B (input_1, secret+0, seed); |
| acc.low64 ^= XXH_readLE64(input_2) + XXH_readLE64(input_2 + 8); |
| acc.high64 += XXH3_mix16B (input_2, secret+16, seed); |
| acc.high64 ^= XXH_readLE64(input_1) + XXH_readLE64(input_1 + 8); |
| return acc; |
| } |
| |
| |
| XXH_FORCE_INLINE XXH_PUREF XXH128_hash_t |
| XXH3_len_17to128_128b(const xxh_u8* XXH_RESTRICT input, size_t len, |
| const xxh_u8* XXH_RESTRICT secret, size_t secretSize, |
| XXH64_hash_t seed) |
| { |
| XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize; |
| XXH_ASSERT(16 < len && len <= 128); |
| |
| { XXH128_hash_t acc; |
| acc.low64 = len * XXH_PRIME64_1; |
| acc.high64 = 0; |
| |
| #if XXH_SIZE_OPT >= 1 |
| { |
| /* Smaller, but slightly slower. */ |
| unsigned int i = (unsigned int)(len - 1) / 32; |
| do { |
| acc = XXH128_mix32B(acc, input+16*i, input+len-16*(i+1), secret+32*i, seed); |
| } while (i-- != 0); |
| } |
| #else |
| if (len > 32) { |
| if (len > 64) { |
| if (len > 96) { |
| acc = XXH128_mix32B(acc, input+48, input+len-64, secret+96, seed); |
| } |
| acc = XXH128_mix32B(acc, input+32, input+len-48, secret+64, seed); |
| } |
| acc = XXH128_mix32B(acc, input+16, input+len-32, secret+32, seed); |
| } |
| acc = XXH128_mix32B(acc, input, input+len-16, secret, seed); |
| #endif |
| { XXH128_hash_t h128; |
| h128.low64 = acc.low64 + acc.high64; |
| h128.high64 = (acc.low64 * XXH_PRIME64_1) |
| + (acc.high64 * XXH_PRIME64_4) |
| + ((len - seed) * XXH_PRIME64_2); |
| h128.low64 = XXH3_avalanche(h128.low64); |
| h128.high64 = (XXH64_hash_t)0 - XXH3_avalanche(h128.high64); |
| return h128; |
| } |
| } |
| } |
| |
| XXH_NO_INLINE XXH_PUREF XXH128_hash_t |
| XXH3_len_129to240_128b(const xxh_u8* XXH_RESTRICT input, size_t len, |
| const xxh_u8* XXH_RESTRICT secret, size_t secretSize, |
| XXH64_hash_t seed) |
| { |
| XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize; |
| XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX); |
| |
| { XXH128_hash_t acc; |
| unsigned i; |
| acc.low64 = len * XXH_PRIME64_1; |
| acc.high64 = 0; |
| /* |
| * We set as `i` as offset + 32. We do this so that unchanged |
| * `len` can be used as upper bound. This reaches a sweet spot |
| * where both x86 and aarch64 get simple agen and good codegen |
| * for the loop. |
| */ |
| for (i = 32; i < 160; i += 32) { |
| acc = XXH128_mix32B(acc, |
| input + i - 32, |
| input + i - 16, |
| secret + i - 32, |
| seed); |
| } |
| acc.low64 = XXH3_avalanche(acc.low64); |
| acc.high64 = XXH3_avalanche(acc.high64); |
| /* |
| * NB: `i <= len` will duplicate the last 32-bytes if |
| * len % 32 was zero. This is an unfortunate necessity to keep |
| * the hash result stable. |
| */ |
| for (i=160; i <= len; i += 32) { |
| acc = XXH128_mix32B(acc, |
| input + i - 32, |
| input + i - 16, |
| secret + XXH3_MIDSIZE_STARTOFFSET + i - 160, |
| seed); |
| } |
| /* last bytes */ |
| acc = XXH128_mix32B(acc, |
| input + len - 16, |
| input + len - 32, |
| secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET - 16, |
| (XXH64_hash_t)0 - seed); |
| |
| { XXH128_hash_t h128; |
| h128.low64 = acc.low64 + acc.high64; |
| h128.high64 = (acc.low64 * XXH_PRIME64_1) |
| + (acc.high64 * XXH_PRIME64_4) |
| + ((len - seed) * XXH_PRIME64_2); |
| h128.low64 = XXH3_avalanche(h128.low64); |
| h128.high64 = (XXH64_hash_t)0 - XXH3_avalanche(h128.high64); |
| return h128; |
| } |
| } |
| } |
| |
| XXH_FORCE_INLINE XXH128_hash_t |
| XXH3_hashLong_128b_internal(const void* XXH_RESTRICT input, size_t len, |
| const xxh_u8* XXH_RESTRICT secret, size_t secretSize, |
| XXH3_f_accumulate f_acc, |
| XXH3_f_scrambleAcc f_scramble) |
| { |
| XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[XXH_ACC_NB] = XXH3_INIT_ACC; |
| |
| XXH3_hashLong_internal_loop(acc, (const xxh_u8*)input, len, secret, secretSize, f_acc, f_scramble); |
| |
| /* converge into final hash */ |
| XXH_STATIC_ASSERT(sizeof(acc) == 64); |
| XXH_ASSERT(secretSize >= sizeof(acc) + XXH_SECRET_MERGEACCS_START); |
| { XXH128_hash_t h128; |
| h128.low64 = XXH3_mergeAccs(acc, |
| secret + XXH_SECRET_MERGEACCS_START, |
| (xxh_u64)len * XXH_PRIME64_1); |
| h128.high64 = XXH3_mergeAccs(acc, |
| secret + secretSize |
| - sizeof(acc) - XXH_SECRET_MERGEACCS_START, |
| ~((xxh_u64)len * XXH_PRIME64_2)); |
| return h128; |
| } |
| } |
| |
| /* |
| * It's important for performance that XXH3_hashLong() is not inlined. |
| */ |
| XXH_NO_INLINE XXH_PUREF XXH128_hash_t |
| XXH3_hashLong_128b_default(const void* XXH_RESTRICT input, size_t len, |
| XXH64_hash_t seed64, |
| const void* XXH_RESTRICT secret, size_t secretLen) |
| { |
| (void)seed64; (void)secret; (void)secretLen; |
| return XXH3_hashLong_128b_internal(input, len, XXH3_kSecret, sizeof(XXH3_kSecret), |
| XXH3_accumulate, XXH3_scrambleAcc); |
| } |
| |
| /* |
| * It's important for performance to pass @p secretLen (when it's static) |
| * to the compiler, so that it can properly optimize the vectorized loop. |
| * |
| * When the secret size is unknown, or on GCC 12 where the mix of NO_INLINE and FORCE_INLINE |
| * breaks -Og, this is XXH_NO_INLINE. |
| */ |
| XXH3_WITH_SECRET_INLINE XXH128_hash_t |
| XXH3_hashLong_128b_withSecret(const void* XXH_RESTRICT input, size_t len, |
| XXH64_hash_t seed64, |
| const void* XXH_RESTRICT secret, size_t secretLen) |
| { |
| (void)seed64; |
| return XXH3_hashLong_128b_internal(input, len, (const xxh_u8*)secret, secretLen, |
| XXH3_accumulate, XXH3_scrambleAcc); |
| } |
| |
| XXH_FORCE_INLINE XXH128_hash_t |
| XXH3_hashLong_128b_withSeed_internal(const void* XXH_RESTRICT input, size_t len, |
| XXH64_hash_t seed64, |
| XXH3_f_accumulate f_acc, |
| XXH3_f_scrambleAcc f_scramble, |
| XXH3_f_initCustomSecret f_initSec) |
| { |
| if (seed64 == 0) |
| return XXH3_hashLong_128b_internal(input, len, |
| XXH3_kSecret, sizeof(XXH3_kSecret), |
| f_acc, f_scramble); |
| { XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE]; |
| f_initSec(secret, seed64); |
| return XXH3_hashLong_128b_internal(input, len, (const xxh_u8*)secret, sizeof(secret), |
| f_acc, f_scramble); |
| } |
| } |
| |
| /* |
| * It's important for performance that XXH3_hashLong is not inlined. |
| */ |
| XXH_NO_INLINE XXH128_hash_t |
| XXH3_hashLong_128b_withSeed(const void* input, size_t len, |
| XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen) |
| { |
| (void)secret; (void)secretLen; |
| return XXH3_hashLong_128b_withSeed_internal(input, len, seed64, |
| XXH3_accumulate, XXH3_scrambleAcc, XXH3_initCustomSecret); |
| } |
| |
| typedef XXH128_hash_t (*XXH3_hashLong128_f)(const void* XXH_RESTRICT, size_t, |
| XXH64_hash_t, const void* XXH_RESTRICT, size_t); |
| |
| XXH_FORCE_INLINE XXH128_hash_t |
| XXH3_128bits_internal(const void* input, size_t len, |
| XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen, |
| XXH3_hashLong128_f f_hl128) |
| { |
| XXH_ASSERT(secretLen >= XXH3_SECRET_SIZE_MIN); |
| /* |
| * If an action is to be taken if `secret` conditions are not respected, |
| * it should be done here. |
| * For now, it's a contract pre-condition. |
| * Adding a check and a branch here would cost performance at every hash. |
| */ |
| if (len <= 16) |
| return XXH3_len_0to16_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, seed64); |
| if (len <= 128) |
| return XXH3_len_17to128_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64); |
| if (len <= XXH3_MIDSIZE_MAX) |
| return XXH3_len_129to240_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64); |
| return f_hl128(input, len, seed64, secret, secretLen); |
| } |
| |
| |
| /* === Public XXH128 API === */ |
| |
| /*! @ingroup XXH3_family */ |
| XXH_PUBLIC_API XXH128_hash_t XXH3_128bits(XXH_NOESCAPE const void* input, size_t len) |
| { |
| return XXH3_128bits_internal(input, len, 0, |
| XXH3_kSecret, sizeof(XXH3_kSecret), |
| XXH3_hashLong_128b_default); |
| } |
| |
| /*! @ingroup XXH3_family */ |
| XXH_PUBLIC_API XXH128_hash_t |
| XXH3_128bits_withSecret(XXH_NOESCAPE const void* input, size_t len, XXH_NOESCAPE const void* secret, size_t secretSize) |
| { |
| return XXH3_128bits_internal(input, len, 0, |
| (const xxh_u8*)secret, secretSize, |
| XXH3_hashLong_128b_withSecret); |
| } |
| |
| /*! @ingroup XXH3_family */ |
| XXH_PUBLIC_API XXH128_hash_t |
| XXH3_128bits_withSeed(XXH_NOESCAPE const void* input, size_t len, XXH64_hash_t seed) |
| { |
| return XXH3_128bits_internal(input, len, seed, |
| XXH3_kSecret, sizeof(XXH3_kSecret), |
| XXH3_hashLong_128b_withSeed); |
| } |
| |
| /*! @ingroup XXH3_family */ |
| XXH_PUBLIC_API XXH128_hash_t |
| XXH3_128bits_withSecretandSeed(XXH_NOESCAPE const void* input, size_t len, XXH_NOESCAPE const void* secret, size_t secretSize, XXH64_hash_t seed) |
| { |
| if (len <= XXH3_MIDSIZE_MAX) |
| return XXH3_128bits_internal(input, len, seed, XXH3_kSecret, sizeof(XXH3_kSecret), NULL); |
| return XXH3_hashLong_128b_withSecret(input, len, seed, secret, secretSize); |
| } |
| |
| /*! @ingroup XXH3_family */ |
| XXH_PUBLIC_API XXH128_hash_t |
| XXH128(XXH_NOESCAPE const void* input, size_t len, XXH64_hash_t seed) |
| { |
| return XXH3_128bits_withSeed(input, len, seed); |
| } |
| |
| |
| /* === XXH3 128-bit streaming === */ |
| #ifndef XXH_NO_STREAM |
| /* |
| * All initialization and update functions are identical to 64-bit streaming variant. |
| * The only difference is the finalization routine. |
| */ |
| |
| /*! @ingroup XXH3_family */ |
| XXH_PUBLIC_API XXH_errorcode |
| XXH3_128bits_reset(XXH_NOESCAPE XXH3_state_t* statePtr) |
| { |
| return XXH3_64bits_reset(statePtr); |
| } |
| |
| /*! @ingroup XXH3_family */ |
| XXH_PUBLIC_API XXH_errorcode |
| XXH3_128bits_reset_withSecret(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize) |
| { |
| return XXH3_64bits_reset_withSecret(statePtr, secret, secretSize); |
| } |
| |
| /*! @ingroup XXH3_family */ |
| XXH_PUBLIC_API XXH_errorcode |
| XXH3_128bits_reset_withSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH64_hash_t seed) |
| { |
| return XXH3_64bits_reset_withSeed(statePtr, seed); |
| } |
| |
| /*! @ingroup XXH3_family */ |
| XXH_PUBLIC_API XXH_errorcode |
| XXH3_128bits_reset_withSecretandSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize, XXH64_hash_t seed) |
| { |
| return XXH3_64bits_reset_withSecretandSeed(statePtr, secret, secretSize, seed); |
| } |
| |
| /*! @ingroup XXH3_family */ |
| XXH_PUBLIC_API XXH_errorcode |
| XXH3_128bits_update(XXH_NOESCAPE XXH3_state_t* state, XXH_NOESCAPE const void* input, size_t len) |
| { |
| return XXH3_64bits_update(state, input, len); |
| } |
| |
| /*! @ingroup XXH3_family */ |
| XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_digest (XXH_NOESCAPE const XXH3_state_t* state) |
| { |
| const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret; |
| if (state->totalLen > XXH3_MIDSIZE_MAX) { |
| XXH_ALIGN(XXH_ACC_ALIGN) XXH64_hash_t acc[XXH_ACC_NB]; |
| XXH3_digest_long(acc, state, secret); |
| XXH_ASSERT(state->secretLimit + XXH_STRIPE_LEN >= sizeof(acc) + XXH_SECRET_MERGEACCS_START); |
| { XXH128_hash_t h128; |
| h128.low64 = XXH3_mergeAccs(acc, |
| secret + XXH_SECRET_MERGEACCS_START, |
| (xxh_u64)state->totalLen * XXH_PRIME64_1); |
| h128.high64 = XXH3_mergeAccs(acc, |
| secret + state->secretLimit + XXH_STRIPE_LEN |
| - sizeof(acc) - XXH_SECRET_MERGEACCS_START, |
| ~((xxh_u64)state->totalLen * XXH_PRIME64_2)); |
| return h128; |
| } |
| } |
| /* len <= XXH3_MIDSIZE_MAX : short code */ |
| if (state->seed) |
| return XXH3_128bits_withSeed(state->buffer, (size_t)state->totalLen, state->seed); |
| return XXH3_128bits_withSecret(state->buffer, (size_t)(state->totalLen), |
| secret, state->secretLimit + XXH_STRIPE_LEN); |
| } |
| #endif /* !XXH_NO_STREAM */ |
| /* 128-bit utility functions */ |
| |
| #include <string.h> /* memcmp, memcpy */ |
| |
| /* return : 1 is equal, 0 if different */ |
| /*! @ingroup XXH3_family */ |
| XXH_PUBLIC_API int XXH128_isEqual(XXH128_hash_t h1, XXH128_hash_t h2) |
| { |
| /* note : XXH128_hash_t is compact, it has no padding byte */ |
| return !(memcmp(&h1, &h2, sizeof(h1))); |
| } |
| |
| /* This prototype is compatible with stdlib's qsort(). |
| * @return : >0 if *h128_1 > *h128_2 |
| * <0 if *h128_1 < *h128_2 |
| * =0 if *h128_1 == *h128_2 */ |
| /*! @ingroup XXH3_family */ |
| XXH_PUBLIC_API int XXH128_cmp(XXH_NOESCAPE const void* h128_1, XXH_NOESCAPE const void* h128_2) |
| { |
| XXH128_hash_t const h1 = *(const XXH128_hash_t*)h128_1; |
| XXH128_hash_t const h2 = *(const XXH128_hash_t*)h128_2; |
| int const hcmp = (h1.high64 > h2.high64) - (h2.high64 > h1.high64); |
| /* note : bets that, in most cases, hash values are different */ |
| if (hcmp) return hcmp; |
| return (h1.low64 > h2.low64) - (h2.low64 > h1.low64); |
| } |
| |
| |
| /*====== Canonical representation ======*/ |
| /*! @ingroup XXH3_family */ |
| XXH_PUBLIC_API void |
| XXH128_canonicalFromHash(XXH_NOESCAPE XXH128_canonical_t* dst, XXH128_hash_t hash) |
| { |
| XXH_STATIC_ASSERT(sizeof(XXH128_canonical_t) == sizeof(XXH128_hash_t)); |
| if (XXH_CPU_LITTLE_ENDIAN) { |
| hash.high64 = XXH_swap64(hash.high64); |
| hash.low64 = XXH_swap64(hash.low64); |
| } |
| XXH_memcpy(dst, &hash.high64, sizeof(hash.high64)); |
| XXH_memcpy((char*)dst + sizeof(hash.high64), &hash.low64, sizeof(hash.low64)); |
| } |
| |
| /*! @ingroup XXH3_family */ |
| XXH_PUBLIC_API XXH128_hash_t |
| XXH128_hashFromCanonical(XXH_NOESCAPE const XXH128_canonical_t* src) |
| { |
| XXH128_hash_t h; |
| h.high64 = XXH_readBE64(src); |
| h.low64 = XXH_readBE64(src->digest + 8); |
| return h; |
| } |
| |
| |
| |
| /* ========================================== |
| * Secret generators |
| * ========================================== |
| */ |
| #define XXH_MIN(x, y) (((x) > (y)) ? (y) : (x)) |
| |
| XXH_FORCE_INLINE void XXH3_combine16(void* dst, XXH128_hash_t h128) |
| { |
| XXH_writeLE64( dst, XXH_readLE64(dst) ^ h128.low64 ); |
| XXH_writeLE64( (char*)dst+8, XXH_readLE64((char*)dst+8) ^ h128.high64 ); |
| } |
| |
| /*! @ingroup XXH3_family */ |
| XXH_PUBLIC_API XXH_errorcode |
| XXH3_generateSecret(XXH_NOESCAPE void* secretBuffer, size_t secretSize, XXH_NOESCAPE const void* customSeed, size_t customSeedSize) |
| { |
| #if (XXH_DEBUGLEVEL >= 1) |
| XXH_ASSERT(secretBuffer != NULL); |
| XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); |
| #else |
| /* production mode, assert() are disabled */ |
| if (secretBuffer == NULL) return XXH_ERROR; |
| if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR; |
| #endif |
| |
| if (customSeedSize == 0) { |
| customSeed = XXH3_kSecret; |
| customSeedSize = XXH_SECRET_DEFAULT_SIZE; |
| } |
| #if (XXH_DEBUGLEVEL >= 1) |
| XXH_ASSERT(customSeed != NULL); |
| #else |
| if (customSeed == NULL) return XXH_ERROR; |
| #endif |
| |
| /* Fill secretBuffer with a copy of customSeed - repeat as needed */ |
| { size_t pos = 0; |
| while (pos < secretSize) { |
| size_t const toCopy = XXH_MIN((secretSize - pos), customSeedSize); |
| memcpy((char*)secretBuffer + pos, customSeed, toCopy); |
| pos += toCopy; |
| } } |
| |
| { size_t const nbSeg16 = secretSize / 16; |
| size_t n; |
| XXH128_canonical_t scrambler; |
| XXH128_canonicalFromHash(&scrambler, XXH128(customSeed, customSeedSize, 0)); |
| for (n=0; n<nbSeg16; n++) { |
| XXH128_hash_t const h128 = XXH128(&scrambler, sizeof(scrambler), n); |
| XXH3_combine16((char*)secretBuffer + n*16, h128); |
| } |
| /* last segment */ |
| XXH3_combine16((char*)secretBuffer + secretSize - 16, XXH128_hashFromCanonical(&scrambler)); |
| } |
| return XXH_OK; |
| } |
| |
| /*! @ingroup XXH3_family */ |
| XXH_PUBLIC_API void |
| XXH3_generateSecret_fromSeed(XXH_NOESCAPE void* secretBuffer, XXH64_hash_t seed) |
| { |
| XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE]; |
| XXH3_initCustomSecret(secret, seed); |
| XXH_ASSERT(secretBuffer != NULL); |
| memcpy(secretBuffer, secret, XXH_SECRET_DEFAULT_SIZE); |
| } |
| |
| |
| |
| /* Pop our optimization override from above */ |
| #if XXH_VECTOR == XXH_AVX2 /* AVX2 */ \ |
| && defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \ |
| && defined(__OPTIMIZE__) && XXH_SIZE_OPT <= 0 /* respect -O0 and -Os */ |
| # pragma GCC pop_options |
| #endif |
| |
| #endif /* XXH_NO_LONG_LONG */ |
| |
| #endif /* XXH_NO_XXH3 */ |
| |
| /*! |
| * @} |
| */ |
| #endif /* XXH_IMPLEMENTATION */ |
| |
| |
| #if defined (__cplusplus) |
| } /* extern "C" */ |
| #endif |