blob: 4434fa3bded7b41e792b60bf9aea30ebfd496508 [file] [log] [blame]
/*
* Peer synchro management.
*
* Copyright 2010 EXCELIANCE, Emeric Brun <ebrun@exceliance.fr>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*/
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <import/eb32tree.h>
#include <import/ebmbtree.h>
#include <import/ebpttree.h>
#include <haproxy/api.h>
#include <haproxy/applet.h>
#include <haproxy/cfgparse.h>
#include <haproxy/channel.h>
#include <haproxy/cli.h>
#include <haproxy/dict.h>
#include <haproxy/errors.h>
#include <haproxy/fd.h>
#include <haproxy/frontend.h>
#include <haproxy/net_helper.h>
#include <haproxy/obj_type-t.h>
#include <haproxy/peers.h>
#include <haproxy/proxy.h>
#include <haproxy/sc_strm.h>
#include <haproxy/session-t.h>
#include <haproxy/signal.h>
#include <haproxy/stats-t.h>
#include <haproxy/stconn.h>
#include <haproxy/stick_table.h>
#include <haproxy/stream.h>
#include <haproxy/task.h>
#include <haproxy/thread.h>
#include <haproxy/time.h>
#include <haproxy/tools.h>
#include <haproxy/trace.h>
/*******************************/
/* Current peer learning state */
/*******************************/
/******************************/
/* Current peers section resync state */
/******************************/
#define PEERS_F_RESYNC_LOCAL 0x00000001 /* Learn from local finished or no more needed */
#define PEERS_F_RESYNC_REMOTE 0x00000002 /* Learn from remote finished or no more needed */
#define PEERS_F_RESYNC_ASSIGN 0x00000004 /* A peer was assigned to learn our lesson */
#define PEERS_F_RESYNC_PROCESS 0x00000008 /* The assigned peer was requested for resync */
#define PEERS_F_RESYNC_LOCALTIMEOUT 0x00000010 /* Timeout waiting for a full resync from a local node */
#define PEERS_F_RESYNC_REMOTETIMEOUT 0x00000020 /* Timeout waiting for a full resync from a remote node */
#define PEERS_F_RESYNC_LOCALABORT 0x00000040 /* Session aborted learning from a local node */
#define PEERS_F_RESYNC_REMOTEABORT 0x00000080 /* Session aborted learning from a remote node */
#define PEERS_F_RESYNC_LOCALFINISHED 0x00000100 /* A local node teach us and was fully up to date */
#define PEERS_F_RESYNC_REMOTEFINISHED 0x00000200 /* A remote node teach us and was fully up to date */
#define PEERS_F_RESYNC_LOCALPARTIAL 0x00000400 /* A local node teach us but was partially up to date */
#define PEERS_F_RESYNC_REMOTEPARTIAL 0x00000800 /* A remote node teach us but was partially up to date */
#define PEERS_F_RESYNC_LOCALASSIGN 0x00001000 /* A local node was assigned for a full resync */
#define PEERS_F_RESYNC_REMOTEASSIGN 0x00002000 /* A remote node was assigned for a full resync */
#define PEERS_F_RESYNC_REQUESTED 0x00004000 /* A resync was explicitly requested */
#define PEERS_F_DONOTSTOP 0x00010000 /* Main table sync task block process during soft stop
to push data to new process */
#define PEERS_RESYNC_STATEMASK (PEERS_F_RESYNC_LOCAL|PEERS_F_RESYNC_REMOTE)
#define PEERS_RESYNC_FROMLOCAL 0x00000000
#define PEERS_RESYNC_FROMREMOTE PEERS_F_RESYNC_LOCAL
#define PEERS_RESYNC_FINISHED (PEERS_F_RESYNC_LOCAL|PEERS_F_RESYNC_REMOTE)
/***********************************/
/* Current shared table sync state */
/***********************************/
#define SHTABLE_F_TEACH_STAGE1 0x00000001 /* Teach state 1 complete */
#define SHTABLE_F_TEACH_STAGE2 0x00000002 /* Teach state 2 complete */
/******************************/
/* Remote peer teaching state */
/******************************/
#define PEER_F_TEACH_PROCESS 0x00000001 /* Teach a lesson to current peer */
#define PEER_F_TEACH_FINISHED 0x00000008 /* Teach conclude, (wait for confirm) */
#define PEER_F_TEACH_COMPLETE 0x00000010 /* All that we know already taught to current peer, used only for a local peer */
#define PEER_F_LEARN_ASSIGN 0x00000100 /* Current peer was assigned for a lesson */
#define PEER_F_LEARN_NOTUP2DATE 0x00000200 /* Learn from peer finished but peer is not up to date */
#define PEER_F_ALIVE 0x20000000 /* Used to flag a peer a alive. */
#define PEER_F_HEARTBEAT 0x40000000 /* Heartbeat message to send. */
#define PEER_F_DWNGRD 0x80000000 /* When this flag is enabled, we must downgrade the supported version announced during peer sessions. */
#define PEER_TEACH_RESET ~(PEER_F_TEACH_PROCESS|PEER_F_TEACH_FINISHED) /* PEER_F_TEACH_COMPLETE should never be reset */
#define PEER_LEARN_RESET ~(PEER_F_LEARN_ASSIGN|PEER_F_LEARN_NOTUP2DATE)
#define PEER_RESYNC_TIMEOUT 5000 /* 5 seconds */
#define PEER_RECONNECT_TIMEOUT 5000 /* 5 seconds */
#define PEER_LOCAL_RECONNECT_TIMEOUT 500 /* 500ms */
#define PEER_HEARTBEAT_TIMEOUT 3000 /* 3 seconds */
/* default maximum of updates sent at once */
#define PEER_DEF_MAX_UPDATES_AT_ONCE 200
/* flags for "show peers" */
#define PEERS_SHOW_F_DICT 0x00000001 /* also show the contents of the dictionary */
/*****************************/
/* Sync message class */
/*****************************/
enum {
PEER_MSG_CLASS_CONTROL = 0,
PEER_MSG_CLASS_ERROR,
PEER_MSG_CLASS_STICKTABLE = 10,
PEER_MSG_CLASS_RESERVED = 255,
};
/*****************************/
/* control message types */
/*****************************/
enum {
PEER_MSG_CTRL_RESYNCREQ = 0,
PEER_MSG_CTRL_RESYNCFINISHED,
PEER_MSG_CTRL_RESYNCPARTIAL,
PEER_MSG_CTRL_RESYNCCONFIRM,
PEER_MSG_CTRL_HEARTBEAT,
};
/*****************************/
/* error message types */
/*****************************/
enum {
PEER_MSG_ERR_PROTOCOL = 0,
PEER_MSG_ERR_SIZELIMIT,
};
/* network key types;
* network types were directly and mistakenly
* mapped on sample types, to keep backward
* compatiblitiy we keep those values but
* we now use a internal/network mapping
* to avoid further mistakes adding or
* modifying internals types
*/
enum {
PEER_KT_ANY = 0, /* any type */
PEER_KT_RESV1, /* UNUSED */
PEER_KT_SINT, /* signed 64bits integer type */
PEER_KT_RESV3, /* UNUSED */
PEER_KT_IPV4, /* ipv4 type */
PEER_KT_IPV6, /* ipv6 type */
PEER_KT_STR, /* char string type */
PEER_KT_BIN, /* buffer type */
PEER_KT_TYPES /* number of types, must always be last */
};
/* Map used to retrieve network type from internal type
* Note: Undeclared mapping maps entry to PEER_KT_ANY == 0
*/
static int peer_net_key_type[SMP_TYPES] = {
[SMP_T_SINT] = PEER_KT_SINT,
[SMP_T_IPV4] = PEER_KT_IPV4,
[SMP_T_IPV6] = PEER_KT_IPV6,
[SMP_T_STR] = PEER_KT_STR,
[SMP_T_BIN] = PEER_KT_BIN,
};
/* Map used to retrieve internal type from external type
* Note: Undeclared mapping maps entry to SMP_T_ANY == 0
*/
static int peer_int_key_type[PEER_KT_TYPES] = {
[PEER_KT_SINT] = SMP_T_SINT,
[PEER_KT_IPV4] = SMP_T_IPV4,
[PEER_KT_IPV6] = SMP_T_IPV6,
[PEER_KT_STR] = SMP_T_STR,
[PEER_KT_BIN] = SMP_T_BIN,
};
/*
* Parameters used by functions to build peer protocol messages. */
struct peer_prep_params {
struct {
struct peer *peer;
} hello;
struct {
unsigned int st1;
} error_status;
struct {
struct stksess *stksess;
struct shared_table *shared_table;
unsigned int updateid;
int use_identifier;
int use_timed;
struct peer *peer;
} updt;
struct {
struct shared_table *shared_table;
} swtch;
struct {
struct shared_table *shared_table;
} ack;
struct {
unsigned char head[2];
} control;
struct {
unsigned char head[2];
} error;
};
/*******************************/
/* stick table sync mesg types */
/* Note: ids >= 128 contains */
/* id message contains data */
/*******************************/
#define PEER_MSG_STKT_UPDATE 0x80
#define PEER_MSG_STKT_INCUPDATE 0x81
#define PEER_MSG_STKT_DEFINE 0x82
#define PEER_MSG_STKT_SWITCH 0x83
#define PEER_MSG_STKT_ACK 0x84
#define PEER_MSG_STKT_UPDATE_TIMED 0x85
#define PEER_MSG_STKT_INCUPDATE_TIMED 0x86
/* All the stick-table message identifiers abova have the #7 bit set */
#define PEER_MSG_STKT_BIT 7
#define PEER_MSG_STKT_BIT_MASK (1 << PEER_MSG_STKT_BIT)
/* The maximum length of an encoded data length. */
#define PEER_MSG_ENC_LENGTH_MAXLEN 5
/* Minimum 64-bits value encoded with 2 bytes */
#define PEER_ENC_2BYTES_MIN 0xf0 /* 0xf0 (or 240) */
/* 3 bytes */
#define PEER_ENC_3BYTES_MIN ((1ULL << 11) | PEER_ENC_2BYTES_MIN) /* 0x8f0 (or 2288) */
/* 4 bytes */
#define PEER_ENC_4BYTES_MIN ((1ULL << 18) | PEER_ENC_3BYTES_MIN) /* 0x408f0 (or 264432) */
/* 5 bytes */
#define PEER_ENC_5BYTES_MIN ((1ULL << 25) | PEER_ENC_4BYTES_MIN) /* 0x20408f0 (or 33818864) */
/* 6 bytes */
#define PEER_ENC_6BYTES_MIN ((1ULL << 32) | PEER_ENC_5BYTES_MIN) /* 0x1020408f0 (or 4328786160) */
/* 7 bytes */
#define PEER_ENC_7BYTES_MIN ((1ULL << 39) | PEER_ENC_6BYTES_MIN) /* 0x81020408f0 (or 554084600048) */
/* 8 bytes */
#define PEER_ENC_8BYTES_MIN ((1ULL << 46) | PEER_ENC_7BYTES_MIN) /* 0x4081020408f0 (or 70922828777712) */
/* 9 bytes */
#define PEER_ENC_9BYTES_MIN ((1ULL << 53) | PEER_ENC_8BYTES_MIN) /* 0x204081020408f0 (or 9078122083518704) */
/* 10 bytes */
#define PEER_ENC_10BYTES_MIN ((1ULL << 60) | PEER_ENC_9BYTES_MIN) /* 0x10204081020408f0 (or 1161999626690365680) */
/* #7 bit used to detect the last byte to be encoded */
#define PEER_ENC_STOP_BIT 7
/* The byte minimum value with #7 bit set */
#define PEER_ENC_STOP_BYTE (1 << PEER_ENC_STOP_BIT)
/* The left most number of bits set for PEER_ENC_2BYTES_MIN */
#define PEER_ENC_2BYTES_MIN_BITS 4
#define PEER_MSG_HEADER_LEN 2
#define PEER_STKT_CACHE_MAX_ENTRIES 128
/**********************************/
/* Peer Session IO handler states */
/**********************************/
enum {
PEER_SESS_ST_ACCEPT = 0, /* Initial state for session create by an accept, must be zero! */
PEER_SESS_ST_GETVERSION, /* Validate supported protocol version */
PEER_SESS_ST_GETHOST, /* Validate host ID correspond to local host id */
PEER_SESS_ST_GETPEER, /* Validate peer ID correspond to a known remote peer id */
/* after this point, data were possibly exchanged */
PEER_SESS_ST_SENDSUCCESS, /* Send ret code 200 (success) and wait for message */
PEER_SESS_ST_CONNECT, /* Initial state for session create on a connect, push presentation into buffer */
PEER_SESS_ST_GETSTATUS, /* Wait for the welcome message */
PEER_SESS_ST_WAITMSG, /* Wait for data messages */
PEER_SESS_ST_EXIT, /* Exit with status code */
PEER_SESS_ST_ERRPROTO, /* Send error proto message before exit */
PEER_SESS_ST_ERRSIZE, /* Send error size message before exit */
PEER_SESS_ST_END, /* Killed session */
};
/***************************************************/
/* Peer Session status code - part of the protocol */
/***************************************************/
#define PEER_SESS_SC_CONNECTCODE 100 /* connect in progress */
#define PEER_SESS_SC_CONNECTEDCODE 110 /* tcp connect success */
#define PEER_SESS_SC_SUCCESSCODE 200 /* accept or connect successful */
#define PEER_SESS_SC_TRYAGAIN 300 /* try again later */
#define PEER_SESS_SC_ERRPROTO 501 /* error protocol */
#define PEER_SESS_SC_ERRVERSION 502 /* unknown protocol version */
#define PEER_SESS_SC_ERRHOST 503 /* bad host name */
#define PEER_SESS_SC_ERRPEER 504 /* unknown peer */
#define PEER_SESSION_PROTO_NAME "HAProxyS"
#define PEER_MAJOR_VER 2
#define PEER_MINOR_VER 1
#define PEER_DWNGRD_MINOR_VER 0
static size_t proto_len = sizeof(PEER_SESSION_PROTO_NAME) - 1;
struct peers *cfg_peers = NULL;
static int peers_max_updates_at_once = PEER_DEF_MAX_UPDATES_AT_ONCE;
static void peer_session_forceshutdown(struct peer *peer);
static struct ebpt_node *dcache_tx_insert(struct dcache *dc,
struct dcache_tx_entry *i);
static inline void flush_dcache(struct peer *peer);
/* trace source and events */
static void peers_trace(enum trace_level level, uint64_t mask,
const struct trace_source *src,
const struct ist where, const struct ist func,
const void *a1, const void *a2, const void *a3, const void *a4);
static const struct trace_event peers_trace_events[] = {
#define PEERS_EV_UPDTMSG (1 << 0)
{ .mask = PEERS_EV_UPDTMSG, .name = "updtmsg", .desc = "update message received" },
#define PEERS_EV_ACKMSG (1 << 1)
{ .mask = PEERS_EV_ACKMSG, .name = "ackmsg", .desc = "ack message received" },
#define PEERS_EV_SWTCMSG (1 << 2)
{ .mask = PEERS_EV_SWTCMSG, .name = "swtcmsg", .desc = "switch message received" },
#define PEERS_EV_DEFMSG (1 << 3)
{ .mask = PEERS_EV_DEFMSG, .name = "defmsg", .desc = "definition message received" },
#define PEERS_EV_CTRLMSG (1 << 4)
{ .mask = PEERS_EV_CTRLMSG, .name = "ctrlmsg", .desc = "control message sent/received" },
#define PEERS_EV_SESSREL (1 << 5)
{ .mask = PEERS_EV_SESSREL, .name = "sessrl", .desc = "peer session releasing" },
#define PEERS_EV_PROTOERR (1 << 6)
{ .mask = PEERS_EV_PROTOERR, .name = "protoerr", .desc = "protocol error" },
};
static const struct name_desc peers_trace_lockon_args[4] = {
/* arg1 */ { /* already used by the connection */ },
/* arg2 */ { .name="peers", .desc="Peers protocol" },
/* arg3 */ { },
/* arg4 */ { }
};
static const struct name_desc peers_trace_decoding[] = {
#define PEERS_VERB_CLEAN 1
{ .name="clean", .desc="only user-friendly stuff, generally suitable for level \"user\"" },
{ /* end */ }
};
struct trace_source trace_peers = {
.name = IST("peers"),
.desc = "Peers protocol",
.arg_def = TRC_ARG1_CONN, /* TRACE()'s first argument is always a connection */
.default_cb = peers_trace,
.known_events = peers_trace_events,
.lockon_args = peers_trace_lockon_args,
.decoding = peers_trace_decoding,
.report_events = ~0, /* report everything by default */
};
/* Return peer control message types as strings (only for debugging purpose). */
static inline char *ctrl_msg_type_str(unsigned int type)
{
switch (type) {
case PEER_MSG_CTRL_RESYNCREQ:
return "RESYNCREQ";
case PEER_MSG_CTRL_RESYNCFINISHED:
return "RESYNCFINISHED";
case PEER_MSG_CTRL_RESYNCPARTIAL:
return "RESYNCPARTIAL";
case PEER_MSG_CTRL_RESYNCCONFIRM:
return "RESYNCCONFIRM";
case PEER_MSG_CTRL_HEARTBEAT:
return "HEARTBEAT";
default:
return "???";
}
}
#define TRACE_SOURCE &trace_peers
INITCALL1(STG_REGISTER, trace_register_source, TRACE_SOURCE);
static void peers_trace(enum trace_level level, uint64_t mask,
const struct trace_source *src,
const struct ist where, const struct ist func,
const void *a1, const void *a2, const void *a3, const void *a4)
{
if (mask & (PEERS_EV_UPDTMSG|PEERS_EV_ACKMSG|PEERS_EV_SWTCMSG)) {
if (a2) {
const struct peer *peer = a2;
chunk_appendf(&trace_buf, " peer=%s", peer->id);
}
if (a3) {
const char *p = a3;
chunk_appendf(&trace_buf, " @%p", p);
}
if (a4) {
const size_t *val = a4;
chunk_appendf(&trace_buf, " %llu", (unsigned long long)*val);
}
}
if (mask & PEERS_EV_DEFMSG) {
if (a2) {
const struct peer *peer = a2;
chunk_appendf(&trace_buf, " peer=%s", peer->id);
}
if (a3) {
const char *p = a3;
chunk_appendf(&trace_buf, " @%p", p);
}
if (a4) {
const int *val = a4;
chunk_appendf(&trace_buf, " %d", *val);
}
}
if (mask & PEERS_EV_CTRLMSG) {
if (a2) {
const unsigned char *ctrl_msg_type = a2;
chunk_appendf(&trace_buf, " %s", ctrl_msg_type_str(*ctrl_msg_type));
}
if (a3) {
const char *local_peer = a3;
chunk_appendf(&trace_buf, " %s", local_peer);
}
if (a4) {
const char *remote_peer = a4;
chunk_appendf(&trace_buf, " -> %s", remote_peer);
}
}
if (mask & (PEERS_EV_SESSREL|PEERS_EV_PROTOERR)) {
if (a2) {
const struct peer *peer = a2;
struct peers *peers = NULL;
if (peer->appctx)
peers = peer->peers;
if (peers)
chunk_appendf(&trace_buf, " %s", peers->local->id);
chunk_appendf(&trace_buf, " -> %s", peer->id);
}
if (a3) {
const int *prev_state = a3;
chunk_appendf(&trace_buf, " prev_state=%d\n", *prev_state);
}
}
}
static const char *statuscode_str(int statuscode)
{
switch (statuscode) {
case PEER_SESS_SC_CONNECTCODE:
return "CONN";
case PEER_SESS_SC_CONNECTEDCODE:
return "HSHK";
case PEER_SESS_SC_SUCCESSCODE:
return "ESTA";
case PEER_SESS_SC_TRYAGAIN:
return "RETR";
case PEER_SESS_SC_ERRPROTO:
return "PROT";
case PEER_SESS_SC_ERRVERSION:
return "VERS";
case PEER_SESS_SC_ERRHOST:
return "NAME";
case PEER_SESS_SC_ERRPEER:
return "UNKN";
default:
return "NONE";
}
}
/* This function encode an uint64 to 'dynamic' length format.
The encoded value is written at address *str, and the
caller must assure that size after *str is large enough.
At return, the *str is set at the next Byte after then
encoded integer. The function returns then length of the
encoded integer in Bytes */
int intencode(uint64_t i, char **str) {
int idx = 0;
unsigned char *msg;
msg = (unsigned char *)*str;
if (i < PEER_ENC_2BYTES_MIN) {
msg[0] = (unsigned char)i;
*str = (char *)&msg[idx+1];
return (idx+1);
}
msg[idx] =(unsigned char)i | PEER_ENC_2BYTES_MIN;
i = (i - PEER_ENC_2BYTES_MIN) >> PEER_ENC_2BYTES_MIN_BITS;
while (i >= PEER_ENC_STOP_BYTE) {
msg[++idx] = (unsigned char)i | PEER_ENC_STOP_BYTE;
i = (i - PEER_ENC_STOP_BYTE) >> PEER_ENC_STOP_BIT;
}
msg[++idx] = (unsigned char)i;
*str = (char *)&msg[idx+1];
return (idx+1);
}
/* This function returns a decoded 64bits unsigned integer
* from a varint
*
* Calling:
* - *str must point on the first byte of the buffer to decode.
* - end must point on the next byte after the end of the buffer
* we are authorized to parse (buf + buflen)
*
* At return:
*
* On success *str will point at the byte following
* the fully decoded integer into the buffer. and
* the decoded value is returned.
*
* If end is reached before the integer was fully decoded,
* *str is set to NULL and the caller have to check this
* to know there is a decoding error. In this case
* the returned integer is also forced to 0
*/
uint64_t intdecode(char **str, char *end)
{
unsigned char *msg;
uint64_t i;
int shift;
if (!*str)
return 0;
msg = (unsigned char *)*str;
if (msg >= (unsigned char *)end)
goto fail;
i = *(msg++);
if (i >= PEER_ENC_2BYTES_MIN) {
shift = PEER_ENC_2BYTES_MIN_BITS;
do {
if (msg >= (unsigned char *)end)
goto fail;
i += (uint64_t)*msg << shift;
shift += PEER_ENC_STOP_BIT;
} while (*(msg++) >= PEER_ENC_STOP_BYTE);
}
*str = (char *)msg;
return i;
fail:
*str = NULL;
return 0;
}
/*
* Build a "hello" peer protocol message.
* Return the number of written bytes written to build this messages if succeeded,
* 0 if not.
*/
static int peer_prepare_hellomsg(char *msg, size_t size, struct peer_prep_params *p)
{
int min_ver, ret;
struct peer *peer;
peer = p->hello.peer;
min_ver = (peer->flags & PEER_F_DWNGRD) ? PEER_DWNGRD_MINOR_VER : PEER_MINOR_VER;
/* Prepare headers */
ret = snprintf(msg, size, PEER_SESSION_PROTO_NAME " %d.%d\n%s\n%s %d %d\n",
(int)PEER_MAJOR_VER, min_ver, peer->id, localpeer, (int)getpid(), (int)1);
if (ret >= size)
return 0;
return ret;
}
/*
* Build a "handshake succeeded" status message.
* Return the number of written bytes written to build this messages if succeeded,
* 0 if not.
*/
static int peer_prepare_status_successmsg(char *msg, size_t size, struct peer_prep_params *p)
{
int ret;
ret = snprintf(msg, size, "%d\n", (int)PEER_SESS_SC_SUCCESSCODE);
if (ret >= size)
return 0;
return ret;
}
/*
* Build an error status message.
* Return the number of written bytes written to build this messages if succeeded,
* 0 if not.
*/
static int peer_prepare_status_errormsg(char *msg, size_t size, struct peer_prep_params *p)
{
int ret;
unsigned int st1;
st1 = p->error_status.st1;
ret = snprintf(msg, size, "%d\n", st1);
if (ret >= size)
return 0;
return ret;
}
/* Set the stick-table UPDATE message type byte at <msg_type> address,
* depending on <use_identifier> and <use_timed> boolean parameters.
* Always successful.
*/
static inline void peer_set_update_msg_type(char *msg_type, int use_identifier, int use_timed)
{
if (use_timed) {
if (use_identifier)
*msg_type = PEER_MSG_STKT_UPDATE_TIMED;
else
*msg_type = PEER_MSG_STKT_INCUPDATE_TIMED;
}
else {
if (use_identifier)
*msg_type = PEER_MSG_STKT_UPDATE;
else
*msg_type = PEER_MSG_STKT_INCUPDATE;
}
}
/*
* This prepare the data update message on the stick session <ts>, <st> is the considered
* stick table.
* <msg> is a buffer of <size> to receive data message content
* If function returns 0, the caller should consider we were unable to encode this message (TODO:
* check size)
*/
static int peer_prepare_updatemsg(char *msg, size_t size, struct peer_prep_params *p)
{
uint32_t netinteger;
unsigned short datalen;
char *cursor, *datamsg;
unsigned int data_type;
void *data_ptr;
struct stksess *ts;
struct shared_table *st;
unsigned int updateid;
int use_identifier;
int use_timed;
struct peer *peer;
ts = p->updt.stksess;
st = p->updt.shared_table;
updateid = p->updt.updateid;
use_identifier = p->updt.use_identifier;
use_timed = p->updt.use_timed;
peer = p->updt.peer;
cursor = datamsg = msg + PEER_MSG_HEADER_LEN + PEER_MSG_ENC_LENGTH_MAXLEN;
/* construct message */
/* check if we need to send the update identifier */
if (!st->last_pushed || updateid < st->last_pushed || ((updateid - st->last_pushed) != 1)) {
use_identifier = 1;
}
/* encode update identifier if needed */
if (use_identifier) {
netinteger = htonl(updateid);
memcpy(cursor, &netinteger, sizeof(netinteger));
cursor += sizeof(netinteger);
}
if (use_timed) {
netinteger = htonl(tick_remain(now_ms, ts->expire));
memcpy(cursor, &netinteger, sizeof(netinteger));
cursor += sizeof(netinteger);
}
/* encode the key */
if (st->table->type == SMP_T_STR) {
int stlen = strlen((char *)ts->key.key);
intencode(stlen, &cursor);
memcpy(cursor, ts->key.key, stlen);
cursor += stlen;
}
else if (st->table->type == SMP_T_SINT) {
netinteger = htonl(read_u32(ts->key.key));
memcpy(cursor, &netinteger, sizeof(netinteger));
cursor += sizeof(netinteger);
}
else {
memcpy(cursor, ts->key.key, st->table->key_size);
cursor += st->table->key_size;
}
HA_RWLOCK_RDLOCK(STK_SESS_LOCK, &ts->lock);
/* encode values */
for (data_type = 0 ; data_type < STKTABLE_DATA_TYPES ; data_type++) {
data_ptr = stktable_data_ptr(st->table, ts, data_type);
if (data_ptr) {
/* in case of array all elements use
* the same std_type and they are linearly
* encoded.
*/
if (stktable_data_types[data_type].is_array) {
unsigned int idx = 0;
switch (stktable_data_types[data_type].std_type) {
case STD_T_SINT: {
int data;
do {
data = stktable_data_cast(data_ptr, std_t_sint);
intencode(data, &cursor);
data_ptr = stktable_data_ptr_idx(st->table, ts, data_type, ++idx);
} while(data_ptr);
break;
}
case STD_T_UINT: {
unsigned int data;
do {
data = stktable_data_cast(data_ptr, std_t_uint);
intencode(data, &cursor);
data_ptr = stktable_data_ptr_idx(st->table, ts, data_type, ++idx);
} while(data_ptr);
break;
}
case STD_T_ULL: {
unsigned long long data;
do {
data = stktable_data_cast(data_ptr, std_t_ull);
intencode(data, &cursor);
data_ptr = stktable_data_ptr_idx(st->table, ts, data_type, ++idx);
} while(data_ptr);
break;
}
case STD_T_FRQP: {
struct freq_ctr *frqp;
do {
frqp = &stktable_data_cast(data_ptr, std_t_frqp);
intencode((unsigned int)(now_ms - frqp->curr_tick), &cursor);
intencode(frqp->curr_ctr, &cursor);
intencode(frqp->prev_ctr, &cursor);
data_ptr = stktable_data_ptr_idx(st->table, ts, data_type, ++idx);
} while(data_ptr);
break;
}
}
/* array elements fully encoded
* proceed next data_type.
*/
continue;
}
switch (stktable_data_types[data_type].std_type) {
case STD_T_SINT: {
int data;
data = stktable_data_cast(data_ptr, std_t_sint);
intencode(data, &cursor);
break;
}
case STD_T_UINT: {
unsigned int data;
data = stktable_data_cast(data_ptr, std_t_uint);
intencode(data, &cursor);
break;
}
case STD_T_ULL: {
unsigned long long data;
data = stktable_data_cast(data_ptr, std_t_ull);
intencode(data, &cursor);
break;
}
case STD_T_FRQP: {
struct freq_ctr *frqp;
frqp = &stktable_data_cast(data_ptr, std_t_frqp);
intencode((unsigned int)(now_ms - frqp->curr_tick), &cursor);
intencode(frqp->curr_ctr, &cursor);
intencode(frqp->prev_ctr, &cursor);
break;
}
case STD_T_DICT: {
struct dict_entry *de;
struct ebpt_node *cached_de;
struct dcache_tx_entry cde = { };
char *beg, *end;
size_t value_len, data_len;
struct dcache *dc;
de = stktable_data_cast(data_ptr, std_t_dict);
if (!de) {
/* No entry */
intencode(0, &cursor);
break;
}
dc = peer->dcache;
cde.entry.key = de;
cached_de = dcache_tx_insert(dc, &cde);
if (cached_de == &cde.entry) {
if (cde.id + 1 >= PEER_ENC_2BYTES_MIN)
break;
/* Encode the length of the remaining data -> 1 */
intencode(1, &cursor);
/* Encode the cache entry ID */
intencode(cde.id + 1, &cursor);
}
else {
/* Leave enough room to encode the remaining data length. */
end = beg = cursor + PEER_MSG_ENC_LENGTH_MAXLEN;
/* Encode the dictionary entry key */
intencode(cde.id + 1, &end);
/* Encode the length of the dictionary entry data */
value_len = de->len;
intencode(value_len, &end);
/* Copy the data */
memcpy(end, de->value.key, value_len);
end += value_len;
/* Encode the length of the data */
data_len = end - beg;
intencode(data_len, &cursor);
memmove(cursor, beg, data_len);
cursor += data_len;
}
break;
}
}
}
}
HA_RWLOCK_RDUNLOCK(STK_SESS_LOCK, &ts->lock);
/* Compute datalen */
datalen = (cursor - datamsg);
/* prepare message header */
msg[0] = PEER_MSG_CLASS_STICKTABLE;
peer_set_update_msg_type(&msg[1], use_identifier, use_timed);
cursor = &msg[2];
intencode(datalen, &cursor);
/* move data after header */
memmove(cursor, datamsg, datalen);
/* return header size + data_len */
return (cursor - msg) + datalen;
}
/*
* This prepare the switch table message to targeted share table <st>.
* <msg> is a buffer of <size> to receive data message content
* If function returns 0, the caller should consider we were unable to encode this message (TODO:
* check size)
*/
static int peer_prepare_switchmsg(char *msg, size_t size, struct peer_prep_params *params)
{
int len;
unsigned short datalen;
struct buffer *chunk;
char *cursor, *datamsg, *chunkp, *chunkq;
uint64_t data = 0;
unsigned int data_type;
struct shared_table *st;
st = params->swtch.shared_table;
cursor = datamsg = msg + PEER_MSG_HEADER_LEN + PEER_MSG_ENC_LENGTH_MAXLEN;
/* Encode data */
/* encode local id */
intencode(st->local_id, &cursor);
/* encode table name */
len = strlen(st->table->nid);
intencode(len, &cursor);
memcpy(cursor, st->table->nid, len);
cursor += len;
/* encode table type */
intencode(peer_net_key_type[st->table->type], &cursor);
/* encode table key size */
intencode(st->table->key_size, &cursor);
chunk = get_trash_chunk();
chunkp = chunkq = chunk->area;
/* encode available known data types in table */
for (data_type = 0 ; data_type < STKTABLE_DATA_TYPES ; data_type++) {
if (st->table->data_ofs[data_type]) {
/* stored data types parameters are all linearly encoded
* at the end of the 'table definition' message.
*
* Currently only array data_types and and data_types
* using freq_counter base type have parameters:
*
* - array has always at least one parameter set to the
* number of elements.
*
* - array of base-type freq_counters has an additional
* parameter set to the period used to compute those
* freq_counters.
*
* - simple freq counter has a parameter set to the period
* used to compute
*
* A set of parameter for a datatype MUST BE prefixed
* by the data-type id itself:
* This is useless because the data_types are ordered and
* the data_type bitfield already gives the information of
* stored types, but it was designed this way when the
* push of period parameter was added for freq counters
* and we don't want to break the compatibility.
*
*/
if (stktable_data_types[data_type].is_array) {
/* This is an array type so we first encode
* the data_type itself to prefix parameters
*/
intencode(data_type, &chunkq);
/* We encode the first parameter which is
* the number of elements of this array
*/
intencode(st->table->data_nbelem[data_type], &chunkq);
/* for array of freq counters, there is an additional
* period parameter to encode
*/
if (stktable_data_types[data_type].std_type == STD_T_FRQP)
intencode(st->table->data_arg[data_type].u, &chunkq);
}
else if (stktable_data_types[data_type].std_type == STD_T_FRQP) {
/* this datatype is a simple freq counter not part
* of an array. We encode the data_type itself
* to prefix the 'period' parameter
*/
intencode(data_type, &chunkq);
intencode(st->table->data_arg[data_type].u, &chunkq);
}
/* set the bit corresponding to stored data type */
data |= 1ULL << data_type;
}
}
intencode(data, &cursor);
/* Encode stick-table entries duration. */
intencode(st->table->expire, &cursor);
if (chunkq > chunkp) {
chunk->data = chunkq - chunkp;
memcpy(cursor, chunk->area, chunk->data);
cursor += chunk->data;
}
/* Compute datalen */
datalen = (cursor - datamsg);
/* prepare message header */
msg[0] = PEER_MSG_CLASS_STICKTABLE;
msg[1] = PEER_MSG_STKT_DEFINE;
cursor = &msg[2];
intencode(datalen, &cursor);
/* move data after header */
memmove(cursor, datamsg, datalen);
/* return header size + data_len */
return (cursor - msg) + datalen;
}
/*
* This prepare the acknowledge message on the stick session <ts>, <st> is the considered
* stick table.
* <msg> is a buffer of <size> to receive data message content
* If function returns 0, the caller should consider we were unable to encode this message (TODO:
* check size)
*/
static int peer_prepare_ackmsg(char *msg, size_t size, struct peer_prep_params *p)
{
unsigned short datalen;
char *cursor, *datamsg;
uint32_t netinteger;
struct shared_table *st;
cursor = datamsg = msg + PEER_MSG_HEADER_LEN + PEER_MSG_ENC_LENGTH_MAXLEN;
st = p->ack.shared_table;
intencode(st->remote_id, &cursor);
netinteger = htonl(st->last_get);
memcpy(cursor, &netinteger, sizeof(netinteger));
cursor += sizeof(netinteger);
/* Compute datalen */
datalen = (cursor - datamsg);
/* prepare message header */
msg[0] = PEER_MSG_CLASS_STICKTABLE;
msg[1] = PEER_MSG_STKT_ACK;
cursor = &msg[2];
intencode(datalen, &cursor);
/* move data after header */
memmove(cursor, datamsg, datalen);
/* return header size + data_len */
return (cursor - msg) + datalen;
}
/*
* Function to deinit connected peer
*/
void __peer_session_deinit(struct peer *peer)
{
struct peers *peers = peer->peers;
int thr;
if (!peers || !peer->appctx)
return;
thr = peer->appctx->t->tid;
HA_ATOMIC_DEC(&peers->applet_count[thr]);
if (peer->appctx->st0 == PEER_SESS_ST_WAITMSG)
HA_ATOMIC_DEC(&connected_peers);
HA_ATOMIC_DEC(&active_peers);
flush_dcache(peer);
/* Re-init current table pointers to force announcement on re-connect */
peer->remote_table = peer->last_local_table = NULL;
peer->appctx = NULL;
if (peer->flags & PEER_F_LEARN_ASSIGN) {
/* unassign current peer for learning */
peer->flags &= ~(PEER_F_LEARN_ASSIGN);
peers->flags &= ~(PEERS_F_RESYNC_ASSIGN|PEERS_F_RESYNC_PROCESS);
if (peer->local)
peers->flags |= PEERS_F_RESYNC_LOCALABORT;
else
peers->flags |= PEERS_F_RESYNC_REMOTEABORT;
/* reschedule a resync */
peers->resync_timeout = tick_add(now_ms, MS_TO_TICKS(5000));
}
/* reset teaching and learning flags to 0 */
peer->flags &= PEER_TEACH_RESET;
peer->flags &= PEER_LEARN_RESET;
task_wakeup(peers->sync_task, TASK_WOKEN_MSG);
}
static int peer_session_init(struct appctx *appctx)
{
struct peer *peer = appctx->svcctx;
struct stream *s;
struct sockaddr_storage *addr = NULL;
if (!sockaddr_alloc(&addr, &peer->addr, sizeof(peer->addr)))
goto out_error;
if (appctx_finalize_startup(appctx, peer->peers->peers_fe, &BUF_NULL) == -1)
goto out_free_addr;
s = appctx_strm(appctx);
/* applet is waiting for data */
applet_need_more_data(appctx);
appctx_wakeup(appctx);
/* initiate an outgoing connection */
s->scb->dst = addr;
s->scb->flags |= SC_FL_NOLINGER;
s->flags = SF_ASSIGNED;
s->target = peer_session_target(peer, s);
s->do_log = NULL;
s->uniq_id = 0;
s->res.flags |= CF_READ_DONTWAIT;
_HA_ATOMIC_INC(&active_peers);
return 0;
out_free_addr:
sockaddr_free(&addr);
out_error:
return -1;
}
/*
* Callback to release a session with a peer
*/
static void peer_session_release(struct appctx *appctx)
{
struct peer *peer = appctx->svcctx;
TRACE_PROTO("releasing peer session", PEERS_EV_SESSREL, NULL, peer);
/* appctx->svcctx is not a peer session */
if (appctx->st0 < PEER_SESS_ST_SENDSUCCESS)
return;
/* peer session identified */
if (peer) {
HA_SPIN_LOCK(PEER_LOCK, &peer->lock);
if (peer->appctx == appctx)
__peer_session_deinit(peer);
peer->flags &= ~PEER_F_ALIVE;
HA_SPIN_UNLOCK(PEER_LOCK, &peer->lock);
}
}
/* Retrieve the major and minor versions of peers protocol
* announced by a remote peer. <str> is a null-terminated
* string with the following format: "<maj_ver>.<min_ver>".
*/
static int peer_get_version(const char *str,
unsigned int *maj_ver, unsigned int *min_ver)
{
unsigned int majv, minv;
const char *pos, *saved;
const char *end;
saved = pos = str;
end = str + strlen(str);
majv = read_uint(&pos, end);
if (saved == pos || *pos++ != '.')
return -1;
saved = pos;
minv = read_uint(&pos, end);
if (saved == pos || pos != end)
return -1;
*maj_ver = majv;
*min_ver = minv;
return 0;
}
/*
* Parse a line terminated by an optional '\r' character, followed by a mandatory
* '\n' character.
* Returns 1 if succeeded or 0 if a '\n' character could not be found, and -1 if
* a line could not be read because the communication channel is closed.
*/
static inline int peer_getline(struct appctx *appctx)
{
struct stconn *sc = appctx_sc(appctx);
int n;
n = co_getline(sc_oc(sc), trash.area, trash.size);
if (!n)
return 0;
if (n < 0 || trash.area[n - 1] != '\n') {
appctx->st0 = PEER_SESS_ST_END;
return -1;
}
if (n > 1 && (trash.area[n - 2] == '\r'))
trash.area[n - 2] = 0;
else
trash.area[n - 1] = 0;
co_skip(sc_oc(sc), n);
return n;
}
/*
* Send a message after having called <peer_prepare_msg> to build it.
* Return 0 if the message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value.
* Returns -1 if there was not enough room left to send the message,
* any other negative returned value must be considered as an error with an appcxt st0
* returned value equal to PEER_SESS_ST_END.
*/
static inline int peer_send_msg(struct appctx *appctx,
int (*peer_prepare_msg)(char *, size_t, struct peer_prep_params *),
struct peer_prep_params *params)
{
int ret, msglen;
struct stconn *sc = appctx_sc(appctx);
msglen = peer_prepare_msg(trash.area, trash.size, params);
if (!msglen) {
/* internal error: message does not fit in trash */
appctx->st0 = PEER_SESS_ST_END;
return 0;
}
/* message to buffer */
ret = ci_putblk(sc_ic(sc), trash.area, msglen);
if (ret <= 0) {
if (ret == -1) {
/* No more write possible */
sc_need_room(sc);
return -1;
}
appctx->st0 = PEER_SESS_ST_END;
}
return ret;
}
/*
* Send a hello message.
* Return 0 if the message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value.
* Returns -1 if there was not enough room left to send the message,
* any other negative returned value must be considered as an error with an appcxt st0
* returned value equal to PEER_SESS_ST_END.
*/
static inline int peer_send_hellomsg(struct appctx *appctx, struct peer *peer)
{
struct peer_prep_params p = {
.hello.peer = peer,
};
return peer_send_msg(appctx, peer_prepare_hellomsg, &p);
}
/*
* Send a success peer handshake status message.
* Return 0 if the message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value.
* Returns -1 if there was not enough room left to send the message,
* any other negative returned value must be considered as an error with an appcxt st0
* returned value equal to PEER_SESS_ST_END.
*/
static inline int peer_send_status_successmsg(struct appctx *appctx)
{
return peer_send_msg(appctx, peer_prepare_status_successmsg, NULL);
}
/*
* Send a peer handshake status error message.
* Return 0 if the message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value.
* Returns -1 if there was not enough room left to send the message,
* any other negative returned value must be considered as an error with an appcxt st0
* returned value equal to PEER_SESS_ST_END.
*/
static inline int peer_send_status_errormsg(struct appctx *appctx)
{
struct peer_prep_params p = {
.error_status.st1 = appctx->st1,
};
return peer_send_msg(appctx, peer_prepare_status_errormsg, &p);
}
/*
* Send a stick-table switch message.
* Return 0 if the message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value.
* Returns -1 if there was not enough room left to send the message,
* any other negative returned value must be considered as an error with an appcxt st0
* returned value equal to PEER_SESS_ST_END.
*/
static inline int peer_send_switchmsg(struct shared_table *st, struct appctx *appctx)
{
struct peer_prep_params p = {
.swtch.shared_table = st,
};
return peer_send_msg(appctx, peer_prepare_switchmsg, &p);
}
/*
* Send a stick-table update acknowledgement message.
* Return 0 if the message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value.
* Returns -1 if there was not enough room left to send the message,
* any other negative returned value must be considered as an error with an appcxt st0
* returned value equal to PEER_SESS_ST_END.
*/
static inline int peer_send_ackmsg(struct shared_table *st, struct appctx *appctx)
{
struct peer_prep_params p = {
.ack.shared_table = st,
};
return peer_send_msg(appctx, peer_prepare_ackmsg, &p);
}
/*
* Send a stick-table update message.
* Return 0 if the message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value.
* Returns -1 if there was not enough room left to send the message,
* any other negative returned value must be considered as an error with an appcxt st0
* returned value equal to PEER_SESS_ST_END.
*/
static inline int peer_send_updatemsg(struct shared_table *st, struct appctx *appctx, struct stksess *ts,
unsigned int updateid, int use_identifier, int use_timed)
{
struct peer_prep_params p = {
.updt = {
.stksess = ts,
.shared_table = st,
.updateid = updateid,
.use_identifier = use_identifier,
.use_timed = use_timed,
.peer = appctx->svcctx,
},
};
return peer_send_msg(appctx, peer_prepare_updatemsg, &p);
}
/*
* Build a peer protocol control class message.
* Returns the number of written bytes used to build the message if succeeded,
* 0 if not.
*/
static int peer_prepare_control_msg(char *msg, size_t size, struct peer_prep_params *p)
{
if (size < sizeof p->control.head)
return 0;
msg[0] = p->control.head[0];
msg[1] = p->control.head[1];
return 2;
}
/*
* Send a stick-table synchronization request message.
* Return 0 if the message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value.
* Returns -1 if there was not enough room left to send the message,
* any other negative returned value must be considered as an error with an appctx st0
* returned value equal to PEER_SESS_ST_END.
*/
static inline int peer_send_resync_reqmsg(struct appctx *appctx,
struct peer *peer, struct peers *peers)
{
struct peer_prep_params p = {
.control.head = { PEER_MSG_CLASS_CONTROL, PEER_MSG_CTRL_RESYNCREQ, },
};
TRACE_PROTO("send control message", PEERS_EV_CTRLMSG,
NULL, &p.control.head[1], peers->local->id, peer->id);
return peer_send_msg(appctx, peer_prepare_control_msg, &p);
}
/*
* Send a stick-table synchronization confirmation message.
* Return 0 if the message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value.
* Returns -1 if there was not enough room left to send the message,
* any other negative returned value must be considered as an error with an appctx st0
* returned value equal to PEER_SESS_ST_END.
*/
static inline int peer_send_resync_confirmsg(struct appctx *appctx,
struct peer *peer, struct peers *peers)
{
struct peer_prep_params p = {
.control.head = { PEER_MSG_CLASS_CONTROL, PEER_MSG_CTRL_RESYNCCONFIRM, },
};
TRACE_PROTO("send control message", PEERS_EV_CTRLMSG,
NULL, &p.control.head[1], peers->local->id, peer->id);
return peer_send_msg(appctx, peer_prepare_control_msg, &p);
}
/*
* Send a stick-table synchronization finished message.
* Return 0 if the message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value.
* Returns -1 if there was not enough room left to send the message,
* any other negative returned value must be considered as an error with an appctx st0
* returned value equal to PEER_SESS_ST_END.
*/
static inline int peer_send_resync_finishedmsg(struct appctx *appctx,
struct peer *peer, struct peers *peers)
{
struct peer_prep_params p = {
.control.head = { PEER_MSG_CLASS_CONTROL, },
};
p.control.head[1] = (peers->flags & PEERS_RESYNC_STATEMASK) == PEERS_RESYNC_FINISHED ?
PEER_MSG_CTRL_RESYNCFINISHED : PEER_MSG_CTRL_RESYNCPARTIAL;
TRACE_PROTO("send control message", PEERS_EV_CTRLMSG,
NULL, &p.control.head[1], peers->local->id, peer->id);
return peer_send_msg(appctx, peer_prepare_control_msg, &p);
}
/*
* Send a heartbeat message.
* Return 0 if the message could not be built modifying the appctx st0 to PEER_SESS_ST_END value.
* Returns -1 if there was not enough room left to send the message,
* any other negative returned value must be considered as an error with an appctx st0
* returned value equal to PEER_SESS_ST_END.
*/
static inline int peer_send_heartbeatmsg(struct appctx *appctx,
struct peer *peer, struct peers *peers)
{
struct peer_prep_params p = {
.control.head = { PEER_MSG_CLASS_CONTROL, PEER_MSG_CTRL_HEARTBEAT, },
};
TRACE_PROTO("send control message", PEERS_EV_CTRLMSG,
NULL, &p.control.head[1], peers->local->id, peer->id);
return peer_send_msg(appctx, peer_prepare_control_msg, &p);
}
/*
* Build a peer protocol error class message.
* Returns the number of written bytes used to build the message if succeeded,
* 0 if not.
*/
static int peer_prepare_error_msg(char *msg, size_t size, struct peer_prep_params *p)
{
if (size < sizeof p->error.head)
return 0;
msg[0] = p->error.head[0];
msg[1] = p->error.head[1];
return 2;
}
/*
* Send a "size limit reached" error message.
* Return 0 if the message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value.
* Returns -1 if there was not enough room left to send the message,
* any other negative returned value must be considered as an error with an appctx st0
* returned value equal to PEER_SESS_ST_END.
*/
static inline int peer_send_error_size_limitmsg(struct appctx *appctx)
{
struct peer_prep_params p = {
.error.head = { PEER_MSG_CLASS_ERROR, PEER_MSG_ERR_SIZELIMIT, },
};
return peer_send_msg(appctx, peer_prepare_error_msg, &p);
}
/*
* Send a "peer protocol" error message.
* Return 0 if the message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value.
* Returns -1 if there was not enough room left to send the message,
* any other negative returned value must be considered as an error with an appctx st0
* returned value equal to PEER_SESS_ST_END.
*/
static inline int peer_send_error_protomsg(struct appctx *appctx)
{
struct peer_prep_params p = {
.error.head = { PEER_MSG_CLASS_ERROR, PEER_MSG_ERR_PROTOCOL, },
};
return peer_send_msg(appctx, peer_prepare_error_msg, &p);
}
/*
* Function used to lookup for recent stick-table updates associated with
* <st> shared stick-table when a lesson must be taught a peer (PEER_F_LEARN_ASSIGN flag set).
*/
static inline struct stksess *peer_teach_process_stksess_lookup(struct shared_table *st)
{
struct eb32_node *eb;
eb = eb32_lookup_ge(&st->table->updates, st->last_pushed+1);
if (!eb) {
eb = eb32_first(&st->table->updates);
if (!eb || (eb->key == st->last_pushed)) {
st->table->commitupdate = st->last_pushed = st->table->localupdate;
return NULL;
}
}
/* if distance between the last pushed and the retrieved key
* is greater than the distance last_pushed and the local_update
* this means we are beyond localupdate.
*/
if ((eb->key - st->last_pushed) > (st->table->localupdate - st->last_pushed)) {
st->table->commitupdate = st->last_pushed = st->table->localupdate;
return NULL;
}
return eb32_entry(eb, struct stksess, upd);
}
/*
* Function used to lookup for recent stick-table updates associated with
* <st> shared stick-table during teach state 1 step.
*/
static inline struct stksess *peer_teach_stage1_stksess_lookup(struct shared_table *st)
{
struct eb32_node *eb;
eb = eb32_lookup_ge(&st->table->updates, st->last_pushed+1);
if (!eb) {
st->flags |= SHTABLE_F_TEACH_STAGE1;
eb = eb32_first(&st->table->updates);
if (eb)
st->last_pushed = eb->key - 1;
return NULL;
}
return eb32_entry(eb, struct stksess, upd);
}
/*
* Function used to lookup for recent stick-table updates associated with
* <st> shared stick-table during teach state 2 step.
*/
static inline struct stksess *peer_teach_stage2_stksess_lookup(struct shared_table *st)
{
struct eb32_node *eb;
eb = eb32_lookup_ge(&st->table->updates, st->last_pushed+1);
if (!eb || eb->key > st->teaching_origin) {
st->flags |= SHTABLE_F_TEACH_STAGE2;
return NULL;
}
return eb32_entry(eb, struct stksess, upd);
}
/*
* Generic function to emit update messages for <st> stick-table when a lesson must
* be taught to the peer <p>.
* <locked> must be set to 1 if the shared table <st> is already locked when entering
* this function, 0 if not.
*
* This function temporary unlock/lock <st> when it sends stick-table updates or
* when decrementing its refcount in case of any error when it sends this updates.
*
* Return 0 if any message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value.
* Returns -1 if there was not enough room left to send the message,
* any other negative returned value must be considered as an error with an appcxt st0
* returned value equal to PEER_SESS_ST_END.
* If it returns 0 or -1, this function leave <st> locked if already locked when entering this function
* unlocked if not already locked when entering this function.
*/
static inline int peer_send_teachmsgs(struct appctx *appctx, struct peer *p,
struct stksess *(*peer_stksess_lookup)(struct shared_table *),
struct shared_table *st, int locked)
{
int ret, new_pushed, use_timed;
int updates_sent = 0;
ret = 1;
use_timed = 0;
if (st != p->last_local_table) {
ret = peer_send_switchmsg(st, appctx);
if (ret <= 0)
return ret;
p->last_local_table = st;
}
if (peer_stksess_lookup != peer_teach_process_stksess_lookup)
use_timed = !(p->flags & PEER_F_DWNGRD);
/* We force new pushed to 1 to force identifier in update message */
new_pushed = 1;
if (!locked)
HA_RWLOCK_WRLOCK(STK_TABLE_LOCK, &st->table->lock);
while (1) {
struct stksess *ts;
unsigned updateid;
/* push local updates */
ts = peer_stksess_lookup(st);
if (!ts) {
ret = 1; // done
break;
}
updateid = ts->upd.key;
if (p->srv->shard && ts->shard != p->srv->shard) {
/* Skip this entry */
st->last_pushed = updateid;
new_pushed = 1;
continue;
}
ts->ref_cnt++;
HA_RWLOCK_WRUNLOCK(STK_TABLE_LOCK, &st->table->lock);
ret = peer_send_updatemsg(st, appctx, ts, updateid, new_pushed, use_timed);
if (ret <= 0) {
HA_RWLOCK_WRLOCK(STK_TABLE_LOCK, &st->table->lock);
ts->ref_cnt--;
break;
}
HA_RWLOCK_WRLOCK(STK_TABLE_LOCK, &st->table->lock);
ts->ref_cnt--;
st->last_pushed = updateid;
if (peer_stksess_lookup == peer_teach_process_stksess_lookup &&
(int)(st->last_pushed - st->table->commitupdate) > 0)
st->table->commitupdate = st->last_pushed;
/* identifier may not needed in next update message */
new_pushed = 0;
updates_sent++;
if (updates_sent >= peers_max_updates_at_once) {
/* pretend we're full so that we get back ASAP */
struct stconn *sc = appctx_sc(appctx);
sc_need_room(sc);
ret = -1;
break;
}
}
out:
if (!locked)
HA_RWLOCK_WRUNLOCK(STK_TABLE_LOCK, &st->table->lock);
return ret;
}
/*
* Function to emit update messages for <st> stick-table when a lesson must
* be taught to the peer <p> (PEER_F_LEARN_ASSIGN flag set).
*
* Note that <st> shared stick-table is locked when calling this function.
*
* Return 0 if any message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value.
* Returns -1 if there was not enough room left to send the message,
* any other negative returned value must be considered as an error with an appcxt st0
* returned value equal to PEER_SESS_ST_END.
*/
static inline int peer_send_teach_process_msgs(struct appctx *appctx, struct peer *p,
struct shared_table *st)
{
return peer_send_teachmsgs(appctx, p, peer_teach_process_stksess_lookup, st, 1);
}
/*
* Function to emit update messages for <st> stick-table when a lesson must
* be taught to the peer <p> during teach state 1 step.
*
* Return 0 if any message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value.
* Returns -1 if there was not enough room left to send the message,
* any other negative returned value must be considered as an error with an appcxt st0
* returned value equal to PEER_SESS_ST_END.
*/
static inline int peer_send_teach_stage1_msgs(struct appctx *appctx, struct peer *p,
struct shared_table *st)
{
return peer_send_teachmsgs(appctx, p, peer_teach_stage1_stksess_lookup, st, 0);
}
/*
* Function to emit update messages for <st> stick-table when a lesson must
* be taught to the peer <p> during teach state 1 step.
*
* Return 0 if any message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value.
* Returns -1 if there was not enough room left to send the message,
* any other negative returned value must be considered as an error with an appcxt st0
* returned value equal to PEER_SESS_ST_END.
*/
static inline int peer_send_teach_stage2_msgs(struct appctx *appctx, struct peer *p,
struct shared_table *st)
{
return peer_send_teachmsgs(appctx, p, peer_teach_stage2_stksess_lookup, st, 0);
}
/*
* Function used to parse a stick-table update message after it has been received
* by <p> peer with <msg_cur> as address of the pointer to the position in the
* receipt buffer with <msg_end> being position of the end of the stick-table message.
* Update <msg_curr> accordingly to the peer protocol specs if no peer protocol error
* was encountered.
* <exp> must be set if the stick-table entry expires.
* <updt> must be set for PEER_MSG_STKT_UPDATE or PEER_MSG_STKT_UPDATE_TIMED stick-table
* messages, in this case the stick-table update message is received with a stick-table
* update ID.
* <totl> is the length of the stick-table update message computed upon receipt.
*/
static int peer_treat_updatemsg(struct appctx *appctx, struct peer *p, int updt, int exp,
char **msg_cur, char *msg_end, int msg_len, int totl)
{
struct stconn *sc = appctx_sc(appctx);
struct shared_table *st = p->remote_table;
struct stksess *ts, *newts;
uint32_t update;
int expire;
unsigned int data_type;
void *data_ptr;
TRACE_ENTER(PEERS_EV_UPDTMSG, NULL, p);
/* Here we have data message */
if (!st)
goto ignore_msg;
expire = MS_TO_TICKS(st->table->expire);
if (updt) {
if (msg_len < sizeof(update)) {
TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG, NULL, p);
goto malformed_exit;
}
memcpy(&update, *msg_cur, sizeof(update));
*msg_cur += sizeof(update);
st->last_get = htonl(update);
}
else {
st->last_get++;
}
if (exp) {
size_t expire_sz = sizeof expire;
if (*msg_cur + expire_sz > msg_end) {
TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG,
NULL, p, *msg_cur);
TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG,
NULL, p, msg_end, &expire_sz);
goto malformed_exit;
}
memcpy(&expire, *msg_cur, expire_sz);
*msg_cur += expire_sz;
expire = ntohl(expire);
}
newts = stksess_new(st->table, NULL);
if (!newts)
goto ignore_msg;
if (st->table->type == SMP_T_STR) {
unsigned int to_read, to_store;
to_read = intdecode(msg_cur, msg_end);
if (!*msg_cur) {
TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG, NULL, p);
goto malformed_free_newts;
}
to_store = MIN(to_read, st->table->key_size - 1);
if (*msg_cur + to_store > msg_end) {
TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG,
NULL, p, *msg_cur);
TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG,
NULL, p, msg_end, &to_store);
goto malformed_free_newts;
}
memcpy(newts->key.key, *msg_cur, to_store);
newts->key.key[to_store] = 0;
*msg_cur += to_read;
}
else if (st->table->type == SMP_T_SINT) {
unsigned int netinteger;
if (*msg_cur + sizeof(netinteger) > msg_end) {
TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG,
NULL, p, *msg_cur);
TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG,
NULL, p, msg_end);
goto malformed_free_newts;
}
memcpy(&netinteger, *msg_cur, sizeof(netinteger));
netinteger = ntohl(netinteger);
memcpy(newts->key.key, &netinteger, sizeof(netinteger));
*msg_cur += sizeof(netinteger);
}
else {
if (*msg_cur + st->table->key_size > msg_end) {
TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG,
NULL, p, *msg_cur);
TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG,
NULL, p, msg_end, &st->table->key_size);
goto malformed_free_newts;
}
memcpy(newts->key.key, *msg_cur, st->table->key_size);
*msg_cur += st->table->key_size;
}
/* lookup for existing entry */
ts = stktable_set_entry(st->table, newts);
if (ts != newts) {
stksess_free(st->table, newts);
newts = NULL;
}
HA_RWLOCK_WRLOCK(STK_SESS_LOCK, &ts->lock);
for (data_type = 0 ; data_type < STKTABLE_DATA_TYPES ; data_type++) {
uint64_t decoded_int;
unsigned int idx;
int ignore;
if (!((1ULL << data_type) & st->remote_data))
continue;
ignore = stktable_data_types[data_type].is_local;
if (stktable_data_types[data_type].is_array) {
/* in case of array all elements
* use the same std_type and they
* are linearly encoded.
* The number of elements was provided
* by table definition message
*/
switch (stktable_data_types[data_type].std_type) {
case STD_T_SINT:
for (idx = 0; idx < st->remote_data_nbelem[data_type]; idx++) {
decoded_int = intdecode(msg_cur, msg_end);
if (!*msg_cur) {
TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG, NULL, p);
goto malformed_unlock;
}
data_ptr = stktable_data_ptr_idx(st->table, ts, data_type, idx);
if (data_ptr && !ignore)
stktable_data_cast(data_ptr, std_t_sint) = decoded_int;
}
break;
case STD_T_UINT:
for (idx = 0; idx < st->remote_data_nbelem[data_type]; idx++) {
decoded_int = intdecode(msg_cur, msg_end);
if (!*msg_cur) {
TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG, NULL, p);
goto malformed_unlock;
}
data_ptr = stktable_data_ptr_idx(st->table, ts, data_type, idx);
if (data_ptr && !ignore)
stktable_data_cast(data_ptr, std_t_uint) = decoded_int;
}
break;
case STD_T_ULL:
for (idx = 0; idx < st->remote_data_nbelem[data_type]; idx++) {
decoded_int = intdecode(msg_cur, msg_end);
if (!*msg_cur) {
TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG, NULL, p);
goto malformed_unlock;
}
data_ptr = stktable_data_ptr_idx(st->table, ts, data_type, idx);
if (data_ptr && !ignore)
stktable_data_cast(data_ptr, std_t_ull) = decoded_int;
}
break;
case STD_T_FRQP:
for (idx = 0; idx < st->remote_data_nbelem[data_type]; idx++) {
struct freq_ctr data;
/* First bit is reserved for the freq_ctr lock
* Note: here we're still protected by the stksess lock
* so we don't need to update the update the freq_ctr
* using its internal lock.
*/
decoded_int = intdecode(msg_cur, msg_end);
if (!*msg_cur) {
TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG, NULL, p);
goto malformed_unlock;
}
data.curr_tick = tick_add(now_ms, -decoded_int) & ~0x1;
data.curr_ctr = intdecode(msg_cur, msg_end);
if (!*msg_cur) {
TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG, NULL, p);
goto malformed_unlock;
}
data.prev_ctr = intdecode(msg_cur, msg_end);
if (!*msg_cur) {
TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG, NULL, p);
goto malformed_unlock;
}
data_ptr = stktable_data_ptr_idx(st->table, ts, data_type, idx);
if (data_ptr && !ignore)
stktable_data_cast(data_ptr, std_t_frqp) = data;
}
break;
}
/* array is fully decoded
* proceed next data_type.
*/
continue;
}
decoded_int = intdecode(msg_cur, msg_end);
if (!*msg_cur) {
TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG, NULL, p);
goto malformed_unlock;
}
switch (stktable_data_types[data_type].std_type) {
case STD_T_SINT:
data_ptr = stktable_data_ptr(st->table, ts, data_type);
if (data_ptr && !ignore)
stktable_data_cast(data_ptr, std_t_sint) = decoded_int;
break;
case STD_T_UINT:
data_ptr = stktable_data_ptr(st->table, ts, data_type);
if (data_ptr && !ignore)
stktable_data_cast(data_ptr, std_t_uint) = decoded_int;
break;
case STD_T_ULL:
data_ptr = stktable_data_ptr(st->table, ts, data_type);
if (data_ptr && !ignore)
stktable_data_cast(data_ptr, std_t_ull) = decoded_int;
break;
case STD_T_FRQP: {
struct freq_ctr data;
/* First bit is reserved for the freq_ctr lock
Note: here we're still protected by the stksess lock
so we don't need to update the update the freq_ctr
using its internal lock.
*/
data.curr_tick = tick_add(now_ms, -decoded_int) & ~0x1;
data.curr_ctr = intdecode(msg_cur, msg_end);
if (!*msg_cur) {
TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG, NULL, p);
goto malformed_unlock;
}
data.prev_ctr = intdecode(msg_cur, msg_end);
if (!*msg_cur) {
TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG, NULL, p);
goto malformed_unlock;
}
data_ptr = stktable_data_ptr(st->table, ts, data_type);
if (data_ptr && !ignore)
stktable_data_cast(data_ptr, std_t_frqp) = data;
break;
}
case STD_T_DICT: {
struct buffer *chunk;
size_t data_len, value_len;
unsigned int id;
struct dict_entry *de;
struct dcache *dc;
char *end;
if (!decoded_int) {
/* No entry. */
break;
}
data_len = decoded_int;
if (*msg_cur + data_len > msg_end) {
TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG,
NULL, p, *msg_cur);
TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG,
NULL, p, msg_end, &data_len);
goto malformed_unlock;
}
/* Compute the end of the current data, <msg_end> being at the end of
* the entire message.
*/
end = *msg_cur + data_len;
id = intdecode(msg_cur, end);
if (!*msg_cur || !id) {
TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG,
NULL, p, *msg_cur, &id);
goto malformed_unlock;
}
dc = p->dcache;
if (*msg_cur == end) {
/* Dictionary entry key without value. */
if (id > dc->max_entries) {
TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG,
NULL, p, NULL, &id);
goto malformed_unlock;
}
/* IDs sent over the network are numbered from 1. */
de = dc->rx[id - 1].de;
}
else {
chunk = get_trash_chunk();
value_len = intdecode(msg_cur, end);
if (!*msg_cur || *msg_cur + value_len > end ||
unlikely(value_len + 1 >= chunk->size)) {
TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG,
NULL, p, *msg_cur, &value_len);
TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG,
NULL, p, end, &chunk->size);
goto malformed_unlock;
}
chunk_memcpy(chunk, *msg_cur, value_len);
chunk->area[chunk->data] = '\0';
*msg_cur += value_len;
de = dict_insert(&server_key_dict, chunk->area);
dict_entry_unref(&server_key_dict, dc->rx[id - 1].de);
dc->rx[id - 1].de = de;
}
if (de) {
data_ptr = stktable_data_ptr(st->table, ts, data_type);
if (data_ptr && !ignore) {
HA_ATOMIC_INC(&de->refcount);
stktable_data_cast(data_ptr, std_t_dict) = de;
}
}
break;
}
}
}
/* Force new expiration */
ts->expire = tick_add(now_ms, expire);
HA_RWLOCK_WRUNLOCK(STK_SESS_LOCK, &ts->lock);
stktable_touch_remote(st->table, ts, 1);
TRACE_LEAVE(PEERS_EV_UPDTMSG, NULL, p);
return 1;
ignore_msg:
/* skip consumed message */
co_skip(sc_oc(sc), totl);
TRACE_DEVEL("leaving in error", PEERS_EV_UPDTMSG);
return 0;
malformed_unlock:
/* malformed message */
HA_RWLOCK_WRUNLOCK(STK_SESS_LOCK, &ts->lock);
stktable_touch_remote(st->table, ts, 1);
appctx->st0 = PEER_SESS_ST_ERRPROTO;
TRACE_DEVEL("leaving in error", PEERS_EV_UPDTMSG);
return 0;
malformed_free_newts:
/* malformed message */
stksess_free(st->table, newts);
malformed_exit:
appctx->st0 = PEER_SESS_ST_ERRPROTO;
TRACE_DEVEL("leaving in error", PEERS_EV_UPDTMSG);
return 0;
}
/*
* Function used to parse a stick-table update acknowledgement message after it
* has been received by <p> peer with <msg_cur> as address of the pointer to the position in the
* receipt buffer with <msg_end> being the position of the end of the stick-table message.
* Update <msg_curr> accordingly to the peer protocol specs if no peer protocol error
* was encountered.
* Return 1 if succeeded, 0 if not with the appctx state st0 set to PEER_SESS_ST_ERRPROTO.
*/
static inline int peer_treat_ackmsg(struct appctx *appctx, struct peer *p,
char **msg_cur, char *msg_end)
{
/* ack message */
uint32_t table_id ;
uint32_t update;
struct shared_table *st;
/* ignore ack during teaching process */
if (p->flags & PEER_F_TEACH_PROCESS)
return 1;
table_id = intdecode(msg_cur, msg_end);
if (!*msg_cur || (*msg_cur + sizeof(update) > msg_end)) {
/* malformed message */
TRACE_PROTO("malformed message", PEERS_EV_ACKMSG,
NULL, p, *msg_cur);
appctx->st0 = PEER_SESS_ST_ERRPROTO;
return 0;
}
memcpy(&update, *msg_cur, sizeof(update));
update = ntohl(update);
for (st = p->tables; st; st = st->next) {
if (st->local_id == table_id) {
st->update = update;
break;
}
}
return 1;
}
/*
* Function used to parse a stick-table switch message after it has been received
* by <p> peer with <msg_cur> as address of the pointer to the position in the
* receipt buffer with <msg_end> being the position of the end of the stick-table message.
* Update <msg_curr> accordingly to the peer protocol specs if no peer protocol error
* was encountered.
* Return 1 if succeeded, 0 if not with the appctx state st0 set to PEER_SESS_ST_ERRPROTO.
*/
static inline int peer_treat_switchmsg(struct appctx *appctx, struct peer *p,
char **msg_cur, char *msg_end)
{
struct shared_table *st;
int table_id;
table_id = intdecode(msg_cur, msg_end);
if (!*msg_cur) {
TRACE_PROTO("malformed message", PEERS_EV_SWTCMSG, NULL, p);
/* malformed message */
appctx->st0 = PEER_SESS_ST_ERRPROTO;
return 0;
}
p->remote_table = NULL;
for (st = p->tables; st; st = st->next) {
if (st->remote_id == table_id) {
p->remote_table = st;
break;
}
}
return 1;
}
/*
* Function used to parse a stick-table definition message after it has been received
* by <p> peer with <msg_cur> as address of the pointer to the position in the
* receipt buffer with <msg_end> being the position of the end of the stick-table message.
* Update <msg_curr> accordingly to the peer protocol specs if no peer protocol error
* was encountered.
* <totl> is the length of the stick-table update message computed upon receipt.
* Return 1 if succeeded, 0 if not with the appctx state st0 set to PEER_SESS_ST_ERRPROTO.
*/
static inline int peer_treat_definemsg(struct appctx *appctx, struct peer *p,
char **msg_cur, char *msg_end, int totl)
{
struct stconn *sc = appctx_sc(appctx);
int table_id_len;
struct shared_table *st;
int table_type;
int table_keylen;
int table_id;
uint64_t table_data;
table_id = intdecode(msg_cur, msg_end);
if (!*msg_cur) {
TRACE_PROTO("malformed message", PEERS_EV_DEFMSG, NULL, p);
goto malformed_exit;
}
table_id_len = intdecode(msg_cur, msg_end);
if (!*msg_cur) {
TRACE_PROTO("malformed message", PEERS_EV_DEFMSG, NULL, p, *msg_cur);
goto malformed_exit;
}
p->remote_table = NULL;
if (!table_id_len || (*msg_cur + table_id_len) >= msg_end) {
TRACE_PROTO("malformed message", PEERS_EV_DEFMSG, NULL, p, *msg_cur, &table_id_len);
goto malformed_exit;
}
for (st = p->tables; st; st = st->next) {
/* Reset IDs */
if (st->remote_id == table_id)
st->remote_id = 0;
if (!p->remote_table && (table_id_len == strlen(st->table->nid)) &&
(memcmp(st->table->nid, *msg_cur, table_id_len) == 0))
p->remote_table = st;
}
if (!p->remote_table) {
TRACE_PROTO("ignored message", PEERS_EV_DEFMSG, NULL, p);
goto ignore_msg;
}
*msg_cur += table_id_len;
if (*msg_cur >= msg_end) {
TRACE_PROTO("malformed message", PEERS_EV_DEFMSG, NULL, p);
goto malformed_exit;
}
table_type = intdecode(msg_cur, msg_end);
if (!*msg_cur) {
TRACE_PROTO("malformed message", PEERS_EV_DEFMSG, NULL, p);
goto malformed_exit;
}
table_keylen = intdecode(msg_cur, msg_end);
if (!*msg_cur) {
TRACE_PROTO("malformed message", PEERS_EV_DEFMSG, NULL, p);
goto malformed_exit;
}
table_data = intdecode(msg_cur, msg_end);
if (!*msg_cur) {
TRACE_PROTO("malformed message", PEERS_EV_DEFMSG, NULL, p);
goto malformed_exit;
}
if (p->remote_table->table->type != peer_int_key_type[table_type]
|| p->remote_table->table->key_size != table_keylen) {
p->remote_table = NULL;
TRACE_PROTO("ignored message", PEERS_EV_DEFMSG, NULL, p);
goto ignore_msg;
}
/* Check if there there is the additional expire data */
intdecode(msg_cur, msg_end);
if (*msg_cur) {
uint64_t data_type;
uint64_t type;
/* This define contains the expire data so we consider
* it also contain all data_types parameters.
*/
for (data_type = 0; data_type < STKTABLE_DATA_TYPES; data_type++) {
if (table_data & (1ULL << data_type)) {
if (stktable_data_types[data_type].is_array) {
/* This should be an array
* so we parse the data_type prefix
* because we must have parameters.
*/
type = intdecode(msg_cur, msg_end);
if (!*msg_cur) {
p->remote_table = NULL;
TRACE_PROTO("missing meta data for array", PEERS_EV_DEFMSG, NULL, p);
goto ignore_msg;
}
/* check if the data_type match the current from the bitfield */
if (type != data_type) {
p->remote_table = NULL;
TRACE_PROTO("meta data mismatch type", PEERS_EV_DEFMSG, NULL, p);
goto ignore_msg;
}
/* decode the nbelem of the array */
p->remote_table->remote_data_nbelem[type] = intdecode(msg_cur, msg_end);
if (!*msg_cur) {
p->remote_table = NULL;
TRACE_PROTO("missing array size meta data for array", PEERS_EV_DEFMSG, NULL, p);
goto ignore_msg;
}
/* if it is an array of frqp, we must also have the period to decode */
if (stktable_data_types[data_type].std_type == STD_T_FRQP) {
intdecode(msg_cur, msg_end);
if (!*msg_cur) {
p->remote_table = NULL;
TRACE_PROTO("missing period for frqp", PEERS_EV_DEFMSG, NULL, p);
goto ignore_msg;
}
}
}
else if (stktable_data_types[data_type].std_type == STD_T_FRQP) {
/* This should be a std freq counter data_type
* so we parse the data_type prefix
* because we must have parameters.
*/
type = intdecode(msg_cur, msg_end);
if (!*msg_cur) {
p->remote_table = NULL;
TRACE_PROTO("missing meta data for frqp", PEERS_EV_DEFMSG, NULL, p);
goto ignore_msg;
}
/* check if the data_type match the current from the bitfield */
if (type != data_type) {
p->remote_table = NULL;
TRACE_PROTO("meta data mismatch type", PEERS_EV_DEFMSG, NULL, p);
goto ignore_msg;
}
/* decode the period */
intdecode(msg_cur, msg_end);
if (!*msg_cur) {
p->remote_table = NULL;
TRACE_PROTO("missing period for frqp", PEERS_EV_DEFMSG, NULL, p);
goto ignore_msg;
}
}
}
}
}
else {
uint64_t data_type;
/* There is not additional data but
* array size parameter is mandatory to parse array
* so we consider an error if an array data_type is define
* but there is no additional data.
*/
for (data_type = 0; data_type < STKTABLE_DATA_TYPES; data_type++) {
if (table_data & (1ULL << data_type)) {
if (stktable_data_types[data_type].is_array) {
p->remote_table = NULL;
TRACE_PROTO("missing array size meta data for array", PEERS_EV_DEFMSG, NULL, p);
goto ignore_msg;
}
}
}
}
p->remote_table->remote_data = table_data;
p->remote_table->remote_id = table_id;
return 1;
ignore_msg:
co_skip(sc_oc(sc), totl);
return 0;
malformed_exit:
/* malformed message */
appctx->st0 = PEER_SESS_ST_ERRPROTO;
return 0;
}
/*
* Receive a stick-table message or pre-parse any other message.
* The message's header will be sent into <msg_head> which must be at least
* <msg_head_sz> bytes long (at least 7 to store 32-bit variable lengths).
* The first two bytes are always read, and the rest is only read if the
* first bytes indicate a stick-table message. If the message is a stick-table
* message, the varint is decoded and the equivalent number of bytes will be
* copied into the trash at trash.area. <totl> is incremented by the number of
* bytes read EVEN IN CASE OF INCOMPLETE MESSAGES.
* Returns 1 if there was no error, if not, returns 0 if not enough data were available,
* -1 if there was an error updating the appctx state st0 accordingly.
*/
static inline int peer_recv_msg(struct appctx *appctx, char *msg_head, size_t msg_head_sz,
uint32_t *msg_len, int *totl)
{
int reql;
struct stconn *sc = appctx_sc(appctx);
char *cur;
reql = co_getblk(sc_oc(sc), msg_head, 2 * sizeof(char), *totl);
if (reql <= 0) /* closed or EOL not found */
goto incomplete;
*totl += reql;
if (!(msg_head[1] & PEER_MSG_STKT_BIT_MASK))
return 1;
/* This is a stick-table message, let's go on */
/* Read and Decode message length */
msg_head += *totl;
msg_head_sz -= *totl;
reql = co_data(sc_oc(sc)) - *totl;
if (reql > msg_head_sz)
reql = msg_head_sz;
reql = co_getblk(sc_oc(sc), msg_head, reql, *totl);
if (reql <= 0) /* closed */
goto incomplete;
cur = msg_head;
*msg_len = intdecode(&cur, cur + reql);
if (!cur) {
/* the number is truncated, did we read enough ? */
if (reql < msg_head_sz)
goto incomplete;
/* malformed message */
TRACE_PROTO("malformed message: too large length encoding", PEERS_EV_UPDTMSG);
appctx->st0 = PEER_SESS_ST_ERRPROTO;
return -1;
}
*totl += cur - msg_head;
/* Read message content */
if (*msg_len) {
if (*msg_len > trash.size) {
/* Status code is not success, abort */
appctx->st0 = PEER_SESS_ST_ERRSIZE;
return -1;
}
reql = co_getblk(sc_oc(sc), trash.area, *msg_len, *totl);
if (reql <= 0) /* closed */
goto incomplete;
*totl += reql;
}
return 1;
incomplete:
if (reql < 0 || (sc_oc(sc)->flags & (CF_SHUTW|CF_SHUTW_NOW))) {
/* there was an error or the message was truncated */
appctx->st0 = PEER_SESS_ST_END;
return -1;
}
return 0;
}
/*
* Treat the awaited message with <msg_head> as header.*
* Return 1 if succeeded, 0 if not.
*/
static inline int peer_treat_awaited_msg(struct appctx *appctx, struct peer *peer, unsigned char *msg_head,
char **msg_cur, char *msg_end, int msg_len, int totl)
{
struct peers *peers = peer->peers;
if (msg_head[0] == PEER_MSG_CLASS_CONTROL) {
if (msg_head[1] == PEER_MSG_CTRL_RESYNCREQ) {
struct shared_table *st;
/* Reset message: remote need resync */
TRACE_PROTO("received control message", PEERS_EV_CTRLMSG,
NULL, &msg_head[1], peers->local->id, peer->id);
/* prepare tables for a global push */
for (st = peer->tables; st; st = st->next) {
st->teaching_origin = st->last_pushed = st->update;
st->flags = 0;
}
/* reset teaching flags to 0 */
peer->flags &= PEER_TEACH_RESET;
/* flag to start to teach lesson */
peer->flags |= PEER_F_TEACH_PROCESS;
peers->flags |= PEERS_F_RESYNC_REQUESTED;
}
else if (msg_head[1] == PEER_MSG_CTRL_RESYNCFINISHED) {
TRACE_PROTO("received control message", PEERS_EV_CTRLMSG,
NULL, &msg_head[1], peers->local->id, peer->id);
if (peer->flags & PEER_F_LEARN_ASSIGN) {
int commit_a_finish = 1;
peer->flags &= ~PEER_F_LEARN_ASSIGN;
peers->flags &= ~(PEERS_F_RESYNC_ASSIGN|PEERS_F_RESYNC_PROCESS);
if (peer->srv->shard) {
struct peer *ps;
peers->flags |= PEERS_F_RESYNC_REMOTEPARTIAL;
peer->flags |= PEER_F_LEARN_NOTUP2DATE;
for (ps = peers->remote; ps; ps = ps->next) {
if (ps->srv->shard == peer->srv->shard) {
/* flag all peers from same shard
* notup2date to disable request
* of a resync frm them
*/
ps->flags |= PEER_F_LEARN_NOTUP2DATE;
}
else if (ps->srv->shard && !(ps->flags & PEER_F_LEARN_NOTUP2DATE)) {
/* it remains some other shards not requested
* we don't commit a resync finish to request
* the other shards
*/
commit_a_finish = 0;
}
}
if (!commit_a_finish) {
/* it remains some shard to request, we schedule a new request
*/
peers->resync_timeout = tick_add(now_ms, MS_TO_TICKS(PEER_RESYNC_TIMEOUT));
task_wakeup(peers->sync_task, TASK_WOKEN_MSG);
}
}
if (commit_a_finish) {
peers->flags |= (PEERS_F_RESYNC_LOCAL|PEERS_F_RESYNC_REMOTE);
if (peer->local)
peers->flags |= PEERS_F_RESYNC_LOCALFINISHED;
else
peers->flags |= PEERS_F_RESYNC_REMOTEFINISHED;
}
}
peer->confirm++;
}
else if (msg_head[1] == PEER_MSG_CTRL_RESYNCPARTIAL) {
TRACE_PROTO("received control message", PEERS_EV_CTRLMSG,
NULL, &msg_head[1], peers->local->id, peer->id);
if (peer->flags & PEER_F_LEARN_ASSIGN) {
peer->flags &= ~PEER_F_LEARN_ASSIGN;
peers->flags &= ~(PEERS_F_RESYNC_ASSIGN|PEERS_F_RESYNC_PROCESS);
if (peer->local)
peers->flags |= PEERS_F_RESYNC_LOCALPARTIAL;
else
peers->flags |= PEERS_F_RESYNC_REMOTEPARTIAL;
peer->flags |= PEER_F_LEARN_NOTUP2DATE;
peers->resync_timeout = tick_add(now_ms, MS_TO_TICKS(PEER_RESYNC_TIMEOUT));
task_wakeup(peers->sync_task, TASK_WOKEN_MSG);
}
peer->confirm++;
}
else if (msg_head[1] == PEER_MSG_CTRL_RESYNCCONFIRM) {
struct shared_table *st;
TRACE_PROTO("received control message", PEERS_EV_CTRLMSG,
NULL, &msg_head[1], peers->local->id, peer->id);
/* If stopping state */
if (stopping) {
/* Close session, push resync no more needed */
peer->flags |= PEER_F_TEACH_COMPLETE;
appctx->st0 = PEER_SESS_ST_END;
return 0;
}
for (st = peer->tables; st; st = st->next) {
st->update = st->last_pushed = st->teaching_origin;
st->flags = 0;
}
/* reset teaching flags to 0 */
peer->flags &= PEER_TEACH_RESET;
}
else if (msg_head[1] == PEER_MSG_CTRL_HEARTBEAT) {
TRACE_PROTO("received control message", PEERS_EV_CTRLMSG,
NULL, &msg_head[1], peers->local->id, peer->id);
peer->reconnect = tick_add(now_ms, MS_TO_TICKS(PEER_RECONNECT_TIMEOUT));
peer->rx_hbt++;
}
}
else if (msg_head[0] == PEER_MSG_CLASS_STICKTABLE) {
if (msg_head[1] == PEER_MSG_STKT_DEFINE) {
if (!peer_treat_definemsg(appctx, peer, msg_cur, msg_end, totl))
return 0;
}
else if (msg_head[1] == PEER_MSG_STKT_SWITCH) {
if (!peer_treat_switchmsg(appctx, peer, msg_cur, msg_end))
return 0;
}
else if (msg_head[1] == PEER_MSG_STKT_UPDATE ||
msg_head[1] == PEER_MSG_STKT_INCUPDATE ||
msg_head[1] == PEER_MSG_STKT_UPDATE_TIMED ||
msg_head[1] == PEER_MSG_STKT_INCUPDATE_TIMED) {
int update, expire;
update = msg_head[1] == PEER_MSG_STKT_UPDATE || msg_head[1] == PEER_MSG_STKT_UPDATE_TIMED;
expire = msg_head[1] == PEER_MSG_STKT_UPDATE_TIMED || msg_head[1] == PEER_MSG_STKT_INCUPDATE_TIMED;
if (!peer_treat_updatemsg(appctx, peer, update, expire,
msg_cur, msg_end, msg_len, totl))
return 0;
}
else if (msg_head[1] == PEER_MSG_STKT_ACK) {
if (!peer_treat_ackmsg(appctx, peer, msg_cur, msg_end))
return 0;
}
}
else if (msg_head[0] == PEER_MSG_CLASS_RESERVED) {
appctx->st0 = PEER_SESS_ST_ERRPROTO;
return 0;
}
return 1;
}
/*
* Send any message to <peer> peer.
* Returns 1 if succeeded, or -1 or 0 if failed.
* -1 means an internal error occurred, 0 is for a peer protocol error leading
* to a peer state change (from the peer I/O handler point of view).
*/
static inline int peer_send_msgs(struct appctx *appctx,
struct peer *peer, struct peers *peers)
{
int repl;
/* Need to request a resync */
if ((peer->flags & PEER_F_LEARN_ASSIGN) &&
(peers->flags & PEERS_F_RESYNC_ASSIGN) &&
!(peers->flags & PEERS_F_RESYNC_PROCESS)) {
repl = peer_send_resync_reqmsg(appctx, peer, peers);
if (repl <= 0)
return repl;
peers->flags |= PEERS_F_RESYNC_PROCESS;
}
/* Nothing to read, now we start to write */
if (peer->tables) {
struct shared_table *st;
struct shared_table *last_local_table;
int updates_sent = 0;
last_local_table = peer->last_local_table;
if (!last_local_table)
last_local_table = peer->tables;
st = last_local_table->next;
while (1) {
if (!st)
st = peer->tables;
/* It remains some updates to ack */
if (st->last_get != st->last_acked) {
repl = peer_send_ackmsg(st, appctx);
if (repl <= 0)
return repl;
st->last_acked = st->last_get;
}
if (!(peer->flags & PEER_F_TEACH_PROCESS)) {
HA_RWLOCK_WRLOCK(STK_TABLE_LOCK, &st->table->lock);
if (!(peer->flags & PEER_F_LEARN_ASSIGN) &&
(st->last_pushed != st->table->localupdate)) {
repl = peer_send_teach_process_msgs(appctx, peer, st);
if (repl <= 0) {
HA_RWLOCK_WRUNLOCK(STK_TABLE_LOCK, &st->table->lock);
return repl;
}
}
HA_RWLOCK_WRUNLOCK(STK_TABLE_LOCK, &st->table->lock);
}
else if (!(peer->flags & PEER_F_TEACH_FINISHED)) {
if (!(st->flags & SHTABLE_F_TEACH_STAGE1)) {
repl = peer_send_teach_stage1_msgs(appctx, peer, st);
if (repl <= 0)
return repl;
}
if (!(st->flags & SHTABLE_F_TEACH_STAGE2)) {
repl = peer_send_teach_stage2_msgs(appctx, peer, st);
if (repl <= 0)
return repl;
}
}
if (st == last_local_table)
break;
st = st->next;
updates_sent++;
if (updates_sent >= peers_max_updates_at_once) {
/* pretend we're full so that we get back ASAP */
struct stconn *sc = appctx_sc(appctx);
sc_need_room(sc);
return -1;
}
}
}
if ((peer->flags & PEER_F_TEACH_PROCESS) && !(peer->flags & PEER_F_TEACH_FINISHED)) {
repl = peer_send_resync_finishedmsg(appctx, peer, peers);
if (repl <= 0)
return repl;
/* flag finished message sent */
peer->flags |= PEER_F_TEACH_FINISHED;
}
/* Confirm finished or partial messages */
while (peer->confirm) {
repl = peer_send_resync_confirmsg(appctx, peer, peers);
if (repl <= 0)
return repl;
peer->confirm--;
}
return 1;
}
/*
* Read and parse a first line of a "hello" peer protocol message.
* Returns 0 if could not read a line, -1 if there was a read error or
* the line is malformed, 1 if succeeded.
*/
static inline int peer_getline_version(struct appctx *appctx,
unsigned int *maj_ver, unsigned int *min_ver)
{
int reql;
reql = peer_getline(appctx);
if (!reql)
return 0;
if (reql < 0)
return -1;
/* test protocol */
if (strncmp(PEER_SESSION_PROTO_NAME " ", trash.area, proto_len + 1) != 0) {
appctx->st0 = PEER_SESS_ST_EXIT;
appctx->st1 = PEER_SESS_SC_ERRPROTO;
return -1;
}
if (peer_get_version(trash.area + proto_len + 1, maj_ver, min_ver) == -1 ||
*maj_ver != PEER_MAJOR_VER || *min_ver > PEER_MINOR_VER) {
appctx->st0 = PEER_SESS_ST_EXIT;
appctx->st1 = PEER_SESS_SC_ERRVERSION;
return -1;
}
return 1;
}
/*
* Read and parse a second line of a "hello" peer protocol message.
* Returns 0 if could not read a line, -1 if there was a read error or
* the line is malformed, 1 if succeeded.
*/
static inline int peer_getline_host(struct appctx *appctx)
{
int reql;
reql = peer_getline(appctx);
if (!reql)
return 0;
if (reql < 0)
return -1;
/* test hostname match */
if (strcmp(localpeer, trash.area) != 0) {
appctx->st0 = PEER_SESS_ST_EXIT;
appctx->st1 = PEER_SESS_SC_ERRHOST;
return -1;
}
return 1;
}
/*
* Read and parse a last line of a "hello" peer protocol message.
* Returns 0 if could not read a character, -1 if there was a read error or
* the line is malformed, 1 if succeeded.
* Set <curpeer> accordingly (the remote peer sending the "hello" message).
*/
static inline int peer_getline_last(struct appctx *appctx, struct peer **curpeer)
{
char *p;
int reql;
struct peer *peer;
struct stream *s = appctx_strm(appctx);
struct peers *peers = strm_fe(s)->parent;
reql = peer_getline(appctx);
if (!reql)
return 0;
if (reql < 0)
return -1;
/* parse line "<peer name> <pid> <relative_pid>" */
p = strchr(trash.area, ' ');
if (!p) {
appctx->st0 = PEER_SESS_ST_EXIT;
appctx->st1 = PEER_SESS_SC_ERRPROTO;
return -1;
}
*p = 0;
/* lookup known peer */
for (peer = peers->remote; peer; peer = peer->next) {
if (strcmp(peer->id, trash.area) == 0)
break;
}
/* if unknown peer */
if (!peer) {
appctx->st0 = PEER_SESS_ST_EXIT;
appctx->st1 = PEER_SESS_SC_ERRPEER;
return -1;
}
*curpeer = peer;
return 1;
}
/*
* Init <peer> peer after having accepted it at peer protocol level.
*/
static inline void init_accepted_peer(struct peer *peer, struct peers *peers)
{
struct shared_table *st;
peer->heartbeat = tick_add(now_ms, MS_TO_TICKS(PEER_HEARTBEAT_TIMEOUT));
/* Register status code */
peer->statuscode = PEER_SESS_SC_SUCCESSCODE;
peer->last_hdshk = now_ms;
/* Awake main task */
task_wakeup(peers->sync_task, TASK_WOKEN_MSG);
/* Init confirm counter */
peer->confirm = 0;
/* Init cursors */
for (st = peer->tables; st ; st = st->next) {
st->last_get = st->last_acked = 0;
HA_RWLOCK_WRLOCK(STK_TABLE_LOCK, &st->table->lock);
/* if st->update appears to be in future it means
* that the last acked value is very old and we
* remain unconnected a too long time to use this
* acknowlegement as a reset.
* We should update the protocol to be able to
* signal the remote peer that it needs a full resync.
* Here a partial fix consist to set st->update at
* the max past value
*/
if ((int)(st->table->localupdate - st->update) < 0)
st->update = st->table->localupdate + (2147483648U);
st->teaching_origin = st->last_pushed = st->update;
st->flags = 0;
if ((int)(st->last_pushed - st->table->commitupdate) > 0)
st->table->commitupdate = st->last_pushed;
HA_RWLOCK_WRUNLOCK(STK_TABLE_LOCK, &st->table->lock);
}
/* reset teaching and learning flags to 0 */
peer->flags &= PEER_TEACH_RESET;
peer->flags &= PEER_LEARN_RESET;
/* if current peer is local */
if (peer->local) {
/* if current host need resyncfrom local and no process assigned */
if ((peers->flags & PEERS_RESYNC_STATEMASK) == PEERS_RESYNC_FROMLOCAL &&
!(peers->flags & PEERS_F_RESYNC_ASSIGN)) {
/* assign local peer for a lesson, consider lesson already requested */
peer->flags |= PEER_F_LEARN_ASSIGN;
peers->flags |= (PEERS_F_RESYNC_ASSIGN|PEERS_F_RESYNC_PROCESS);
peers->flags |= PEERS_F_RESYNC_LOCALASSIGN;
}
}
else if ((peers->flags & PEERS_RESYNC_STATEMASK) == PEERS_RESYNC_FROMREMOTE &&
!(peers->flags & PEERS_F_RESYNC_ASSIGN)) {
/* assign peer for a lesson */
peer->flags |= PEER_F_LEARN_ASSIGN;
peers->flags |= PEERS_F_RESYNC_ASSIGN;
peers->flags |= PEERS_F_RESYNC_REMOTEASSIGN;
}
}
/*
* Init <peer> peer after having connected it at peer protocol level.
*/
static inline void init_connected_peer(struct peer *peer, struct peers *peers)
{
struct shared_table *st;
peer->heartbeat = tick_add(now_ms, MS_TO_TICKS(PEER_HEARTBEAT_TIMEOUT));
/* Init cursors */
for (st = peer->tables; st ; st = st->next) {
st->last_get = st->last_acked = 0;
HA_RWLOCK_WRLOCK(STK_TABLE_LOCK, &st->table->lock);
/* if st->update appears to be in future it means
* that the last acked value is very old and we
* remain unconnected a too long time to use this
* acknowlegement as a reset.
* We should update the protocol to be able to
* signal the remote peer that it needs a full resync.
* Here a partial fix consist to set st->update at
* the max past value.
*/
if ((int)(st->table->localupdate - st->update) < 0)
st->update = st->table->localupdate + (2147483648U);
st->teaching_origin = st->last_pushed = st->update;
st->flags = 0;
if ((int)(st->last_pushed - st->table->commitupdate) > 0)
st->table->commitupdate = st->last_pushed;
HA_RWLOCK_WRUNLOCK(STK_TABLE_LOCK, &st->table->lock);
}
/* Init confirm counter */
peer->confirm = 0;
/* reset teaching and learning flags to 0 */
peer->flags &= PEER_TEACH_RESET;
peer->flags &= PEER_LEARN_RESET;
/* If current peer is local */
if (peer->local) {
/* flag to start to teach lesson */
peer->flags |= PEER_F_TEACH_PROCESS;
}
else if ((peers->flags & PEERS_RESYNC_STATEMASK) == PEERS_RESYNC_FROMREMOTE &&
!(peers->flags & PEERS_F_RESYNC_ASSIGN)) {
/* If peer is remote and resync from remote is needed,
and no peer currently assigned */
/* assign peer for a lesson */
peer->flags |= PEER_F_LEARN_ASSIGN;
peers->flags |= PEERS_F_RESYNC_ASSIGN;
peers->flags |= PEERS_F_RESYNC_REMOTEASSIGN;
}
}
/*
* IO Handler to handle message exchange with a peer
*/
static void peer_io_handler(struct appctx *appctx)
{
struct stconn *sc = appctx_sc(appctx);
struct stream *s = __sc_strm(sc);
struct peers *curpeers = strm_fe(s)->parent;
struct peer *curpeer = NULL;
int reql = 0;
int repl = 0;
unsigned int maj_ver, min_ver;
int prev_state;
/* Check if the input buffer is available. */
if (sc_ib(sc)->size == 0) {
sc_need_room(sc);
goto out;
}
while (1) {
prev_state = appctx->st0;
switchstate:
maj_ver = min_ver = (unsigned int)-1;
switch(appctx->st0) {
case PEER_SESS_ST_ACCEPT:
prev_state = appctx->st0;
appctx->svcctx = NULL;
appctx->st0 = PEER_SESS_ST_GETVERSION;
/* fall through */
case PEER_SESS_ST_GETVERSION:
prev_state = appctx->st0;
reql = peer_getline_version(appctx, &maj_ver, &min_ver);
if (reql <= 0) {
if (!reql)
goto out;
goto switchstate;
}
appctx->st0 = PEER_SESS_ST_GETHOST;
/* fall through */
case PEER_SESS_ST_GETHOST:
prev_state = appctx->st0;
reql = peer_getline_host(appctx);
if (reql <= 0) {
if (!reql)
goto out;
goto switchstate;
}
appctx->st0 = PEER_SESS_ST_GETPEER;
/* fall through */
case PEER_SESS_ST_GETPEER: {
prev_state = appctx->st0;
reql = peer_getline_last(appctx, &curpeer);
if (reql <= 0) {
if (!reql)
goto out;
goto switchstate;
}
HA_SPIN_LOCK(PEER_LOCK, &curpeer->lock);
if (curpeer->appctx && curpeer->appctx != appctx) {
if (curpeer->local) {
/* Local connection, reply a retry */
appctx->st0 = PEER_SESS_ST_EXIT;
appctx->st1 = PEER_SESS_SC_TRYAGAIN;
goto switchstate;
}
/* we're killing a connection, we must apply a random delay before
* retrying otherwise the other end will do the same and we can loop
* for a while.
*/
curpeer->reconnect = tick_add(now_ms, MS_TO_TICKS(50 + ha_random() % 2000));
peer_session_forceshutdown(curpeer);
curpeer->heartbeat = TICK_ETERNITY;
curpeer->coll++;
}
if (maj_ver != (unsigned int)-1 && min_ver != (unsigned int)-1) {
if (min_ver == PEER_DWNGRD_MINOR_VER) {
curpeer->flags |= PEER_F_DWNGRD;
}
else {
curpeer->flags &= ~PEER_F_DWNGRD;
}
}
curpeer->appctx = appctx;
curpeer->flags |= PEER_F_ALIVE;
appctx->svcctx = curpeer;
appctx->st0 = PEER_SESS_ST_SENDSUCCESS;
_HA_ATOMIC_INC(&active_peers);
}
/* fall through */
case PEER_SESS_ST_SENDSUCCESS: {
prev_state = appctx->st0;
if (!curpeer) {
curpeer = appctx->svcctx;
HA_SPIN_LOCK(PEER_LOCK, &curpeer->lock);
if (curpeer->appctx != appctx) {
appctx->st0 = PEER_SESS_ST_END;
goto switchstate;
}
}
repl = peer_send_status_successmsg(appctx);
if (repl <= 0) {
if (repl == -1)
goto out;
goto switchstate;
}
init_accepted_peer(curpeer, curpeers);
/* switch to waiting message state */
_HA_ATOMIC_INC(&connected_peers);
appctx->st0 = PEER_SESS_ST_WAITMSG;
goto switchstate;
}
case PEER_SESS_ST_CONNECT: {
prev_state = appctx->st0;
if (!curpeer) {
curpeer = appctx->svcctx;
HA_SPIN_LOCK(PEER_LOCK, &curpeer->lock);
if (curpeer->appctx != appctx) {
appctx->st0 = PEER_SESS_ST_END;
goto switchstate;
}
}
repl = peer_send_hellomsg(appctx, curpeer);
if (repl <= 0) {
if (repl == -1)
goto out;
goto switchstate;
}
/* switch to the waiting statuscode state */
appctx->st0 = PEER_SESS_ST_GETSTATUS;
}
/* fall through */
case PEER_SESS_ST_GETSTATUS: {
prev_state = appctx->st0;
if (!curpeer) {
curpeer = appctx->svcctx;
HA_SPIN_LOCK(PEER_LOCK, &curpeer->lock);
if (curpeer->appctx != appctx) {
appctx->st0 = PEER_SESS_ST_END;
goto switchstate;
}
}
if (sc_ic(sc)->flags & CF_WROTE_DATA)
curpeer->statuscode = PEER_SESS_SC_CONNECTEDCODE;
reql = peer_getline(appctx);
if (!reql)
goto out;
if (reql < 0)
goto switchstate;
/* Register status code */
curpeer->statuscode = atoi(trash.area);
curpeer->last_hdshk = now_ms;
/* Awake main task */
task_wakeup(curpeers->sync_task, TASK_WOKEN_MSG);
/* If status code is success */
if (curpeer->statuscode == PEER_SESS_SC_SUCCESSCODE) {
init_connected_peer(curpeer, curpeers);
}
else {
if (curpeer->statuscode == PEER_SESS_SC_ERRVERSION)
curpeer->flags |= PEER_F_DWNGRD;
/* Status code is not success, abort */
appctx->st0 = PEER_SESS_ST_END;
goto switchstate;
}
_HA_ATOMIC_INC(&connected_peers);
appctx->st0 = PEER_SESS_ST_WAITMSG;
}
/* fall through */
case PEER_SESS_ST_WAITMSG: {
uint32_t msg_len = 0;
char *msg_cur = trash.area;
char *msg_end = trash.area;
unsigned char msg_head[7]; // 2 + 5 for varint32
int totl = 0;
prev_state = appctx->st0;
if (!curpeer) {
curpeer = appctx->svcctx;
HA_SPIN_LOCK(PEER_LOCK, &curpeer->lock);
if (curpeer->appctx != appctx) {
appctx->st0 = PEER_SESS_ST_END;
goto switchstate;
}
}
reql = peer_recv_msg(appctx, (char *)msg_head, sizeof msg_head, &msg_len, &totl);
if (reql <= 0) {
if (reql == -1)
goto switchstate;
goto send_msgs;
}
msg_end += msg_len;
if (!peer_treat_awaited_msg(appctx, curpeer, msg_head, &msg_cur, msg_end, msg_len, totl))
goto switchstate;
curpeer->flags |= PEER_F_ALIVE;
/* skip consumed message */
co_skip(sc_oc(sc), totl);
/* loop on that state to peek next message */
goto switchstate;
send_msgs:
if (curpeer->flags & PEER_F_HEARTBEAT) {
curpeer->flags &= ~PEER_F_HEARTBEAT;
repl = peer_send_heartbeatmsg(appctx, curpeer, curpeers);
if (repl <= 0) {
if (repl == -1)
goto out;
goto switchstate;
}
curpeer->tx_hbt++;
}
/* we get here when a peer_recv_msg() returns 0 in reql */
repl = peer_send_msgs(appctx, curpeer, curpeers);
if (repl <= 0) {
if (repl == -1)
goto out;
goto switchstate;
}
/* noting more to do */
goto out;
}
case PEER_SESS_ST_EXIT:
if (prev_state == PEER_SESS_ST_WAITMSG)
_HA_ATOMIC_DEC(&connected_peers);
prev_state = appctx->st0;
if (peer_send_status_errormsg(appctx) == -1)
goto out;
appctx->st0 = PEER_SESS_ST_END;
goto switchstate;
case PEER_SESS_ST_ERRSIZE: {
if (prev_state == PEER_SESS_ST_WAITMSG)
_HA_ATOMIC_DEC(&connected_peers);
prev_state = appctx->st0;
if (peer_send_error_size_limitmsg(appctx) == -1)
goto out;
appctx->st0 = PEER_SESS_ST_END;
goto switchstate;
}
case PEER_SESS_ST_ERRPROTO: {
TRACE_PROTO("protocol error", PEERS_EV_PROTOERR,
NULL, curpeer, &prev_state);
if (curpeer)
curpeer->proto_err++;
if (prev_state == PEER_SESS_ST_WAITMSG)
_HA_ATOMIC_DEC(&connected_peers);
prev_state = appctx->st0;
if (peer_send_error_protomsg(appctx) == -1) {
TRACE_PROTO("could not send error message", PEERS_EV_PROTOERR);
goto out;
}
appctx->st0 = PEER_SESS_ST_END;
prev_state = appctx->st0;
}
/* fall through */
case PEER_SESS_ST_END: {
if (prev_state == PEER_SESS_ST_WAITMSG)
_HA_ATOMIC_DEC(&connected_peers);
prev_state = appctx->st0;
if (curpeer) {
HA_SPIN_UNLOCK(PEER_LOCK, &curpeer->lock);
curpeer = NULL;
}
sc_shutw(sc);
sc_shutr(sc);
sc_ic(sc)->flags |= CF_READ_NULL;
goto out;
}
}
}
out:
sc_oc(sc)->flags |= CF_READ_DONTWAIT;
if (curpeer)
HA_SPIN_UNLOCK(PEER_LOCK, &curpeer->lock);
return;
}
static struct applet peer_applet = {
.obj_type = OBJ_TYPE_APPLET,
.name = "<PEER>", /* used for logging */
.fct = peer_io_handler,
.init = peer_session_init,
.release = peer_session_release,
};
/*
* Use this function to force a close of a peer session
*/
static void peer_session_forceshutdown(struct peer *peer)
{
struct appctx *appctx = peer->appctx;
/* Note that the peer sessions which have just been created
* (->st0 == PEER_SESS_ST_CONNECT) must not
* be shutdown, if not, the TCP session will never be closed
* and stay in CLOSE_WAIT state after having been closed by
* the remote side.
*/
if (!appctx || appctx->st0 == PEER_SESS_ST_CONNECT)
return;
if (appctx->applet != &peer_applet)
return;
__peer_session_deinit(peer);
appctx->st0 = PEER_SESS_ST_END;
appctx_wakeup(appctx);
}
/* Pre-configures a peers frontend to accept incoming connections */
void peers_setup_frontend(struct proxy *fe)
{
fe->last_change = now.tv_sec;
fe->cap = PR_CAP_FE | PR_CAP_BE;
fe->mode = PR_MODE_PEERS;
fe->maxconn = 0;
fe->conn_retries = CONN_RETRIES;
fe->timeout.connect = MS_TO_TICKS(1000);
fe->timeout.client = MS_TO_TICKS(5000);
fe->timeout.server = MS_TO_TICKS(5000);
fe->accept = frontend_accept;
fe->default_target = &peer_applet.obj_type;
fe->options2 |= PR_O2_INDEPSTR | PR_O2_SMARTCON | PR_O2_SMARTACC;
}
/*
* Create a new peer session in assigned state (connect will start automatically)
*/
static struct appctx *peer_session_create(struct peers *peers, struct peer *peer)
{
struct appctx *appctx;
unsigned int thr = 0;
int idx;
peer->new_conn++;
peer->reconnect = tick_add(now_ms, (stopping ? MS_TO_TICKS(PEER_LOCAL_RECONNECT_TIMEOUT) : MS_TO_TICKS(PEER_RECONNECT_TIMEOUT)));
peer->heartbeat = TICK_ETERNITY;
peer->statuscode = PEER_SESS_SC_CONNECTCODE;
peer->last_hdshk = now_ms;
for (idx = 0; idx < global.nbthread; idx++)
thr = peers->applet_count[idx] < peers->applet_count[thr] ? idx : thr;
appctx = appctx_new_on(&peer_applet, NULL, thr);
if (!appctx)
goto out_close;
appctx->svcctx = (void *)peer;
appctx->st0 = PEER_SESS_ST_CONNECT;
peer->appctx = appctx;
HA_ATOMIC_INC(&peers->applet_count[thr]);
appctx_wakeup(appctx);
return appctx;
out_close:
return NULL;
}
/*
* Task processing function to manage re-connect, peer session
* tasks wakeup on local update and heartbeat. Let's keep it exported so that it
* resolves in stack traces and "show tasks".
*/
struct task *process_peer_sync(struct task * task, void *context, unsigned int state)
{
struct peers *peers = context;
struct peer *ps;
struct shared_table *st;
task->expire = TICK_ETERNITY;
if (!peers->peers_fe) {
/* this one was never started, kill it */
signal_unregister_handler(peers->sighandler);
task_destroy(peers->sync_task);
peers->sync_task = NULL;
return NULL;
}
/* Acquire lock for all peers of the section */
for (ps = peers->remote; ps; ps = ps->next)
HA_SPIN_LOCK(PEER_LOCK, &ps->lock);
if (!stopping) {
/* Normal case (not soft stop)*/
/* resync timeout set to TICK_ETERNITY means we just start
* a new process and timer was not initialized.
* We must arm this timer to switch to a request to a remote
* node if incoming connection from old local process never
* comes.
*/
if (peers->resync_timeout == TICK_ETERNITY)
peers->resync_timeout = tick_add(now_ms, MS_TO_TICKS(PEER_RESYNC_TIMEOUT));
if (((peers->flags & PEERS_RESYNC_STATEMASK) == PEERS_RESYNC_FROMLOCAL) &&
(!nb_oldpids || tick_is_expired(peers->resync_timeout, now_ms)) &&
!(peers->flags & PEERS_F_RESYNC_ASSIGN)) {
/* Resync from local peer needed
no peer was assigned for the lesson
and no old local peer found
or resync timeout expire */
/* flag no more resync from local, to try resync from remotes */
peers->flags |= PEERS_F_RESYNC_LOCAL;
peers->flags |= PEERS_F_RESYNC_LOCALTIMEOUT;
/* reschedule a resync */
peers->resync_timeout = tick_add(now_ms, MS_TO_TICKS(PEER_RESYNC_TIMEOUT));
}
/* For each session */
for (ps = peers->remote; ps; ps = ps->next) {
/* For each remote peers */
if (!ps->local) {
if (!ps->appctx) {
/* no active peer connection */
if (ps->statuscode == 0 ||
((ps->statuscode == PEER_SESS_SC_CONNECTCODE ||
ps->statuscode == PEER_SESS_SC_SUCCESSCODE ||
ps->statuscode == PEER_SESS_SC_CONNECTEDCODE) &&
tick_is_expired(ps->reconnect, now_ms))) {
/* connection never tried
* or previous peer connection established with success
* or previous peer connection failed while connecting
* and reconnection timer is expired */
/* retry a connect */
ps->appctx = peer_session_create(peers, ps);
}
else if (!tick_is_expired(ps->reconnect, now_ms)) {
/* If previous session failed during connection
* but reconnection timer is not expired */
/* reschedule task for reconnect */
task->expire = tick_first(task->expire, ps->reconnect);
}
/* else do nothing */
} /* !ps->appctx */
else if (ps->statuscode == PEER_SESS_SC_SUCCESSCODE) {
/* current peer connection is active and established */
if (((peers->flags & PEERS_RESYNC_STATEMASK) == PEERS_RESYNC_FROMREMOTE) &&
!(peers->flags & PEERS_F_RESYNC_ASSIGN) &&
!(ps->flags & PEER_F_LEARN_NOTUP2DATE)) {
/* Resync from a remote is needed
* and no peer was assigned for lesson
* and current peer may be up2date */
/* assign peer for the lesson */
ps->flags |= PEER_F_LEARN_ASSIGN;
peers->flags |= PEERS_F_RESYNC_ASSIGN;
peers->flags |= PEERS_F_RESYNC_REMOTEASSIGN;
/* wake up peer handler to handle a request of resync */
appctx_wakeup(ps->appctx);
}
else {
int update_to_push = 0;
/* Awake session if there is data to push */
for (st = ps->tables; st ; st = st->next) {
if (st->last_pushed != st->table->localupdate) {
/* wake up the peer handler to push local updates */
update_to_push = 1;
/* There is no need to send a heartbeat message
* when some updates must be pushed. The remote
* peer will consider <ps> peer as alive when it will
* receive these updates.
*/
ps->flags &= ~PEER_F_HEARTBEAT;
/* Re-schedule another one later. */
ps->heartbeat = tick_add(now_ms, MS_TO_TICKS(PEER_HEARTBEAT_TIMEOUT));
/* We are going to send updates, let's ensure we will
* come back to send heartbeat messages or to reconnect.
*/
task->expire = tick_first(ps->reconnect, ps->heartbeat);
appctx_wakeup(ps->appctx);
break;
}
}
/* When there are updates to send we do not reconnect
* and do not send heartbeat message either.
*/
if (!update_to_push) {
if (tick_is_expired(ps->reconnect, now_ms)) {
if (ps->flags & PEER_F_ALIVE) {
/* This peer was alive during a 'reconnect' period.
* Flag it as not alive again for the next period.
*/
ps->flags &= ~PEER_F_ALIVE;
ps->reconnect = tick_add(now_ms, MS_TO_TICKS(PEER_RECONNECT_TIMEOUT));
}
else {
ps->reconnect = tick_add(now_ms, MS_TO_TICKS(50 + ha_random() % 2000));
ps->heartbeat = TICK_ETERNITY;
peer_session_forceshutdown(ps);
ps->no_hbt++;
}
}
else if (tick_is_expired(ps->heartbeat, now_ms)) {
ps->heartbeat = tick_add(now_ms, MS_TO_TICKS(PEER_HEARTBEAT_TIMEOUT));
ps->flags |= PEER_F_HEARTBEAT;
appctx_wakeup(ps->appctx);
}
task->expire = tick_first(ps->reconnect, ps->heartbeat);
}
}
/* else do nothing */
} /* SUCCESSCODE */
} /* !ps->peer->local */
} /* for */
/* Resync from remotes expired: consider resync is finished */
if (((peers->flags & PEERS_RESYNC_STATEMASK) == PEERS_RESYNC_FROMREMOTE) &&
!(peers->flags & PEERS_F_RESYNC_ASSIGN) &&
tick_is_expired(peers->resync_timeout, now_ms)) {
/* Resync from remote peer needed
* no peer was assigned for the lesson
* and resync timeout expire */
/* flag no more resync from remote, consider resync is finished */
peers->flags |= PEERS_F_RESYNC_REMOTE;
peers->flags |= PEERS_F_RESYNC_REMOTETIMEOUT;
}
if ((peers->flags & PEERS_RESYNC_STATEMASK) != PEERS_RESYNC_FINISHED) {
/* Resync not finished*/
/* reschedule task to resync timeout if not expired, to ended resync if needed */
if (!tick_is_expired(peers->resync_timeout, now_ms))
task->expire = tick_first(task->expire, peers->resync_timeout);
}
} /* !stopping */
else {
/* soft stop case */
if (state & TASK_WOKEN_SIGNAL) {
/* We've just received the signal */
if (!(peers->flags & PEERS_F_DONOTSTOP)) {
/* add DO NOT STOP flag if not present */
_HA_ATOMIC_INC(&jobs);
peers->flags |= PEERS_F_DONOTSTOP;
/* disconnect all connected peers to process a local sync
* this must be done only the first time we are switching
* in stopping state
*/
for (ps = peers->remote; ps; ps = ps->next) {
/* we're killing a connection, we must apply a random delay before
* retrying otherwise the other end will do the same and we can loop
* for a while.
*/
ps->reconnect = tick_add(now_ms, MS_TO_TICKS(50 + ha_random() % 2000));
if (ps->appctx) {
peer_session_forceshutdown(ps);
}
}
/* Set resync timeout for the local peer and request a immediate reconnect */
peers->resync_timeout = tick_add(now_ms, MS_TO_TICKS(PEER_RESYNC_TIMEOUT));
peers->local->reconnect = now_ms;
}
}
ps = peers->local;
if (ps->flags & PEER_F_TEACH_COMPLETE) {
if (peers->flags & PEERS_F_DONOTSTOP) {
/* resync of new process was complete, current process can die now */
_HA_ATOMIC_DEC(&jobs);
peers->flags &= ~PEERS_F_DONOTSTOP;
for (st = ps->tables; st ; st = st->next)
HA_ATOMIC_DEC(&st->table->refcnt);
}
}
else if (!ps->appctx) {
/* Re-arm resync timeout if necessary */
if (!tick_isset(peers->resync_timeout))
peers->resync_timeout = tick_add(now_ms, MS_TO_TICKS(PEER_RESYNC_TIMEOUT));
/* If there's no active peer connection */
if ((peers->flags & PEERS_RESYNC_STATEMASK) == PEERS_RESYNC_FINISHED &&
!tick_is_expired(peers->resync_timeout, now_ms) &&
(ps->statuscode == 0 ||
ps->statuscode == PEER_SESS_SC_SUCCESSCODE ||
ps->statuscode == PEER_SESS_SC_CONNECTEDCODE ||
ps->statuscode == PEER_SESS_SC_TRYAGAIN)) {
/* The resync is finished for the local peer and
* the resync timeout is not expired and
* connection never tried
* or previous peer connection was successfully established
* or previous tcp connect succeeded but init state incomplete
* or during previous connect, peer replies a try again statuscode */
if (!tick_is_expired(ps->reconnect, now_ms)) {
/* reconnection timer is not expired. reschedule task for reconnect */
task->expire = tick_first(task->expire, ps->reconnect);
}
else {
/* connect to the local peer if we must push a local sync */
if (peers->flags & PEERS_F_DONOTSTOP) {
peer_session_create(peers, ps);
}
}
}
else {
/* Other error cases */
if (peers->flags & PEERS_F_DONOTSTOP) {
/* unable to resync new process, current process can die now */
_HA_ATOMIC_DEC(&jobs);
peers->flags &= ~PEERS_F_DONOTSTOP;
for (st = ps->tables; st ; st = st->next)
HA_ATOMIC_DEC(&st->table->refcnt);
}
}
}
else if (ps->statuscode == PEER_SESS_SC_SUCCESSCODE ) {
/* Reset resync timeout during a resync */
peers->resync_timeout = TICK_ETERNITY;
/* current peer connection is active and established
* wake up all peer handlers to push remaining local updates */
for (st = ps->tables; st ; st = st->next) {
if (st->last_pushed != st->table->localupdate) {
appctx_wakeup(ps->appctx);
break;
}
}
}
} /* stopping */
/* Release lock for all peers of the section */
for (ps = peers->remote; ps; ps = ps->next)
HA_SPIN_UNLOCK(PEER_LOCK, &ps->lock);
/* Wakeup for re-connect */
return task;
}
/*
* returns 0 in case of error.
*/
int peers_init_sync(struct peers *peers)
{
struct peer * curpeer;
for (curpeer = peers->remote; curpeer; curpeer = curpeer->next) {
peers->peers_fe->maxconn += 3;
}
peers->sync_task = task_new_anywhere();
if (!peers->sync_task)
return 0;
memset(peers->applet_count, 0, sizeof(peers->applet_count));
peers->sync_task->process = process_peer_sync;
peers->sync_task->context = (void *)peers;
peers->sighandler = signal_register_task(0, peers->sync_task, 0);
task_wakeup(peers->sync_task, TASK_WOKEN_INIT);
return 1;
}
/*
* Allocate a cache a dictionary entries used upon transmission.
*/
static struct dcache_tx *new_dcache_tx(size_t max_entries)
{
struct dcache_tx *d;
struct ebpt_node *entries;
d = malloc(sizeof *d);
entries = calloc(max_entries, sizeof *entries);
if (!d || !entries)
goto err;
d->lru_key = 0;
d->prev_lookup = NULL;
d->cached_entries = EB_ROOT_UNIQUE;
d->entries = entries;
return d;
err:
free(d);
free(entries);
return NULL;
}
/*
* Allocate a cache of dictionary entries with <name> as name and <max_entries>
* as maximum of entries.
* Return the dictionary cache if succeeded, NULL if not.
* Must be deallocated calling free_dcache().
*/
static struct dcache *new_dcache(size_t max_entries)
{
struct dcache_tx *dc_tx;
struct dcache *dc;
struct dcache_rx *dc_rx;
dc = calloc(1, sizeof *dc);
dc_tx = new_dcache_tx(max_entries);
dc_rx = calloc(max_entries, sizeof *dc_rx);
if (!dc || !dc_tx || !dc_rx)
goto err;
dc->tx = dc_tx;
dc->rx = dc_rx;
dc->max_entries = max_entries;
return dc;
err:
free(dc);
free(dc_tx);
free(dc_rx);
return NULL;
}
/*
* Look for the dictionary entry with the value of <i> in <d> cache of dictionary
* entries used upon transmission.
* Return the entry if found, NULL if not.
*/
static struct ebpt_node *dcache_tx_lookup_value(struct dcache_tx *d,
struct dcache_tx_entry *i)
{
return ebpt_lookup(&d->cached_entries, i->entry.key);
}
/*
* Flush <dc> cache.
* Always succeeds.
*/
static inline void flush_dcache(struct peer *peer)
{
int i;
struct dcache *dc = peer->dcache;
for (i = 0; i < dc->max_entries; i++) {
ebpt_delete(&dc->tx->entries[i]);
dc->tx->entries[i].key = NULL;
dict_entry_unref(&server_key_dict, dc->rx[i].de);
dc->rx[i].de = NULL;
}
dc->tx->prev_lookup = NULL;
dc->tx->lru_key = 0;
memset(dc->rx, 0, dc->max_entries * sizeof *dc->rx);
}
/*
* Insert a dictionary entry in <dc> cache part used upon transmission (->tx)
* with information provided by <i> dictionary cache entry (especially the value
* to be inserted if not already). Return <i> if already present in the cache
* or something different of <i> if not.
*/
static struct ebpt_node *dcache_tx_insert(struct dcache *dc, struct dcache_tx_entry *i)
{
struct dcache_tx *dc_tx;
struct ebpt_node *o;
dc_tx = dc->tx;
if (dc_tx->prev_lookup && dc_tx->prev_lookup->key == i->entry.key) {
o = dc_tx->prev_lookup;
} else {
o = dcache_tx_lookup_value(dc_tx, i);
if (o) {
/* Save it */
dc_tx->prev_lookup = o;
}
}
if (o) {
/* Copy the ID. */
i->id = o - dc->tx->entries;
return &i->entry;
}
/* The new entry to put in cache */
dc_tx->prev_lookup = o = &dc_tx->entries[dc_tx->lru_key];
ebpt_delete(o);
o->key = i->entry.key;
ebpt_insert(&dc_tx->cached_entries, o);
i->id = dc_tx->lru_key;
/* Update the index for the next entry to put in cache */
dc_tx->lru_key = (dc_tx->lru_key + 1) & (dc->max_entries - 1);
return o;
}
/*
* Allocate a dictionary cache for each peer of <peers> section.
* Return 1 if succeeded, 0 if not.
*/
int peers_alloc_dcache(struct peers *peers)
{
struct peer *p;
for (p = peers->remote; p; p = p->next) {
p->dcache = new_dcache(PEER_STKT_CACHE_MAX_ENTRIES);
if (!p->dcache)
return 0;
}
return 1;
}
/*
* Function used to register a table for sync on a group of peers
* Returns 0 in case of success.
*/
int peers_register_table(struct peers *peers, struct stktable *table)
{
struct shared_table *st;
struct peer * curpeer;
int id = 0;
int retval = 0;
for (curpeer = peers->remote; curpeer; curpeer = curpeer->next) {
st = calloc(1,sizeof(*st));
if (!st) {
retval = 1;
break;
}
st->table = table;
st->next = curpeer->tables;
if (curpeer->tables)
id = curpeer->tables->local_id;
st->local_id = id + 1;
/* If peer is local we inc table
* refcnt to protect against flush
* until this process pushed all
* table content to the new one
*/
if (curpeer->local)
HA_ATOMIC_INC(&st->table->refcnt);
curpeer->tables = st;
}
table->sync_task = peers->sync_task;
return retval;
}
/* context used by a "show peers" command */
struct show_peers_ctx {
void *target; /* if non-null, dump only this section and stop */
struct peers *peers; /* "peers" section being currently dumped. */
struct peer *peer; /* "peer" being currently dumped. */
int flags; /* non-zero if "dict" dump requested */
enum {
STATE_HEAD = 0, /* dump the section's header */
STATE_PEER, /* dump the whole peer */
STATE_DONE, /* finished */
} state; /* parser's state */
};
/*
* Parse the "show peers" command arguments.
* Returns 0 if succeeded, 1 if not with the ->msg of the appctx set as
* error message.
*/
static int cli_parse_show_peers(char **args, char *payload, struct appctx *appctx, void *private)
{
struct show_peers_ctx *ctx = applet_reserve_svcctx(appctx, sizeof(*ctx));
if (strcmp(args[2], "dict") == 0) {
/* show the dictionaries (large dump) */
ctx->flags |= PEERS_SHOW_F_DICT;
args++;
} else if (strcmp(args[2], "-") == 0)
args++; // allows to show a section called "dict"
if (*args[2]) {
struct peers *p;
for (p = cfg_peers; p; p = p->next) {
if (strcmp(p->id, args[2]) == 0) {
ctx->target = p;
break;
}
}
if (!p)
return cli_err(appctx, "No such peers\n");
}
/* where to start from */
ctx->peers = ctx->target ? ctx->target : cfg_peers;
return 0;
}
/*
* This function dumps the peer state information of <peers> "peers" section.
* Returns 0 if the output buffer is full and needs to be called again, non-zero if not.
* Dedicated to be called by cli_io_handler_show_peers() cli I/O handler.
*/
static int peers_dump_head(struct buffer *msg, struct appctx *appctx, struct peers *peers)
{
struct tm tm;
get_localtime(peers->last_change, &tm);
chunk_appendf(msg, "%p: [%02d/%s/%04d:%02d:%02d:%02d] id=%s disabled=%d flags=0x%x resync_timeout=%s task_calls=%u\n",
peers,
tm.tm_mday, monthname[tm.tm_mon], tm.tm_year+1900,
tm.tm_hour, tm.tm_min, tm.tm_sec,
peers->id, peers->disabled, peers->flags,
peers->resync_timeout ?
tick_is_expired(peers->resync_timeout, now_ms) ? "<PAST>" :
human_time(TICKS_TO_MS(peers->resync_timeout - now_ms),
TICKS_TO_MS(1000)) : "<NEVER>",
peers->sync_task ? peers->sync_task->calls : 0);
if (applet_putchk(appctx, msg) == -1)
return 0;
return 1;
}
/*
* This function dumps <peer> state information.
* Returns 0 if the output buffer is full and needs to be called again, non-zero
* if not. Dedicated to be called by cli_io_handler_show_peers() cli I/O handler.
*/
static int peers_dump_peer(struct buffer *msg, struct appctx *appctx, struct peer *peer, int flags)
{
struct connection *conn;
char pn[INET6_ADDRSTRLEN];
struct stconn *peer_cs;
struct stream *peer_s;
struct shared_table *st;
addr_to_str(&peer->addr, pn, sizeof pn);
chunk_appendf(msg, " %p: id=%s(%s,%s) addr=%s:%d last_status=%s",
peer, peer->id,
peer->local ? "local" : "remote",
peer->appctx ? "active" : "inactive",
pn, get_host_port(&peer->addr),
statuscode_str(peer->statuscode));
chunk_appendf(msg, " last_hdshk=%s\n",
peer->last_hdshk ? human_time(TICKS_TO_MS(now_ms - peer->last_hdshk),
TICKS_TO_MS(1000)) : "<NEVER>");
chunk_appendf(msg, " reconnect=%s",
peer->reconnect ?
tick_is_expired(peer->reconnect, now_ms) ? "<PAST>" :
human_time(TICKS_TO_MS(peer->reconnect - now_ms),
TICKS_TO_MS(1000)) : "<NEVER>");
chunk_appendf(msg, " heartbeat=%s",
peer->heartbeat ?
tick_is_expired(peer->heartbeat, now_ms) ? "<PAST>" :
human_time(TICKS_TO_MS(peer->heartbeat - now_ms),
TICKS_TO_MS(1000)) : "<NEVER>");
chunk_appendf(msg, " confirm=%u tx_hbt=%u rx_hbt=%u no_hbt=%u new_conn=%u proto_err=%u coll=%u\n",
peer->confirm, peer->tx_hbt, peer->rx_hbt,
peer->no_hbt, peer->new_conn, peer->proto_err, peer->coll);
chunk_appendf(&trash, " flags=0x%x", peer->flags);
if (!peer->appctx)
goto table_info;
chunk_appendf(&trash, " appctx:%p st0=%d st1=%d task_calls=%u",
peer->appctx, peer->appctx->st0, peer->appctx->st1,
peer->appctx->t ? peer->appctx->t->calls : 0);
peer_cs = appctx_sc(peer->appctx);
peer_s = __sc_strm(peer_cs);
chunk_appendf(&trash, " state=%s", sc_state_str(sc_opposite(peer_cs)->state));
conn = objt_conn(strm_orig(peer_s));
if (conn)
chunk_appendf(&trash, "\n xprt=%s", conn_get_xprt_name(conn));
switch (conn && conn_get_src(conn) ? addr_to_str(conn->src, pn, sizeof(pn)) : AF_UNSPEC) {
case AF_INET:
case AF_INET6:
chunk_appendf(&trash, " src=%s:%d", pn, get_host_port(conn->src));
break;
case AF_UNIX:
chunk_appendf(&trash, " src=unix:%d", strm_li(peer_s)->luid);
break;
}
switch (conn && conn_get_dst(conn) ? addr_to_str(conn->dst, pn, sizeof(pn)) : AF_UNSPEC) {
case AF_INET:
case AF_INET6:
chunk_appendf(&trash, " addr=%s:%d", pn, get_host_port(conn->dst));
break;
case AF_UNIX:
chunk_appendf(&trash, " addr=unix:%d", strm_li(peer_s)->luid);
break;
}
table_info:
if (peer->remote_table)
chunk_appendf(&trash, "\n remote_table:%p id=%s local_id=%d remote_id=%d",
peer->remote_table,
peer->remote_table->table->id,
peer->remote_table->local_id,
peer->remote_table->remote_id);
if (peer->last_local_table)
chunk_appendf(&trash, "\n last_local_table:%p id=%s local_id=%d remote_id=%d",
peer->last_local_table,
peer->last_local_table->table->id,
peer->last_local_table->local_id,
peer->last_local_table->remote_id);
if (peer->tables) {
chunk_appendf(&trash, "\n shared tables:");
for (st = peer->tables; st; st = st->next) {
int i, count;
struct stktable *t;
struct dcache *dcache;
t = st->table;
dcache = peer->dcache;
chunk_appendf(&trash, "\n %p local_id=%d remote_id=%d "
"flags=0x%x remote_data=0x%llx",
st, st->local_id, st->remote_id,
st->flags, (unsigned long long)st->remote_data);
chunk_appendf(&trash, "\n last_acked=%u last_pushed=%u last_get=%u"
" teaching_origin=%u update=%u",
st->last_acked, st->last_pushed, st->last_get,
st->teaching_origin, st->update);
chunk_appendf(&trash, "\n table:%p id=%s update=%u localupdate=%u"
" commitupdate=%u refcnt=%u",
t, t->id, t->update, t->localupdate, t->commitupdate, t->refcnt);
if (flags & PEERS_SHOW_F_DICT) {
chunk_appendf(&trash, "\n TX dictionary cache:");
count = 0;
for (i = 0; i < dcache->max_entries; i++) {
struct ebpt_node *node;
struct dict_entry *de;
node = &dcache->tx->entries[i];
if (!node->key)
break;
if (!count++)
chunk_appendf(&trash, "\n ");
de = node->key;
chunk_appendf(&trash, " %3u -> %s", i, (char *)de->value.key);
count &= 0x3;
}
chunk_appendf(&trash, "\n RX dictionary cache:");
count = 0;
for (i = 0; i < dcache->max_entries; i++) {
if (!count++)
chunk_appendf(&trash, "\n ");
chunk_appendf(&trash, " %3u -> %s", i,
dcache->rx[i].de ?
(char *)dcache->rx[i].de->value.key : "-");
count &= 0x3;
}
} else {
chunk_appendf(&trash, "\n Dictionary cache not dumped (use \"show peers dict\")");
}
}
}
end:
chunk_appendf(&trash, "\n");
if (applet_putchk(appctx, msg) == -1)
return 0;
return 1;
}
/*
* This function dumps all the peers of "peers" section.
* Returns 0 if the output buffer is full and needs to be called
* again, non-zero if not. It proceeds in an isolated thread, so
* there is no thread safety issue here.
*/
static int cli_io_handler_show_peers(struct appctx *appctx)
{
struct show_peers_ctx *ctx = appctx->svcctx;
int ret = 0, first_peers = 1;
thread_isolate();
chunk_reset(&trash);
while (ctx->state != STATE_DONE) {
switch (ctx->state) {
case STATE_HEAD:
if (!ctx->peers) {
/* No more peers list. */
ctx->state = STATE_DONE;
}
else {
if (!first_peers)
chunk_appendf(&trash, "\n");
else
first_peers = 0;
if (!peers_dump_head(&trash, appctx, ctx->peers))
goto out;
ctx->peer = ctx->peers->remote;
ctx->peers = ctx->peers->next;
ctx->state = STATE_PEER;
}
break;
case STATE_PEER:
if (!ctx->peer) {
/* End of peer list */
if (!ctx->target)
ctx->state = STATE_HEAD; // next one
else
ctx->state = STATE_DONE;
}
else {
if (!peers_dump_peer(&trash, appctx, ctx->peer, ctx->flags))
goto out;
ctx->peer = ctx->peer->next;
}
break;
default:
break;
}
}
ret = 1;
out:
thread_release();
return ret;
}
/* config parser for global "tune.peers.max-updates-at-once" */
static int cfg_parse_max_updt_at_once(char **args, int section_type, struct proxy *curpx,
const struct proxy *defpx, const char *file, int line,
char **err)
{
int arg = -1;
if (too_many_args(1, args, err, NULL))
return -1;
if (*(args[1]) != 0)
arg = atoi(args[1]);
if (arg < 1) {
memprintf(err, "'%s' expects an integer argument greater than 0.", args[0]);
return -1;
}
peers_max_updates_at_once = arg;
return 0;
}
/* config keyword parsers */
static struct cfg_kw_list cfg_kws = {ILH, {
{ CFG_GLOBAL, "tune.peers.max-updates-at-once", cfg_parse_max_updt_at_once },
{ 0, NULL, NULL }
}};
INITCALL1(STG_REGISTER, cfg_register_keywords, &cfg_kws);
/*
* CLI keywords.
*/
static struct cli_kw_list cli_kws = {{ }, {
{ { "show", "peers", NULL }, "show peers [dict|-] [section] : dump some information about all the peers or this peers section", cli_parse_show_peers, cli_io_handler_show_peers, },
{},
}};
/* Register cli keywords */
INITCALL1(STG_REGISTER, cli_register_kw, &cli_kws);