blob: 917ca158a1f3512fb261e9592705ad3a819e9882 [file] [log] [blame]
/*
* SSL/TLS transport layer over SOCK_STREAM sockets
*
* Copyright (C) 2012 EXCELIANCE, Emeric Brun <ebrun@exceliance.fr>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* Acknowledgement:
* We'd like to specially thank the Stud project authors for a very clean
* and well documented code which helped us understand how the OpenSSL API
* ought to be used in non-blocking mode. This is one difficult part which
* is not easy to get from the OpenSSL doc, and reading the Stud code made
* it much more obvious than the examples in the OpenSSL package. Keep up
* the good works, guys !
*
* Stud is an extremely efficient and scalable SSL/TLS proxy which combines
* particularly well with haproxy. For more info about this project, visit :
* https://github.com/bumptech/stud
*
*/
#define _GNU_SOURCE
#include <ctype.h>
#include <dirent.h>
#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <netinet/tcp.h>
#include <openssl/ssl.h>
#include <openssl/x509.h>
#include <openssl/x509v3.h>
#include <openssl/x509.h>
#include <openssl/err.h>
#include <openssl/rand.h>
#include <common/buffer.h>
#include <common/compat.h>
#include <common/config.h>
#include <common/debug.h>
#include <common/errors.h>
#include <common/standard.h>
#include <common/ticks.h>
#include <common/time.h>
#include <ebsttree.h>
#include <types/global.h>
#include <types/ssl_sock.h>
#include <proto/acl.h>
#include <proto/arg.h>
#include <proto/connection.h>
#include <proto/fd.h>
#include <proto/freq_ctr.h>
#include <proto/frontend.h>
#include <proto/listener.h>
#include <proto/server.h>
#include <proto/log.h>
#include <proto/proxy.h>
#include <proto/shctx.h>
#include <proto/ssl_sock.h>
#include <proto/task.h>
#define SSL_SOCK_ST_FL_VERIFY_DONE 0x00000001
/* bits 0xFFFF0000 are reserved to store verify errors */
/* Verify errors macros */
#define SSL_SOCK_CA_ERROR_TO_ST(e) (((e > 63) ? 63 : e) << (16))
#define SSL_SOCK_CAEDEPTH_TO_ST(d) (((d > 15) ? 15 : d) << (6+16))
#define SSL_SOCK_CRTERROR_TO_ST(e) (((e > 63) ? 63 : e) << (4+6+16))
#define SSL_SOCK_ST_TO_CA_ERROR(s) ((s >> (16)) & 63)
#define SSL_SOCK_ST_TO_CAEDEPTH(s) ((s >> (6+16)) & 15)
#define SSL_SOCK_ST_TO_CRTERROR(s) ((s >> (4+6+16)) & 63)
static int sslconns = 0;
void ssl_sock_infocbk(const SSL *ssl, int where, int ret)
{
struct connection *conn = (struct connection *)SSL_get_app_data(ssl);
(void)ret; /* shut gcc stupid warning */
if (where & SSL_CB_HANDSHAKE_START) {
/* Disable renegotiation (CVE-2009-3555) */
if (conn->flags & CO_FL_CONNECTED) {
conn->flags |= CO_FL_ERROR;
conn->err_code = CO_ER_SSL_RENEG;
}
}
}
/* Callback is called for each certificate of the chain during a verify
ok is set to 1 if preverify detect no error on current certificate.
Returns 0 to break the handshake, 1 otherwise. */
int ssl_sock_verifycbk(int ok, X509_STORE_CTX *x_store)
{
SSL *ssl;
struct connection *conn;
int err, depth;
ssl = X509_STORE_CTX_get_ex_data(x_store, SSL_get_ex_data_X509_STORE_CTX_idx());
conn = (struct connection *)SSL_get_app_data(ssl);
conn->xprt_st |= SSL_SOCK_ST_FL_VERIFY_DONE;
if (ok) /* no errors */
return ok;
depth = X509_STORE_CTX_get_error_depth(x_store);
err = X509_STORE_CTX_get_error(x_store);
/* check if CA error needs to be ignored */
if (depth > 0) {
if (!SSL_SOCK_ST_TO_CA_ERROR(conn->xprt_st)) {
conn->xprt_st |= SSL_SOCK_CA_ERROR_TO_ST(err);
conn->xprt_st |= SSL_SOCK_CAEDEPTH_TO_ST(depth);
}
if (objt_listener(conn->target)->bind_conf->ca_ignerr & (1ULL << err)) {
ERR_clear_error();
return 1;
}
conn->err_code = CO_ER_SSL_CA_FAIL;
return 0;
}
if (!SSL_SOCK_ST_TO_CRTERROR(conn->xprt_st))
conn->xprt_st |= SSL_SOCK_CRTERROR_TO_ST(err);
/* check if certificate error needs to be ignored */
if (objt_listener(conn->target)->bind_conf->crt_ignerr & (1ULL << err)) {
ERR_clear_error();
return 1;
}
conn->err_code = CO_ER_SSL_CRT_FAIL;
return 0;
}
#ifdef OPENSSL_NPN_NEGOTIATED
/* This callback is used so that the server advertises the list of
* negociable protocols for NPN.
*/
static int ssl_sock_advertise_npn_protos(SSL *s, const unsigned char **data,
unsigned int *len, void *arg)
{
struct bind_conf *conf = arg;
*data = (const unsigned char *)conf->npn_str;
*len = conf->npn_len;
return SSL_TLSEXT_ERR_OK;
}
#endif
#ifdef OPENSSL_ALPN_NEGOTIATED
/* This callback is used so that the server advertises the list of
* negociable protocols for ALPN.
*/
static int ssl_sock_advertise_alpn_protos(SSL *s, const unsigned char **data,
unsigned int *len, void *arg)
{
struct bind_conf *conf = arg;
*data = (const unsigned char *)conf->alpn_str;
*len = conf->alpn_len;
return SSL_TLSEXT_ERR_OK;
}
#endif
#ifdef SSL_CTRL_SET_TLSEXT_HOSTNAME
/* Sets the SSL ctx of <ssl> to match the advertised server name. Returns a
* warning when no match is found, which implies the default (first) cert
* will keep being used.
*/
static int ssl_sock_switchctx_cbk(SSL *ssl, int *al, struct bind_conf *s)
{
const char *servername;
const char *wildp = NULL;
struct ebmb_node *node;
int i;
(void)al; /* shut gcc stupid warning */
servername = SSL_get_servername(ssl, TLSEXT_NAMETYPE_host_name);
if (!servername) {
if (s->strict_sni)
return SSL_TLSEXT_ERR_ALERT_FATAL;
else
return SSL_TLSEXT_ERR_NOACK;
}
for (i = 0; i < trash.size; i++) {
if (!servername[i])
break;
trash.str[i] = tolower(servername[i]);
if (!wildp && (trash.str[i] == '.'))
wildp = &trash.str[i];
}
trash.str[i] = 0;
/* lookup in full qualified names */
node = ebst_lookup(&s->sni_ctx, trash.str);
if (!node) {
if (!wildp) {
if (s->strict_sni)
return SSL_TLSEXT_ERR_ALERT_FATAL;
else
return SSL_TLSEXT_ERR_ALERT_WARNING;
}
/* lookup in full wildcards names */
node = ebst_lookup(&s->sni_w_ctx, wildp);
if (!node) {
if (s->strict_sni)
return SSL_TLSEXT_ERR_ALERT_FATAL;
else
return SSL_TLSEXT_ERR_ALERT_WARNING;
}
}
/* switch ctx */
SSL_set_SSL_CTX(ssl, container_of(node, struct sni_ctx, name)->ctx);
return SSL_TLSEXT_ERR_OK;
}
#endif /* SSL_CTRL_SET_TLSEXT_HOSTNAME */
#ifndef OPENSSL_NO_DH
/* Loads Diffie-Hellman parameter from a file. Returns 1 if loaded, else -1
if an error occured, and 0 if parameter not found. */
int ssl_sock_load_dh_params(SSL_CTX *ctx, const char *file)
{
int ret = -1;
BIO *in;
DH *dh = NULL;
in = BIO_new(BIO_s_file());
if (in == NULL)
goto end;
if (BIO_read_filename(in, file) <= 0)
goto end;
dh = PEM_read_bio_DHparams(in, NULL, ctx->default_passwd_callback, ctx->default_passwd_callback_userdata);
if (dh) {
SSL_CTX_set_tmp_dh(ctx, dh);
ret = 1;
goto end;
}
ret = 0; /* DH params not found */
/* Clear openssl global errors stack */
ERR_clear_error();
end:
if (dh)
DH_free(dh);
if (in)
BIO_free(in);
return ret;
}
#endif
int ssl_sock_add_cert_sni(SSL_CTX *ctx, struct bind_conf *s, char *name, int len, int order)
{
struct sni_ctx *sc;
int wild = 0;
int j;
if (len) {
if (*name == '*') {
wild = 1;
name++;
len--;
}
sc = malloc(sizeof(struct sni_ctx) + len + 1);
for (j = 0; j < len; j++)
sc->name.key[j] = tolower(name[j]);
sc->name.key[len] = 0;
sc->order = order++;
sc->ctx = ctx;
if (wild)
ebst_insert(&s->sni_w_ctx, &sc->name);
else
ebst_insert(&s->sni_ctx, &sc->name);
}
return order;
}
/* Loads a certificate key and CA chain from a file. Returns 0 on error, -1 if
* an early error happens and the caller must call SSL_CTX_free() by itelf.
*/
int ssl_sock_load_cert_chain_file(SSL_CTX *ctx, const char *file, struct bind_conf *s, char *sni_filter)
{
BIO *in;
X509 *x = NULL, *ca;
int i, len, err;
int ret = -1;
int order = 0;
X509_NAME *xname;
char *str;
#ifdef SSL_CTRL_SET_TLSEXT_HOSTNAME
STACK_OF(GENERAL_NAME) *names;
#endif
in = BIO_new(BIO_s_file());
if (in == NULL)
goto end;
if (BIO_read_filename(in, file) <= 0)
goto end;
x = PEM_read_bio_X509_AUX(in, NULL, ctx->default_passwd_callback, ctx->default_passwd_callback_userdata);
if (x == NULL)
goto end;
if (sni_filter) {
while (*sni_filter) {
while (isspace(*sni_filter))
sni_filter++;
str = sni_filter;
while (!isspace(*sni_filter) && *sni_filter)
sni_filter++;
len = sni_filter - str;
order = ssl_sock_add_cert_sni(ctx, s, str, len, order);
}
}
else {
#ifdef SSL_CTRL_SET_TLSEXT_HOSTNAME
names = X509_get_ext_d2i(x, NID_subject_alt_name, NULL, NULL);
if (names) {
for (i = 0; i < sk_GENERAL_NAME_num(names); i++) {
GENERAL_NAME *name = sk_GENERAL_NAME_value(names, i);
if (name->type == GEN_DNS) {
if (ASN1_STRING_to_UTF8((unsigned char **)&str, name->d.dNSName) >= 0) {
len = strlen(str);
order = ssl_sock_add_cert_sni(ctx, s, str, len, order);
OPENSSL_free(str);
}
}
}
sk_GENERAL_NAME_pop_free(names, GENERAL_NAME_free);
}
#endif /* SSL_CTRL_SET_TLSEXT_HOSTNAME */
xname = X509_get_subject_name(x);
i = -1;
while ((i = X509_NAME_get_index_by_NID(xname, NID_commonName, i)) != -1) {
X509_NAME_ENTRY *entry = X509_NAME_get_entry(xname, i);
if (ASN1_STRING_to_UTF8((unsigned char **)&str, entry->value) >= 0) {
len = strlen(str);
order = ssl_sock_add_cert_sni(ctx, s, str, len, order);
OPENSSL_free(str);
}
}
}
ret = 0; /* the caller must not free the SSL_CTX argument anymore */
if (!SSL_CTX_use_certificate(ctx, x))
goto end;
if (ctx->extra_certs != NULL) {
sk_X509_pop_free(ctx->extra_certs, X509_free);
ctx->extra_certs = NULL;
}
while ((ca = PEM_read_bio_X509(in, NULL, ctx->default_passwd_callback, ctx->default_passwd_callback_userdata))) {
if (!SSL_CTX_add_extra_chain_cert(ctx, ca)) {
X509_free(ca);
goto end;
}
}
err = ERR_get_error();
if (!err || (ERR_GET_LIB(err) == ERR_LIB_PEM && ERR_GET_REASON(err) == PEM_R_NO_START_LINE)) {
/* we successfully reached the last cert in the file */
ret = 1;
}
ERR_clear_error();
end:
if (x)
X509_free(x);
if (in)
BIO_free(in);
return ret;
}
static int ssl_sock_load_cert_file(const char *path, struct bind_conf *bind_conf, struct proxy *curproxy, char *sni_filter, char **err)
{
int ret;
SSL_CTX *ctx;
ctx = SSL_CTX_new(SSLv23_server_method());
if (!ctx) {
memprintf(err, "%sunable to allocate SSL context for cert '%s'.\n",
err && *err ? *err : "", path);
return 1;
}
if (SSL_CTX_use_PrivateKey_file(ctx, path, SSL_FILETYPE_PEM) <= 0) {
memprintf(err, "%sunable to load SSL private key from PEM file '%s'.\n",
err && *err ? *err : "", path);
SSL_CTX_free(ctx);
return 1;
}
ret = ssl_sock_load_cert_chain_file(ctx, path, bind_conf, sni_filter);
if (ret <= 0) {
memprintf(err, "%sunable to load SSL certificate from PEM file '%s'.\n",
err && *err ? *err : "", path);
if (ret < 0) /* serious error, must do that ourselves */
SSL_CTX_free(ctx);
return 1;
}
if (SSL_CTX_check_private_key(ctx) <= 0) {
memprintf(err, "%sinconsistencies between private key and certificate loaded from PEM file '%s'.\n",
err && *err ? *err : "", path);
return 1;
}
/* we must not free the SSL_CTX anymore below, since it's already in
* the tree, so it will be discovered and cleaned in time.
*/
#ifndef OPENSSL_NO_DH
ret = ssl_sock_load_dh_params(ctx, path);
if (ret < 0) {
if (err)
memprintf(err, "%sunable to load DH parameters from file '%s'.\n",
*err ? *err : "", path);
return 1;
}
#endif
#ifndef SSL_CTRL_SET_TLSEXT_HOSTNAME
if (bind_conf->default_ctx) {
memprintf(err, "%sthis version of openssl cannot load multiple SSL certificates.\n",
err && *err ? *err : "");
return 1;
}
#endif
if (!bind_conf->default_ctx)
bind_conf->default_ctx = ctx;
return 0;
}
int ssl_sock_load_cert(char *path, struct bind_conf *bind_conf, struct proxy *curproxy, char **err)
{
struct dirent *de;
DIR *dir;
struct stat buf;
char *end;
char fp[MAXPATHLEN+1];
int cfgerr = 0;
if (!(dir = opendir(path)))
return ssl_sock_load_cert_file(path, bind_conf, curproxy, NULL, err);
/* strip trailing slashes, including first one */
for (end = path + strlen(path) - 1; end >= path && *end == '/'; end--)
*end = 0;
while ((de = readdir(dir))) {
snprintf(fp, sizeof(fp), "%s/%s", path, de->d_name);
if (stat(fp, &buf) != 0) {
memprintf(err, "%sunable to stat SSL certificate from file '%s' : %s.\n",
err && *err ? *err : "", fp, strerror(errno));
cfgerr++;
continue;
}
if (!S_ISREG(buf.st_mode))
continue;
cfgerr += ssl_sock_load_cert_file(fp, bind_conf, curproxy, NULL, err);
}
closedir(dir);
return cfgerr;
}
/* Make sure openssl opens /dev/urandom before the chroot. The work is only
* done once. Zero is returned if the operation fails. No error is returned
* if the random is said as not implemented, because we expect that openssl
* will use another method once needed.
*/
static int ssl_initialize_random()
{
unsigned char random;
static int random_initialized = 0;
if (!random_initialized && RAND_bytes(&random, 1) != 0)
random_initialized = 1;
return random_initialized;
}
int ssl_sock_load_cert_list_file(char *file, struct bind_conf *bind_conf, struct proxy *curproxy, char **err)
{
char thisline[65536];
FILE *f;
int linenum = 0;
int cfgerr = 0;
if ((f = fopen(file, "r")) == NULL) {
memprintf(err, "cannot open file '%s' : %s", file, strerror(errno));
return 1;
}
while (fgets(thisline, sizeof(thisline), f) != NULL) {
int arg;
char *end;
char *args[MAX_LINE_ARGS + 1];
char *line = thisline;
linenum++;
end = line + strlen(line);
if (end-line == sizeof(thisline)-1 && *(end-1) != '\n') {
/* Check if we reached the limit and the last char is not \n.
* Watch out for the last line without the terminating '\n'!
*/
memprintf(err, "line %d too long in file '%s', limit is %d characters",
linenum, file, (int)sizeof(thisline)-1);
cfgerr = 1;
break;
}
/* skip leading spaces */
while (isspace(*line))
line++;
arg = 0;
args[arg] = line;
while (*line && arg < MAX_LINE_ARGS) {
if (*line == '#' || *line == '\n' || *line == '\r') {
/* end of string, end of loop */
*line = 0;
break;
}
else if (isspace(*line)) {
/* a non-escaped space is an argument separator */
*line++ = '\0';
while (isspace(*line))
line++;
args[++arg] = line;
}
else {
line++;
}
}
/* empty line */
if (!**args)
continue;
if (arg > 2) {
memprintf(err, "too many args on line %d in file '%s', only one SNI filter is supported (was '%s')",
linenum, file, args[2]);
cfgerr = 1;
break;
}
cfgerr = ssl_sock_load_cert_file(args[0], bind_conf, curproxy, arg > 1 ? args[1] : NULL, err);
if (cfgerr) {
memprintf(err, "error processing line %d in file '%s' : %s", linenum, file, *err);
break;
}
}
fclose(f);
return cfgerr;
}
#ifndef SSL_OP_CIPHER_SERVER_PREFERENCE /* needs OpenSSL >= 0.9.7 */
#define SSL_OP_CIPHER_SERVER_PREFERENCE 0
#endif
#ifndef SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION /* needs OpenSSL >= 0.9.7 */
#define SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION 0
#define SSL_renegotiate_pending(arg) 0
#endif
#ifndef SSL_OP_SINGLE_ECDH_USE /* needs OpenSSL >= 0.9.8 */
#define SSL_OP_SINGLE_ECDH_USE 0
#endif
#ifndef SSL_OP_NO_TICKET /* needs OpenSSL >= 0.9.8 */
#define SSL_OP_NO_TICKET 0
#endif
#ifndef SSL_OP_NO_COMPRESSION /* needs OpenSSL >= 0.9.9 */
#define SSL_OP_NO_COMPRESSION 0
#endif
#ifndef SSL_OP_NO_TLSv1_1 /* needs OpenSSL >= 1.0.1 */
#define SSL_OP_NO_TLSv1_1 0
#endif
#ifndef SSL_OP_NO_TLSv1_2 /* needs OpenSSL >= 1.0.1 */
#define SSL_OP_NO_TLSv1_2 0
#endif
#ifndef SSL_OP_SINGLE_DH_USE /* needs OpenSSL >= 0.9.6 */
#define SSL_OP_SINGLE_DH_USE 0
#endif
#ifndef SSL_OP_SINGLE_ECDH_USE /* needs OpenSSL >= 1.0.0 */
#define SSL_OP_SINGLE_ECDH_USE 0
#endif
#ifndef SSL_MODE_RELEASE_BUFFERS /* needs OpenSSL >= 1.0.0 */
#define SSL_MODE_RELEASE_BUFFERS 0
#endif
int ssl_sock_prepare_ctx(struct bind_conf *bind_conf, SSL_CTX *ctx, struct proxy *curproxy)
{
int cfgerr = 0;
int ssloptions =
SSL_OP_ALL | /* all known workarounds for bugs */
SSL_OP_NO_SSLv2 |
SSL_OP_NO_COMPRESSION |
SSL_OP_SINGLE_DH_USE |
SSL_OP_SINGLE_ECDH_USE |
SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION |
SSL_OP_CIPHER_SERVER_PREFERENCE;
int sslmode =
SSL_MODE_ENABLE_PARTIAL_WRITE |
SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER |
SSL_MODE_RELEASE_BUFFERS;
/* Make sure openssl opens /dev/urandom before the chroot */
if (!ssl_initialize_random()) {
Alert("OpenSSL random data generator initialization failed.\n");
cfgerr++;
}
if (bind_conf->ssl_options & BC_SSL_O_NO_SSLV3)
ssloptions |= SSL_OP_NO_SSLv3;
if (bind_conf->ssl_options & BC_SSL_O_NO_TLSV10)
ssloptions |= SSL_OP_NO_TLSv1;
if (bind_conf->ssl_options & BC_SSL_O_NO_TLSV11)
ssloptions |= SSL_OP_NO_TLSv1_1;
if (bind_conf->ssl_options & BC_SSL_O_NO_TLSV12)
ssloptions |= SSL_OP_NO_TLSv1_2;
if (bind_conf->ssl_options & BC_SSL_O_NO_TLS_TICKETS)
ssloptions |= SSL_OP_NO_TICKET;
if (bind_conf->ssl_options & BC_SSL_O_USE_SSLV3)
SSL_CTX_set_ssl_version(ctx, SSLv3_server_method());
if (bind_conf->ssl_options & BC_SSL_O_USE_TLSV10)
SSL_CTX_set_ssl_version(ctx, TLSv1_server_method());
#if SSL_OP_NO_TLSv1_1
if (bind_conf->ssl_options & BC_SSL_O_USE_TLSV11)
SSL_CTX_set_ssl_version(ctx, TLSv1_1_server_method());
#endif
#if SSL_OP_NO_TLSv1_2
if (bind_conf->ssl_options & BC_SSL_O_USE_TLSV12)
SSL_CTX_set_ssl_version(ctx, TLSv1_2_server_method());
#endif
SSL_CTX_set_options(ctx, ssloptions);
SSL_CTX_set_mode(ctx, sslmode);
SSL_CTX_set_verify(ctx, bind_conf->verify ? bind_conf->verify : SSL_VERIFY_NONE, ssl_sock_verifycbk);
if (bind_conf->verify & SSL_VERIFY_PEER) {
if (bind_conf->ca_file) {
/* load CAfile to verify */
if (!SSL_CTX_load_verify_locations(ctx, bind_conf->ca_file, NULL)) {
Alert("Proxy '%s': unable to load CA file '%s' for bind '%s' at [%s:%d].\n",
curproxy->id, bind_conf->ca_file, bind_conf->arg, bind_conf->file, bind_conf->line);
cfgerr++;
}
/* set CA names fo client cert request, function returns void */
SSL_CTX_set_client_CA_list(ctx, SSL_load_client_CA_file(bind_conf->ca_file));
}
#ifdef X509_V_FLAG_CRL_CHECK
if (bind_conf->crl_file) {
X509_STORE *store = SSL_CTX_get_cert_store(ctx);
if (!store || !X509_STORE_load_locations(store, bind_conf->crl_file, NULL)) {
Alert("Proxy '%s': unable to configure CRL file '%s' for bind '%s' at [%s:%d].\n",
curproxy->id, bind_conf->ca_file, bind_conf->arg, bind_conf->file, bind_conf->line);
cfgerr++;
}
else {
X509_STORE_set_flags(store, X509_V_FLAG_CRL_CHECK|X509_V_FLAG_CRL_CHECK_ALL);
}
}
#endif
ERR_clear_error();
}
if (global.tune.ssllifetime)
SSL_CTX_set_timeout(ctx, global.tune.ssllifetime);
shared_context_set_cache(ctx);
if (bind_conf->ciphers &&
!SSL_CTX_set_cipher_list(ctx, bind_conf->ciphers)) {
Alert("Proxy '%s': unable to set SSL cipher list to '%s' for bind '%s' at [%s:%d].\n",
curproxy->id, bind_conf->ciphers, bind_conf->arg, bind_conf->file, bind_conf->line);
cfgerr++;
}
SSL_CTX_set_info_callback(ctx, ssl_sock_infocbk);
#ifdef OPENSSL_NPN_NEGOTIATED
if (bind_conf->npn_str)
SSL_CTX_set_next_protos_advertised_cb(ctx, ssl_sock_advertise_npn_protos, bind_conf);
#endif
#ifdef OPENSSL_ALPN_NEGOTIATED
if (bind_conf->alpn_str)
SSL_CTX_set_alpn_advertised_cb(ctx, ssl_sock_advertise_alpn_protos, bind_conf);
#endif
#ifdef SSL_CTRL_SET_TLSEXT_HOSTNAME
SSL_CTX_set_tlsext_servername_callback(ctx, ssl_sock_switchctx_cbk);
SSL_CTX_set_tlsext_servername_arg(ctx, bind_conf);
#endif
#if defined(SSL_CTX_set_tmp_ecdh) && !defined(OPENSSL_NO_ECDH)
{
int i;
EC_KEY *ecdh;
i = OBJ_sn2nid(bind_conf->ecdhe ? bind_conf->ecdhe : ECDHE_DEFAULT_CURVE);
if (!i || ((ecdh = EC_KEY_new_by_curve_name(i)) == NULL)) {
Alert("Proxy '%s': unable to set elliptic named curve to '%s' for bind '%s' at [%s:%d].\n",
curproxy->id, bind_conf->ecdhe ? bind_conf->ecdhe : ECDHE_DEFAULT_CURVE,
bind_conf->arg, bind_conf->file, bind_conf->line);
cfgerr++;
}
else {
SSL_CTX_set_tmp_ecdh(ctx, ecdh);
EC_KEY_free(ecdh);
}
}
#endif
return cfgerr;
}
/* prepare ssl context from servers options. Returns an error count */
int ssl_sock_prepare_srv_ctx(struct server *srv, struct proxy *curproxy)
{
int cfgerr = 0;
int options =
SSL_OP_ALL | /* all known workarounds for bugs */
SSL_OP_NO_SSLv2 |
SSL_OP_NO_COMPRESSION;
int mode =
SSL_MODE_ENABLE_PARTIAL_WRITE |
SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER |
SSL_MODE_RELEASE_BUFFERS;
/* Make sure openssl opens /dev/urandom before the chroot */
if (!ssl_initialize_random()) {
Alert("OpenSSL random data generator initialization failed.\n");
cfgerr++;
}
/* Initiate SSL context for current server */
srv->ssl_ctx.reused_sess = NULL;
if (srv->use_ssl)
srv->xprt = &ssl_sock;
if (srv->check.use_ssl)
srv->check.xprt = &ssl_sock;
srv->ssl_ctx.ctx = SSL_CTX_new(SSLv23_client_method());
if (!srv->ssl_ctx.ctx) {
Alert("config : %s '%s', server '%s': unable to allocate ssl context.\n",
proxy_type_str(curproxy), curproxy->id,
srv->id);
cfgerr++;
return cfgerr;
}
if (srv->ssl_ctx.client_crt) {
if (SSL_CTX_use_PrivateKey_file(srv->ssl_ctx.ctx, srv->ssl_ctx.client_crt, SSL_FILETYPE_PEM) <= 0) {
Alert("config : %s '%s', server '%s': unable to load SSL private key from PEM file '%s'.\n",
proxy_type_str(curproxy), curproxy->id,
srv->id, srv->ssl_ctx.client_crt);
cfgerr++;
}
else if (SSL_CTX_use_certificate_chain_file(srv->ssl_ctx.ctx, srv->ssl_ctx.client_crt) <= 0) {
Alert("config : %s '%s', server '%s': unable to load ssl certificate from PEM file '%s'.\n",
proxy_type_str(curproxy), curproxy->id,
srv->id, srv->ssl_ctx.client_crt);
cfgerr++;
}
else if (SSL_CTX_check_private_key(srv->ssl_ctx.ctx) <= 0) {
Alert("config : %s '%s', server '%s': inconsistencies between private key and certificate loaded from PEM file '%s'.\n",
proxy_type_str(curproxy), curproxy->id,
srv->id, srv->ssl_ctx.client_crt);
cfgerr++;
}
}
if (srv->ssl_ctx.options & SRV_SSL_O_NO_SSLV3)
options |= SSL_OP_NO_SSLv3;
if (srv->ssl_ctx.options & SRV_SSL_O_NO_TLSV10)
options |= SSL_OP_NO_TLSv1;
if (srv->ssl_ctx.options & SRV_SSL_O_NO_TLSV11)
options |= SSL_OP_NO_TLSv1_1;
if (srv->ssl_ctx.options & SRV_SSL_O_NO_TLSV12)
options |= SSL_OP_NO_TLSv1_2;
if (srv->ssl_ctx.options & SRV_SSL_O_NO_TLS_TICKETS)
options |= SSL_OP_NO_TICKET;
if (srv->ssl_ctx.options & SRV_SSL_O_USE_SSLV3)
SSL_CTX_set_ssl_version(srv->ssl_ctx.ctx, SSLv3_client_method());
if (srv->ssl_ctx.options & SRV_SSL_O_USE_TLSV10)
SSL_CTX_set_ssl_version(srv->ssl_ctx.ctx, TLSv1_client_method());
#if SSL_OP_NO_TLSv1_1
if (srv->ssl_ctx.options & SRV_SSL_O_USE_TLSV11)
SSL_CTX_set_ssl_version(srv->ssl_ctx.ctx, TLSv1_1_client_method());
#endif
#if SSL_OP_NO_TLSv1_2
if (srv->ssl_ctx.options & SRV_SSL_O_USE_TLSV12)
SSL_CTX_set_ssl_version(srv->ssl_ctx.ctx, TLSv1_2_client_method());
#endif
SSL_CTX_set_options(srv->ssl_ctx.ctx, options);
SSL_CTX_set_mode(srv->ssl_ctx.ctx, mode);
SSL_CTX_set_verify(srv->ssl_ctx.ctx, srv->ssl_ctx.verify ? srv->ssl_ctx.verify : SSL_VERIFY_NONE, NULL);
if (srv->ssl_ctx.verify & SSL_VERIFY_PEER) {
if (srv->ssl_ctx.ca_file) {
/* load CAfile to verify */
if (!SSL_CTX_load_verify_locations(srv->ssl_ctx.ctx, srv->ssl_ctx.ca_file, NULL)) {
Alert("Proxy '%s', server '%s' |%s:%d] unable to load CA file '%s'.\n",
curproxy->id, srv->id,
srv->conf.file, srv->conf.line, srv->ssl_ctx.ca_file);
cfgerr++;
}
}
#ifdef X509_V_FLAG_CRL_CHECK
if (srv->ssl_ctx.crl_file) {
X509_STORE *store = SSL_CTX_get_cert_store(srv->ssl_ctx.ctx);
if (!store || !X509_STORE_load_locations(store, srv->ssl_ctx.crl_file, NULL)) {
Alert("Proxy '%s', server '%s' |%s:%d] unable to configure CRL file '%s'.\n",
curproxy->id, srv->id,
srv->conf.file, srv->conf.line, srv->ssl_ctx.crl_file);
cfgerr++;
}
else {
X509_STORE_set_flags(store, X509_V_FLAG_CRL_CHECK|X509_V_FLAG_CRL_CHECK_ALL);
}
}
#endif
}
if (global.tune.ssllifetime)
SSL_CTX_set_timeout(srv->ssl_ctx.ctx, global.tune.ssllifetime);
SSL_CTX_set_session_cache_mode(srv->ssl_ctx.ctx, SSL_SESS_CACHE_OFF);
if (srv->ssl_ctx.ciphers &&
!SSL_CTX_set_cipher_list(srv->ssl_ctx.ctx, srv->ssl_ctx.ciphers)) {
Alert("Proxy '%s', server '%s' [%s:%d] : unable to set SSL cipher list to '%s'.\n",
curproxy->id, srv->id,
srv->conf.file, srv->conf.line, srv->ssl_ctx.ciphers);
cfgerr++;
}
return cfgerr;
}
/* Walks down the two trees in bind_conf and prepares all certs. The pointer may
* be NULL, in which case nothing is done. Returns the number of errors
* encountered.
*/
int ssl_sock_prepare_all_ctx(struct bind_conf *bind_conf, struct proxy *px)
{
struct ebmb_node *node;
struct sni_ctx *sni;
int err = 0;
if (!bind_conf || !bind_conf->is_ssl)
return 0;
node = ebmb_first(&bind_conf->sni_ctx);
while (node) {
sni = ebmb_entry(node, struct sni_ctx, name);
if (!sni->order) /* only initialize the CTX on its first occurrence */
err += ssl_sock_prepare_ctx(bind_conf, sni->ctx, px);
node = ebmb_next(node);
}
node = ebmb_first(&bind_conf->sni_w_ctx);
while (node) {
sni = ebmb_entry(node, struct sni_ctx, name);
if (!sni->order) /* only initialize the CTX on its first occurrence */
err += ssl_sock_prepare_ctx(bind_conf, sni->ctx, px);
node = ebmb_next(node);
}
return err;
}
/* Walks down the two trees in bind_conf and frees all the certs. The pointer may
* be NULL, in which case nothing is done. The default_ctx is nullified too.
*/
void ssl_sock_free_all_ctx(struct bind_conf *bind_conf)
{
struct ebmb_node *node, *back;
struct sni_ctx *sni;
if (!bind_conf || !bind_conf->is_ssl)
return;
node = ebmb_first(&bind_conf->sni_ctx);
while (node) {
sni = ebmb_entry(node, struct sni_ctx, name);
back = ebmb_next(node);
ebmb_delete(node);
if (!sni->order) /* only free the CTX on its first occurrence */
SSL_CTX_free(sni->ctx);
free(sni);
node = back;
}
node = ebmb_first(&bind_conf->sni_w_ctx);
while (node) {
sni = ebmb_entry(node, struct sni_ctx, name);
back = ebmb_next(node);
ebmb_delete(node);
if (!sni->order) /* only free the CTX on its first occurrence */
SSL_CTX_free(sni->ctx);
free(sni);
node = back;
}
bind_conf->default_ctx = NULL;
}
/*
* This function is called if SSL * context is not yet allocated. The function
* is designed to be called before any other data-layer operation and sets the
* handshake flag on the connection. It is safe to call it multiple times.
* It returns 0 on success and -1 in error case.
*/
static int ssl_sock_init(struct connection *conn)
{
/* already initialized */
if (conn->xprt_ctx)
return 0;
if (global.maxsslconn && sslconns >= global.maxsslconn) {
conn->err_code = CO_ER_SSL_TOO_MANY;
return -1;
}
/* If it is in client mode initiate SSL session
in connect state otherwise accept state */
if (objt_server(conn->target)) {
/* Alloc a new SSL session ctx */
conn->xprt_ctx = SSL_new(objt_server(conn->target)->ssl_ctx.ctx);
if (!conn->xprt_ctx) {
conn->err_code = CO_ER_SSL_NO_MEM;
return -1;
}
SSL_set_connect_state(conn->xprt_ctx);
if (objt_server(conn->target)->ssl_ctx.reused_sess)
SSL_set_session(conn->xprt_ctx, objt_server(conn->target)->ssl_ctx.reused_sess);
/* set fd on SSL session context */
SSL_set_fd(conn->xprt_ctx, conn->t.sock.fd);
/* leave init state and start handshake */
conn->flags |= CO_FL_SSL_WAIT_HS | CO_FL_WAIT_L6_CONN;
sslconns++;
return 0;
}
else if (objt_listener(conn->target)) {
/* Alloc a new SSL session ctx */
conn->xprt_ctx = SSL_new(objt_listener(conn->target)->bind_conf->default_ctx);
if (!conn->xprt_ctx) {
conn->err_code = CO_ER_SSL_NO_MEM;
return -1;
}
SSL_set_accept_state(conn->xprt_ctx);
/* set fd on SSL session context */
SSL_set_fd(conn->xprt_ctx, conn->t.sock.fd);
/* set connection pointer */
SSL_set_app_data(conn->xprt_ctx, conn);
/* leave init state and start handshake */
conn->flags |= CO_FL_SSL_WAIT_HS | CO_FL_WAIT_L6_CONN;
sslconns++;
return 0;
}
/* don't know how to handle such a target */
conn->err_code = CO_ER_SSL_NO_TARGET;
return -1;
}
/* This is the callback which is used when an SSL handshake is pending. It
* updates the FD status if it wants some polling before being called again.
* It returns 0 if it fails in a fatal way or needs to poll to go further,
* otherwise it returns non-zero and removes itself from the connection's
* flags (the bit is provided in <flag> by the caller).
*/
int ssl_sock_handshake(struct connection *conn, unsigned int flag)
{
int ret;
if (!conn->xprt_ctx)
goto out_error;
/* If we use SSL_do_handshake to process a reneg initiated by
* the remote peer, it sometimes returns SSL_ERROR_SSL.
* Usually SSL_write and SSL_read are used and process implicitly
* the reneg handshake.
* Here we use SSL_peek as a workaround for reneg.
*/
if ((conn->flags & CO_FL_CONNECTED) && SSL_renegotiate_pending(conn->xprt_ctx)) {
char c;
ret = SSL_peek(conn->xprt_ctx, &c, 1);
if (ret <= 0) {
/* handshake may have not been completed, let's find why */
ret = SSL_get_error(conn->xprt_ctx, ret);
if (ret == SSL_ERROR_WANT_WRITE) {
/* SSL handshake needs to write, L4 connection may not be ready */
__conn_sock_stop_recv(conn);
__conn_sock_poll_send(conn);
return 0;
}
else if (ret == SSL_ERROR_WANT_READ) {
/* handshake may have been completed but we have
* no more data to read.
*/
if (!SSL_renegotiate_pending(conn->xprt_ctx)) {
ret = 1;
goto reneg_ok;
}
/* SSL handshake needs to read, L4 connection is ready */
if (conn->flags & CO_FL_WAIT_L4_CONN)
conn->flags &= ~CO_FL_WAIT_L4_CONN;
__conn_sock_stop_send(conn);
__conn_sock_poll_recv(conn);
return 0;
}
else if (ret == SSL_ERROR_SYSCALL) {
/* if errno is null, then connection was successfully established */
if (!errno && conn->flags & CO_FL_WAIT_L4_CONN)
conn->flags &= ~CO_FL_WAIT_L4_CONN;
if (!conn->err_code) {
if (!((SSL *)conn->xprt_ctx)->packet_length)
if (!errno)
conn->err_code = CO_ER_SSL_EMPTY;
else
conn->err_code = CO_ER_SSL_ABORT;
else
conn->err_code = CO_ER_SSL_HANDSHAKE;
}
goto out_error;
}
else {
/* Fail on all other handshake errors */
/* Note: OpenSSL may leave unread bytes in the socket's
* buffer, causing an RST to be emitted upon close() on
* TCP sockets. We first try to drain possibly pending
* data to avoid this as much as possible.
*/
ret = recv(conn->t.sock.fd, trash.str, trash.size, MSG_NOSIGNAL|MSG_DONTWAIT);
if (!conn->err_code)
conn->err_code = CO_ER_SSL_HANDSHAKE;
goto out_error;
}
}
/* read some data: consider handshake completed */
goto reneg_ok;
}
ret = SSL_do_handshake(conn->xprt_ctx);
if (ret != 1) {
/* handshake did not complete, let's find why */
ret = SSL_get_error(conn->xprt_ctx, ret);
if (ret == SSL_ERROR_WANT_WRITE) {
/* SSL handshake needs to write, L4 connection may not be ready */
__conn_sock_stop_recv(conn);
__conn_sock_poll_send(conn);
return 0;
}
else if (ret == SSL_ERROR_WANT_READ) {
/* SSL handshake needs to read, L4 connection is ready */
if (conn->flags & CO_FL_WAIT_L4_CONN)
conn->flags &= ~CO_FL_WAIT_L4_CONN;
__conn_sock_stop_send(conn);
__conn_sock_poll_recv(conn);
return 0;
}
else if (ret == SSL_ERROR_SYSCALL) {
/* if errno is null, then connection was successfully established */
if (!errno && conn->flags & CO_FL_WAIT_L4_CONN)
conn->flags &= ~CO_FL_WAIT_L4_CONN;
if (!((SSL *)conn->xprt_ctx)->packet_length)
if (!errno)
conn->err_code = CO_ER_SSL_EMPTY;
else
conn->err_code = CO_ER_SSL_ABORT;
else
conn->err_code = CO_ER_SSL_HANDSHAKE;
goto out_error;
}
else {
/* Fail on all other handshake errors */
/* Note: OpenSSL may leave unread bytes in the socket's
* buffer, causing an RST to be emitted upon close() on
* TCP sockets. We first try to drain possibly pending
* data to avoid this as much as possible.
*/
ret = recv(conn->t.sock.fd, trash.str, trash.size, MSG_NOSIGNAL|MSG_DONTWAIT);
if (!conn->err_code)
conn->err_code = CO_ER_SSL_HANDSHAKE;
goto out_error;
}
}
reneg_ok:
/* Handshake succeeded */
if (objt_server(conn->target)) {
if (!SSL_session_reused(conn->xprt_ctx)) {
/* check if session was reused, if not store current session on server for reuse */
if (objt_server(conn->target)->ssl_ctx.reused_sess)
SSL_SESSION_free(objt_server(conn->target)->ssl_ctx.reused_sess);
objt_server(conn->target)->ssl_ctx.reused_sess = SSL_get1_session(conn->xprt_ctx);
}
}
/* The connection is now established at both layers, it's time to leave */
conn->flags &= ~(flag | CO_FL_WAIT_L4_CONN | CO_FL_WAIT_L6_CONN);
return 1;
out_error:
/* Clear openssl global errors stack */
ERR_clear_error();
/* free resumed session if exists */
if (objt_server(conn->target) && objt_server(conn->target)->ssl_ctx.reused_sess) {
SSL_SESSION_free(objt_server(conn->target)->ssl_ctx.reused_sess);
objt_server(conn->target)->ssl_ctx.reused_sess = NULL;
}
/* Fail on all other handshake errors */
conn->flags |= CO_FL_ERROR;
if (!conn->err_code)
conn->err_code = CO_ER_SSL_HANDSHAKE;
return 0;
}
/* Receive up to <count> bytes from connection <conn>'s socket and store them
* into buffer <buf>. The caller must ensure that <count> is always smaller
* than the buffer's size. Only one call to recv() is performed, unless the
* buffer wraps, in which case a second call may be performed. The connection's
* flags are updated with whatever special event is detected (error, read0,
* empty). The caller is responsible for taking care of those events and
* avoiding the call if inappropriate. The function does not call the
* connection's polling update function, so the caller is responsible for this.
*/
static int ssl_sock_to_buf(struct connection *conn, struct buffer *buf, int count)
{
int ret, done = 0;
int try = count;
if (!conn->xprt_ctx)
goto out_error;
if (conn->flags & CO_FL_HANDSHAKE)
/* a handshake was requested */
return 0;
/* compute the maximum block size we can read at once. */
if (buffer_empty(buf)) {
/* let's realign the buffer to optimize I/O */
buf->p = buf->data;
}
else if (buf->data + buf->o < buf->p &&
buf->p + buf->i < buf->data + buf->size) {
/* remaining space wraps at the end, with a moving limit */
if (try > buf->data + buf->size - (buf->p + buf->i))
try = buf->data + buf->size - (buf->p + buf->i);
}
/* read the largest possible block. For this, we perform only one call
* to recv() unless the buffer wraps and we exactly fill the first hunk,
* in which case we accept to do it once again. A new attempt is made on
* EINTR too.
*/
while (try) {
ret = SSL_read(conn->xprt_ctx, bi_end(buf), try);
if (conn->flags & CO_FL_ERROR) {
/* CO_FL_ERROR may be set by ssl_sock_infocbk */
goto out_error;
}
if (ret > 0) {
buf->i += ret;
done += ret;
if (ret < try)
break;
count -= ret;
try = count;
}
else if (ret == 0) {
ret = SSL_get_error(conn->xprt_ctx, ret);
if (ret != SSL_ERROR_ZERO_RETURN) {
/* error on protocol or underlying transport */
if ((ret != SSL_ERROR_SYSCALL)
|| (errno && (errno != EAGAIN)))
conn->flags |= CO_FL_ERROR;
/* Clear openssl global errors stack */
ERR_clear_error();
}
goto read0;
}
else {
ret = SSL_get_error(conn->xprt_ctx, ret);
if (ret == SSL_ERROR_WANT_WRITE) {
/* handshake is running, and it needs to enable write */
conn->flags |= CO_FL_SSL_WAIT_HS;
__conn_sock_want_send(conn);
break;
}
else if (ret == SSL_ERROR_WANT_READ) {
if (SSL_renegotiate_pending(conn->xprt_ctx)) {
/* handshake is running, and it may need to re-enable read */
conn->flags |= CO_FL_SSL_WAIT_HS;
__conn_sock_want_recv(conn);
break;
}
/* we need to poll for retry a read later */
__conn_data_poll_recv(conn);
break;
}
/* otherwise it's a real error */
goto out_error;
}
}
return done;
read0:
conn_sock_read0(conn);
return done;
out_error:
/* Clear openssl global errors stack */
ERR_clear_error();
conn->flags |= CO_FL_ERROR;
return done;
}
/* Send all pending bytes from buffer <buf> to connection <conn>'s socket.
* <flags> may contain MSG_MORE to make the system hold on without sending
* data too fast, but this flag is ignored at the moment.
* Only one call to send() is performed, unless the buffer wraps, in which case
* a second call may be performed. The connection's flags are updated with
* whatever special event is detected (error, empty). The caller is responsible
* for taking care of those events and avoiding the call if inappropriate. The
* function does not call the connection's polling update function, so the caller
* is responsible for this.
*/
static int ssl_sock_from_buf(struct connection *conn, struct buffer *buf, int flags)
{
int ret, try, done;
done = 0;
if (!conn->xprt_ctx)
goto out_error;
if (conn->flags & CO_FL_HANDSHAKE)
/* a handshake was requested */
return 0;
/* send the largest possible block. For this we perform only one call
* to send() unless the buffer wraps and we exactly fill the first hunk,
* in which case we accept to do it once again.
*/
while (buf->o) {
try = buf->o;
if (global.tune.ssl_max_record && try > global.tune.ssl_max_record)
try = global.tune.ssl_max_record;
/* outgoing data may wrap at the end */
if (buf->data + try > buf->p)
try = buf->data + try - buf->p;
ret = SSL_write(conn->xprt_ctx, bo_ptr(buf), try);
if (conn->flags & CO_FL_ERROR) {
/* CO_FL_ERROR may be set by ssl_sock_infocbk */
goto out_error;
}
if (ret > 0) {
buf->o -= ret;
done += ret;
if (likely(buffer_empty(buf)))
/* optimize data alignment in the buffer */
buf->p = buf->data;
/* if the system buffer is full, don't insist */
if (ret < try)
break;
}
else {
ret = SSL_get_error(conn->xprt_ctx, ret);
if (ret == SSL_ERROR_WANT_WRITE) {
if (SSL_renegotiate_pending(conn->xprt_ctx)) {
/* handshake is running, and it may need to re-enable write */
conn->flags |= CO_FL_SSL_WAIT_HS;
__conn_sock_want_send(conn);
break;
}
/* we need to poll to retry a write later */
__conn_data_poll_send(conn);
break;
}
else if (ret == SSL_ERROR_WANT_READ) {
/* handshake is running, and it needs to enable read */
conn->flags |= CO_FL_SSL_WAIT_HS;
__conn_sock_want_recv(conn);
break;
}
goto out_error;
}
}
return done;
out_error:
/* Clear openssl global errors stack */
ERR_clear_error();
conn->flags |= CO_FL_ERROR;
return done;
}
static void ssl_sock_close(struct connection *conn) {
if (conn->xprt_ctx) {
SSL_free(conn->xprt_ctx);
conn->xprt_ctx = NULL;
sslconns--;
}
}
/* This function tries to perform a clean shutdown on an SSL connection, and in
* any case, flags the connection as reusable if no handshake was in progress.
*/
static void ssl_sock_shutw(struct connection *conn, int clean)
{
if (conn->flags & CO_FL_HANDSHAKE)
return;
/* no handshake was in progress, try a clean ssl shutdown */
if (clean && (SSL_shutdown(conn->xprt_ctx) <= 0)) {
/* Clear openssl global errors stack */
ERR_clear_error();
}
/* force flag on ssl to keep session in cache regardless shutdown result */
SSL_set_shutdown(conn->xprt_ctx, SSL_SENT_SHUTDOWN);
}
/* used for logging, may be changed for a sample fetch later */
const char *ssl_sock_get_cipher_name(struct connection *conn)
{
if (!conn->xprt && !conn->xprt_ctx)
return NULL;
return SSL_get_cipher_name(conn->xprt_ctx);
}
/* used for logging, may be changed for a sample fetch later */
const char *ssl_sock_get_proto_version(struct connection *conn)
{
if (!conn->xprt && !conn->xprt_ctx)
return NULL;
return SSL_get_version(conn->xprt_ctx);
}
/* Extract a serial from a cert, and copy it to a chunk.
* Returns 1 if serial is found and copied, 0 if no serial found and
* -1 if output is not large enough.
*/
static int
ssl_sock_get_serial(X509 *crt, struct chunk *out)
{
ASN1_INTEGER *serial;
serial = X509_get_serialNumber(crt);
if (!serial)
return 0;
if (out->size < serial->length)
return -1;
memcpy(out->str, serial->data, serial->length);
out->len = serial->length;
return 1;
}
/* Copy Date in ASN1_UTCTIME format in struct chunk out.
* Returns 1 if serial is found and copied, 0 if no valid time found
* and -1 if output is not large enough.
*/
static int
ssl_sock_get_time(ASN1_TIME *tm, struct chunk *out)
{
if (tm->type == V_ASN1_GENERALIZEDTIME) {
ASN1_GENERALIZEDTIME *gentm = (ASN1_GENERALIZEDTIME *)tm;
if (gentm->length < 12)
return 0;
if (gentm->data[0] != 0x32 || gentm->data[1] != 0x30)
return 0;
if (out->size < gentm->length-2)
return -1;
memcpy(out->str, gentm->data+2, gentm->length-2);
out->len = gentm->length-2;
return 1;
}
else if (tm->type == V_ASN1_UTCTIME) {
ASN1_UTCTIME *utctm = (ASN1_UTCTIME *)tm;
if (utctm->length < 10)
return 0;
if (utctm->data[0] >= 0x35)
return 0;
if (out->size < utctm->length)
return -1;
memcpy(out->str, utctm->data, utctm->length);
out->len = utctm->length;
return 1;
}
return 0;
}
/* Extract an entry from a X509_NAME and copy its value to an output chunk.
* Returns 1 if entry found, 0 if entry not found, or -1 if output not large enough.
*/
static int
ssl_sock_get_dn_entry(X509_NAME *a, const struct chunk *entry, int pos, struct chunk *out)
{
X509_NAME_ENTRY *ne;
int i, j, n;
int cur = 0;
const char *s;
char tmp[128];
out->len = 0;
for (i = 0; i < sk_X509_NAME_ENTRY_num(a->entries); i++) {
if (pos < 0)
j = (sk_X509_NAME_ENTRY_num(a->entries)-1) - i;
else
j = i;
ne = sk_X509_NAME_ENTRY_value(a->entries, j);
n = OBJ_obj2nid(ne->object);
if ((n == NID_undef) || ((s = OBJ_nid2sn(n)) == NULL)) {
i2t_ASN1_OBJECT(tmp, sizeof(tmp), ne->object);
s = tmp;
}
if (chunk_strcasecmp(entry, s) != 0)
continue;
if (pos < 0)
cur--;
else
cur++;
if (cur != pos)
continue;
if (ne->value->length > out->size)
return -1;
memcpy(out->str, ne->value->data, ne->value->length);
out->len = ne->value->length;
return 1;
}
return 0;
}
/* Extract and format full DN from a X509_NAME and copy result into a chunk
* Returns 1 if dn entries exits, 0 if no dn entry found or -1 if output is not large enough.
*/
static int
ssl_sock_get_dn_oneline(X509_NAME *a, struct chunk *out)
{
X509_NAME_ENTRY *ne;
int i, n, ln;
int l = 0;
const char *s;
char *p;
char tmp[128];
out->len = 0;
p = out->str;
for (i = 0; i < sk_X509_NAME_ENTRY_num(a->entries); i++) {
ne = sk_X509_NAME_ENTRY_value(a->entries, i);
n = OBJ_obj2nid(ne->object);
if ((n == NID_undef) || ((s = OBJ_nid2sn(n)) == NULL)) {
i2t_ASN1_OBJECT(tmp, sizeof(tmp), ne->object);
s = tmp;
}
ln = strlen(s);
l += 1 + ln + 1 + ne->value->length;
if (l > out->size)
return -1;
out->len = l;
*(p++)='/';
memcpy(p, s, ln);
p += ln;
*(p++)='=';
memcpy(p, ne->value->data, ne->value->length);
p += ne->value->length;
}
if (!out->len)
return 0;
return 1;
}
/***** Below are some sample fetching functions for ACL/patterns *****/
/* boolean, returns true if client cert was present */
static int
smp_fetch_ssl_fc_has_crt(struct proxy *px, struct session *l4, void *l7, unsigned int opt,
const struct arg *args, struct sample *smp)
{
if (!l4 || l4->si[0].conn->xprt != &ssl_sock)
return 0;
if (!(l4->si[0].conn->flags & CO_FL_CONNECTED)) {
smp->flags |= SMP_F_MAY_CHANGE;
return 0;
}
smp->flags = 0;
smp->type = SMP_T_BOOL;
smp->data.uint = SSL_SOCK_ST_FL_VERIFY_DONE & l4->si[0].conn->xprt_st ? 1 : 0;
return 1;
}
/* bin, returns serial in a binary chunk */
static int
smp_fetch_ssl_c_serial(struct proxy *px, struct session *l4, void *l7, unsigned int opt,
const struct arg *args, struct sample *smp)
{
X509 *crt = NULL;
int ret = 0;
struct chunk *smp_trash;
if (!l4 || l4->si[0].conn->xprt != &ssl_sock)
return 0;
if (!(l4->si[0].conn->flags & CO_FL_CONNECTED)) {
smp->flags |= SMP_F_MAY_CHANGE;
return 0;
}
/* SSL_get_peer_certificate, it increase X509 * ref count */
crt = SSL_get_peer_certificate(l4->si[0].conn->xprt_ctx);
if (!crt)
goto out;
smp_trash = get_trash_chunk();
if (ssl_sock_get_serial(crt, smp_trash) <= 0)
goto out;
smp->data.str = *smp_trash;
smp->type = SMP_T_BIN;
ret = 1;
out:
if (crt)
X509_free(crt);
return ret;
}
/*str, returns notafter date in ASN1_UTCTIME format */
static int
smp_fetch_ssl_c_notafter(struct proxy *px, struct session *l4, void *l7, unsigned int opt,
const struct arg *args, struct sample *smp)
{
X509 *crt = NULL;
int ret = 0;
struct chunk *smp_trash;
if (!l4 || l4->si[0].conn->xprt != &ssl_sock)
return 0;
if (!(l4->si[0].conn->flags & CO_FL_CONNECTED)) {
smp->flags |= SMP_F_MAY_CHANGE;
return 0;
}
/* SSL_get_peer_certificate, it increase X509 * ref count */
crt = SSL_get_peer_certificate(l4->si[0].conn->xprt_ctx);
if (!crt)
goto out;
smp_trash = get_trash_chunk();
if (ssl_sock_get_time(X509_get_notAfter(crt), smp_trash) <= 0)
goto out;
smp->data.str = *smp_trash;
smp->type = SMP_T_STR;
ret = 1;
out:
if (crt)
X509_free(crt);
return ret;
}
/* str, returns a string of a formatted full dn \C=..\O=..\OU=.. \CN=.. */
static int
smp_fetch_ssl_c_i_dn(struct proxy *px, struct session *l4, void *l7, unsigned int opt,
const struct arg *args, struct sample *smp)
{
X509 *crt = NULL;
X509_NAME *name;
int ret = 0;
struct chunk *smp_trash;
if (!l4 || l4->si[0].conn->xprt != &ssl_sock)
return 0;
if (!(l4->si[0].conn->flags & CO_FL_CONNECTED)) {
smp->flags |= SMP_F_MAY_CHANGE;
return 0;
}
/* SSL_get_peer_certificate, it increase X509 * ref count */
crt = SSL_get_peer_certificate(l4->si[0].conn->xprt_ctx);
if (!crt)
goto out;
name = X509_get_issuer_name(crt);
if (!name)
goto out;
smp_trash = get_trash_chunk();
if (args && args[0].type == ARGT_STR) {
int pos = 1;
if (args[1].type == ARGT_SINT)
pos = args[1].data.sint;
else if (args[1].type == ARGT_UINT)
pos =(int)args[1].data.uint;
if (ssl_sock_get_dn_entry(name, &args[0].data.str, pos, smp_trash) <= 0)
goto out;
}
else if (ssl_sock_get_dn_oneline(name, smp_trash) <= 0)
goto out;
smp->type = SMP_T_STR;
smp->data.str = *smp_trash;
ret = 1;
out:
if (crt)
X509_free(crt);
return ret;
}
/*str, returns notbefore date in ASN1_UTCTIME format */
static int
smp_fetch_ssl_c_notbefore(struct proxy *px, struct session *l4, void *l7, unsigned int opt,
const struct arg *args, struct sample *smp)
{
X509 *crt = NULL;
int ret = 0;
struct chunk *smp_trash;
if (!l4 || l4->si[0].conn->xprt != &ssl_sock)
return 0;
if (!(l4->si[0].conn->flags & CO_FL_CONNECTED)) {
smp->flags |= SMP_F_MAY_CHANGE;
return 0;
}
/* SSL_get_peer_certificate, it increase X509 * ref count */
crt = SSL_get_peer_certificate(l4->si[0].conn->xprt_ctx);
if (!crt)
goto out;
smp_trash = get_trash_chunk();
if (ssl_sock_get_time(X509_get_notBefore(crt), smp_trash) <= 0)
goto out;
smp->data.str = *smp_trash;
smp->type = SMP_T_STR;
ret = 1;
out:
if (crt)
X509_free(crt);
return ret;
}
/* str, returns a string of a formatted full dn \C=..\O=..\OU=.. \CN=.. */
static int
smp_fetch_ssl_c_s_dn(struct proxy *px, struct session *l4, void *l7, unsigned int opt,
const struct arg *args, struct sample *smp)
{
X509 *crt = NULL;
X509_NAME *name;
int ret = 0;
struct chunk *smp_trash;
if (!l4 || l4->si[0].conn->xprt != &ssl_sock)
return 0;
if (!(l4->si[0].conn->flags & CO_FL_CONNECTED)) {
smp->flags |= SMP_F_MAY_CHANGE;
return 0;
}
/* SSL_get_peer_certificate, it increase X509 * ref count */
crt = SSL_get_peer_certificate(l4->si[0].conn->xprt_ctx);
if (!crt)
goto out;
name = X509_get_subject_name(crt);
if (!name)
goto out;
smp_trash = get_trash_chunk();
if (args && args[0].type == ARGT_STR) {
int pos = 1;
if (args[1].type == ARGT_SINT)
pos = args[1].data.sint;
else if (args[1].type == ARGT_UINT)
pos =(int)args[1].data.uint;
if (ssl_sock_get_dn_entry(name, &args[0].data.str, pos, smp_trash) <= 0)
goto out;
}
else if (ssl_sock_get_dn_oneline(name, smp_trash) <= 0)
goto out;
smp->type = SMP_T_STR;
smp->data.str = *smp_trash;
ret = 1;
out:
if (crt)
X509_free(crt);
return ret;
}
/* integer, returns true if current session use a client certificate */
static int
smp_fetch_ssl_c_used(struct proxy *px, struct session *l4, void *l7, unsigned int opt,
const struct arg *args, struct sample *smp)
{
X509 *crt;
if (!l4 || l4->si[0].conn->xprt != &ssl_sock)
return 0;
if (!(l4->si[0].conn->flags & CO_FL_CONNECTED)) {
smp->flags |= SMP_F_MAY_CHANGE;
return 0;
}
/* SSL_get_peer_certificate returns a ptr on allocated X509 struct */
crt = SSL_get_peer_certificate(l4->si[0].conn->xprt_ctx);
if (crt) {
X509_free(crt);
}
smp->type = SMP_T_BOOL;
smp->data.uint = (crt != NULL);
return 1;
}
/* integer, returns the client certificate version */
static int
smp_fetch_ssl_c_version(struct proxy *px, struct session *l4, void *l7, unsigned int opt,
const struct arg *args, struct sample *smp)
{
X509 *crt;
if (!l4 || l4->si[0].conn->xprt != &ssl_sock)
return 0;
if (!(l4->si[0].conn->flags & CO_FL_CONNECTED)) {
smp->flags |= SMP_F_MAY_CHANGE;
return 0;
}
/* SSL_get_peer_certificate returns a ptr on allocated X509 struct */
crt = SSL_get_peer_certificate(l4->si[0].conn->xprt_ctx);
if (!crt)
return 0;
smp->data.uint = (unsigned int)(1 + X509_get_version(crt));
X509_free(crt);
smp->type = SMP_T_UINT;
return 1;
}
/* str, returns the client certificate sig alg */
static int
smp_fetch_ssl_c_sig_alg(struct proxy *px, struct session *l4, void *l7, unsigned int opt,
const struct arg *args, struct sample *smp)
{
X509 *crt;
int nid;
if (!l4 || l4->si[0].conn->xprt != &ssl_sock)
return 0;
if (!(l4->si[0].conn->flags & CO_FL_CONNECTED)) {
smp->flags |= SMP_F_MAY_CHANGE;
return 0;
}
/* SSL_get_peer_certificate increase X509 * ref count */
crt = SSL_get_peer_certificate(l4->si[0].conn->xprt_ctx);
if (!crt)
return 0;
nid = OBJ_obj2nid((ASN1_OBJECT *)(crt->cert_info->signature->algorithm));
smp->data.str.str = (char *)OBJ_nid2sn(nid);
if (!smp->data.str.str)
return 0;
smp->type = SMP_T_CSTR;
smp->data.str.len = strlen(smp->data.str.str);
X509_free(crt);
return 1;
}
/* str, returns the client certificate key alg */
static int
smp_fetch_ssl_c_key_alg(struct proxy *px, struct session *l4, void *l7, unsigned int opt,
const struct arg *args, struct sample *smp)
{
X509 *crt;
int nid;
if (!l4 || l4->si[0].conn->xprt != &ssl_sock)
return 0;
if (!(l4->si[0].conn->flags & CO_FL_CONNECTED)) {
smp->flags |= SMP_F_MAY_CHANGE;
return 0;
}
/* SSL_get_peer_certificate increase X509 * ref count */
crt = SSL_get_peer_certificate(l4->si[0].conn->xprt_ctx);
if (!crt)
return 0;
nid = OBJ_obj2nid((ASN1_OBJECT *)(crt->cert_info->key->algor->algorithm));
smp->data.str.str = (char *)OBJ_nid2sn(nid);
if (!smp->data.str.str)
return 0;
smp->type = SMP_T_CSTR;
smp->data.str.len = strlen(smp->data.str.str);
X509_free(crt);
return 1;
}
/* boolean, returns true if front conn. transport layer is SSL */
static int
smp_fetch_ssl_fc(struct proxy *px, struct session *l4, void *l7, unsigned int opt,
const struct arg *args, struct sample *smp)
{
smp->type = SMP_T_BOOL;
smp->data.uint = (l4->si[0].conn->xprt == &ssl_sock);
return 1;
}
/* boolean, returns true if client present a SNI */
static int
smp_fetch_ssl_fc_has_sni(struct proxy *px, struct session *l4, void *l7, unsigned int opt,
const struct arg *args, struct sample *smp)
{
#ifdef SSL_CTRL_SET_TLSEXT_HOSTNAME
smp->type = SMP_T_BOOL;
smp->data.uint = (l4->si[0].conn->xprt == &ssl_sock) &&
l4->si[0].conn->xprt_ctx &&
SSL_get_servername(l4->si[0].conn->xprt_ctx, TLSEXT_NAMETYPE_host_name) != NULL;
return 1;
#else
return 0;
#endif
}
/* bin, returns serial in a binary chunk */
static int
smp_fetch_ssl_f_serial(struct proxy *px, struct session *l4, void *l7, unsigned int opt,
const struct arg *args, struct sample *smp)
{
X509 *crt = NULL;
int ret = 0;
struct chunk *smp_trash;
if (!l4 || l4->si[0].conn->xprt != &ssl_sock)
return 0;
if (!(l4->si[0].conn->flags & CO_FL_CONNECTED)) {
smp->flags |= SMP_F_MAY_CHANGE;
return 0;
}
crt = SSL_get_certificate(l4->si[0].conn->xprt_ctx);
if (!crt)
goto out;
smp_trash = get_trash_chunk();
if (ssl_sock_get_serial(crt, smp_trash) <= 0)
goto out;
smp->data.str = *smp_trash;
smp->type = SMP_T_BIN;
ret = 1;
out:
return ret;
}
/*str, returns notafter date in ASN1_UTCTIME format */
static int
smp_fetch_ssl_f_notafter(struct proxy *px, struct session *l4, void *l7, unsigned int opt,
const struct arg *args, struct sample *smp)
{
X509 *crt = NULL;
int ret = 0;
struct chunk *smp_trash;
if (!l4 || l4->si[0].conn->xprt != &ssl_sock)
return 0;
if (!(l4->si[0].conn->flags & CO_FL_CONNECTED)) {
smp->flags |= SMP_F_MAY_CHANGE;
return 0;
}
crt = SSL_get_certificate(l4->si[0].conn->xprt_ctx);
if (!crt)
goto out;
smp_trash = get_trash_chunk();
if (ssl_sock_get_time(X509_get_notAfter(crt), smp_trash) <= 0)
goto out;
smp->data.str = *smp_trash;
smp->type = SMP_T_STR;
ret = 1;
out:
return ret;
}
/*str, returns notbefore date in ASN1_UTCTIME format */
static int
smp_fetch_ssl_f_notbefore(struct proxy *px, struct session *l4, void *l7, unsigned int opt,
const struct arg *args, struct sample *smp)
{
X509 *crt = NULL;
int ret = 0;
struct chunk *smp_trash;
if (!l4 || l4->si[0].conn->xprt != &ssl_sock)
return 0;
if (!(l4->si[0].conn->flags & CO_FL_CONNECTED)) {
smp->flags |= SMP_F_MAY_CHANGE;
return 0;
}
crt = SSL_get_certificate(l4->si[0].conn->xprt_ctx);
if (!crt)
goto out;
smp_trash = get_trash_chunk();
if (ssl_sock_get_time(X509_get_notBefore(crt), smp_trash) <= 0)
goto out;
smp->data.str = *smp_trash;
smp->type = SMP_T_STR;
ret = 1;
out:
return ret;
}
/* integer, returns the frontend certificate version */
static int
smp_fetch_ssl_f_version(struct proxy *px, struct session *l4, void *l7, unsigned int opt,
const struct arg *args, struct sample *smp)
{
X509 *crt;
if (!l4 || l4->si[0].conn->xprt != &ssl_sock)
return 0;
if (!(l4->si[0].conn->flags & CO_FL_CONNECTED)) {
smp->flags |= SMP_F_MAY_CHANGE;
return 0;
}
/* SSL_get_certificate returns a ptr on an SSL * internal sub struct */
crt = SSL_get_certificate(l4->si[0].conn->xprt_ctx);
if (!crt)
return 0;
smp->data.uint = (unsigned int)(1 + X509_get_version(crt));
smp->type = SMP_T_UINT;
return 1;
}
/* str, returns the client certificate sig alg */
static int
smp_fetch_ssl_f_sig_alg(struct proxy *px, struct session *l4, void *l7, unsigned int opt,
const struct arg *args, struct sample *smp)
{
X509 *crt;
int nid;
if (!l4 || l4->si[0].conn->xprt != &ssl_sock)
return 0;
if (!(l4->si[0].conn->flags & CO_FL_CONNECTED)) {
smp->flags |= SMP_F_MAY_CHANGE;
return 0;
}
crt = SSL_get_certificate(l4->si[0].conn->xprt_ctx);
if (!crt)
return 0;
nid = OBJ_obj2nid((ASN1_OBJECT *)(crt->cert_info->signature->algorithm));
smp->data.str.str = (char *)OBJ_nid2sn(nid);
if (!smp->data.str.str)
return 0;
smp->type = SMP_T_CSTR;
smp->data.str.len = strlen(smp->data.str.str);
return 1;
}
/* str, returns the client certificate key alg */
static int
smp_fetch_ssl_f_key_alg(struct proxy *px, struct session *l4, void *l7, unsigned int opt,
const struct arg *args, struct sample *smp)
{
X509 *crt;
int nid;
if (!l4 || l4->si[0].conn->xprt != &ssl_sock)
return 0;
if (!(l4->si[0].conn->flags & CO_FL_CONNECTED)) {
smp->flags |= SMP_F_MAY_CHANGE;
return 0;
}
crt = SSL_get_certificate(l4->si[0].conn->xprt_ctx);
if (!crt)
return 0;
nid = OBJ_obj2nid((ASN1_OBJECT *)(crt->cert_info->key->algor->algorithm));
smp->data.str.str = (char *)OBJ_nid2sn(nid);
if (!smp->data.str.str)
return 0;
smp->type = SMP_T_CSTR;
smp->data.str.len = strlen(smp->data.str.str);
return 1;
}
/* str, returns a string of a formatted full dn \C=..\O=..\OU=.. \CN=.. */
static int
smp_fetch_ssl_f_i_dn(struct proxy *px, struct session *l4, void *l7, unsigned int opt,
const struct arg *args, struct sample *smp)
{
X509 *crt = NULL;
X509_NAME *name;
int ret = 0;
struct chunk *smp_trash;
if (!l4 || l4->si[0].conn->xprt != &ssl_sock)
return 0;
if (!(l4->si[0].conn->flags & CO_FL_CONNECTED)) {
smp->flags |= SMP_F_MAY_CHANGE;
return 0;
}
crt = SSL_get_certificate(l4->si[0].conn->xprt_ctx);
if (!crt)
goto out;
name = X509_get_issuer_name(crt);
if (!name)
goto out;
smp_trash = get_trash_chunk();
if (args && args[0].type == ARGT_STR) {
int pos = 1;
if (args[1].type == ARGT_SINT)
pos = args[1].data.sint;
else if (args[1].type == ARGT_UINT)
pos =(int)args[1].data.uint;
if (ssl_sock_get_dn_entry(name, &args[0].data.str, pos, smp_trash) <= 0)
goto out;
}
else if (ssl_sock_get_dn_oneline(name, smp_trash) <= 0)
goto out;
smp->type = SMP_T_STR;
smp->data.str = *smp_trash;
ret = 1;
out:
return ret;
}
/* str, returns a string of a formatted full dn \C=..\O=..\OU=.. \CN=.. */
static int
smp_fetch_ssl_f_s_dn(struct proxy *px, struct session *l4, void *l7, unsigned int opt,
const struct arg *args, struct sample *smp)
{
X509 *crt = NULL;
X509_NAME *name;
int ret = 0;
struct chunk *smp_trash;
if (!l4 || l4->si[0].conn->xprt != &ssl_sock)
return 0;
if (!(l4->si[0].conn->flags & CO_FL_CONNECTED)) {
smp->flags |= SMP_F_MAY_CHANGE;
return 0;
}
crt = SSL_get_certificate(l4->si[0].conn->xprt_ctx);
if (!crt)
goto out;
name = X509_get_subject_name(crt);
if (!name)
goto out;
smp_trash = get_trash_chunk();
if (args && args[0].type == ARGT_STR) {
int pos = 1;
if (args[1].type == ARGT_SINT)
pos = args[1].data.sint;
else if (args[1].type == ARGT_UINT)
pos =(int)args[1].data.uint;
if (ssl_sock_get_dn_entry(name, &args[0].data.str, pos, smp_trash) <= 0)
goto out;
}
else if (ssl_sock_get_dn_oneline(name, smp_trash) <= 0)
goto out;
smp->type = SMP_T_STR;
smp->data.str = *smp_trash;
ret = 1;
out:
return ret;
}
static int
smp_fetch_ssl_fc_cipher(struct proxy *px, struct session *l4, void *l7, unsigned int opt,
const struct arg *args, struct sample *smp)
{
smp->flags = 0;
if (!l4 || !l4->si[0].conn->xprt_ctx || l4->si[0].conn->xprt != &ssl_sock)
return 0;
smp->data.str.str = (char *)SSL_get_cipher_name(l4->si[0].conn->xprt_ctx);
if (!smp->data.str.str)
return 0;
smp->type = SMP_T_CSTR;
smp->data.str.len = strlen(smp->data.str.str);
return 1;
}
static int
smp_fetch_ssl_fc_alg_keysize(struct proxy *px, struct session *l4, void *l7, unsigned int opt,
const struct arg *args, struct sample *smp)
{
smp->flags = 0;
if (!l4 || !l4->si[0].conn->xprt_ctx || l4->si[0].conn->xprt != &ssl_sock)
return 0;
if (!SSL_get_cipher_bits(l4->si[0].conn->xprt_ctx, (int *)&smp->data.uint))
return 0;
smp->type = SMP_T_UINT;
return 1;
}
static int
smp_fetch_ssl_fc_use_keysize(struct proxy *px, struct session *l4, void *l7, unsigned int opt,
const struct arg *args, struct sample *smp)
{
smp->flags = 0;
if (!l4 || !l4->si[0].conn->xprt_ctx || l4->si[0].conn->xprt != &ssl_sock)
return 0;
smp->data.uint = (unsigned int)SSL_get_cipher_bits(l4->si[0].conn->xprt_ctx, NULL);
if (!smp->data.uint)
return 0;
smp->type = SMP_T_UINT;
return 1;
}
#ifdef OPENSSL_NPN_NEGOTIATED
static int
smp_fetch_ssl_fc_npn(struct proxy *px, struct session *l4, void *l7, unsigned int opt,
const struct arg *args, struct sample *smp)
{
smp->flags = 0;
smp->type = SMP_T_CSTR;
if (!l4 || !l4->si[0].conn->xprt_ctx || l4->si[0].conn->xprt != &ssl_sock)
return 0;
smp->data.str.str = NULL;
SSL_get0_next_proto_negotiated(l4->si[0].conn->xprt_ctx,
(const unsigned char **)&smp->data.str.str, (unsigned *)&smp->data.str.len);
if (!smp->data.str.str)
return 0;
return 1;
}
#endif
#ifdef OPENSSL_ALPN_NEGOTIATED
static int
smp_fetch_ssl_fc_alpn(struct proxy *px, struct session *l4, void *l7, unsigned int opt,
const struct arg *args, struct sample *smp)
{
smp->flags = 0;
smp->type = SMP_T_CSTR;
if (!l4 || !l4->si[0].conn->xprt_ctx || l4->si[0].conn->xprt != &ssl_sock)
return 0;
smp->data.str.str = NULL;
SSL_get0_alpn_negotiated(l4->si[0].conn->xprt_ctx,
(const unsigned char **)&smp->data.str.str, (unsigned *)&smp->data.str.len);
if (!smp->data.str.str)
return 0;
return 1;
}
#endif
static int
smp_fetch_ssl_fc_protocol(struct proxy *px, struct session *l4, void *l7, unsigned int opt,
const struct arg *args, struct sample *smp)
{
smp->flags = 0;
if (!l4 || !l4->si[0].conn->xprt_ctx || l4->si[0].conn->xprt != &ssl_sock)
return 0;
smp->data.str.str = (char *)SSL_get_version(l4->si[0].conn->xprt_ctx);
if (!smp->data.str.str)
return 0;
smp->type = SMP_T_CSTR;
smp->data.str.len = strlen(smp->data.str.str);
return 1;
}
static int
smp_fetch_ssl_fc_session_id(struct proxy *px, struct session *l4, void *l7, unsigned int opt,
const struct arg *args, struct sample *smp)
{
#if OPENSSL_VERSION_NUMBER > 0x0090800fL
SSL_SESSION *sess;
smp->flags = 0;
smp->type = SMP_T_CBIN;
if (!l4 || !l4->si[0].conn->xprt_ctx || l4->si[0].conn->xprt != &ssl_sock)
return 0;
sess = SSL_get_session(l4->si[0].conn->xprt_ctx);
if (!sess)
return 0;
smp->data.str.str = (char *)SSL_SESSION_get_id(sess, (unsigned int *)&smp->data.str.len);
if (!smp->data.str.str || !&smp->data.str.len)
return 0;
return 1;
#else
return 0;
#endif
}
static int
smp_fetch_ssl_fc_sni(struct proxy *px, struct session *l4, void *l7, unsigned int opt,
const struct arg *args, struct sample *smp)
{
#ifdef SSL_CTRL_SET_TLSEXT_HOSTNAME
smp->flags = 0;
smp->type = SMP_T_CSTR;
if (!l4 || !l4->si[0].conn->xprt_ctx || l4->si[0].conn->xprt != &ssl_sock)
return 0;
smp->data.str.str = (char *)SSL_get_servername(l4->si[0].conn->xprt_ctx, TLSEXT_NAMETYPE_host_name);
if (!smp->data.str.str)
return 0;
smp->data.str.len = strlen(smp->data.str.str);
return 1;
#else
return 0;
#endif
}
/* integer, returns the first verify error in CA chain of client certificate chain. */
static int
smp_fetch_ssl_c_ca_err(struct proxy *px, struct session *l4, void *l7, unsigned int opt,
const struct arg *args, struct sample *smp)
{
if (!l4 || l4->si[0].conn->xprt != &ssl_sock)
return 0;
if (!(l4->si[0].conn->flags & CO_FL_CONNECTED)) {
smp->flags = SMP_F_MAY_CHANGE;
return 0;
}
smp->type = SMP_T_UINT;
smp->data.uint = (unsigned int)SSL_SOCK_ST_TO_CA_ERROR(l4->si[0].conn->xprt_st);
smp->flags = 0;
return 1;
}
/* integer, returns the depth of the first verify error in CA chain of client certificate chain. */
static int
smp_fetch_ssl_c_ca_err_depth(struct proxy *px, struct session *l4, void *l7, unsigned int opt,
const struct arg *args, struct sample *smp)
{
if (!l4 || l4->si[0].conn->xprt != &ssl_sock)
return 0;
if (!(l4->si[0].conn->flags & CO_FL_CONNECTED)) {
smp->flags = SMP_F_MAY_CHANGE;
return 0;
}
smp->type = SMP_T_UINT;
smp->data.uint = (unsigned int)SSL_SOCK_ST_TO_CAEDEPTH(l4->si[0].conn->xprt_st);
smp->flags = 0;
return 1;
}
/* integer, returns the first verify error on client certificate */
static int
smp_fetch_ssl_c_err(struct proxy *px, struct session *l4, void *l7, unsigned int opt,
const struct arg *args, struct sample *smp)
{
if (!l4 || l4->si[0].conn->xprt != &ssl_sock)
return 0;
if (!(l4->si[0].conn->flags & CO_FL_CONNECTED)) {
smp->flags = SMP_F_MAY_CHANGE;
return 0;
}
smp->type = SMP_T_UINT;
smp->data.uint = (unsigned int)SSL_SOCK_ST_TO_CRTERROR(l4->si[0].conn->xprt_st);
smp->flags = 0;
return 1;
}
/* integer, returns the verify result on client cert */
static int
smp_fetch_ssl_c_verify(struct proxy *px, struct session *l4, void *l7, unsigned int opt,
const struct arg *args, struct sample *smp)
{
if (!l4 || l4->si[0].conn->xprt != &ssl_sock)
return 0;
if (!(l4->si[0].conn->flags & CO_FL_CONNECTED)) {
smp->flags = SMP_F_MAY_CHANGE;
return 0;
}
if (!l4->si[0].conn->xprt_ctx)
return 0;
smp->type = SMP_T_UINT;
smp->data.uint = (unsigned int)SSL_get_verify_result(l4->si[0].conn->xprt_ctx);
smp->flags = 0;
return 1;
}
/* parse the "ca-file" bind keyword */
static int bind_parse_ca_file(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
{
if (!*args[cur_arg + 1]) {
if (err)
memprintf(err, "'%s' : missing CAfile path", args[cur_arg]);
return ERR_ALERT | ERR_FATAL;
}
if ((*args[cur_arg + 1] != '/') && global.ca_base)
memprintf(&conf->ca_file, "%s/%s", global.ca_base, args[cur_arg + 1]);
else
memprintf(&conf->ca_file, "%s", args[cur_arg + 1]);
return 0;
}
/* parse the "ciphers" bind keyword */
static int bind_parse_ciphers(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
{
if (!*args[cur_arg + 1]) {
memprintf(err, "'%s' : missing cipher suite", args[cur_arg]);
return ERR_ALERT | ERR_FATAL;
}
free(conf->ciphers);
conf->ciphers = strdup(args[cur_arg + 1]);
return 0;
}
/* parse the "crt" bind keyword */
static int bind_parse_crt(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
{
char path[PATH_MAX];
if (!*args[cur_arg + 1]) {
memprintf(err, "'%s' : missing certificate location", args[cur_arg]);
return ERR_ALERT | ERR_FATAL;
}
if ((*args[cur_arg + 1] != '/' ) && global.crt_base) {
if ((strlen(global.crt_base) + 1 + strlen(args[cur_arg + 1]) + 1) > PATH_MAX) {
memprintf(err, "'%s' : path too long", args[cur_arg]);
return ERR_ALERT | ERR_FATAL;
}
sprintf(path, "%s/%s", global.crt_base, args[cur_arg + 1]);
if (ssl_sock_load_cert(path, conf, px, err) > 0)
return ERR_ALERT | ERR_FATAL;
return 0;
}
if (ssl_sock_load_cert(args[cur_arg + 1], conf, px, err) > 0)
return ERR_ALERT | ERR_FATAL;
return 0;
}
/* parse the "crt-list" bind keyword */
static int bind_parse_crt_list(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
{
if (!*args[cur_arg + 1]) {
memprintf(err, "'%s' : missing certificate location", args[cur_arg]);
return ERR_ALERT | ERR_FATAL;
}
if (ssl_sock_load_cert_list_file(args[cur_arg + 1], conf, px, err) > 0) {
memprintf(err, "'%s' : %s", args[cur_arg], *err);
return ERR_ALERT | ERR_FATAL;
}
return 0;
}
/* parse the "crl-file" bind keyword */
static int bind_parse_crl_file(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
{
#ifndef X509_V_FLAG_CRL_CHECK
if (err)
memprintf(err, "'%s' : library does not support CRL verify", args[cur_arg]);
return ERR_ALERT | ERR_FATAL;
#else
if (!*args[cur_arg + 1]) {
if (err)
memprintf(err, "'%s' : missing CRLfile path", args[cur_arg]);
return ERR_ALERT | ERR_FATAL;
}
if ((*args[cur_arg + 1] != '/') && global.ca_base)
memprintf(&conf->crl_file, "%s/%s", global.ca_base, args[cur_arg + 1]);
else
memprintf(&conf->crl_file, "%s", args[cur_arg + 1]);
return 0;
#endif
}
/* parse the "ecdhe" bind keyword keywords */
static int bind_parse_ecdhe(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
{
#if OPENSSL_VERSION_NUMBER < 0x0090800fL
if (err)
memprintf(err, "'%s' : library does not support elliptic curve Diffie-Hellman (too old)", args[cur_arg]);
return ERR_ALERT | ERR_FATAL;
#elif defined(OPENSSL_NO_ECDH)
if (err)
memprintf(err, "'%s' : library does not support elliptic curve Diffie-Hellman (disabled via OPENSSL_NO_ECDH)", args[cur_arg]);
return ERR_ALERT | ERR_FATAL;
#else
if (!*args[cur_arg + 1]) {
if (err)
memprintf(err, "'%s' : missing named curve", args[cur_arg]);
return ERR_ALERT | ERR_FATAL;
}
conf->ecdhe = strdup(args[cur_arg + 1]);
return 0;
#endif
}
/* parse the "crt_ignerr" and "ca_ignerr" bind keywords */
static int bind_parse_ignore_err(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
{
int code;
char *p = args[cur_arg + 1];
unsigned long long *ignerr = &conf->crt_ignerr;
if (!*p) {
if (err)
memprintf(err, "'%s' : missing error IDs list", args[cur_arg]);
return ERR_ALERT | ERR_FATAL;
}
if (strcmp(args[cur_arg], "ca-ignore-err") == 0)
ignerr = &conf->ca_ignerr;
if (strcmp(p, "all") == 0) {
*ignerr = ~0ULL;
return 0;
}
while (p) {
code = atoi(p);
if ((code <= 0) || (code > 63)) {
if (err)
memprintf(err, "'%s' : ID '%d' out of range (1..63) in error IDs list '%s'",
args[cur_arg], code, args[cur_arg + 1]);
return ERR_ALERT | ERR_FATAL;
}
*ignerr |= 1ULL << code;
p = strchr(p, ',');
if (p)
p++;
}
return 0;
}
/* parse the "force-sslv3" bind keyword */
static int bind_parse_force_sslv3(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
{
conf->ssl_options |= BC_SSL_O_USE_SSLV3;
return 0;
}
/* parse the "force-tlsv10" bind keyword */
static int bind_parse_force_tlsv10(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
{
conf->ssl_options |= BC_SSL_O_USE_TLSV10;
return 0;
}
/* parse the "force-tlsv11" bind keyword */
static int bind_parse_force_tlsv11(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
{
#if SSL_OP_NO_TLSv1_1
conf->ssl_options |= BC_SSL_O_USE_TLSV11;
return 0;
#else
if (err)
memprintf(err, "'%s' : library does not support protocol TLSv1.1", args[cur_arg]);
return ERR_ALERT | ERR_FATAL;
#endif
}
/* parse the "force-tlsv12" bind keyword */
static int bind_parse_force_tlsv12(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
{
#if SSL_OP_NO_TLSv1_2
conf->ssl_options |= BC_SSL_O_USE_TLSV12;
return 0;
#else
if (err)
memprintf(err, "'%s' : library does not support protocol TLSv1.2", args[cur_arg]);
return ERR_ALERT | ERR_FATAL;
#endif
}
/* parse the "no-tls-tickets" bind keyword */
static int bind_parse_no_tls_tickets(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
{
conf->ssl_options |= BC_SSL_O_NO_TLS_TICKETS;
return 0;
}
/* parse the "no-sslv3" bind keyword */
static int bind_parse_no_sslv3(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
{
conf->ssl_options |= BC_SSL_O_NO_SSLV3;
return 0;
}
/* parse the "no-tlsv10" bind keyword */
static int bind_parse_no_tlsv10(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
{
conf->ssl_options |= BC_SSL_O_NO_TLSV10;
return 0;
}
/* parse the "no-tlsv11" bind keyword */
static int bind_parse_no_tlsv11(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
{
conf->ssl_options |= BC_SSL_O_NO_TLSV11;
return 0;
}
/* parse the "no-tlsv12" bind keyword */
static int bind_parse_no_tlsv12(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
{
conf->ssl_options |= BC_SSL_O_NO_TLSV12;
return 0;
}
/* parse the "npn" bind keyword */
static int bind_parse_npn(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
{
#ifdef OPENSSL_NPN_NEGOTIATED
char *p1, *p2;
if (!*args[cur_arg + 1]) {
memprintf(err, "'%s' : missing the comma-delimited NPN protocol suite", args[cur_arg]);
return ERR_ALERT | ERR_FATAL;
}
free(conf->npn_str);
/* the NPN string is built as a suite of (<len> <name>)* */
conf->npn_len = strlen(args[cur_arg + 1]) + 1;
conf->npn_str = calloc(1, conf->npn_len);
memcpy(conf->npn_str + 1, args[cur_arg + 1], conf->npn_len);
/* replace commas with the name length */
p1 = conf->npn_str;
p2 = p1 + 1;
while (1) {
p2 = memchr(p1 + 1, ',', conf->npn_str + conf->npn_len - (p1 + 1));
if (!p2)
p2 = p1 + 1 + strlen(p1 + 1);
if (p2 - (p1 + 1) > 255) {
*p2 = '\0';
memprintf(err, "'%s' : NPN protocol name too long : '%s'", args[cur_arg], p1 + 1);
return ERR_ALERT | ERR_FATAL;
}
*p1 = p2 - (p1 + 1);
p1 = p2;
if (!*p2)
break;
*(p2++) = '\0';
}
return 0;
#else
if (err)
memprintf(err, "'%s' : library does not support TLS NPN extension", args[cur_arg]);
return ERR_ALERT | ERR_FATAL;
#endif
}
/* parse the "alpn" bind keyword */
static int bind_parse_alpn(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
{
#ifdef OPENSSL_ALPN_NEGOTIATED
char *p1, *p2;
if (!*args[cur_arg + 1]) {
memprintf(err, "'%s' : missing the comma-delimited ALPN protocol suite", args[cur_arg]);
return ERR_ALERT | ERR_FATAL;
}
free(conf->alpn_str);
/* the ALPN string is built as a suite of (<len> <name>)* */
conf->alpn_len = strlen(args[cur_arg + 1]) + 1;
conf->alpn_str = calloc(1, conf->alpn_len);
memcpy(conf->alpn_str + 1, args[cur_arg + 1], conf->alpn_len);
/* replace commas with the name length */
p1 = conf->alpn_str;
p2 = p1 + 1;
while (1) {
p2 = memchr(p1 + 1, ',', conf->alpn_str + conf->alpn_len - (p1 + 1));
if (!p2)
p2 = p1 + 1 + strlen(p1 + 1);
if (p2 - (p1 + 1) > 255) {
*p2 = '\0';
memprintf(err, "'%s' : ALPN protocol name too long : '%s'", args[cur_arg], p1 + 1);
return ERR_ALERT | ERR_FATAL;
}
*p1 = p2 - (p1 + 1);
p1 = p2;
if (!*p2)
break;
*(p2++) = '\0';
}
return 0;
#else
if (err)
memprintf(err, "'%s' : library does not support TLS ALPN extension", args[cur_arg]);
return ERR_ALERT | ERR_FATAL;
#endif
}
/* parse the "ssl" bind keyword */
static int bind_parse_ssl(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
{
struct listener *l;
conf->is_ssl = 1;
if (global.listen_default_ciphers && !conf->ciphers)
conf->ciphers = strdup(global.listen_default_ciphers);
list_for_each_entry(l, &conf->listeners, by_bind)
l->xprt = &ssl_sock;
return 0;
}
/* parse the "strict-sni" bind keyword */
static int bind_parse_strict_sni(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
{
conf->strict_sni = 1;
return 0;
}
/* parse the "verify" bind keyword */
static int bind_parse_verify(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
{
if (!*args[cur_arg + 1]) {
if (err)
memprintf(err, "'%s' : missing verify method", args[cur_arg]);
return ERR_ALERT | ERR_FATAL;
}
if (strcmp(args[cur_arg + 1], "none") == 0)
conf->verify = SSL_VERIFY_NONE;
else if (strcmp(args[cur_arg + 1], "optional") == 0)
conf->verify = SSL_VERIFY_PEER;
else if (strcmp(args[cur_arg + 1], "required") == 0)
conf->verify = SSL_VERIFY_PEER|SSL_VERIFY_FAIL_IF_NO_PEER_CERT;
else {
if (err)
memprintf(err, "'%s' : unknown verify method '%s', only 'none', 'optional', and 'required' are supported\n",
args[cur_arg], args[cur_arg + 1]);
return ERR_ALERT | ERR_FATAL;
}
return 0;
}
/************** "server" keywords ****************/
/* parse the "ca-file" server keyword */
static int srv_parse_ca_file(char **args, int *cur_arg, struct proxy *px, struct server *newsrv, char **err)
{
if (!*args[*cur_arg + 1]) {
if (err)
memprintf(err, "'%s' : missing CAfile path", args[*cur_arg]);
return ERR_ALERT | ERR_FATAL;
}
if ((*args[*cur_arg + 1] != '/') && global.ca_base)
memprintf(&newsrv->ssl_ctx.ca_file, "%s/%s", global.ca_base, args[*cur_arg + 1]);
else
memprintf(&newsrv->ssl_ctx.ca_file, "%s", args[*cur_arg + 1]);
return 0;
}
/* parse the "check-ssl" server keyword */
static int srv_parse_check_ssl(char **args, int *cur_arg, struct proxy *px, struct server *newsrv, char **err)
{
newsrv->check.use_ssl = 1;
if (global.connect_default_ciphers && !newsrv->ssl_ctx.ciphers)
newsrv->ssl_ctx.ciphers = strdup(global.connect_default_ciphers);
return 0;
}
/* parse the "ciphers" server keyword */
static int srv_parse_ciphers(char **args, int *cur_arg, struct proxy *px, struct server *newsrv, char **err)