blob: 5c6ad1ca2075ec090844fd64ecc210fb9199ece5 [file] [log] [blame]
/*
* This file contains the sample fetches related to the SSL
*
* Copyright (C) 2012 EXCELIANCE, Emeric Brun <ebrun@exceliance.fr>
* Copyright (C) 2020 HAProxy Technologies, William Lallemand <wlallemand@haproxy.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#define _GNU_SOURCE
#include <ctype.h>
#include <dirent.h>
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <haproxy/acl.h>
#include <haproxy/api.h>
#include <haproxy/arg.h>
#include <haproxy/base64.h>
#include <haproxy/buf-t.h>
#include <haproxy/connection.h>
#include <haproxy/obj_type.h>
#include <haproxy/openssl-compat.h>
#include <haproxy/sample.h>
#include <haproxy/ssl_sock.h>
#include <haproxy/ssl_utils.h>
#include <haproxy/stconn.h>
#include <haproxy/tools.h>
#include <haproxy/vars.h>
/***** Below are some sample fetching functions for ACL/patterns *****/
#if defined(HAVE_CRYPTO_memcmp)
/* Compares bytestring with a variable containing a bytestring. Return value
* is `true` if both bytestrings are bytewise identical and `false` otherwise.
*
* Comparison will be performed in constant time if both bytestrings are of
* the same length. If the lengths differ execution time will not be constant.
*/
static int sample_conv_secure_memcmp(const struct arg *arg_p, struct sample *smp, void *private)
{
struct sample tmp;
int result;
smp_set_owner(&tmp, smp->px, smp->sess, smp->strm, smp->opt);
if (arg_p[0].type != ARGT_VAR)
return 0;
if (!sample_conv_var2smp(&arg_p[0].data.var, &tmp, SMP_T_BIN))
return 0;
if (smp->data.u.str.data != tmp.data.u.str.data) {
smp->data.u.sint = 0;
smp->data.type = SMP_T_BOOL;
return 1;
}
/* The following comparison is performed in constant time. */
result = CRYPTO_memcmp(smp->data.u.str.area, tmp.data.u.str.area, smp->data.u.str.data);
smp->data.u.sint = result == 0;
smp->data.type = SMP_T_BOOL;
return 1;
}
/* This function checks the "secure_memcmp" converter's arguments and extracts the
* variable name and its scope.
*/
static int smp_check_secure_memcmp(struct arg *args, struct sample_conv *conv,
const char *file, int line, char **err)
{
if (!args[0].data.str.data) {
memprintf(err, "missing variable name");
return 0;
}
/* Try to decode a variable. */
if (vars_check_arg(&args[0], NULL))
return 1;
memprintf(err, "failed to register variable name '%s'",
args[0].data.str.area);
return 0;
}
#endif // HAVE_secure_memcmp()
static int smp_check_sha2(struct arg *args, struct sample_conv *conv,
const char *file, int line, char **err)
{
if (args[0].type == ARGT_STOP)
return 1;
if (args[0].type != ARGT_SINT) {
memprintf(err, "Invalid type '%s'", arg_type_names[args[0].type]);
return 0;
}
switch (args[0].data.sint) {
case 224:
case 256:
case 384:
case 512:
/* this is okay */
return 1;
default:
memprintf(err, "Unsupported number of bits: '%lld'", args[0].data.sint);
return 0;
}
}
static int sample_conv_sha2(const struct arg *arg_p, struct sample *smp, void *private)
{
struct buffer *trash = get_trash_chunk();
int bits = 256;
EVP_MD_CTX *mdctx;
const EVP_MD *evp = NULL;
unsigned int digest_length = 0;
if (arg_p->data.sint)
bits = arg_p->data.sint;
switch (bits) {
case 224:
evp = EVP_sha224();
break;
case 256:
evp = EVP_sha256();
break;
case 384:
evp = EVP_sha384();
break;
case 512:
evp = EVP_sha512();
break;
default:
return 0;
}
mdctx = EVP_MD_CTX_new();
if (!mdctx)
return 0;
EVP_DigestInit_ex(mdctx, evp, NULL);
EVP_DigestUpdate(mdctx, smp->data.u.str.area, smp->data.u.str.data);
EVP_DigestFinal_ex(mdctx, (unsigned char*)trash->area, &digest_length);
trash->data = digest_length;
EVP_MD_CTX_free(mdctx);
smp->data.u.str = *trash;
smp->data.type = SMP_T_BIN;
smp->flags &= ~SMP_F_CONST;
return 1;
}
/* This function checks an <arg> and fills it with a variable type if the
* <arg> string contains a valid variable name. If failed, the function
* tries to perform a base64 decode operation on the same string, and
* fills the <arg> with the decoded content.
*
* Validation is skipped if the <arg> string is empty.
*
* This function returns 0 if the variable lookup fails and the specified
* <arg> string is not a valid base64 encoded string, as well if
* unexpected argument type is specified or memory allocation error
* occurs. Otherwise it returns 1.
*/
static inline int sample_check_arg_base64(struct arg *arg, char **err)
{
char *dec = NULL;
int dec_size;
if (arg->type != ARGT_STR) {
memprintf(err, "unexpected argument type");
return 0;
}
if (arg->data.str.data == 0) /* empty */
return 1;
if (vars_check_arg(arg, NULL))
return 1;
if (arg->data.str.data % 4) {
memprintf(err, "argument needs to be base64 encoded, and "
"can either be a string or a variable");
return 0;
}
dec_size = (arg->data.str.data / 4 * 3)
- (arg->data.str.area[arg->data.str.data-1] == '=' ? 1 : 0)
- (arg->data.str.area[arg->data.str.data-2] == '=' ? 1 : 0);
if ((dec = malloc(dec_size)) == NULL) {
memprintf(err, "memory allocation error");
return 0;
}
dec_size = base64dec(arg->data.str.area, arg->data.str.data, dec, dec_size);
if (dec_size < 0) {
memprintf(err, "argument needs to be base64 encoded, and "
"can either be a string or a variable");
free(dec);
return 0;
}
/* base64 decoded */
chunk_destroy(&arg->data.str);
arg->data.str.area = dec;
arg->data.str.data = dec_size;
return 1;
}
#ifdef EVP_CIPH_GCM_MODE
static int check_aes_gcm(struct arg *args, struct sample_conv *conv,
const char *file, int line, char **err)
{
switch(args[0].data.sint) {
case 128:
case 192:
case 256:
break;
default:
memprintf(err, "key size must be 128, 192 or 256 (bits).");
return 0;
}
/* Try to decode variables. */
if (!sample_check_arg_base64(&args[1], err)) {
memprintf(err, "failed to parse nonce : %s", *err);
return 0;
}
if (!sample_check_arg_base64(&args[2], err)) {
memprintf(err, "failed to parse key : %s", *err);
return 0;
}
if (!sample_check_arg_base64(&args[3], err)) {
memprintf(err, "failed to parse aead_tag : %s", *err);
return 0;
}
return 1;
}
/* Arguments: AES size in bits, nonce, key, tag. The last three arguments are base64 encoded */
static int sample_conv_aes_gcm_dec(const struct arg *arg_p, struct sample *smp, void *private)
{
struct sample nonce, key, aead_tag;
struct buffer *smp_trash = NULL, *smp_trash_alloc = NULL;
EVP_CIPHER_CTX *ctx;
int dec_size, ret;
smp_trash_alloc = alloc_trash_chunk();
if (!smp_trash_alloc)
return 0;
/* smp copy */
smp_trash_alloc->data = smp->data.u.str.data;
if (unlikely(smp_trash_alloc->data > smp_trash_alloc->size))
smp_trash_alloc->data = smp_trash_alloc->size;
memcpy(smp_trash_alloc->area, smp->data.u.str.area, smp_trash_alloc->data);
ctx = EVP_CIPHER_CTX_new();
if (!ctx)
goto err;
smp_trash = alloc_trash_chunk();
if (!smp_trash)
goto err;
smp_set_owner(&nonce, smp->px, smp->sess, smp->strm, smp->opt);
if (!sample_conv_var2smp_str(&arg_p[1], &nonce))
goto err;
if (arg_p[1].type == ARGT_VAR) {
dec_size = base64dec(nonce.data.u.str.area, nonce.data.u.str.data, smp_trash->area, smp_trash->size);
if (dec_size < 0)
goto err;
smp_trash->data = dec_size;
nonce.data.u.str = *smp_trash;
}
/* Set cipher type and mode */
switch(arg_p[0].data.sint) {
case 128:
EVP_DecryptInit_ex(ctx, EVP_aes_128_gcm(), NULL, NULL, NULL);
break;
case 192:
EVP_DecryptInit_ex(ctx, EVP_aes_192_gcm(), NULL, NULL, NULL);
break;
case 256:
EVP_DecryptInit_ex(ctx, EVP_aes_256_gcm(), NULL, NULL, NULL);
break;
}
EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_IVLEN, nonce.data.u.str.data, NULL);
/* Initialise IV */
if(!EVP_DecryptInit_ex(ctx, NULL, NULL, NULL, (unsigned char *) nonce.data.u.str.area))
goto err;
smp_set_owner(&key, smp->px, smp->sess, smp->strm, smp->opt);
if (!sample_conv_var2smp_str(&arg_p[2], &key))
goto err;
if (arg_p[2].type == ARGT_VAR) {
dec_size = base64dec(key.data.u.str.area, key.data.u.str.data, smp_trash->area, smp_trash->size);
if (dec_size < 0)
goto err;
smp_trash->data = dec_size;
key.data.u.str = *smp_trash;
}
/* Initialise key */
if (!EVP_DecryptInit_ex(ctx, NULL, NULL, (unsigned char *) key.data.u.str.area, NULL))
goto err;
if (!EVP_DecryptUpdate(ctx, (unsigned char *) smp_trash->area, (int *) &smp_trash->data,
(unsigned char *) smp_trash_alloc->area, (int) smp_trash_alloc->data))
goto err;
smp_set_owner(&aead_tag, smp->px, smp->sess, smp->strm, smp->opt);
if (!sample_conv_var2smp_str(&arg_p[3], &aead_tag))
goto err;
if (arg_p[3].type == ARGT_VAR) {
dec_size = base64dec(aead_tag.data.u.str.area, aead_tag.data.u.str.data, smp_trash_alloc->area, smp_trash_alloc->size);
if (dec_size < 0)
goto err;
smp_trash_alloc->data = dec_size;
aead_tag.data.u.str = *smp_trash_alloc;
}
dec_size = smp_trash->data;
EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, aead_tag.data.u.str.data, (void *) aead_tag.data.u.str.area);
ret = EVP_DecryptFinal_ex(ctx, (unsigned char *) smp_trash->area + smp_trash->data, (int *) &smp_trash->data);
if (ret <= 0)
goto err;
smp->data.u.str.data = dec_size + smp_trash->data;
smp->data.u.str.area = smp_trash->area;
smp->data.type = SMP_T_BIN;
smp_dup(smp);
free_trash_chunk(smp_trash_alloc);
free_trash_chunk(smp_trash);
return 1;
err:
free_trash_chunk(smp_trash_alloc);
free_trash_chunk(smp_trash);
return 0;
}
#endif
static int check_crypto_digest(struct arg *args, struct sample_conv *conv,
const char *file, int line, char **err)
{
const EVP_MD *evp = EVP_get_digestbyname(args[0].data.str.area);
if (evp)
return 1;
memprintf(err, "algorithm must be a valid OpenSSL message digest name.");
return 0;
}
static int sample_conv_crypto_digest(const struct arg *args, struct sample *smp, void *private)
{
struct buffer *trash = get_trash_chunk();
unsigned char *md = (unsigned char*) trash->area;
unsigned int md_len = trash->size;
EVP_MD_CTX *ctx = EVP_MD_CTX_new();
const EVP_MD *evp = EVP_get_digestbyname(args[0].data.str.area);
if (!ctx)
return 0;
if (!EVP_DigestInit_ex(ctx, evp, NULL) ||
!EVP_DigestUpdate(ctx, smp->data.u.str.area, smp->data.u.str.data) ||
!EVP_DigestFinal_ex(ctx, md, &md_len)) {
EVP_MD_CTX_free(ctx);
return 0;
}
EVP_MD_CTX_free(ctx);
trash->data = md_len;
smp->data.u.str = *trash;
smp->data.type = SMP_T_BIN;
smp->flags &= ~SMP_F_CONST;
return 1;
}
/* Take a numerical X509_V_ERR and return its constant name */
static int sample_conv_x509_v_err(const struct arg *arg_p, struct sample *smp, void *private)
{
const char *res = x509_v_err_int_to_str(smp->data.u.sint);
/* if the value was found return its string */
if (res) {
smp->data.u.str.area = (char *)res;
smp->data.u.str.data = strlen(res);
smp->data.type = SMP_T_STR;
smp->flags |= SMP_F_CONST;
return 1;
} else {
struct buffer *smp_trash = get_trash_chunk();
/* if the conversion failed, output the numbers as string */
chunk_printf(smp_trash, "%llu", smp->data.u.sint);
smp->data.u.str = *smp_trash;
smp->data.type = SMP_T_STR;
smp->flags &= ~SMP_F_CONST;
return 1;
}
return 0;
}
static int check_crypto_hmac(struct arg *args, struct sample_conv *conv,
const char *file, int line, char **err)
{
if (!check_crypto_digest(args, conv, file, line, err))
return 0;
if (!sample_check_arg_base64(&args[1], err)) {
memprintf(err, "failed to parse key : %s", *err);
return 0;
}
return 1;
}
static int sample_conv_crypto_hmac(const struct arg *args, struct sample *smp, void *private)
{
struct sample key;
struct buffer *trash = NULL, *key_trash = NULL;
unsigned char *md;
unsigned int md_len;
const EVP_MD *evp = EVP_get_digestbyname(args[0].data.str.area);
int dec_size;
smp_set_owner(&key, smp->px, smp->sess, smp->strm, smp->opt);
if (!sample_conv_var2smp_str(&args[1], &key))
return 0;
if (args[1].type == ARGT_VAR) {
key_trash = alloc_trash_chunk();
if (!key_trash)
goto err;
dec_size = base64dec(key.data.u.str.area, key.data.u.str.data, key_trash->area, key_trash->size);
if (dec_size < 0)
goto err;
key_trash->data = dec_size;
key.data.u.str = *key_trash;
}
trash = alloc_trash_chunk();
if (!trash)
goto err;
md = (unsigned char*) trash->area;
md_len = trash->size;
if (!HMAC(evp, key.data.u.str.area, key.data.u.str.data, (const unsigned char*) smp->data.u.str.area,
smp->data.u.str.data, md, &md_len))
goto err;
free_trash_chunk(key_trash);
trash->data = md_len;
smp->data.u.str = *trash;
smp->data.type = SMP_T_BIN;
smp_dup(smp);
free_trash_chunk(trash);
return 1;
err:
free_trash_chunk(key_trash);
free_trash_chunk(trash);
return 0;
}
static int
smp_fetch_ssl_fc_has_early(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
SSL *ssl;
struct connection *conn;
conn = objt_conn(smp->sess->origin);
ssl = ssl_sock_get_ssl_object(conn);
if (!ssl)
return 0;
smp->flags = 0;
smp->data.type = SMP_T_BOOL;
#ifdef OPENSSL_IS_BORINGSSL
{
smp->data.u.sint = (SSL_in_early_data(ssl) &&
SSL_early_data_accepted(ssl));
}
#else
smp->data.u.sint = ((conn->flags & CO_FL_EARLY_DATA) &&
(conn->flags & (CO_FL_EARLY_SSL_HS | CO_FL_SSL_WAIT_HS))) ? 1 : 0;
#endif
return 1;
}
/* boolean, returns true if client cert was present */
static int
smp_fetch_ssl_fc_has_crt(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct connection *conn = objt_conn(smp->sess->origin);
struct ssl_sock_ctx *ctx = conn_get_ssl_sock_ctx(conn);
if (!ctx)
return 0;
if (conn->flags & CO_FL_WAIT_XPRT) {
smp->flags |= SMP_F_MAY_CHANGE;
return 0;
}
smp->flags = SMP_F_VOL_SESS;
smp->data.type = SMP_T_BOOL;
smp->data.u.sint = SSL_SOCK_ST_FL_VERIFY_DONE & ctx->xprt_st ? 1 : 0;
return 1;
}
/* binary, returns a certificate in a binary chunk (der/raw).
* The 5th keyword char is used to know if SSL_get_certificate or SSL_get_peer_certificate
* should be use.
*/
static int
smp_fetch_ssl_x_der(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
int cert_peer = (kw[4] == 'c' || kw[4] == 's') ? 1 : 0;
int conn_server = (kw[4] == 's') ? 1 : 0;
X509 *crt = NULL;
int ret = 0;
struct buffer *smp_trash;
struct connection *conn;
SSL *ssl;
if (conn_server)
conn = smp->strm ? sc_conn(smp->strm->scb) : NULL;
else
conn = objt_conn(smp->sess->origin);
ssl = ssl_sock_get_ssl_object(conn);
if (!ssl)
return 0;
if (conn->flags & CO_FL_WAIT_XPRT && !conn->err_code) {
smp->flags |= SMP_F_MAY_CHANGE;
return 0;
}
if (cert_peer)
crt = ssl_sock_get_peer_certificate(ssl);
else
crt = SSL_get_certificate(ssl);
if (!crt)
goto out;
smp_trash = get_trash_chunk();
if (ssl_sock_crt2der(crt, smp_trash) <= 0)
goto out;
smp->flags = SMP_F_VOL_SESS;
smp->data.u.str = *smp_trash;
smp->data.type = SMP_T_BIN;
ret = 1;
out:
/* SSL_get_peer_certificate, it increase X509 * ref count */
if (cert_peer && crt)
X509_free(crt);
return ret;
}
/* binary, returns a chain certificate in a binary chunk (der/raw).
* The 5th keyword char is used to support only peer cert
*/
static int
smp_fetch_ssl_x_chain_der(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
int cert_peer = (kw[4] == 'c' || kw[4] == 's') ? 1 : 0;
int conn_server = (kw[4] == 's') ? 1 : 0;
struct buffer *smp_trash;
struct buffer *tmp_trash = NULL;
struct connection *conn;
STACK_OF(X509) *certs = NULL;
X509 *crt = NULL;
SSL *ssl;
int ret = 0;
int num_certs;
int i;
if (conn_server)
conn = smp->strm ? sc_conn(smp->strm->scb) : NULL;
else
conn = objt_conn(smp->sess->origin);
if (!conn)
return 0;
ssl = ssl_sock_get_ssl_object(conn);
if (!ssl)
return 0;
if (conn->flags & CO_FL_WAIT_XPRT) {
smp->flags |= SMP_F_MAY_CHANGE;
return 0;
}
if (!cert_peer)
return 0;
certs = SSL_get_peer_cert_chain(ssl);
if (!certs)
return 0;
num_certs = sk_X509_num(certs);
if (!num_certs)
goto out;
smp_trash = get_trash_chunk();
tmp_trash = alloc_trash_chunk();
if (!tmp_trash)
goto out;
for (i = 0; i < num_certs; i++) {
crt = sk_X509_value(certs, i);
if (ssl_sock_crt2der(crt, tmp_trash) <= 0)
goto out;
chunk_cat(smp_trash, tmp_trash);
}
smp->flags = SMP_F_VOL_SESS;
smp->data.u.str = *smp_trash;
smp->data.type = SMP_T_BIN;
ret = 1;
out:
if (tmp_trash)
free_trash_chunk(tmp_trash);
return ret;
}
/* binary, returns serial of certificate in a binary chunk.
* The 5th keyword char is used to know if SSL_get_certificate or SSL_get_peer_certificate
* should be use.
*/
static int
smp_fetch_ssl_x_serial(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
int cert_peer = (kw[4] == 'c' || kw[4] == 's') ? 1 : 0;
int conn_server = (kw[4] == 's') ? 1 : 0;
X509 *crt = NULL;
int ret = 0;
struct buffer *smp_trash;
struct connection *conn;
SSL *ssl;
if (conn_server)
conn = smp->strm ? sc_conn(smp->strm->scb) : NULL;
else
conn = objt_conn(smp->sess->origin);
ssl = ssl_sock_get_ssl_object(conn);
if (!ssl)
return 0;
if (conn->flags & CO_FL_WAIT_XPRT && !conn->err_code) {
smp->flags |= SMP_F_MAY_CHANGE;
return 0;
}
if (cert_peer)
crt = ssl_sock_get_peer_certificate(ssl);
else
crt = SSL_get_certificate(ssl);
if (!crt)
goto out;
smp_trash = get_trash_chunk();
if (ssl_sock_get_serial(crt, smp_trash) <= 0)
goto out;
smp->flags = SMP_F_VOL_SESS;
smp->data.u.str = *smp_trash;
smp->data.type = SMP_T_BIN;
ret = 1;
out:
/* SSL_get_peer_certificate, it increase X509 * ref count */
if (cert_peer && crt)
X509_free(crt);
return ret;
}
/* binary, returns the client certificate's SHA-1 fingerprint (SHA-1 hash of DER-encoded certificate) in a binary chunk.
* The 5th keyword char is used to know if SSL_get_certificate or SSL_get_peer_certificate
* should be use.
*/
static int
smp_fetch_ssl_x_sha1(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
int cert_peer = (kw[4] == 'c' || kw[4] == 's') ? 1 : 0;
int conn_server = (kw[4] == 's') ? 1 : 0;
X509 *crt = NULL;
const EVP_MD *digest;
int ret = 0;
unsigned int len = 0;
struct buffer *smp_trash;
struct connection *conn;
SSL *ssl;
if (conn_server)
conn = smp->strm ? sc_conn(smp->strm->scb) : NULL;
else
conn = objt_conn(smp->sess->origin);
ssl = ssl_sock_get_ssl_object(conn);
if (!ssl)
return 0;
if (conn->flags & CO_FL_WAIT_XPRT && !conn->err_code) {
smp->flags |= SMP_F_MAY_CHANGE;
return 0;
}
if (cert_peer)
crt = ssl_sock_get_peer_certificate(ssl);
else
crt = SSL_get_certificate(ssl);
if (!crt)
goto out;
smp_trash = get_trash_chunk();
digest = EVP_sha1();
X509_digest(crt, digest, (unsigned char *) smp_trash->area, &len);
smp_trash->data = len;
smp->flags = SMP_F_VOL_SESS;
smp->data.u.str = *smp_trash;
smp->data.type = SMP_T_BIN;
ret = 1;
out:
/* SSL_get_peer_certificate, it increase X509 * ref count */
if (cert_peer && crt)
X509_free(crt);
return ret;
}
/* string, returns certificate's notafter date in ASN1_UTCTIME format.
* The 5th keyword char is used to know if SSL_get_certificate or SSL_get_peer_certificate
* should be use.
*/
static int
smp_fetch_ssl_x_notafter(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
int cert_peer = (kw[4] == 'c' || kw[4] == 's') ? 1 : 0;
int conn_server = (kw[4] == 's') ? 1 : 0;
X509 *crt = NULL;
int ret = 0;
struct buffer *smp_trash;
struct connection *conn;
SSL *ssl;
if (conn_server)
conn = smp->strm ? sc_conn(smp->strm->scb) : NULL;
else
conn = objt_conn(smp->sess->origin);
ssl = ssl_sock_get_ssl_object(conn);
if (!ssl)
return 0;
if (conn->flags & CO_FL_WAIT_XPRT && !conn->err_code) {
smp->flags |= SMP_F_MAY_CHANGE;
return 0;
}
if (cert_peer)
crt = ssl_sock_get_peer_certificate(ssl);
else
crt = SSL_get_certificate(ssl);
if (!crt)
goto out;
smp_trash = get_trash_chunk();
if (ssl_sock_get_time(X509_getm_notAfter(crt), smp_trash) <= 0)
goto out;
smp->flags = SMP_F_VOL_SESS;
smp->data.u.str = *smp_trash;
smp->data.type = SMP_T_STR;
ret = 1;
out:
/* SSL_get_peer_certificate, it increase X509 * ref count */
if (cert_peer && crt)
X509_free(crt);
return ret;
}
/* string, returns a string of a formatted full dn \C=..\O=..\OU=.. \CN=.. of certificate's issuer
* The 5th keyword char is used to know if SSL_get_certificate or SSL_get_peer_certificate
* should be use.
*/
static int
smp_fetch_ssl_x_i_dn(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
int cert_peer = (kw[4] == 'c' || kw[4] == 's') ? 1 : 0;
int conn_server = (kw[4] == 's') ? 1 : 0;
X509 *crt = NULL;
X509_NAME *name;
int ret = 0;
struct buffer *smp_trash;
struct connection *conn;
SSL *ssl;
if (conn_server)
conn = smp->strm ? sc_conn(smp->strm->scb) : NULL;
else
conn = objt_conn(smp->sess->origin);
ssl = ssl_sock_get_ssl_object(conn);
if (!ssl)
return 0;
if (conn->flags & CO_FL_WAIT_XPRT && !conn->err_code) {
smp->flags |= SMP_F_MAY_CHANGE;
return 0;
}
if (cert_peer)
crt = ssl_sock_get_peer_certificate(ssl);
else
crt = SSL_get_certificate(ssl);
if (!crt)
goto out;
name = X509_get_issuer_name(crt);
if (!name)
goto out;
smp_trash = get_trash_chunk();
if (args[0].type == ARGT_STR && args[0].data.str.data > 0) {
int pos = 1;
if (args[1].type == ARGT_SINT)
pos = args[1].data.sint;
if (ssl_sock_get_dn_entry(name, &args[0].data.str, pos, smp_trash) <= 0)
goto out;
}
else if (args[2].type == ARGT_STR && args[2].data.str.data > 0) {
if (ssl_sock_get_dn_formatted(name, &args[2].data.str, smp_trash) <= 0)
goto out;
}
else if (ssl_sock_get_dn_oneline(name, smp_trash) <= 0)
goto out;
smp->flags = SMP_F_VOL_SESS;
smp->data.type = SMP_T_STR;
smp->data.u.str = *smp_trash;
ret = 1;
out:
/* SSL_get_peer_certificate, it increase X509 * ref count */
if (cert_peer && crt)
X509_free(crt);
return ret;
}
/* string, returns notbefore date in ASN1_UTCTIME format.
* The 5th keyword char is used to know if SSL_get_certificate or SSL_get_peer_certificate
* should be use.
*/
static int
smp_fetch_ssl_x_notbefore(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
int cert_peer = (kw[4] == 'c' || kw[4] == 's') ? 1 : 0;
int conn_server = (kw[4] == 's') ? 1 : 0;
X509 *crt = NULL;
int ret = 0;
struct buffer *smp_trash;
struct connection *conn;
SSL *ssl;
if (conn_server)
conn = smp->strm ? sc_conn(smp->strm->scb) : NULL;
else
conn = objt_conn(smp->sess->origin);
ssl = ssl_sock_get_ssl_object(conn);
if (!ssl)
return 0;
if (conn->flags & CO_FL_WAIT_XPRT && !conn->err_code) {
smp->flags |= SMP_F_MAY_CHANGE;
return 0;
}
if (cert_peer)
crt = ssl_sock_get_peer_certificate(ssl);
else
crt = SSL_get_certificate(ssl);
if (!crt)
goto out;
smp_trash = get_trash_chunk();
if (ssl_sock_get_time(X509_getm_notBefore(crt), smp_trash) <= 0)
goto out;
smp->flags = SMP_F_VOL_SESS;
smp->data.u.str = *smp_trash;
smp->data.type = SMP_T_STR;
ret = 1;
out:
/* SSL_get_peer_certificate, it increase X509 * ref count */
if (cert_peer && crt)
X509_free(crt);
return ret;
}
/* string, returns a string of a formatted full dn \C=..\O=..\OU=.. \CN=.. of certificate's subject
* The 5th keyword char is used to know if SSL_get_certificate or SSL_get_peer_certificate
* should be use.
*/
static int
smp_fetch_ssl_x_s_dn(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
int cert_peer = (kw[4] == 'c' || kw[4] == 's') ? 1 : 0;
int conn_server = (kw[4] == 's') ? 1 : 0;
X509 *crt = NULL;
X509_NAME *name;
int ret = 0;
struct buffer *smp_trash;
struct connection *conn;
SSL *ssl;
if (conn_server)
conn = smp->strm ? sc_conn(smp->strm->scb) : NULL;
else
conn = objt_conn(smp->sess->origin);
ssl = ssl_sock_get_ssl_object(conn);
if (!ssl)
return 0;
if (conn->flags & CO_FL_WAIT_XPRT && !conn->err_code) {
smp->flags |= SMP_F_MAY_CHANGE;
return 0;
}
if (cert_peer)
crt = ssl_sock_get_peer_certificate(ssl);
else
crt = SSL_get_certificate(ssl);
if (!crt)
goto out;
name = X509_get_subject_name(crt);
if (!name)
goto out;
smp_trash = get_trash_chunk();
if (args[0].type == ARGT_STR && args[0].data.str.data > 0) {
int pos = 1;
if (args[1].type == ARGT_SINT)
pos = args[1].data.sint;
if (ssl_sock_get_dn_entry(name, &args[0].data.str, pos, smp_trash) <= 0)
goto out;
}
else if (args[2].type == ARGT_STR && args[2].data.str.data > 0) {
if (ssl_sock_get_dn_formatted(name, &args[2].data.str, smp_trash) <= 0)
goto out;
}
else if (ssl_sock_get_dn_oneline(name, smp_trash) <= 0)
goto out;
smp->flags = SMP_F_VOL_SESS;
smp->data.type = SMP_T_STR;
smp->data.u.str = *smp_trash;
ret = 1;
out:
/* SSL_get_peer_certificate, it increase X509 * ref count */
if (cert_peer && crt)
X509_free(crt);
return ret;
}
/* integer, returns true if current session use a client certificate */
static int
smp_fetch_ssl_c_used(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
X509 *crt;
struct connection *conn;
SSL *ssl;
conn = objt_conn(smp->sess->origin);
ssl = ssl_sock_get_ssl_object(conn);
if (!ssl)
return 0;
if (conn->flags & CO_FL_WAIT_XPRT && !conn->err_code) {
smp->flags |= SMP_F_MAY_CHANGE;
return 0;
}
/* SSL_get_peer_certificate returns a ptr on allocated X509 struct */
crt = ssl_sock_get_peer_certificate(ssl);
if (crt) {
X509_free(crt);
}
smp->flags = SMP_F_VOL_SESS;
smp->data.type = SMP_T_BOOL;
smp->data.u.sint = (crt != NULL);
return 1;
}
/* integer, returns the certificate version
* The 5th keyword char is used to know if SSL_get_certificate or SSL_get_peer_certificate
* should be use.
*/
static int
smp_fetch_ssl_x_version(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
int cert_peer = (kw[4] == 'c' || kw[4] == 's') ? 1 : 0;
int conn_server = (kw[4] == 's') ? 1 : 0;
X509 *crt;
struct connection *conn;
SSL *ssl;
if (conn_server)
conn = smp->strm ? sc_conn(smp->strm->scb) : NULL;
else
conn = objt_conn(smp->sess->origin);
ssl = ssl_sock_get_ssl_object(conn);
if (!ssl)
return 0;
if (conn->flags & CO_FL_WAIT_XPRT && !conn->err_code) {
smp->flags |= SMP_F_MAY_CHANGE;
return 0;
}
if (cert_peer)
crt = ssl_sock_get_peer_certificate(ssl);
else
crt = SSL_get_certificate(ssl);
if (!crt)
return 0;
smp->flags = SMP_F_VOL_SESS;
smp->data.u.sint = (unsigned int)(1 + X509_get_version(crt));
/* SSL_get_peer_certificate increase X509 * ref count */
if (cert_peer)
X509_free(crt);
smp->data.type = SMP_T_SINT;
return 1;
}
/* string, returns the certificate's signature algorithm.
* The 5th keyword char is used to know if SSL_get_certificate or SSL_get_peer_certificate
* should be use.
*/
static int
smp_fetch_ssl_x_sig_alg(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
int cert_peer = (kw[4] == 'c' || kw[4] == 's') ? 1 : 0;
int conn_server = (kw[4] == 's') ? 1 : 0;
X509 *crt;
__OPENSSL_110_CONST__ ASN1_OBJECT *algorithm;
int nid;
struct connection *conn;
SSL *ssl;
if (conn_server)
conn = smp->strm ? sc_conn(smp->strm->scb) : NULL;
else
conn = objt_conn(smp->sess->origin);
ssl = ssl_sock_get_ssl_object(conn);
if (!ssl)
return 0;
if (conn->flags & CO_FL_WAIT_XPRT && !conn->err_code) {
smp->flags |= SMP_F_MAY_CHANGE;
return 0;
}
if (cert_peer)
crt = ssl_sock_get_peer_certificate(ssl);
else
crt = SSL_get_certificate(ssl);
if (!crt)
return 0;
X509_ALGOR_get0(&algorithm, NULL, NULL, X509_get0_tbs_sigalg(crt));
nid = OBJ_obj2nid(algorithm);
smp->data.u.str.area = (char *)OBJ_nid2sn(nid);
if (!smp->data.u.str.area) {
/* SSL_get_peer_certificate increase X509 * ref count */
if (cert_peer)
X509_free(crt);
return 0;
}
smp->data.type = SMP_T_STR;
smp->flags |= SMP_F_VOL_SESS | SMP_F_CONST;
smp->data.u.str.data = strlen(smp->data.u.str.area);
/* SSL_get_peer_certificate increase X509 * ref count */
if (cert_peer)
X509_free(crt);
return 1;
}
/* string, returns the certificate's key algorithm.
* The 5th keyword char is used to know if SSL_get_certificate or SSL_get_peer_certificate
* should be use.
*/
static int
smp_fetch_ssl_x_key_alg(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
int cert_peer = (kw[4] == 'c' || kw[4] == 's') ? 1 : 0;
int conn_server = (kw[4] == 's') ? 1 : 0;
X509 *crt;
ASN1_OBJECT *algorithm;
int nid;
struct connection *conn;
SSL *ssl;
if (conn_server)
conn = smp->strm ? sc_conn(smp->strm->scb) : NULL;
else
conn = objt_conn(smp->sess->origin);
ssl = ssl_sock_get_ssl_object(conn);
if (!ssl)
return 0;
if (conn->flags & CO_FL_WAIT_XPRT && !conn->err_code) {
smp->flags |= SMP_F_MAY_CHANGE;
return 0;
}
if (cert_peer)
crt = ssl_sock_get_peer_certificate(ssl);
else
crt = SSL_get_certificate(ssl);
if (!crt)
return 0;
X509_PUBKEY_get0_param(&algorithm, NULL, NULL, NULL, X509_get_X509_PUBKEY(crt));
nid = OBJ_obj2nid(algorithm);
smp->data.u.str.area = (char *)OBJ_nid2sn(nid);
if (!smp->data.u.str.area) {
/* SSL_get_peer_certificate increase X509 * ref count */
if (cert_peer)
X509_free(crt);
return 0;
}
smp->data.type = SMP_T_STR;
smp->flags |= SMP_F_VOL_SESS | SMP_F_CONST;
smp->data.u.str.data = strlen(smp->data.u.str.area);
if (cert_peer)
X509_free(crt);
return 1;
}
/* boolean, returns true if front conn. transport layer is SSL.
* This function is also usable on backend conn if the fetch keyword 5th
* char is 'b'.
*/
static int
smp_fetch_ssl_fc(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct connection *conn;
if (obj_type(smp->sess->origin) == OBJ_TYPE_CHECK)
conn = (kw[4] == 'b') ? sc_conn(__objt_check(smp->sess->origin)->sc) : NULL;
else
conn = (kw[4] != 'b') ? objt_conn(smp->sess->origin) :
smp->strm ? sc_conn(smp->strm->scb) : NULL;
smp->data.type = SMP_T_BOOL;
smp->data.u.sint = conn_is_ssl(conn);
return 1;
}
/* boolean, returns true if client present a SNI */
static int
smp_fetch_ssl_fc_has_sni(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
#ifdef SSL_CTRL_SET_TLSEXT_HOSTNAME
struct connection *conn = objt_conn(smp->sess->origin);
SSL *ssl = ssl_sock_get_ssl_object(conn);
smp->data.type = SMP_T_BOOL;
smp->data.u.sint = ssl && SSL_get_servername(ssl, TLSEXT_NAMETYPE_host_name) != NULL;
return 1;
#else
return 0;
#endif
}
/* boolean, returns true if client session has been resumed.
* This function is also usable on backend conn if the fetch keyword 5th
* char is 'b'.
*/
static int
smp_fetch_ssl_fc_is_resumed(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct connection *conn;
SSL *ssl;
if (obj_type(smp->sess->origin) == OBJ_TYPE_CHECK)
conn = (kw[4] == 'b') ? sc_conn(__objt_check(smp->sess->origin)->sc) : NULL;
else
conn = (kw[4] != 'b') ? objt_conn(smp->sess->origin) :
smp->strm ? sc_conn(smp->strm->scb) : NULL;
ssl = ssl_sock_get_ssl_object(conn);
smp->data.type = SMP_T_BOOL;
smp->data.u.sint = ssl && SSL_session_reused(ssl);
return 1;
}
/* string, returns the used cipher if front conn. transport layer is SSL.
* This function is also usable on backend conn if the fetch keyword 5th
* char is 'b'.
*/
static int
smp_fetch_ssl_fc_cipher(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct connection *conn;
SSL *ssl;
if (obj_type(smp->sess->origin) == OBJ_TYPE_CHECK)
conn = (kw[4] == 'b') ? sc_conn(__objt_check(smp->sess->origin)->sc) : NULL;
else
conn = (kw[4] != 'b') ? objt_conn(smp->sess->origin) :
smp->strm ? sc_conn(smp->strm->scb) : NULL;
smp->flags = 0;
ssl = ssl_sock_get_ssl_object(conn);
if (!ssl)
return 0;
smp->data.u.str.area = (char *)SSL_get_cipher_name(ssl);
if (!smp->data.u.str.area)
return 0;
smp->data.type = SMP_T_STR;
smp->flags |= SMP_F_VOL_SESS | SMP_F_CONST;
smp->data.u.str.data = strlen(smp->data.u.str.area);
return 1;
}
/* integer, returns the algoritm's keysize if front conn. transport layer
* is SSL.
* This function is also usable on backend conn if the fetch keyword 5th
* char is 'b'.
*/
static int
smp_fetch_ssl_fc_alg_keysize(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct connection *conn;
SSL *ssl;
int sint;
if (obj_type(smp->sess->origin) == OBJ_TYPE_CHECK)
conn = (kw[4] == 'b') ? sc_conn(__objt_check(smp->sess->origin)->sc) : NULL;
else
conn = (kw[4] != 'b') ? objt_conn(smp->sess->origin) :
smp->strm ? sc_conn(smp->strm->scb) : NULL;
smp->flags = 0;
ssl = ssl_sock_get_ssl_object(conn);
if (!ssl)
return 0;
if (!SSL_get_cipher_bits(ssl, &sint))
return 0;
smp->flags = SMP_F_VOL_SESS;
smp->data.u.sint = sint;
smp->data.type = SMP_T_SINT;
return 1;
}
/* integer, returns the used keysize if front conn. transport layer is SSL.
* This function is also usable on backend conn if the fetch keyword 5th
* char is 'b'.
*/
static int
smp_fetch_ssl_fc_use_keysize(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct connection *conn;
SSL *ssl;
if (obj_type(smp->sess->origin) == OBJ_TYPE_CHECK)
conn = (kw[4] == 'b') ? sc_conn(__objt_check(smp->sess->origin)->sc) : NULL;
else
conn = (kw[4] != 'b') ? objt_conn(smp->sess->origin) :
smp->strm ? sc_conn(smp->strm->scb) : NULL;
smp->flags = 0;
ssl = ssl_sock_get_ssl_object(conn);
if (!ssl)
return 0;
smp->data.u.sint = (unsigned int)SSL_get_cipher_bits(ssl, NULL);
if (!smp->data.u.sint)
return 0;
smp->flags = SMP_F_VOL_SESS;
smp->data.type = SMP_T_SINT;
return 1;
}
#if defined(OPENSSL_NPN_NEGOTIATED) && !defined(OPENSSL_NO_NEXTPROTONEG)
static int
smp_fetch_ssl_fc_npn(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct connection *conn;
SSL *ssl;
unsigned int len = 0;
smp->flags = SMP_F_CONST;
smp->data.type = SMP_T_STR;
if (obj_type(smp->sess->origin) == OBJ_TYPE_CHECK)
conn = (kw[4] == 'b') ? sc_conn(__objt_check(smp->sess->origin)->sc) : NULL;
else
conn = (kw[4] != 'b') ? objt_conn(smp->sess->origin) :
smp->strm ? sc_conn(smp->strm->scb) : NULL;
ssl = ssl_sock_get_ssl_object(conn);
if (!ssl)
return 0;
smp->flags = SMP_F_VOL_SESS;
smp->data.u.str.area = NULL;
SSL_get0_next_proto_negotiated(ssl,
(const unsigned char **)&smp->data.u.str.area,
&len);
if (!smp->data.u.str.area)
return 0;
smp->data.u.str.data = len;
return 1;
}
#endif
#ifdef TLSEXT_TYPE_application_layer_protocol_negotiation
static int
smp_fetch_ssl_fc_alpn(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct connection *conn;
SSL *ssl;
unsigned int len = 0;
smp->flags = SMP_F_VOL_SESS | SMP_F_CONST;
smp->data.type = SMP_T_STR;
if (obj_type(smp->sess->origin) == OBJ_TYPE_CHECK)
conn = (kw[4] == 'b') ? sc_conn(__objt_check(smp->sess->origin)->sc) : NULL;
else
conn = (kw[4] != 'b') ? objt_conn(smp->sess->origin) :
smp->strm ? sc_conn(smp->strm->scb) : NULL;
ssl = ssl_sock_get_ssl_object(conn);
if (!ssl)
return 0;
smp->data.u.str.area = NULL;
SSL_get0_alpn_selected(ssl,
(const unsigned char **)&smp->data.u.str.area,
&len);
if (!smp->data.u.str.area)
return 0;
smp->data.u.str.data = len;
return 1;
}
#endif
/* string, returns the used protocol if front conn. transport layer is SSL.
* This function is also usable on backend conn if the fetch keyword 5th
* char is 'b'.
*/
static int
smp_fetch_ssl_fc_protocol(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct connection *conn;
SSL *ssl;
if (obj_type(smp->sess->origin) == OBJ_TYPE_CHECK)
conn = (kw[4] == 'b') ? sc_conn(__objt_check(smp->sess->origin)->sc) : NULL;
else
conn = (kw[4] != 'b') ? objt_conn(smp->sess->origin) :
smp->strm ? sc_conn(smp->strm->scb) : NULL;
smp->flags = 0;
ssl = ssl_sock_get_ssl_object(conn);
if (!ssl)
return 0;
smp->data.u.str.area = (char *)SSL_get_version(ssl);
if (!smp->data.u.str.area)
return 0;
smp->data.type = SMP_T_STR;
smp->flags = SMP_F_VOL_SESS | SMP_F_CONST;
smp->data.u.str.data = strlen(smp->data.u.str.area);
return 1;
}
/* binary, returns the SSL stream id if front conn. transport layer is SSL.
* This function is also usable on backend conn if the fetch keyword 5th
* char is 'b'.
*/
#if HA_OPENSSL_VERSION_NUMBER > 0x0090800fL
static int
smp_fetch_ssl_fc_session_id(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct connection *conn;
SSL_SESSION *ssl_sess;
SSL *ssl;
unsigned int len = 0;
smp->flags = SMP_F_VOL_SESS | SMP_F_CONST;
smp->data.type = SMP_T_BIN;
if (obj_type(smp->sess->origin) == OBJ_TYPE_CHECK)
conn = (kw[4] == 'b') ? sc_conn(__objt_check(smp->sess->origin)->sc) : NULL;
else
conn = (kw[4] != 'b') ? objt_conn(smp->sess->origin) :
smp->strm ? sc_conn(smp->strm->scb) : NULL;
ssl = ssl_sock_get_ssl_object(conn);
if (!ssl)
return 0;
ssl_sess = SSL_get_session(ssl);
if (!ssl_sess)
return 0;
smp->data.u.str.area = (char *)SSL_SESSION_get_id(ssl_sess, &len);
if (!smp->data.u.str.area || !len)
return 0;
smp->data.u.str.data = len;
return 1;
}
#endif
#ifdef HAVE_SSL_EXTRACT_RANDOM
static int
smp_fetch_ssl_fc_random(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct connection *conn;
struct buffer *data;
SSL *ssl;
if (obj_type(smp->sess->origin) == OBJ_TYPE_CHECK)
conn = (kw[4] == 'b') ? sc_conn(__objt_check(smp->sess->origin)->sc) : NULL;
else
conn = (kw[4] != 'b') ? objt_conn(smp->sess->origin) :
smp->strm ? sc_conn(smp->strm->scb) : NULL;
ssl = ssl_sock_get_ssl_object(conn);
if (!ssl)
return 0;
data = get_trash_chunk();
if (kw[7] == 'c')
data->data = SSL_get_client_random(ssl,
(unsigned char *) data->area,
data->size);
else
data->data = SSL_get_server_random(ssl,
(unsigned char *) data->area,
data->size);
if (!data->data)
return 0;
smp->flags = SMP_F_VOL_TEST;
smp->data.type = SMP_T_BIN;
smp->data.u.str = *data;
return 1;
}
static int
smp_fetch_ssl_fc_session_key(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct connection *conn;
SSL_SESSION *ssl_sess;
struct buffer *data;
SSL *ssl;
if (obj_type(smp->sess->origin) == OBJ_TYPE_CHECK)
conn = (kw[4] == 'b') ? sc_conn(__objt_check(smp->sess->origin)->sc) : NULL;
else
conn = (kw[4] != 'b') ? objt_conn(smp->sess->origin) :
smp->strm ? sc_conn(smp->strm->scb) : NULL;
ssl = ssl_sock_get_ssl_object(conn);
if (!ssl)
return 0;
ssl_sess = SSL_get_session(ssl);
if (!ssl_sess)
return 0;
data = get_trash_chunk();
data->data = SSL_SESSION_get_master_key(ssl_sess,
(unsigned char *) data->area,
data->size);
if (!data->data)
return 0;
smp->flags = SMP_F_VOL_SESS;
smp->data.type = SMP_T_BIN;
smp->data.u.str = *data;
return 1;
}
#endif
static int
smp_fetch_ssl_fc_sni(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
#ifdef SSL_CTRL_SET_TLSEXT_HOSTNAME
struct connection *conn;
SSL *ssl;
smp->flags = SMP_F_VOL_SESS | SMP_F_CONST;
smp->data.type = SMP_T_STR;
conn = objt_conn(smp->sess->origin);
ssl = ssl_sock_get_ssl_object(conn);
if (!ssl)
return 0;
smp->data.u.str.area = (char *)SSL_get_servername(ssl, TLSEXT_NAMETYPE_host_name);
if (!smp->data.u.str.area) {
/* We might have stored the SNI ourselves, look for it in the
* context's ex_data.
*/
smp->data.u.str.area = SSL_get_ex_data(ssl, ssl_client_sni_index);
if (!smp->data.u.str.area)
return 0;
}
smp->data.u.str.data = strlen(smp->data.u.str.area);
return 1;
#else
/* SNI not supported */
return 0;
#endif
}
/* binary, returns tls client hello cipher list.
* Arguments: filter_option (0,1)
*/
static int
smp_fetch_ssl_fc_cl_bin(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct buffer *smp_trash;
struct connection *conn;
struct ssl_capture *capture;
SSL *ssl;
conn = objt_conn(smp->sess->origin);
ssl = ssl_sock_get_ssl_object(conn);
if (!ssl)
return 0;
capture = SSL_get_ex_data(ssl, ssl_capture_ptr_index);
if (!capture)
return 0;
if (args[0].data.sint) {
smp_trash = get_trash_chunk();
exclude_tls_grease(capture->data + capture->ciphersuite_offset, capture->ciphersuite_len, smp_trash);
smp->data.u.str.area = smp_trash->area;
smp->data.u.str.data = smp_trash->data;
smp->flags = SMP_F_VOL_SESS;
}
else {
smp->data.u.str.area = capture->data + capture->ciphersuite_offset;
smp->data.u.str.data = capture->ciphersuite_len;
smp->flags = SMP_F_VOL_TEST | SMP_F_CONST;
}
smp->data.type = SMP_T_BIN;
return 1;
}
/* binary, returns tls client hello cipher list as hexadecimal string.
* Arguments: filter_option (0,1)
*/
static int
smp_fetch_ssl_fc_cl_hex(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct buffer *data;
if (!smp_fetch_ssl_fc_cl_bin(args, smp, kw, private))
return 0;
data = get_trash_chunk();
dump_binary(data, smp->data.u.str.area, smp->data.u.str.data);
smp->flags = SMP_F_VOL_SESS;
smp->data.type = SMP_T_BIN;
smp->data.u.str = *data;
return 1;
}
/* integer, returns xxh64 hash of tls client hello cipher list. */
static int
smp_fetch_ssl_fc_cl_xxh64(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct connection *conn;
struct ssl_capture *capture;
SSL *ssl;
conn = objt_conn(smp->sess->origin);
ssl = ssl_sock_get_ssl_object(conn);
if (!ssl)
return 0;
capture = SSL_get_ex_data(ssl, ssl_capture_ptr_index);
if (!capture)
return 0;
smp->flags = SMP_F_VOL_SESS;
smp->data.type = SMP_T_SINT;
smp->data.u.sint = capture->xxh64;
return 1;
}
static int
smp_fetch_ssl_fc_err(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct connection *conn;
struct ssl_sock_ctx *ctx;
if (obj_type(smp->sess->origin) == OBJ_TYPE_CHECK)
conn = (kw[4] == 'b') ? sc_conn(__objt_check(smp->sess->origin)->sc) : NULL;
else
conn = (kw[4] != 'b') ? objt_conn(smp->sess->origin) :
smp->strm ? sc_conn(smp->strm->scb) : NULL;
if (!conn)
return 0;
if (conn->flags & CO_FL_WAIT_XPRT && !conn->err_code) {
smp->flags = SMP_F_MAY_CHANGE;
return 0;
}
ctx = conn_get_ssl_sock_ctx(conn);
if (!ctx)
return 0;
smp->flags = SMP_F_VOL_SESS;
smp->data.type = SMP_T_SINT;
smp->data.u.sint = ctx->error_code;
return 1;
}
static int
smp_fetch_ssl_fc_protocol_hello_id(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct connection *conn;
struct ssl_capture *capture;
SSL *ssl;
conn = objt_conn(smp->sess->origin);
ssl = ssl_sock_get_ssl_object(conn);
if (!ssl)
return 0;
capture = SSL_get_ex_data(ssl, ssl_capture_ptr_index);
if (!capture)
return 0;
smp->flags = SMP_F_VOL_SESS;
smp->data.type = SMP_T_SINT;
smp->data.u.sint = capture->protocol_version;
return 1;
}
static int
smp_fetch_ssl_fc_err_str(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct connection *conn;
struct ssl_sock_ctx *ctx;
const char *err_code_str;
if (obj_type(smp->sess->origin) == OBJ_TYPE_CHECK)
conn = (kw[4] == 'b') ? sc_conn(__objt_check(smp->sess->origin)->sc) : NULL;
else
conn = (kw[4] != 'b') ? objt_conn(smp->sess->origin) :
smp->strm ? sc_conn(smp->strm->scb) : NULL;
if (!conn)
return 0;
if (conn->flags & CO_FL_WAIT_XPRT && !conn->err_code) {
smp->flags = SMP_F_MAY_CHANGE;
return 0;
}
ctx = conn_get_ssl_sock_ctx(conn);
if (!ctx || !ctx->error_code)
return 0;
err_code_str = ERR_error_string(ctx->error_code, NULL);
smp->flags = SMP_F_VOL_SESS;
smp->data.type = SMP_T_STR;
smp->data.u.str.area = (char*)err_code_str;
smp->data.u.str.data = strlen(err_code_str);
return 1;
}
/* binary, returns tls client hello extensions list.
* Arguments: filter_option (0,1)
*/
static int
smp_fetch_ssl_fc_ext_bin(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct buffer *smp_trash;
struct connection *conn;
struct ssl_capture *capture;
SSL *ssl;
conn = objt_conn(smp->sess->origin);
ssl = ssl_sock_get_ssl_object(conn);
if (!ssl)
return 0;
capture = SSL_get_ex_data(ssl, ssl_capture_ptr_index);
if (!capture)
return 0;
if (args[0].data.sint) {
smp_trash = get_trash_chunk();
exclude_tls_grease(capture->data + capture->extensions_offset, capture->extensions_len, smp_trash);
smp->data.u.str.area = smp_trash->area;
smp->data.u.str.data = smp_trash->data;
smp->flags = SMP_F_VOL_SESS;
}
else {
smp->data.u.str.area = capture->data + capture->extensions_offset;
smp->data.u.str.data = capture->extensions_len;
smp->flags = SMP_F_VOL_TEST | SMP_F_CONST;
}
smp->data.type = SMP_T_BIN;
return 1;
}
/* binary, returns tls client hello supported elliptic curves.
* Arguments: filter_option (0,1)
*/
static int
smp_fetch_ssl_fc_ecl_bin(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct buffer *smp_trash;
struct connection *conn;
struct ssl_capture *capture;
SSL *ssl;
conn = objt_conn(smp->sess->origin);
ssl = ssl_sock_get_ssl_object(conn);
if (!ssl)
return 0;
capture = SSL_get_ex_data(ssl, ssl_capture_ptr_index);
if (!capture)
return 0;
if (args[0].data.sint) {
smp_trash = get_trash_chunk();
exclude_tls_grease(capture->data + capture->ec_offset, capture->ec_len, smp_trash);
smp->data.u.str.area = smp_trash->area;
smp->data.u.str.data = smp_trash->data;
smp->flags = SMP_F_VOL_SESS;
}
else {
smp->data.u.str.area = capture->data + capture->ec_offset;
smp->data.u.str.data = capture->ec_len;
smp->flags = SMP_F_VOL_TEST | SMP_F_CONST;
}
smp->data.type = SMP_T_BIN;
return 1;
}
/* binary, returns tls client hello supported elliptic curve point formats */
static int
smp_fetch_ssl_fc_ecf_bin(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct connection *conn;
struct ssl_capture *capture;
SSL *ssl;
conn = objt_conn(smp->sess->origin);
ssl = ssl_sock_get_ssl_object(conn);
if (!ssl)
return 0;
capture = SSL_get_ex_data(ssl, ssl_capture_ptr_index);
if (!capture)
return 0;
smp->flags = SMP_F_VOL_TEST | SMP_F_CONST;
smp->data.type = SMP_T_BIN;
smp->data.u.str.area = capture->data + capture->ec_formats_offset;
smp->data.u.str.data = capture->ec_formats_len;
return 1;
}
/* Dump the SSL keylog, it only works with "tune.ssl.keylog 1" */
#ifdef HAVE_SSL_KEYLOG
static int smp_fetch_ssl_x_keylog(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct connection *conn;
struct ssl_keylog *keylog;
SSL *ssl;
char *src = NULL;
const char *sfx;
if (global_ssl.keylog <= 0)
return 0;
conn = (kw[4] != 'b') ? objt_conn(smp->sess->origin) :
smp->strm ? sc_conn(smp->strm->scb) : NULL;
if (!conn)
return 0;
if (conn->flags & CO_FL_WAIT_XPRT) {
smp->flags |= SMP_F_MAY_CHANGE;
return 0;
}
ssl = ssl_sock_get_ssl_object(conn);
if (!ssl)
return 0;
keylog = SSL_get_ex_data(ssl, ssl_keylog_index);
if (!keylog)
return 0;
sfx = kw + strlen("ssl_xx_");
if (strcmp(sfx, "client_early_traffic_secret") == 0) {
src = keylog->client_early_traffic_secret;
} else if (strcmp(sfx, "client_handshake_traffic_secret") == 0) {
src = keylog->client_handshake_traffic_secret;
} else if (strcmp(sfx, "server_handshake_traffic_secret") == 0) {
src = keylog->server_handshake_traffic_secret;
} else if (strcmp(sfx, "client_traffic_secret_0") == 0) {
src = keylog->client_traffic_secret_0;
} else if (strcmp(sfx, "server_traffic_secret_0") == 0) {
src = keylog->server_traffic_secret_0;
} else if (strcmp(sfx, "exporter_secret") == 0) {
src = keylog->exporter_secret;
} else if (strcmp(sfx, "early_exporter_secret") == 0) {
src = keylog->early_exporter_secret;
}
if (!src || !*src)
return 0;
smp->data.u.str.area = src;
smp->data.type = SMP_T_STR;
smp->flags |= SMP_F_VOL_TEST | SMP_F_CONST;
smp->data.u.str.data = strlen(smp->data.u.str.area);
return 1;
}
#endif
static int
smp_fetch_ssl_fc_cl_str(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
#if defined(OPENSSL_IS_BORINGSSL) || defined(SSL_CTRL_GET_RAW_CIPHERLIST)
struct buffer *data;
int i;
if (!smp_fetch_ssl_fc_cl_bin(args, smp, kw, private))
return 0;
data = get_trash_chunk();
for (i = 0; i + 1 < smp->data.u.str.data; i += 2) {
const char *str;
const SSL_CIPHER *cipher;
const unsigned char *bin = (const unsigned char *) smp->data.u.str.area + i;
uint16_t id = (bin[0] << 8) | bin[1];
#if defined(OPENSSL_IS_BORINGSSL)
cipher = SSL_get_cipher_by_value(id);
#else
struct connection *conn = __objt_conn(smp->sess->origin);
SSL *ssl = ssl_sock_get_ssl_object(conn);
cipher = SSL_CIPHER_find(ssl, bin);
#endif
str = SSL_CIPHER_get_name(cipher);
if (!str || strcmp(str, "(NONE)") == 0)
chunk_appendf(data, "%sUNKNOWN(%04x)", i == 0 ? "" : ",", id);
else
chunk_appendf(data, "%s%s", i == 0 ? "" : ",", str);
}
smp->data.type = SMP_T_STR;
smp->data.u.str = *data;
return 1;
#else
return smp_fetch_ssl_fc_cl_xxh64(args, smp, kw, private);
#endif
}
#if HA_OPENSSL_VERSION_NUMBER > 0x0090800fL
static int
smp_fetch_ssl_fc_unique_id(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct connection *conn;
int finished_len;
struct buffer *finished_trash;
SSL *ssl;
if (obj_type(smp->sess->origin) == OBJ_TYPE_CHECK)
conn = (kw[4] == 'b') ? sc_conn(__objt_check(smp->sess->origin)->sc) : NULL;
else
conn = (kw[4] != 'b') ? objt_conn(smp->sess->origin) :
smp->strm ? sc_conn(smp->strm->scb) : NULL;
smp->flags = 0;
ssl = ssl_sock_get_ssl_object(conn);
if (!ssl)
return 0;
if (conn->flags & CO_FL_WAIT_XPRT) {
smp->flags |= SMP_F_MAY_CHANGE;
return 0;
}
finished_trash = get_trash_chunk();
if (!SSL_session_reused(ssl))
finished_len = SSL_get_peer_finished(ssl,
finished_trash->area,
finished_trash->size);
else
finished_len = SSL_get_finished(ssl,
finished_trash->area,
finished_trash->size);
if (!finished_len)
return 0;
finished_trash->data = finished_len;
smp->flags = SMP_F_VOL_SESS;
smp->data.u.str = *finished_trash;
smp->data.type = SMP_T_BIN;
return 1;
}
#endif
/* integer, returns the first verify error in CA chain of client certificate chain. */
static int
smp_fetch_ssl_c_ca_err(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct connection *conn = objt_conn(smp->sess->origin);
struct ssl_sock_ctx *ctx = conn_get_ssl_sock_ctx(conn);
if (conn && conn->flags & CO_FL_WAIT_XPRT && !conn->err_code) {
smp->flags = SMP_F_MAY_CHANGE;
return 0;
}
if (!ctx)
return 0;
smp->data.type = SMP_T_SINT;
smp->data.u.sint = (unsigned long long int)SSL_SOCK_ST_TO_CA_ERROR(ctx->xprt_st);
smp->flags = SMP_F_VOL_SESS;
return 1;
}
/* integer, returns the depth of the first verify error in CA chain of client certificate chain. */
static int
smp_fetch_ssl_c_ca_err_depth(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct connection *conn = objt_conn(smp->sess->origin);
struct ssl_sock_ctx *ctx = conn_get_ssl_sock_ctx(conn);
if (conn && conn->flags & CO_FL_WAIT_XPRT && !conn->err_code) {
smp->flags = SMP_F_MAY_CHANGE;
return 0;
}
if (!ctx)
return 0;
smp->data.type = SMP_T_SINT;
smp->data.u.sint = (long long int)SSL_SOCK_ST_TO_CAEDEPTH(ctx->xprt_st);
smp->flags = SMP_F_VOL_SESS;
return 1;
}
/* integer, returns the first verify error on client certificate */
static int
smp_fetch_ssl_c_err(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct connection *conn = objt_conn(smp->sess->origin);
struct ssl_sock_ctx *ctx = conn_get_ssl_sock_ctx(conn);
if (conn && conn->flags & CO_FL_WAIT_XPRT && !conn->err_code) {
smp->flags = SMP_F_MAY_CHANGE;
return 0;
}
if (!ctx)
return 0;
smp->data.type = SMP_T_SINT;
smp->data.u.sint = (long long int)SSL_SOCK_ST_TO_CRTERROR(ctx->xprt_st);
smp->flags = SMP_F_VOL_SESS;
return 1;
}
/* integer, returns the verify result on client cert */
static int
smp_fetch_ssl_c_verify(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct connection *conn;
SSL *ssl;
conn = objt_conn(smp->sess->origin);
ssl = ssl_sock_get_ssl_object(conn);
if (!ssl)
return 0;
if (conn->flags & CO_FL_WAIT_XPRT) {
smp->flags = SMP_F_MAY_CHANGE;
return 0;
}
smp->data.type = SMP_T_SINT;
smp->data.u.sint = (long long int)SSL_get_verify_result(ssl);
smp->flags = SMP_F_VOL_SESS;
return 1;
}
/* Argument validation functions */
/* This function is used to validate the arguments passed to any "x_dn" ssl
* keywords. These keywords support specifying a third parameter that must be
* either empty or the value "rfc2253". Returns 0 on error, non-zero if OK.
*/
int val_dnfmt(struct arg *arg, char **err_msg)
{
if (arg && arg[2].type == ARGT_STR && arg[2].data.str.data > 0 && (strcmp(arg[2].data.str.area, "rfc2253") != 0)) {
memprintf(err_msg, "only rfc2253 or a blank value are currently supported as the format argument.");
return 0;
}
return 1;
}
/* Note: must not be declared <const> as its list will be overwritten.
* Please take care of keeping this list alphabetically sorted.
*/
static struct sample_fetch_kw_list sample_fetch_keywords = {ILH, {
{ "ssl_bc", smp_fetch_ssl_fc, 0, NULL, SMP_T_BOOL, SMP_USE_L5SRV },
{ "ssl_bc_alg_keysize", smp_fetch_ssl_fc_alg_keysize, 0, NULL, SMP_T_SINT, SMP_USE_L5SRV },
#ifdef TLSEXT_TYPE_application_layer_protocol_negotiation
{ "ssl_bc_alpn", smp_fetch_ssl_fc_alpn, 0, NULL, SMP_T_STR, SMP_USE_L5SRV },
#endif
{ "ssl_bc_cipher", smp_fetch_ssl_fc_cipher, 0, NULL, SMP_T_STR, SMP_USE_L5SRV },
#if defined(OPENSSL_NPN_NEGOTIATED) && !defined(OPENSSL_NO_NEXTPROTONEG)
{ "ssl_bc_npn", smp_fetch_ssl_fc_npn, 0, NULL, SMP_T_STR, SMP_USE_L5SRV },
#endif
{ "ssl_bc_is_resumed", smp_fetch_ssl_fc_is_resumed, 0, NULL, SMP_T_BOOL, SMP_USE_L5SRV },
{ "ssl_bc_protocol", smp_fetch_ssl_fc_protocol, 0, NULL, SMP_T_STR, SMP_USE_L5SRV },
{ "ssl_bc_unique_id", smp_fetch_ssl_fc_unique_id, 0, NULL, SMP_T_BIN, SMP_USE_L5SRV },
{ "ssl_bc_use_keysize", smp_fetch_ssl_fc_use_keysize, 0, NULL, SMP_T_SINT, SMP_USE_L5SRV },
#if HA_OPENSSL_VERSION_NUMBER > 0x0090800fL
{ "ssl_bc_session_id", smp_fetch_ssl_fc_session_id, 0, NULL, SMP_T_BIN, SMP_USE_L5SRV },
#endif
#ifdef HAVE_SSL_EXTRACT_RANDOM
{ "ssl_bc_client_random", smp_fetch_ssl_fc_random, 0, NULL, SMP_T_BIN, SMP_USE_L5SRV },
{ "ssl_bc_server_random", smp_fetch_ssl_fc_random, 0, NULL, SMP_T_BIN, SMP_USE_L5SRV },
{ "ssl_bc_session_key", smp_fetch_ssl_fc_session_key, 0, NULL, SMP_T_BIN, SMP_USE_L5SRV },
#endif
{ "ssl_bc_err", smp_fetch_ssl_fc_err, 0, NULL, SMP_T_SINT, SMP_USE_L5SRV },
{ "ssl_bc_err_str", smp_fetch_ssl_fc_err_str, 0, NULL, SMP_T_STR, SMP_USE_L5SRV },
{ "ssl_c_ca_err", smp_fetch_ssl_c_ca_err, 0, NULL, SMP_T_SINT, SMP_USE_L5CLI },
{ "ssl_c_ca_err_depth", smp_fetch_ssl_c_ca_err_depth, 0, NULL, SMP_T_SINT, SMP_USE_L5CLI },
{ "ssl_c_der", smp_fetch_ssl_x_der, 0, NULL, SMP_T_BIN, SMP_USE_L5CLI },
{ "ssl_c_chain_der", smp_fetch_ssl_x_chain_der, 0, NULL, SMP_T_BIN, SMP_USE_L5CLI },
{ "ssl_c_err", smp_fetch_ssl_c_err, 0, NULL, SMP_T_SINT, SMP_USE_L5CLI },
{ "ssl_c_i_dn", smp_fetch_ssl_x_i_dn, ARG3(0,STR,SINT,STR),val_dnfmt, SMP_T_STR, SMP_USE_L5CLI },
{ "ssl_c_key_alg", smp_fetch_ssl_x_key_alg, 0, NULL, SMP_T_STR, SMP_USE_L5CLI },
{ "ssl_c_notafter", smp_fetch_ssl_x_notafter, 0, NULL, SMP_T_STR, SMP_USE_L5CLI },
{ "ssl_c_notbefore", smp_fetch_ssl_x_notbefore, 0, NULL, SMP_T_STR, SMP_USE_L5CLI },
{ "ssl_c_sig_alg", smp_fetch_ssl_x_sig_alg, 0, NULL, SMP_T_STR, SMP_USE_L5CLI },
{ "ssl_c_s_dn", smp_fetch_ssl_x_s_dn, ARG3(0,STR,SINT,STR),val_dnfmt, SMP_T_STR, SMP_USE_L5CLI },
{ "ssl_c_serial", smp_fetch_ssl_x_serial, 0, NULL, SMP_T_BIN, SMP_USE_L5CLI },
{ "ssl_c_sha1", smp_fetch_ssl_x_sha1, 0, NULL, SMP_T_BIN, SMP_USE_L5CLI },
{ "ssl_c_used", smp_fetch_ssl_c_used, 0, NULL, SMP_T_BOOL, SMP_USE_L5CLI },
{ "ssl_c_verify", smp_fetch_ssl_c_verify, 0, NULL, SMP_T_SINT, SMP_USE_L5CLI },
{ "ssl_c_version", smp_fetch_ssl_x_version, 0, NULL, SMP_T_SINT, SMP_USE_L5CLI },
{ "ssl_f_der", smp_fetch_ssl_x_der, 0, NULL, SMP_T_BIN, SMP_USE_L5CLI },
{ "ssl_f_i_dn", smp_fetch_ssl_x_i_dn, ARG3(0,STR,SINT,STR),val_dnfmt, SMP_T_STR, SMP_USE_L5CLI },
{ "ssl_f_key_alg", smp_fetch_ssl_x_key_alg, 0, NULL, SMP_T_STR, SMP_USE_L5CLI },
{ "ssl_f_notafter", smp_fetch_ssl_x_notafter, 0, NULL, SMP_T_STR, SMP_USE_L5CLI },
{ "ssl_f_notbefore", smp_fetch_ssl_x_notbefore, 0, NULL, SMP_T_STR, SMP_USE_L5CLI },
{ "ssl_f_sig_alg", smp_fetch_ssl_x_sig_alg, 0, NULL, SMP_T_STR, SMP_USE_L5CLI },
{ "ssl_f_s_dn", smp_fetch_ssl_x_s_dn, ARG3(0,STR,SINT,STR),val_dnfmt, SMP_T_STR, SMP_USE_L5CLI },
{ "ssl_f_serial", smp_fetch_ssl_x_serial, 0, NULL, SMP_T_BIN, SMP_USE_L5CLI },
{ "ssl_f_sha1", smp_fetch_ssl_x_sha1, 0, NULL, SMP_T_BIN, SMP_USE_L5CLI },
{ "ssl_f_version", smp_fetch_ssl_x_version, 0, NULL, SMP_T_SINT, SMP_USE_L5CLI },
{ "ssl_fc", smp_fetch_ssl_fc, 0, NULL, SMP_T_BOOL, SMP_USE_L5CLI },
{ "ssl_fc_alg_keysize", smp_fetch_ssl_fc_alg_keysize, 0, NULL, SMP_T_SINT, SMP_USE_L5CLI },
{ "ssl_fc_cipher", smp_fetch_ssl_fc_cipher, 0, NULL, SMP_T_STR, SMP_USE_L5CLI },
{ "ssl_fc_has_crt", smp_fetch_ssl_fc_has_crt, 0, NULL, SMP_T_BOOL, SMP_USE_L5CLI },
{ "ssl_fc_has_early", smp_fetch_ssl_fc_has_early, 0, NULL, SMP_T_BOOL, SMP_USE_L5CLI },
{ "ssl_fc_has_sni", smp_fetch_ssl_fc_has_sni, 0, NULL, SMP_T_BOOL, SMP_USE_L5CLI },
{ "ssl_fc_is_resumed", smp_fetch_ssl_fc_is_resumed, 0, NULL, SMP_T_BOOL, SMP_USE_L5CLI },
#if defined(OPENSSL_NPN_NEGOTIATED) && !defined(OPENSSL_NO_NEXTPROTONEG)
{ "ssl_fc_npn", smp_fetch_ssl_fc_npn, 0, NULL, SMP_T_STR, SMP_USE_L5CLI },
#endif
#ifdef TLSEXT_TYPE_application_layer_protocol_negotiation
{ "ssl_fc_alpn", smp_fetch_ssl_fc_alpn, 0, NULL, SMP_T_STR, SMP_USE_L5CLI },
#endif
{ "ssl_fc_protocol", smp_fetch_ssl_fc_protocol, 0, NULL, SMP_T_STR, SMP_USE_L5CLI },
#if HA_OPENSSL_VERSION_NUMBER > 0x0090800fL
{ "ssl_fc_unique_id", smp_fetch_ssl_fc_unique_id, 0, NULL, SMP_T_BIN, SMP_USE_L5CLI },
#endif
{ "ssl_fc_use_keysize", smp_fetch_ssl_fc_use_keysize, 0, NULL, SMP_T_SINT, SMP_USE_L5CLI },
#if HA_OPENSSL_VERSION_NUMBER > 0x0090800fL
{ "ssl_fc_session_id", smp_fetch_ssl_fc_session_id, 0, NULL, SMP_T_BIN, SMP_USE_L5CLI },
#endif
#ifdef HAVE_SSL_EXTRACT_RANDOM
{ "ssl_fc_client_random", smp_fetch_ssl_fc_random, 0, NULL, SMP_T_BIN, SMP_USE_L5CLI },
{ "ssl_fc_server_random", smp_fetch_ssl_fc_random, 0, NULL, SMP_T_BIN, SMP_USE_L5CLI },
{ "ssl_fc_session_key", smp_fetch_ssl_fc_session_key, 0, NULL, SMP_T_BIN, SMP_USE_L5CLI },
#endif
#ifdef HAVE_SSL_KEYLOG
{ "ssl_fc_client_early_traffic_secret", smp_fetch_ssl_x_keylog, 0, NULL, SMP_T_STR, SMP_USE_L5CLI },
{ "ssl_fc_client_handshake_traffic_secret", smp_fetch_ssl_x_keylog, 0, NULL, SMP_T_STR, SMP_USE_L5CLI },
{ "ssl_fc_server_handshake_traffic_secret", smp_fetch_ssl_x_keylog, 0, NULL, SMP_T_STR, SMP_USE_L5CLI },
{ "ssl_fc_client_traffic_secret_0", smp_fetch_ssl_x_keylog, 0, NULL, SMP_T_STR, SMP_USE_L5CLI },
{ "ssl_fc_server_traffic_secret_0", smp_fetch_ssl_x_keylog, 0, NULL, SMP_T_STR, SMP_USE_L5CLI },
{ "ssl_fc_exporter_secret", smp_fetch_ssl_x_keylog, 0, NULL, SMP_T_STR, SMP_USE_L5CLI },
{ "ssl_fc_early_exporter_secret", smp_fetch_ssl_x_keylog, 0, NULL, SMP_T_STR, SMP_USE_L5CLI },
#endif
{ "ssl_fc_sni", smp_fetch_ssl_fc_sni, 0, NULL, SMP_T_STR, SMP_USE_L5CLI },
{ "ssl_fc_cipherlist_bin", smp_fetch_ssl_fc_cl_bin, ARG1(0,SINT), NULL, SMP_T_STR, SMP_USE_L5CLI },
{ "ssl_fc_cipherlist_hex", smp_fetch_ssl_fc_cl_hex, ARG1(0,SINT), NULL, SMP_T_BIN, SMP_USE_L5CLI },
{ "ssl_fc_cipherlist_str", smp_fetch_ssl_fc_cl_str, ARG1(0,SINT), NULL, SMP_T_STR, SMP_USE_L5CLI },
{ "ssl_fc_cipherlist_xxh", smp_fetch_ssl_fc_cl_xxh64, 0, NULL, SMP_T_SINT, SMP_USE_L5CLI },
{ "ssl_fc_err", smp_fetch_ssl_fc_err, 0, NULL, SMP_T_SINT, SMP_USE_L5CLI },
{ "ssl_fc_err_str", smp_fetch_ssl_fc_err_str, 0, NULL, SMP_T_STR, SMP_USE_L5CLI },
{ "ssl_fc_protocol_hello_id",smp_fetch_ssl_fc_protocol_hello_id,0, NULL, SMP_T_SINT, SMP_USE_L5CLI },
{ "ssl_fc_extlist_bin", smp_fetch_ssl_fc_ext_bin, ARG1(0,SINT), NULL, SMP_T_STR, SMP_USE_L5CLI },
{ "ssl_fc_eclist_bin", smp_fetch_ssl_fc_ecl_bin, ARG1(0,SINT), NULL, SMP_T_STR, SMP_USE_L5CLI },
{ "ssl_fc_ecformats_bin", smp_fetch_ssl_fc_ecf_bin, 0, NULL, SMP_T_STR, SMP_USE_L5CLI },
/* SSL server certificate fetches */
{ "ssl_s_der", smp_fetch_ssl_x_der, 0, NULL, SMP_T_BIN, SMP_USE_L5CLI },
{ "ssl_s_chain_der", smp_fetch_ssl_x_chain_der, 0, NULL, SMP_T_BIN, SMP_USE_L5CLI },
{ "ssl_s_key_alg", smp_fetch_ssl_x_key_alg, 0, NULL, SMP_T_STR, SMP_USE_L5CLI },
{ "ssl_s_notafter", smp_fetch_ssl_x_notafter, 0, NULL, SMP_T_STR, SMP_USE_L5CLI },
{ "ssl_s_notbefore", smp_fetch_ssl_x_notbefore, 0, NULL, SMP_T_STR, SMP_USE_L5CLI },
{ "ssl_s_sig_alg", smp_fetch_ssl_x_sig_alg, 0, NULL, SMP_T_STR, SMP_USE_L5CLI },
{ "ssl_s_s_dn", smp_fetch_ssl_x_s_dn, ARG3(0,STR,SINT,STR),val_dnfmt, SMP_T_STR, SMP_USE_L5CLI },
{ "ssl_s_i_dn", smp_fetch_ssl_x_i_dn, ARG3(0,STR,SINT,STR),val_dnfmt, SMP_T_STR, SMP_USE_L5CLI },
{ "ssl_s_serial", smp_fetch_ssl_x_serial, 0, NULL, SMP_T_BIN, SMP_USE_L5CLI },
{ "ssl_s_sha1", smp_fetch_ssl_x_sha1, 0, NULL, SMP_T_BIN, SMP_USE_L5CLI },
{ "ssl_s_version", smp_fetch_ssl_x_version, 0, NULL, SMP_T_SINT, SMP_USE_L5CLI },
{ NULL, NULL, 0, 0, 0 },
}};
INITCALL1(STG_REGISTER, sample_register_fetches, &sample_fetch_keywords);
/* Note: must not be declared <const> as its list will be overwritten */
static struct sample_conv_kw_list sample_conv_kws = {ILH, {
{ "sha2", sample_conv_sha2, ARG1(0, SINT), smp_check_sha2, SMP_T_BIN, SMP_T_BIN },
#ifdef EVP_CIPH_GCM_MODE
{ "aes_gcm_dec", sample_conv_aes_gcm_dec, ARG4(4,SINT,STR,STR,STR), check_aes_gcm, SMP_T_BIN, SMP_T_BIN },
#endif
{ "x509_v_err_str", sample_conv_x509_v_err, 0, NULL, SMP_T_SINT, SMP_T_STR },
{ "digest", sample_conv_crypto_digest, ARG1(1,STR), check_crypto_digest, SMP_T_BIN, SMP_T_BIN },
{ "hmac", sample_conv_crypto_hmac, ARG2(2,STR,STR), check_crypto_hmac, SMP_T_BIN, SMP_T_BIN },
#if defined(HAVE_CRYPTO_memcmp)
{ "secure_memcmp", sample_conv_secure_memcmp, ARG1(1,STR), smp_check_secure_memcmp, SMP_T_BIN, SMP_T_BOOL },
#endif
{ NULL, NULL, 0, 0, 0 },
}};
INITCALL1(STG_REGISTER, sample_register_convs, &sample_conv_kws);
/* Note: must not be declared <const> as its list will be overwritten.
* Please take care of keeping this list alphabetically sorted.
*/
static struct acl_kw_list acl_kws = {ILH, {
{ "ssl_fc_sni_end", "ssl_fc_sni", PAT_MATCH_END },
{ "ssl_fc_sni_reg", "ssl_fc_sni", PAT_MATCH_REG },
{ /* END */ },
}};
INITCALL1(STG_REGISTER, acl_register_keywords, &acl_kws);