| /* |
| * QUIC protocol implementation. Lower layer with internal features implemented |
| * here such as QUIC encryption, idle timeout, acknowledgement and |
| * retransmission. |
| * |
| * Copyright 2020 HAProxy Technologies, Frederic Lecaille <flecaille@haproxy.com> |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| * |
| */ |
| |
| #include <haproxy/quic_conn.h> |
| |
| #define _GNU_SOURCE |
| #include <stdio.h> |
| #include <stdlib.h> |
| |
| #include <sys/socket.h> |
| #include <sys/stat.h> |
| #include <sys/types.h> |
| |
| #include <netinet/tcp.h> |
| |
| #include <import/ebmbtree.h> |
| |
| #include <haproxy/buf-t.h> |
| #include <haproxy/compat.h> |
| #include <haproxy/api.h> |
| #include <haproxy/debug.h> |
| #include <haproxy/tools.h> |
| #include <haproxy/ticks.h> |
| #include <haproxy/xxhash.h> |
| |
| #include <haproxy/applet-t.h> |
| #include <haproxy/cli.h> |
| #include <haproxy/connection.h> |
| #include <haproxy/fd.h> |
| #include <haproxy/freq_ctr.h> |
| #include <haproxy/frontend.h> |
| #include <haproxy/global.h> |
| #include <haproxy/h3.h> |
| #include <haproxy/hq_interop.h> |
| #include <haproxy/log.h> |
| #include <haproxy/mux_quic.h> |
| #include <haproxy/ncbuf.h> |
| #include <haproxy/pipe.h> |
| #include <haproxy/proxy.h> |
| #include <haproxy/quic_cc.h> |
| #include <haproxy/quic_frame.h> |
| #include <haproxy/quic_enc.h> |
| #include <haproxy/quic_loss.h> |
| #include <haproxy/quic_sock.h> |
| #include <haproxy/quic_stats.h> |
| #include <haproxy/quic_stream.h> |
| #include <haproxy/quic_tp.h> |
| #include <haproxy/cbuf.h> |
| #include <haproxy/proto_quic.h> |
| #include <haproxy/quic_tls.h> |
| #include <haproxy/ssl_sock.h> |
| #include <haproxy/task.h> |
| #include <haproxy/thread.h> |
| #include <haproxy/trace.h> |
| |
| /* incremented by each "show quic". */ |
| static unsigned int qc_epoch = 0; |
| |
| /* list of supported QUIC versions by this implementation */ |
| const struct quic_version quic_versions[] = { |
| { |
| .num = QUIC_PROTOCOL_VERSION_DRAFT_29, |
| .initial_salt = initial_salt_draft_29, |
| .initial_salt_len = sizeof initial_salt_draft_29, |
| .key_label = (const unsigned char *)QUIC_HKDF_KEY_LABEL_V1, |
| .key_label_len = sizeof(QUIC_HKDF_KEY_LABEL_V1) - 1, |
| .iv_label = (const unsigned char *)QUIC_HKDF_IV_LABEL_V1, |
| .iv_label_len = sizeof(QUIC_HKDF_IV_LABEL_V1) - 1, |
| .hp_label = (const unsigned char *)QUIC_HKDF_HP_LABEL_V1, |
| .hp_label_len = sizeof(QUIC_HKDF_HP_LABEL_V1) - 1, |
| .ku_label = (const unsigned char *)QUIC_HKDF_KU_LABEL_V1, |
| .ku_label_len = sizeof(QUIC_HKDF_KU_LABEL_V1) - 1, |
| .retry_tag_key = (const unsigned char *)QUIC_TLS_RETRY_KEY_DRAFT, |
| .retry_tag_nonce = (const unsigned char *)QUIC_TLS_RETRY_NONCE_DRAFT, |
| }, |
| { |
| .num = QUIC_PROTOCOL_VERSION_1, |
| .initial_salt = initial_salt_v1, |
| .initial_salt_len = sizeof initial_salt_v1, |
| .key_label = (const unsigned char *)QUIC_HKDF_KEY_LABEL_V1, |
| .key_label_len = sizeof(QUIC_HKDF_KEY_LABEL_V1) - 1, |
| .iv_label = (const unsigned char *)QUIC_HKDF_IV_LABEL_V1, |
| .iv_label_len = sizeof(QUIC_HKDF_IV_LABEL_V1) - 1, |
| .hp_label = (const unsigned char *)QUIC_HKDF_HP_LABEL_V1, |
| .hp_label_len = sizeof(QUIC_HKDF_HP_LABEL_V1) - 1, |
| .ku_label = (const unsigned char *)QUIC_HKDF_KU_LABEL_V1, |
| .ku_label_len = sizeof(QUIC_HKDF_KU_LABEL_V1) - 1, |
| .retry_tag_key = (const unsigned char *)QUIC_TLS_RETRY_KEY_V1, |
| .retry_tag_nonce = (const unsigned char *)QUIC_TLS_RETRY_NONCE_V1, |
| }, |
| { |
| .num = QUIC_PROTOCOL_VERSION_2, |
| .initial_salt = initial_salt_v2, |
| .initial_salt_len = sizeof initial_salt_v2, |
| .key_label = (const unsigned char *)QUIC_HKDF_KEY_LABEL_V2, |
| .key_label_len = sizeof(QUIC_HKDF_KEY_LABEL_V2) - 1, |
| .iv_label = (const unsigned char *)QUIC_HKDF_IV_LABEL_V2, |
| .iv_label_len = sizeof(QUIC_HKDF_IV_LABEL_V2) - 1, |
| .hp_label = (const unsigned char *)QUIC_HKDF_HP_LABEL_V2, |
| .hp_label_len = sizeof(QUIC_HKDF_HP_LABEL_V2) - 1, |
| .ku_label = (const unsigned char *)QUIC_HKDF_KU_LABEL_V2, |
| .ku_label_len = sizeof(QUIC_HKDF_KU_LABEL_V2) - 1, |
| .retry_tag_key = (const unsigned char *)QUIC_TLS_RETRY_KEY_V2, |
| .retry_tag_nonce = (const unsigned char *)QUIC_TLS_RETRY_NONCE_V2, |
| }, |
| }; |
| |
| /* The total number of supported versions */ |
| const size_t quic_versions_nb = sizeof quic_versions / sizeof *quic_versions; |
| /* Listener only preferred version */ |
| const struct quic_version *preferred_version; |
| /* RFC 8999 5.4. Version |
| * A Version field with a |
| * value of 0x00000000 is reserved for version negotiation |
| */ |
| const struct quic_version quic_version_VN_reserved = { .num = 0, }; |
| |
| /* trace source and events */ |
| static void quic_trace(enum trace_level level, uint64_t mask, \ |
| const struct trace_source *src, |
| const struct ist where, const struct ist func, |
| const void *a1, const void *a2, const void *a3, const void *a4); |
| |
| static const struct trace_event quic_trace_events[] = { |
| { .mask = QUIC_EV_CONN_NEW, .name = "new_conn", .desc = "new QUIC connection" }, |
| { .mask = QUIC_EV_CONN_INIT, .name = "new_conn_init", .desc = "new QUIC connection initialization" }, |
| { .mask = QUIC_EV_CONN_ISEC, .name = "init_secs", .desc = "initial secrets derivation" }, |
| { .mask = QUIC_EV_CONN_RSEC, .name = "read_secs", .desc = "read secrets derivation" }, |
| { .mask = QUIC_EV_CONN_WSEC, .name = "write_secs", .desc = "write secrets derivation" }, |
| { .mask = QUIC_EV_CONN_LPKT, .name = "lstnr_packet", .desc = "new listener received packet" }, |
| { .mask = QUIC_EV_CONN_SPKT, .name = "srv_packet", .desc = "new server received packet" }, |
| { .mask = QUIC_EV_CONN_ENCPKT, .name = "enc_hdshk_pkt", .desc = "handhshake packet encryption" }, |
| { .mask = QUIC_EV_CONN_TXPKT, .name = "tx_pkt", .desc = "TX packet" }, |
| { .mask = QUIC_EV_CONN_PAPKT, .name = "phdshk_apkt", .desc = "post handhshake application packet preparation" }, |
| { .mask = QUIC_EV_CONN_PAPKTS, .name = "phdshk_apkts", .desc = "post handhshake application packets preparation" }, |
| { .mask = QUIC_EV_CONN_IO_CB, .name = "qc_io_cb", .desc = "QUIC conn. I/O processing" }, |
| { .mask = QUIC_EV_CONN_RMHP, .name = "rm_hp", .desc = "Remove header protection" }, |
| { .mask = QUIC_EV_CONN_PRSHPKT, .name = "parse_hpkt", .desc = "parse handshake packet" }, |
| { .mask = QUIC_EV_CONN_PRSAPKT, .name = "parse_apkt", .desc = "parse application packet" }, |
| { .mask = QUIC_EV_CONN_PRSFRM, .name = "parse_frm", .desc = "parse frame" }, |
| { .mask = QUIC_EV_CONN_PRSAFRM, .name = "parse_ack_frm", .desc = "parse ACK frame" }, |
| { .mask = QUIC_EV_CONN_BFRM, .name = "build_frm", .desc = "build frame" }, |
| { .mask = QUIC_EV_CONN_PHPKTS, .name = "phdshk_pkts", .desc = "handhshake packets preparation" }, |
| { .mask = QUIC_EV_CONN_TRMHP, .name = "rm_hp_try", .desc = "header protection removing try" }, |
| { .mask = QUIC_EV_CONN_ELRMHP, .name = "el_rm_hp", .desc = "handshake enc. level header protection removing" }, |
| { .mask = QUIC_EV_CONN_RXPKT, .name = "rx_pkt", .desc = "RX packet" }, |
| { .mask = QUIC_EV_CONN_SSLDATA, .name = "ssl_provide_data", .desc = "CRYPTO data provision to TLS stack" }, |
| { .mask = QUIC_EV_CONN_RXCDATA, .name = "el_treat_rx_cfrms",.desc = "enc. level RX CRYPTO frames processing"}, |
| { .mask = QUIC_EV_CONN_ADDDATA, .name = "add_hdshk_data", .desc = "TLS stack ->add_handshake_data() call"}, |
| { .mask = QUIC_EV_CONN_FFLIGHT, .name = "flush_flight", .desc = "TLS stack ->flush_flight() call"}, |
| { .mask = QUIC_EV_CONN_SSLALERT, .name = "send_alert", .desc = "TLS stack ->send_alert() call"}, |
| { .mask = QUIC_EV_CONN_RTTUPDT, .name = "rtt_updt", .desc = "RTT sampling" }, |
| { .mask = QUIC_EV_CONN_SPPKTS, .name = "sppkts", .desc = "send prepared packets" }, |
| { .mask = QUIC_EV_CONN_PKTLOSS, .name = "pktloss", .desc = "detect packet loss" }, |
| { .mask = QUIC_EV_CONN_STIMER, .name = "stimer", .desc = "set timer" }, |
| { .mask = QUIC_EV_CONN_PTIMER, .name = "ptimer", .desc = "process timer" }, |
| { .mask = QUIC_EV_CONN_SPTO, .name = "spto", .desc = "set PTO" }, |
| { .mask = QUIC_EV_CONN_BCFRMS, .name = "bcfrms", .desc = "build CRYPTO data frames" }, |
| { .mask = QUIC_EV_CONN_XPRTSEND, .name = "xprt_send", .desc = "sending XRPT subscription" }, |
| { .mask = QUIC_EV_CONN_XPRTRECV, .name = "xprt_recv", .desc = "receiving XRPT subscription" }, |
| { .mask = QUIC_EV_CONN_FREED, .name = "conn_freed", .desc = "releasing conn. memory" }, |
| { .mask = QUIC_EV_CONN_CLOSE, .name = "conn_close", .desc = "closing conn." }, |
| { .mask = QUIC_EV_CONN_ACKSTRM, .name = "ack_strm", .desc = "STREAM ack."}, |
| { .mask = QUIC_EV_CONN_FRMLIST, .name = "frm_list", .desc = "frame list"}, |
| { .mask = QUIC_EV_STATELESS_RST, .name = "stateless_reset", .desc = "stateless reset sent"}, |
| { .mask = QUIC_EV_TRANSP_PARAMS, .name = "transport_params", .desc = "transport parameters"}, |
| { .mask = QUIC_EV_CONN_IDLE_TIMER, .name = "idle_timer", .desc = "idle timer task"}, |
| { .mask = QUIC_EV_CONN_SUB, .name = "xprt_sub", .desc = "RX/TX subcription or unsubscription to QUIC xprt"}, |
| { .mask = QUIC_EV_CONN_RCV, .name = "conn_recv", .desc = "RX on connection" }, |
| { .mask = QUIC_EV_CONN_SET_AFFINITY, .name = "conn_set_affinity", .desc = "set connection thread affinity" }, |
| { /* end */ } |
| }; |
| |
| static const struct name_desc quic_trace_lockon_args[4] = { |
| /* arg1 */ { /* already used by the connection */ }, |
| /* arg2 */ { .name="quic", .desc="QUIC transport" }, |
| /* arg3 */ { }, |
| /* arg4 */ { } |
| }; |
| |
| static const struct name_desc quic_trace_decoding[] = { |
| #define QUIC_VERB_CLEAN 1 |
| { .name="clean", .desc="only user-friendly stuff, generally suitable for level \"user\"" }, |
| { /* end */ } |
| }; |
| |
| |
| struct trace_source trace_quic = { |
| .name = IST("quic"), |
| .desc = "QUIC xprt", |
| .arg_def = TRC_ARG1_QCON, /* TRACE()'s first argument is always a quic_conn */ |
| .default_cb = quic_trace, |
| .known_events = quic_trace_events, |
| .lockon_args = quic_trace_lockon_args, |
| .decoding = quic_trace_decoding, |
| .report_events = ~0, /* report everything by default */ |
| }; |
| |
| #define TRACE_SOURCE &trace_quic |
| INITCALL1(STG_REGISTER, trace_register_source, TRACE_SOURCE); |
| |
| static BIO_METHOD *ha_quic_meth; |
| |
| DECLARE_POOL(pool_head_quic_tx_ring, "quic_tx_ring", QUIC_TX_RING_BUFSZ); |
| DECLARE_POOL(pool_head_quic_conn_rxbuf, "quic_conn_rxbuf", QUIC_CONN_RX_BUFSZ); |
| DECLARE_STATIC_POOL(pool_head_quic_conn_ctx, |
| "quic_conn_ctx", sizeof(struct ssl_sock_ctx)); |
| DECLARE_STATIC_POOL(pool_head_quic_conn, "quic_conn", sizeof(struct quic_conn)); |
| DECLARE_POOL(pool_head_quic_connection_id, |
| "quic_connection_id", sizeof(struct quic_connection_id)); |
| DECLARE_POOL(pool_head_quic_dgram, "quic_dgram", sizeof(struct quic_dgram)); |
| DECLARE_POOL(pool_head_quic_rx_packet, "quic_rx_packet", sizeof(struct quic_rx_packet)); |
| DECLARE_POOL(pool_head_quic_tx_packet, "quic_tx_packet", sizeof(struct quic_tx_packet)); |
| DECLARE_STATIC_POOL(pool_head_quic_rx_crypto_frm, "quic_rx_crypto_frm", sizeof(struct quic_rx_crypto_frm)); |
| DECLARE_STATIC_POOL(pool_head_quic_crypto_buf, "quic_crypto_buf", sizeof(struct quic_crypto_buf)); |
| DECLARE_STATIC_POOL(pool_head_quic_cstream, "quic_cstream", sizeof(struct quic_cstream)); |
| DECLARE_POOL(pool_head_quic_frame, "quic_frame", sizeof(struct quic_frame)); |
| DECLARE_STATIC_POOL(pool_head_quic_arng, "quic_arng", sizeof(struct quic_arng_node)); |
| |
| static struct quic_connection_id *new_quic_cid(struct eb_root *root, |
| struct quic_conn *qc, |
| const struct quic_cid *odcid, |
| const struct sockaddr_storage *saddr); |
| static struct quic_tx_packet *qc_build_pkt(unsigned char **pos, const unsigned char *buf_end, |
| struct quic_enc_level *qel, struct quic_tls_ctx *ctx, |
| struct list *frms, struct quic_conn *qc, |
| const struct quic_version *ver, size_t dglen, int pkt_type, |
| int must_ack, int padding, int probe, int cc, int *err); |
| static int qc_purge_txbuf(struct quic_conn *qc, struct buffer *buf); |
| static void qc_purge_tx_buf(struct buffer *buf); |
| struct task *quic_conn_app_io_cb(struct task *t, void *context, unsigned int state); |
| static void qc_idle_timer_do_rearm(struct quic_conn *qc, int arm_ack); |
| static void qc_idle_timer_rearm(struct quic_conn *qc, int read, int arm_ack); |
| static int qc_conn_alloc_ssl_ctx(struct quic_conn *qc); |
| static int quic_conn_init_timer(struct quic_conn *qc); |
| static int quic_conn_init_idle_timer_task(struct quic_conn *qc); |
| |
| /* Only for debug purpose */ |
| struct enc_debug_info { |
| unsigned char *payload; |
| size_t payload_len; |
| unsigned char *aad; |
| size_t aad_len; |
| uint64_t pn; |
| }; |
| |
| /* Initializes a enc_debug_info struct (only for debug purpose) */ |
| static inline void enc_debug_info_init(struct enc_debug_info *edi, |
| unsigned char *payload, size_t payload_len, |
| unsigned char *aad, size_t aad_len, uint64_t pn) |
| { |
| edi->payload = payload; |
| edi->payload_len = payload_len; |
| edi->aad = aad; |
| edi->aad_len = aad_len; |
| edi->pn = pn; |
| } |
| |
| /* Used only for QUIC TLS key phase traces */ |
| struct quic_kp_trace { |
| const unsigned char *rx_sec; |
| size_t rx_seclen; |
| const struct quic_tls_kp *rx; |
| const unsigned char *tx_sec; |
| size_t tx_seclen; |
| const struct quic_tls_kp *tx; |
| }; |
| |
| /* Trace callback for QUIC. |
| * These traces always expect that arg1, if non-null, is of type connection. |
| */ |
| static void quic_trace(enum trace_level level, uint64_t mask, const struct trace_source *src, |
| const struct ist where, const struct ist func, |
| const void *a1, const void *a2, const void *a3, const void *a4) |
| { |
| const struct quic_conn *qc = a1; |
| |
| if (qc) { |
| const struct quic_tls_ctx *tls_ctx; |
| |
| chunk_appendf(&trace_buf, " : qc@%p flags=0x%x", qc, qc->flags); |
| if (mask & QUIC_EV_CONN_INIT) { |
| chunk_appendf(&trace_buf, "\n odcid"); |
| quic_cid_dump(&trace_buf, &qc->odcid); |
| chunk_appendf(&trace_buf, "\n dcid"); |
| quic_cid_dump(&trace_buf, &qc->dcid); |
| chunk_appendf(&trace_buf, "\n scid"); |
| quic_cid_dump(&trace_buf, &qc->scid); |
| } |
| |
| if (mask & QUIC_EV_TRANSP_PARAMS) { |
| const struct quic_transport_params *p = a2; |
| |
| if (p) |
| quic_transport_params_dump(&trace_buf, qc, p); |
| } |
| |
| if (mask & QUIC_EV_CONN_ADDDATA) { |
| const enum ssl_encryption_level_t *level = a2; |
| const size_t *len = a3; |
| |
| if (level) { |
| enum quic_tls_enc_level lvl = ssl_to_quic_enc_level(*level); |
| |
| chunk_appendf(&trace_buf, " el=%c(%d)", quic_enc_level_char(lvl), lvl); |
| } |
| if (len) |
| chunk_appendf(&trace_buf, " len=%llu", (unsigned long long)*len); |
| } |
| if ((mask & QUIC_EV_CONN_ISEC) && qc) { |
| /* Initial read & write secrets. */ |
| enum quic_tls_enc_level level = QUIC_TLS_ENC_LEVEL_INITIAL; |
| const unsigned char *rx_sec = a2; |
| const unsigned char *tx_sec = a3; |
| |
| tls_ctx = &qc->els[level].tls_ctx; |
| chunk_appendf(&trace_buf, "\n RX el=%c", quic_enc_level_char(level)); |
| if (rx_sec) |
| quic_tls_secret_hexdump(&trace_buf, rx_sec, 32); |
| quic_tls_keys_hexdump(&trace_buf, &tls_ctx->rx); |
| chunk_appendf(&trace_buf, "\n TX el=%c", quic_enc_level_char(level)); |
| if (tx_sec) |
| quic_tls_secret_hexdump(&trace_buf, tx_sec, 32); |
| quic_tls_keys_hexdump(&trace_buf, &tls_ctx->tx); |
| } |
| |
| if ((mask & QUIC_EV_CONN_KP) && qc) { |
| /* Initial read & write secrets. */ |
| const struct quic_kp_trace *kp = a2; |
| |
| if (kp) { |
| if (kp->rx) { |
| chunk_appendf(&trace_buf, "\n RX kp"); |
| if (kp->rx_sec) |
| quic_tls_secret_hexdump(&trace_buf, kp->rx_sec, kp->rx_seclen); |
| quic_tls_kp_keys_hexdump(&trace_buf, kp->rx); |
| } |
| if (kp->tx) { |
| chunk_appendf(&trace_buf, "\n TX kp"); |
| if (kp->tx_sec) |
| quic_tls_secret_hexdump(&trace_buf, kp->tx_sec, kp->tx_seclen); |
| quic_tls_kp_keys_hexdump(&trace_buf, kp->tx); |
| } |
| } |
| } |
| |
| if (mask & (QUIC_EV_CONN_RSEC|QUIC_EV_CONN_RWSEC)) { |
| const enum ssl_encryption_level_t *level = a2; |
| |
| if (level) { |
| enum quic_tls_enc_level lvl = ssl_to_quic_enc_level(*level); |
| |
| chunk_appendf(&trace_buf, "\n RX el=%c", quic_enc_level_char(lvl)); |
| if (quic_tls_has_rx_sec(&qc->els[lvl])) { |
| tls_ctx = &qc->els[lvl].tls_ctx; |
| quic_tls_keys_hexdump(&trace_buf, &tls_ctx->rx); |
| } |
| else |
| chunk_appendf(&trace_buf, " (none)"); |
| } |
| } |
| |
| if (mask & (QUIC_EV_CONN_WSEC|QUIC_EV_CONN_RWSEC)) { |
| const enum ssl_encryption_level_t *level = a2; |
| |
| if (level) { |
| enum quic_tls_enc_level lvl = ssl_to_quic_enc_level(*level); |
| |
| chunk_appendf(&trace_buf, "\n TX el=%c", quic_enc_level_char(lvl)); |
| if (quic_tls_has_tx_sec(&qc->els[lvl])) { |
| tls_ctx = &qc->els[lvl].tls_ctx; |
| quic_tls_keys_hexdump(&trace_buf, &tls_ctx->tx); |
| } |
| else |
| chunk_appendf(&trace_buf, " (none)"); |
| } |
| |
| } |
| |
| if (mask & QUIC_EV_CONN_FRMLIST) { |
| const struct list *l = a2; |
| |
| if (l) { |
| const struct quic_frame *frm; |
| list_for_each_entry(frm, l, list) { |
| chunk_appendf(&trace_buf, " frm@%p", frm); |
| chunk_frm_appendf(&trace_buf, frm); |
| } |
| } |
| } |
| |
| if (mask & (QUIC_EV_CONN_TXPKT|QUIC_EV_CONN_PAPKT)) { |
| const struct quic_tx_packet *pkt = a2; |
| const struct quic_enc_level *qel = a3; |
| const ssize_t *room = a4; |
| |
| if (qel) { |
| const struct quic_pktns *pktns = qel->pktns; |
| chunk_appendf(&trace_buf, " qel=%c flags=0x%x pto_count=%d cwnd=%llu ppif=%lld pif=%llu " |
| "if=%llu pp=%u", |
| quic_enc_level_char_from_qel(qel, qc), |
| qel->pktns->flags, |
| qc->path->loss.pto_count, |
| (unsigned long long)qc->path->cwnd, |
| (unsigned long long)qc->path->prep_in_flight, |
| (unsigned long long)qc->path->in_flight, |
| (unsigned long long)pktns->tx.in_flight, |
| pktns->tx.pto_probe); |
| } |
| if (pkt) { |
| const struct quic_frame *frm; |
| if (pkt->pn_node.key != (uint64_t)-1) |
| chunk_appendf(&trace_buf, " pn=%llu",(ull)pkt->pn_node.key); |
| list_for_each_entry(frm, &pkt->frms, list) { |
| chunk_appendf(&trace_buf, " frm@%p", frm); |
| chunk_frm_appendf(&trace_buf, frm); |
| } |
| } |
| |
| if (room) { |
| chunk_appendf(&trace_buf, " room=%lld", (long long)*room); |
| chunk_appendf(&trace_buf, " dcid.len=%llu scid.len=%llu", |
| (unsigned long long)qc->dcid.len, (unsigned long long)qc->scid.len); |
| } |
| } |
| |
| if (mask & QUIC_EV_CONN_IO_CB) { |
| const enum quic_handshake_state *state = a2; |
| const int *err = a3; |
| |
| if (state) |
| chunk_appendf(&trace_buf, " state=%s", quic_hdshk_state_str(*state)); |
| if (err) |
| chunk_appendf(&trace_buf, " err=%s", ssl_error_str(*err)); |
| } |
| |
| if (mask & (QUIC_EV_CONN_TRMHP|QUIC_EV_CONN_ELRMHP|QUIC_EV_CONN_SPKT)) { |
| const struct quic_rx_packet *pkt = a2; |
| const unsigned long *pktlen = a3; |
| const SSL *ssl = a4; |
| |
| if (pkt) { |
| chunk_appendf(&trace_buf, " pkt@%p", pkt); |
| if (pkt->type == QUIC_PACKET_TYPE_SHORT && pkt->data) |
| chunk_appendf(&trace_buf, " kp=%d", |
| !!(*pkt->data & QUIC_PACKET_KEY_PHASE_BIT)); |
| chunk_appendf(&trace_buf, " el=%c", |
| quic_packet_type_enc_level_char(pkt->type)); |
| if (pkt->pnl) |
| chunk_appendf(&trace_buf, " pnl=%u pn=%llu", pkt->pnl, |
| (unsigned long long)pkt->pn); |
| if (pkt->token_len) |
| chunk_appendf(&trace_buf, " toklen=%llu", |
| (unsigned long long)pkt->token_len); |
| if (pkt->aad_len) |
| chunk_appendf(&trace_buf, " aadlen=%llu", |
| (unsigned long long)pkt->aad_len); |
| chunk_appendf(&trace_buf, " flags=0x%x len=%llu", |
| pkt->flags, (unsigned long long)pkt->len); |
| } |
| if (pktlen) |
| chunk_appendf(&trace_buf, " (%ld)", *pktlen); |
| if (ssl) { |
| enum ssl_encryption_level_t level = SSL_quic_read_level(ssl); |
| chunk_appendf(&trace_buf, " el=%c", |
| quic_enc_level_char(ssl_to_quic_enc_level(level))); |
| } |
| } |
| |
| if (mask & (QUIC_EV_CONN_RXPKT|QUIC_EV_CONN_PRSHPKT|QUIC_EV_CONN_SSLDATA)) { |
| const struct quic_rx_packet *pkt = a2; |
| const struct quic_rx_crypto_frm *cf = a3; |
| const SSL *ssl = a4; |
| |
| if (pkt) |
| chunk_appendf(&trace_buf, " pkt@%p el=%c pn=%llu", pkt, |
| quic_packet_type_enc_level_char(pkt->type), |
| (unsigned long long)pkt->pn); |
| if (cf) |
| chunk_appendf(&trace_buf, " cfoff=%llu cflen=%llu", |
| (unsigned long long)cf->offset_node.key, |
| (unsigned long long)cf->len); |
| if (ssl) { |
| enum ssl_encryption_level_t level = SSL_quic_read_level(ssl); |
| chunk_appendf(&trace_buf, " rel=%c", |
| quic_enc_level_char(ssl_to_quic_enc_level(level))); |
| } |
| |
| if (qc->err.code) |
| chunk_appendf(&trace_buf, " err_code=0x%llx", (ull)qc->err.code); |
| } |
| |
| if (mask & (QUIC_EV_CONN_PRSFRM|QUIC_EV_CONN_BFRM)) { |
| const struct quic_frame *frm = a2; |
| |
| if (frm) |
| chunk_appendf(&trace_buf, " %s", quic_frame_type_string(frm->type)); |
| } |
| |
| if (mask & QUIC_EV_CONN_PHPKTS) { |
| const struct quic_enc_level *qel = a2; |
| const struct list *l = a3; |
| |
| if (qel) { |
| const struct quic_pktns *pktns = qel->pktns; |
| chunk_appendf(&trace_buf, |
| " qel=%c flags=0x%x state=%s ack?%d pto_count=%d cwnd=%llu ppif=%lld pif=%llu if=%llu pp=%u off=%llu", |
| quic_enc_level_char_from_qel(qel, qc), |
| qel->pktns->flags, |
| quic_hdshk_state_str(qc->state), |
| !!(qel->pktns->flags & QUIC_FL_PKTNS_ACK_REQUIRED), |
| qc->path->loss.pto_count, |
| (unsigned long long)qc->path->cwnd, |
| (unsigned long long)qc->path->prep_in_flight, |
| (unsigned long long)qc->path->in_flight, |
| (unsigned long long)pktns->tx.in_flight, |
| pktns->tx.pto_probe, |
| qel->cstream ? (unsigned long long)qel->cstream->rx.offset : 0); |
| } |
| |
| if (l) { |
| const struct quic_frame *frm; |
| list_for_each_entry(frm, l, list) { |
| chunk_appendf(&trace_buf, " frm@%p", frm); |
| chunk_frm_appendf(&trace_buf, frm); |
| } |
| } |
| } |
| |
| if (mask & QUIC_EV_CONN_ENCPKT) { |
| const struct enc_debug_info *edi = a2; |
| |
| if (edi) |
| chunk_appendf(&trace_buf, |
| " payload=@%p payload_len=%llu" |
| " aad=@%p aad_len=%llu pn=%llu", |
| edi->payload, (unsigned long long)edi->payload_len, |
| edi->aad, (unsigned long long)edi->aad_len, |
| (unsigned long long)edi->pn); |
| } |
| |
| if (mask & QUIC_EV_CONN_RMHP) { |
| const struct quic_rx_packet *pkt = a2; |
| |
| if (pkt) { |
| const int *ret = a3; |
| |
| chunk_appendf(&trace_buf, " pkt@%p", pkt); |
| if (ret && *ret) |
| chunk_appendf(&trace_buf, " pnl=%u pn=%llu", |
| pkt->pnl, (unsigned long long)pkt->pn); |
| } |
| } |
| |
| if (mask & QUIC_EV_CONN_PRSAFRM) { |
| const struct quic_frame *frm = a2; |
| const unsigned long *val1 = a3; |
| const unsigned long *val2 = a4; |
| |
| if (frm) { |
| chunk_appendf(&trace_buf, " frm@%p", frm); |
| chunk_frm_appendf(&trace_buf, frm); |
| } |
| if (val1) |
| chunk_appendf(&trace_buf, " %lu", *val1); |
| if (val2) |
| chunk_appendf(&trace_buf, "..%lu", *val2); |
| } |
| |
| if (mask & QUIC_EV_CONN_ACKSTRM) { |
| const struct qf_stream *strm_frm = a2; |
| const struct qc_stream_desc *stream = a3; |
| |
| if (strm_frm) |
| chunk_appendf(&trace_buf, " off=%llu len=%llu", (ull)strm_frm->offset.key, (ull)strm_frm->len); |
| if (stream) |
| chunk_appendf(&trace_buf, " ack_offset=%llu", (ull)stream->ack_offset); |
| } |
| |
| if (mask & QUIC_EV_CONN_RTTUPDT) { |
| const unsigned int *rtt_sample = a2; |
| const unsigned int *ack_delay = a3; |
| const struct quic_loss *ql = a4; |
| |
| if (rtt_sample) |
| chunk_appendf(&trace_buf, " rtt_sample=%ums", *rtt_sample); |
| if (ack_delay) |
| chunk_appendf(&trace_buf, " ack_delay=%ums", *ack_delay); |
| if (ql) |
| chunk_appendf(&trace_buf, |
| " srtt=%ums rttvar=%ums min_rtt=%ums", |
| ql->srtt, ql->rtt_var, ql->rtt_min); |
| |
| } |
| if (mask & QUIC_EV_CONN_CC) { |
| const struct quic_cc_event *ev = a2; |
| const struct quic_cc *cc = a3; |
| |
| if (a2) |
| quic_cc_event_trace(&trace_buf, ev); |
| if (a3) |
| quic_cc_state_trace(&trace_buf, cc); |
| } |
| |
| if (mask & QUIC_EV_CONN_PKTLOSS) { |
| const struct quic_pktns *pktns = a2; |
| const struct list *lost_pkts = a3; |
| |
| if (pktns) { |
| chunk_appendf(&trace_buf, " pktns=%s", |
| pktns == &qc->pktns[QUIC_TLS_PKTNS_INITIAL] ? "I" : |
| pktns == &qc->pktns[QUIC_TLS_PKTNS_01RTT] ? "01RTT": "H"); |
| if (pktns->tx.loss_time) |
| chunk_appendf(&trace_buf, " loss_time=%dms", |
| TICKS_TO_MS(tick_remain(now_ms, pktns->tx.loss_time))); |
| } |
| if (lost_pkts && !LIST_ISEMPTY(lost_pkts)) { |
| struct quic_tx_packet *pkt; |
| |
| chunk_appendf(&trace_buf, " lost_pkts:"); |
| list_for_each_entry(pkt, lost_pkts, list) |
| chunk_appendf(&trace_buf, " %lu", (unsigned long)pkt->pn_node.key); |
| } |
| } |
| |
| if (mask & (QUIC_EV_CONN_STIMER|QUIC_EV_CONN_PTIMER|QUIC_EV_CONN_SPTO)) { |
| const struct quic_pktns *pktns = a2; |
| const int *duration = a3; |
| const uint64_t *ifae_pkts = a4; |
| |
| if (ifae_pkts) |
| chunk_appendf(&trace_buf, " ifae_pkts=%llu", |
| (unsigned long long)*ifae_pkts); |
| if (pktns) { |
| chunk_appendf(&trace_buf, " pktns=%s pp=%d", |
| pktns == &qc->pktns[QUIC_TLS_PKTNS_INITIAL] ? "I" : |
| pktns == &qc->pktns[QUIC_TLS_PKTNS_01RTT] ? "01RTT": "H", |
| pktns->tx.pto_probe); |
| if (mask & (QUIC_EV_CONN_STIMER|QUIC_EV_CONN_SPTO)) { |
| if (pktns->tx.in_flight) |
| chunk_appendf(&trace_buf, " if=%llu", (ull)pktns->tx.in_flight); |
| if (pktns->tx.loss_time) |
| chunk_appendf(&trace_buf, " loss_time=%dms", |
| TICKS_TO_MS(pktns->tx.loss_time - now_ms)); |
| } |
| if (mask & QUIC_EV_CONN_SPTO) { |
| if (pktns->tx.time_of_last_eliciting) |
| chunk_appendf(&trace_buf, " tole=%dms", |
| TICKS_TO_MS(pktns->tx.time_of_last_eliciting - now_ms)); |
| if (duration) |
| chunk_appendf(&trace_buf, " dur=%dms", TICKS_TO_MS(*duration)); |
| } |
| } |
| |
| if (!(mask & (QUIC_EV_CONN_SPTO|QUIC_EV_CONN_PTIMER)) && qc->timer_task) { |
| chunk_appendf(&trace_buf, |
| " expire=%dms", TICKS_TO_MS(qc->timer - now_ms)); |
| } |
| } |
| |
| if (mask & QUIC_EV_CONN_SPPKTS) { |
| const struct quic_tx_packet *pkt = a2; |
| |
| chunk_appendf(&trace_buf, " pto_count=%d cwnd=%llu ppif=%llu pif=%llu", |
| qc->path->loss.pto_count, |
| (unsigned long long)qc->path->cwnd, |
| (unsigned long long)qc->path->prep_in_flight, |
| (unsigned long long)qc->path->in_flight); |
| if (pkt) { |
| const struct quic_frame *frm; |
| if (pkt->flags & QUIC_FL_TX_PACKET_ACK) |
| chunk_appendf(&trace_buf, " ack"); |
| chunk_appendf(&trace_buf, " pn=%lu(%s) iflen=%llu", |
| (unsigned long)pkt->pn_node.key, |
| pkt->pktns == &qc->pktns[QUIC_TLS_PKTNS_INITIAL] ? "I" : |
| pkt->pktns == &qc->pktns[QUIC_TLS_PKTNS_01RTT] ? "01RTT": "H", |
| (unsigned long long)pkt->in_flight_len); |
| chunk_appendf(&trace_buf, " rx.bytes=%llu tx.bytes=%llu", |
| (unsigned long long)qc->rx.bytes, |
| (unsigned long long)qc->tx.bytes); |
| list_for_each_entry(frm, &pkt->frms, list) { |
| chunk_appendf(&trace_buf, " frm@%p", frm); |
| chunk_frm_appendf(&trace_buf, frm); |
| } |
| |
| if (pkt->type == QUIC_PACKET_TYPE_INITIAL) { |
| chunk_appendf(&trace_buf, " with scid"); |
| quic_cid_dump(&trace_buf, &qc->scid); |
| } |
| } |
| } |
| |
| if (mask & QUIC_EV_CONN_SSLALERT) { |
| const uint8_t *alert = a2; |
| const enum ssl_encryption_level_t *level = a3; |
| |
| if (alert) |
| chunk_appendf(&trace_buf, " alert=0x%02x", *alert); |
| if (level) |
| chunk_appendf(&trace_buf, " el=%c", |
| quic_enc_level_char(ssl_to_quic_enc_level(*level))); |
| } |
| |
| if (mask & QUIC_EV_CONN_BCFRMS) { |
| const size_t *sz1 = a2; |
| const size_t *sz2 = a3; |
| const size_t *sz3 = a4; |
| |
| if (sz1) |
| chunk_appendf(&trace_buf, " %llu", (unsigned long long)*sz1); |
| if (sz2) |
| chunk_appendf(&trace_buf, " %llu", (unsigned long long)*sz2); |
| if (sz3) |
| chunk_appendf(&trace_buf, " %llu", (unsigned long long)*sz3); |
| } |
| |
| if (mask & QUIC_EV_CONN_PSTRM) { |
| const struct quic_frame *frm = a2; |
| |
| if (frm) |
| chunk_frm_appendf(&trace_buf, frm); |
| } |
| |
| if (mask & QUIC_EV_CONN_ELEVELSEL) { |
| const enum quic_handshake_state *state = a2; |
| const enum quic_tls_enc_level *level = a3; |
| const enum quic_tls_enc_level *next_level = a4; |
| |
| if (state) |
| chunk_appendf(&trace_buf, " state=%s", quic_hdshk_state_str(qc->state)); |
| if (level) |
| chunk_appendf(&trace_buf, " level=%c", quic_enc_level_char(*level)); |
| if (next_level) |
| chunk_appendf(&trace_buf, " next_level=%c", quic_enc_level_char(*next_level)); |
| |
| } |
| |
| if (mask & QUIC_EV_CONN_IDLE_TIMER) { |
| if (tick_isset(qc->ack_expire)) |
| chunk_appendf(&trace_buf, " ack_expire=%ums", |
| TICKS_TO_MS(tick_remain(now_ms, qc->ack_expire))); |
| if (tick_isset(qc->idle_expire)) |
| chunk_appendf(&trace_buf, " idle_expire=%ums", |
| TICKS_TO_MS(tick_remain(now_ms, qc->idle_expire))); |
| if (qc->idle_timer_task && tick_isset(qc->idle_timer_task->expire)) |
| chunk_appendf(&trace_buf, " expire=%ums", |
| TICKS_TO_MS(tick_remain(now_ms, qc->idle_timer_task->expire))); |
| } |
| } |
| |
| if (mask & QUIC_EV_CONN_RCV) { |
| int i; |
| const struct quic_dgram *dgram = a2; |
| char bufaddr[INET6_ADDRSTRLEN], bufport[6]; |
| |
| if (qc) { |
| addr_to_str(&qc->peer_addr, bufaddr, sizeof(bufaddr)); |
| port_to_str(&qc->peer_addr, bufport, sizeof(bufport)); |
| chunk_appendf(&trace_buf, " peer_addr=%s:%s ", bufaddr, bufport); |
| } |
| |
| if (dgram) { |
| chunk_appendf(&trace_buf, " dgram.len=%zu", dgram->len); |
| /* Socket */ |
| if (dgram->saddr.ss_family == AF_INET || |
| dgram->saddr.ss_family == AF_INET6) { |
| addr_to_str(&dgram->saddr, bufaddr, sizeof(bufaddr)); |
| port_to_str(&dgram->saddr, bufport, sizeof(bufport)); |
| chunk_appendf(&trace_buf, "saddr=%s:%s ", bufaddr, bufport); |
| |
| addr_to_str(&dgram->daddr, bufaddr, sizeof(bufaddr)); |
| port_to_str(&dgram->daddr, bufport, sizeof(bufport)); |
| chunk_appendf(&trace_buf, "daddr=%s:%s ", bufaddr, bufport); |
| } |
| /* DCID */ |
| for (i = 0; i < dgram->dcid_len; ++i) |
| chunk_appendf(&trace_buf, "%02x", dgram->dcid[i]); |
| |
| } |
| } |
| |
| if (mask & QUIC_EV_CONN_LPKT) { |
| const struct quic_rx_packet *pkt = a2; |
| const uint64_t *len = a3; |
| const struct quic_version *ver = a4; |
| |
| if (pkt) { |
| chunk_appendf(&trace_buf, " pkt@%p type=0x%02x %s", |
| pkt, pkt->type, qc_pkt_long(pkt) ? "long" : "short"); |
| if (pkt->pn_node.key != (uint64_t)-1) |
| chunk_appendf(&trace_buf, " pn=%llu", pkt->pn_node.key); |
| } |
| |
| if (len) |
| chunk_appendf(&trace_buf, " len=%llu", (ull)*len); |
| |
| if (ver) |
| chunk_appendf(&trace_buf, " ver=0x%08x", ver->num); |
| } |
| |
| if (mask & QUIC_EV_STATELESS_RST) { |
| const struct quic_cid *cid = a2; |
| |
| if (cid) |
| quic_cid_dump(&trace_buf, cid); |
| } |
| |
| } |
| |
| /* Returns 1 if the peer has validated <qc> QUIC connection address, 0 if not. */ |
| static inline int quic_peer_validated_addr(struct quic_conn *qc) |
| { |
| struct quic_pktns *hdshk_pktns, *app_pktns; |
| |
| if (!qc_is_listener(qc)) |
| return 1; |
| |
| hdshk_pktns = qc->els[QUIC_TLS_ENC_LEVEL_HANDSHAKE].pktns; |
| app_pktns = qc->els[QUIC_TLS_ENC_LEVEL_APP].pktns; |
| if ((hdshk_pktns->flags & QUIC_FL_PKTNS_PKT_RECEIVED) || |
| (app_pktns->flags & QUIC_FL_PKTNS_PKT_RECEIVED) || |
| qc->state >= QUIC_HS_ST_COMPLETE) |
| return 1; |
| |
| return 0; |
| } |
| |
| /* To be called to kill a connection as soon as possible (without sending any packet). */ |
| void qc_kill_conn(struct quic_conn *qc) |
| { |
| TRACE_ENTER(QUIC_EV_CONN_KILL, qc); |
| TRACE_PROTO("killing the connection", QUIC_EV_CONN_KILL, qc); |
| qc->flags |= QUIC_FL_CONN_TO_KILL; |
| qc->flags &= ~QUIC_FL_CONN_RETRANS_NEEDED; |
| task_wakeup(qc->idle_timer_task, TASK_WOKEN_OTHER); |
| |
| qc_notify_err(qc); |
| |
| TRACE_LEAVE(QUIC_EV_CONN_KILL, qc); |
| } |
| |
| /* Set the timer attached to the QUIC connection with <ctx> as I/O handler and used for |
| * both loss detection and PTO and schedule the task assiated to this timer if needed. |
| */ |
| static inline void qc_set_timer(struct quic_conn *qc) |
| { |
| struct quic_pktns *pktns; |
| unsigned int pto; |
| int handshake_confirmed; |
| |
| TRACE_ENTER(QUIC_EV_CONN_STIMER, qc); |
| TRACE_PROTO("set timer", QUIC_EV_CONN_STIMER, qc, NULL, NULL, &qc->path->ifae_pkts); |
| |
| pktns = NULL; |
| if (!qc->timer_task) { |
| TRACE_PROTO("already released timer task", QUIC_EV_CONN_STIMER, qc); |
| goto leave; |
| } |
| |
| pktns = quic_loss_pktns(qc); |
| if (tick_isset(pktns->tx.loss_time)) { |
| qc->timer = pktns->tx.loss_time; |
| goto out; |
| } |
| |
| /* anti-amplification: the timer must be |
| * cancelled for a server which reached the anti-amplification limit. |
| */ |
| if (!quic_peer_validated_addr(qc) && |
| (qc->flags & QUIC_FL_CONN_ANTI_AMPLIFICATION_REACHED)) { |
| TRACE_PROTO("anti-amplification reached", QUIC_EV_CONN_STIMER, qc); |
| qc->timer = TICK_ETERNITY; |
| goto out; |
| } |
| |
| if (!qc->path->ifae_pkts && quic_peer_validated_addr(qc)) { |
| TRACE_PROTO("timer cancellation", QUIC_EV_CONN_STIMER, qc); |
| /* Timer cancellation. */ |
| qc->timer = TICK_ETERNITY; |
| goto out; |
| } |
| |
| handshake_confirmed = qc->state >= QUIC_HS_ST_CONFIRMED; |
| pktns = quic_pto_pktns(qc, handshake_confirmed, &pto); |
| if (tick_isset(pto)) |
| qc->timer = pto; |
| out: |
| if (qc->timer == TICK_ETERNITY) { |
| qc->timer_task->expire = TICK_ETERNITY; |
| } |
| else if (tick_is_expired(qc->timer, now_ms)) { |
| TRACE_DEVEL("wakeup asap timer task", QUIC_EV_CONN_STIMER, qc); |
| task_wakeup(qc->timer_task, TASK_WOKEN_MSG); |
| } |
| else { |
| TRACE_DEVEL("timer task scheduling", QUIC_EV_CONN_STIMER, qc); |
| task_schedule(qc->timer_task, qc->timer); |
| } |
| leave: |
| TRACE_PROTO("set timer", QUIC_EV_CONN_STIMER, qc, pktns); |
| TRACE_LEAVE(QUIC_EV_CONN_STIMER, qc); |
| } |
| |
| /* Derive new keys and ivs required for Key Update feature for <qc> QUIC |
| * connection. |
| * Return 1 if succeeded, 0 if not. |
| */ |
| static int quic_tls_key_update(struct quic_conn *qc) |
| { |
| struct quic_tls_ctx *tls_ctx = &qc->els[QUIC_TLS_ENC_LEVEL_APP].tls_ctx; |
| struct quic_tls_secrets *rx = &tls_ctx->rx; |
| struct quic_tls_secrets *tx = &tls_ctx->tx; |
| /* Used only for the traces */ |
| struct quic_kp_trace kp_trace = { |
| .rx_sec = rx->secret, |
| .rx_seclen = rx->secretlen, |
| .tx_sec = tx->secret, |
| .tx_seclen = tx->secretlen, |
| }; |
| /* The next key phase secrets to be derived */ |
| struct quic_tls_kp *nxt_rx = &qc->ku.nxt_rx; |
| struct quic_tls_kp *nxt_tx = &qc->ku.nxt_tx; |
| const struct quic_version *ver = |
| qc->negotiated_version ? qc->negotiated_version : qc->original_version; |
| int ret = 0; |
| |
| TRACE_ENTER(QUIC_EV_CONN_KP, qc); |
| |
| nxt_rx = &qc->ku.nxt_rx; |
| nxt_tx = &qc->ku.nxt_tx; |
| |
| TRACE_PRINTF(TRACE_LEVEL_DEVELOPER, QUIC_EV_CONN_SPPKTS, qc, 0, 0, 0, |
| "nxt_rx->secretlen=%llu rx->secretlen=%llu", |
| (ull)nxt_rx->secretlen, (ull)rx->secretlen); |
| /* Prepare new RX secrets */ |
| if (!quic_tls_sec_update(rx->md, ver, nxt_rx->secret, nxt_rx->secretlen, |
| rx->secret, rx->secretlen)) { |
| TRACE_ERROR("New RX secret update failed", QUIC_EV_CONN_KP, qc); |
| goto leave; |
| } |
| |
| if (!quic_tls_derive_keys(rx->aead, NULL, rx->md, ver, |
| nxt_rx->key, nxt_rx->keylen, |
| nxt_rx->iv, nxt_rx->ivlen, NULL, 0, |
| nxt_rx->secret, nxt_rx->secretlen)) { |
| TRACE_ERROR("New RX key derivation failed", QUIC_EV_CONN_KP, qc); |
| goto leave; |
| } |
| |
| kp_trace.rx = nxt_rx; |
| /* Prepare new TX secrets */ |
| if (!quic_tls_sec_update(tx->md, ver, nxt_tx->secret, nxt_tx->secretlen, |
| tx->secret, tx->secretlen)) { |
| TRACE_ERROR("New TX secret update failed", QUIC_EV_CONN_KP, qc); |
| goto leave; |
| } |
| |
| if (!quic_tls_derive_keys(tx->aead, NULL, tx->md, ver, |
| nxt_tx->key, nxt_tx->keylen, |
| nxt_tx->iv, nxt_tx->ivlen, NULL, 0, |
| nxt_tx->secret, nxt_tx->secretlen)) { |
| TRACE_ERROR("New TX key derivation failed", QUIC_EV_CONN_KP, qc); |
| goto leave; |
| } |
| |
| kp_trace.tx = nxt_tx; |
| if (nxt_rx->ctx) { |
| EVP_CIPHER_CTX_free(nxt_rx->ctx); |
| nxt_rx->ctx = NULL; |
| } |
| |
| if (!quic_tls_rx_ctx_init(&nxt_rx->ctx, tls_ctx->rx.aead, nxt_rx->key)) { |
| TRACE_ERROR("could not initialize RX TLS cipher context", QUIC_EV_CONN_KP, qc); |
| goto leave; |
| } |
| |
| if (nxt_tx->ctx) { |
| EVP_CIPHER_CTX_free(nxt_tx->ctx); |
| nxt_tx->ctx = NULL; |
| } |
| |
| if (!quic_tls_tx_ctx_init(&nxt_tx->ctx, tls_ctx->tx.aead, nxt_tx->key)) { |
| TRACE_ERROR("could not initialize TX TLS cipher context", QUIC_EV_CONN_KP, qc); |
| goto leave; |
| } |
| |
| ret = 1; |
| leave: |
| TRACE_PROTO("key update", QUIC_EV_CONN_KP, qc, &kp_trace); |
| TRACE_LEAVE(QUIC_EV_CONN_KP, qc); |
| return ret; |
| } |
| |
| /* Rotate the Key Update information for <qc> QUIC connection. |
| * Must be used after having updated them. |
| * Always succeeds. |
| */ |
| static void quic_tls_rotate_keys(struct quic_conn *qc) |
| { |
| struct quic_tls_ctx *tls_ctx = &qc->els[QUIC_TLS_ENC_LEVEL_APP].tls_ctx; |
| unsigned char *curr_secret, *curr_iv, *curr_key; |
| EVP_CIPHER_CTX *curr_ctx; |
| |
| TRACE_ENTER(QUIC_EV_CONN_RXPKT, qc); |
| |
| /* Rotate the RX secrets */ |
| curr_ctx = tls_ctx->rx.ctx; |
| curr_secret = tls_ctx->rx.secret; |
| curr_iv = tls_ctx->rx.iv; |
| curr_key = tls_ctx->rx.key; |
| |
| tls_ctx->rx.ctx = qc->ku.nxt_rx.ctx; |
| tls_ctx->rx.secret = qc->ku.nxt_rx.secret; |
| tls_ctx->rx.iv = qc->ku.nxt_rx.iv; |
| tls_ctx->rx.key = qc->ku.nxt_rx.key; |
| |
| qc->ku.nxt_rx.ctx = qc->ku.prv_rx.ctx; |
| qc->ku.nxt_rx.secret = qc->ku.prv_rx.secret; |
| qc->ku.nxt_rx.iv = qc->ku.prv_rx.iv; |
| qc->ku.nxt_rx.key = qc->ku.prv_rx.key; |
| |
| qc->ku.prv_rx.ctx = curr_ctx; |
| qc->ku.prv_rx.secret = curr_secret; |
| qc->ku.prv_rx.iv = curr_iv; |
| qc->ku.prv_rx.key = curr_key; |
| qc->ku.prv_rx.pn = tls_ctx->rx.pn; |
| |
| /* Update the TX secrets */ |
| curr_ctx = tls_ctx->tx.ctx; |
| curr_secret = tls_ctx->tx.secret; |
| curr_iv = tls_ctx->tx.iv; |
| curr_key = tls_ctx->tx.key; |
| |
| tls_ctx->tx.ctx = qc->ku.nxt_tx.ctx; |
| tls_ctx->tx.secret = qc->ku.nxt_tx.secret; |
| tls_ctx->tx.iv = qc->ku.nxt_tx.iv; |
| tls_ctx->tx.key = qc->ku.nxt_tx.key; |
| |
| qc->ku.nxt_tx.ctx = curr_ctx; |
| qc->ku.nxt_tx.secret = curr_secret; |
| qc->ku.nxt_tx.iv = curr_iv; |
| qc->ku.nxt_tx.key = curr_key; |
| |
| TRACE_LEAVE(QUIC_EV_CONN_RXPKT, qc); |
| } |
| |
| /* returns 0 on error, 1 on success */ |
| int ha_quic_set_encryption_secrets(SSL *ssl, enum ssl_encryption_level_t level, |
| const uint8_t *read_secret, |
| const uint8_t *write_secret, size_t secret_len) |
| { |
| struct quic_conn *qc = SSL_get_ex_data(ssl, ssl_qc_app_data_index); |
| struct quic_tls_ctx *tls_ctx = &qc->els[ssl_to_quic_enc_level(level)].tls_ctx; |
| const SSL_CIPHER *cipher = SSL_get_current_cipher(ssl); |
| struct quic_tls_secrets *rx = NULL, *tx = NULL; |
| const struct quic_version *ver = |
| qc->negotiated_version ? qc->negotiated_version : qc->original_version; |
| int ret = 0; |
| |
| TRACE_ENTER(QUIC_EV_CONN_RWSEC, qc); |
| BUG_ON(secret_len > QUIC_TLS_SECRET_LEN); |
| |
| if (qc->flags & QUIC_FL_CONN_TO_KILL) { |
| TRACE_PROTO("connection to be killed", QUIC_EV_CONN_ADDDATA, qc); |
| goto out; |
| } |
| |
| if (qc->flags & QUIC_FL_CONN_IMMEDIATE_CLOSE) { |
| TRACE_PROTO("CC required", QUIC_EV_CONN_RWSEC, qc); |
| goto out; |
| } |
| |
| if (!read_secret) |
| goto write; |
| |
| rx = &tls_ctx->rx; |
| rx->aead = tls_aead(cipher); |
| rx->md = tls_md(cipher); |
| rx->hp = tls_hp(cipher); |
| if (!rx->aead || !rx->md || !rx->hp) |
| goto leave; |
| |
| if (!quic_tls_secrets_keys_alloc(rx)) { |
| TRACE_ERROR("RX keys allocation failed", QUIC_EV_CONN_RWSEC, qc); |
| goto leave; |
| } |
| |
| if (!quic_tls_derive_keys(rx->aead, rx->hp, rx->md, ver, rx->key, rx->keylen, |
| rx->iv, rx->ivlen, rx->hp_key, sizeof rx->hp_key, |
| read_secret, secret_len)) { |
| TRACE_ERROR("TX key derivation failed", QUIC_EV_CONN_RWSEC, qc); |
| goto leave; |
| } |
| |
| if (!quic_tls_rx_ctx_init(&rx->ctx, rx->aead, rx->key)) { |
| TRACE_ERROR("could not initial RX TLS cipher context", QUIC_EV_CONN_RWSEC, qc); |
| goto leave; |
| } |
| |
| if (!quic_tls_dec_aes_ctx_init(&rx->hp_ctx, rx->hp, rx->hp_key)) { |
| TRACE_ERROR("could not initial RX TLS cipher context for HP", QUIC_EV_CONN_RWSEC, qc); |
| goto leave; |
| } |
| |
| /* Enqueue this connection asap if we could derive O-RTT secrets as |
| * listener. Note that a listener derives only RX secrets for this |
| * level. |
| */ |
| if (qc_is_listener(qc) && level == ssl_encryption_early_data) { |
| TRACE_DEVEL("pushing connection into accept queue", QUIC_EV_CONN_RWSEC, qc); |
| quic_accept_push_qc(qc); |
| } |
| |
| write: |
| |
| if (!write_secret) |
| goto keyupdate_init; |
| |
| tx = &tls_ctx->tx; |
| tx->aead = tls_aead(cipher); |
| tx->md = tls_md(cipher); |
| tx->hp = tls_hp(cipher); |
| if (!tx->aead || !tx->md || !tx->hp) |
| goto leave; |
| |
| if (!quic_tls_secrets_keys_alloc(tx)) { |
| TRACE_ERROR("TX keys allocation failed", QUIC_EV_CONN_RWSEC, qc); |
| goto leave; |
| } |
| |
| if (!quic_tls_derive_keys(tx->aead, tx->hp, tx->md, ver, tx->key, tx->keylen, |
| tx->iv, tx->ivlen, tx->hp_key, sizeof tx->hp_key, |
| write_secret, secret_len)) { |
| TRACE_ERROR("TX key derivation failed", QUIC_EV_CONN_RWSEC, qc); |
| goto leave; |
| } |
| |
| if (!quic_tls_tx_ctx_init(&tx->ctx, tx->aead, tx->key)) { |
| TRACE_ERROR("could not initial RX TLS cipher context", QUIC_EV_CONN_RWSEC, qc); |
| goto leave; |
| } |
| |
| if (!quic_tls_enc_aes_ctx_init(&tx->hp_ctx, tx->hp, tx->hp_key)) { |
| TRACE_ERROR("could not initial TX TLS cipher context for HP", QUIC_EV_CONN_RWSEC, qc); |
| goto leave; |
| } |
| |
| if (level == ssl_encryption_handshake && qc_is_listener(qc)) { |
| qc->enc_params_len = |
| quic_transport_params_encode(qc->enc_params, |
| qc->enc_params + sizeof qc->enc_params, |
| &qc->rx.params, ver, 1); |
| if (!qc->enc_params_len) { |
| TRACE_ERROR("quic_transport_params_encode() failed", QUIC_EV_CONN_RWSEC); |
| goto leave; |
| } |
| |
| if (!SSL_set_quic_transport_params(qc->xprt_ctx->ssl, qc->enc_params, qc->enc_params_len)) { |
| TRACE_ERROR("SSL_set_quic_transport_params() failed", QUIC_EV_CONN_RWSEC); |
| goto leave; |
| } |
| } |
| |
| keyupdate_init: |
| /* Store the secret provided by the TLS stack, required for keyupdate. */ |
| if (level == ssl_encryption_application) { |
| struct quic_tls_kp *prv_rx = &qc->ku.prv_rx; |
| struct quic_tls_kp *nxt_rx = &qc->ku.nxt_rx; |
| struct quic_tls_kp *nxt_tx = &qc->ku.nxt_tx; |
| |
| if (rx) { |
| if (!(rx->secret = pool_alloc(pool_head_quic_tls_secret))) { |
| TRACE_ERROR("Could not allocate RX Application secrete keys", QUIC_EV_CONN_RWSEC, qc); |
| goto leave; |
| } |
| |
| memcpy(rx->secret, read_secret, secret_len); |
| rx->secretlen = secret_len; |
| } |
| |
| if (tx) { |
| if (!(tx->secret = pool_alloc(pool_head_quic_tls_secret))) { |
| TRACE_ERROR("Could not allocate TX Application secrete keys", QUIC_EV_CONN_RWSEC, qc); |
| goto leave; |
| } |
| |
| memcpy(tx->secret, write_secret, secret_len); |
| tx->secretlen = secret_len; |
| } |
| |
| /* Initialize all the secret keys lengths */ |
| prv_rx->secretlen = nxt_rx->secretlen = nxt_tx->secretlen = secret_len; |
| } |
| |
| out: |
| ret = 1; |
| leave: |
| if (!ret) { |
| /* Release the CRYPTO frames which have been provided by the TLS stack |
| * to prevent the transmission of ack-eliciting packets. |
| */ |
| qc_release_pktns_frms(qc, qc->els[QUIC_TLS_ENC_LEVEL_INITIAL].pktns); |
| qc_release_pktns_frms(qc, qc->els[QUIC_TLS_ENC_LEVEL_HANDSHAKE].pktns); |
| qc_release_pktns_frms(qc, qc->els[QUIC_TLS_ENC_LEVEL_APP].pktns); |
| quic_set_tls_alert(qc, SSL_AD_HANDSHAKE_FAILURE); |
| } |
| |
| TRACE_LEAVE(QUIC_EV_CONN_RWSEC, qc, &level); |
| return ret; |
| } |
| |
| /* This function copies the CRYPTO data provided by the TLS stack found at <data> |
| * with <len> as size in CRYPTO buffers dedicated to store the information about |
| * outgoing CRYPTO frames so that to be able to replay the CRYPTO data streams. |
| * It fails (returns 0) only if it could not managed to allocate enough CRYPTO |
| * buffers to store all the data. |
| * Note that CRYPTO data may exist at any encryption level except at 0-RTT. |
| */ |
| static int quic_crypto_data_cpy(struct quic_conn *qc, struct quic_enc_level *qel, |
| const unsigned char *data, size_t len) |
| { |
| struct quic_crypto_buf **qcb; |
| /* The remaining byte to store in CRYPTO buffers. */ |
| size_t cf_offset, cf_len, *nb_buf; |
| unsigned char *pos; |
| int ret = 0; |
| |
| nb_buf = &qel->tx.crypto.nb_buf; |
| qcb = &qel->tx.crypto.bufs[*nb_buf - 1]; |
| cf_offset = (*nb_buf - 1) * QUIC_CRYPTO_BUF_SZ + (*qcb)->sz; |
| cf_len = len; |
| |
| TRACE_ENTER(QUIC_EV_CONN_ADDDATA, qc); |
| |
| while (len) { |
| size_t to_copy, room; |
| |
| pos = (*qcb)->data + (*qcb)->sz; |
| room = QUIC_CRYPTO_BUF_SZ - (*qcb)->sz; |
| to_copy = len > room ? room : len; |
| if (to_copy) { |
| memcpy(pos, data, to_copy); |
| /* Increment the total size of this CRYPTO buffers by <to_copy>. */ |
| qel->tx.crypto.sz += to_copy; |
| (*qcb)->sz += to_copy; |
| len -= to_copy; |
| data += to_copy; |
| } |
| else { |
| struct quic_crypto_buf **tmp; |
| |
| // FIXME: realloc! |
| tmp = realloc(qel->tx.crypto.bufs, |
| (*nb_buf + 1) * sizeof *qel->tx.crypto.bufs); |
| if (tmp) { |
| qel->tx.crypto.bufs = tmp; |
| qcb = &qel->tx.crypto.bufs[*nb_buf]; |
| *qcb = pool_alloc(pool_head_quic_crypto_buf); |
| if (!*qcb) { |
| TRACE_ERROR("Could not allocate crypto buf", QUIC_EV_CONN_ADDDATA, qc); |
| goto leave; |
| } |
| |
| (*qcb)->sz = 0; |
| ++*nb_buf; |
| } |
| else { |
| break; |
| } |
| } |
| } |
| |
| /* Allocate a TX CRYPTO frame only if all the CRYPTO data |
| * have been buffered. |
| */ |
| if (!len) { |
| struct quic_frame *frm; |
| struct quic_frame *found = NULL; |
| |
| /* There is at most one CRYPTO frame in this packet number |
| * space. Let's look for it. |
| */ |
| list_for_each_entry(frm, &qel->pktns->tx.frms, list) { |
| if (frm->type != QUIC_FT_CRYPTO) |
| continue; |
| |
| /* Found */ |
| found = frm; |
| break; |
| } |
| |
| if (found) { |
| found->crypto.len += cf_len; |
| } |
| else { |
| frm = qc_frm_alloc(QUIC_FT_CRYPTO); |
| if (!frm) { |
| TRACE_ERROR("Could not allocate quic frame", QUIC_EV_CONN_ADDDATA, qc); |
| goto leave; |
| } |
| |
| frm->crypto.offset = cf_offset; |
| frm->crypto.len = cf_len; |
| frm->crypto.qel = qel; |
| LIST_APPEND(&qel->pktns->tx.frms, &frm->list); |
| } |
| } |
| ret = len == 0; |
| leave: |
| TRACE_LEAVE(QUIC_EV_CONN_ADDDATA, qc); |
| return ret; |
| } |
| |
| /* Prepare the emission of CONNECTION_CLOSE with error <err>. All send/receive |
| * activity for <qc> will be interrupted. |
| */ |
| void quic_set_connection_close(struct quic_conn *qc, const struct quic_err err) |
| { |
| TRACE_ENTER(QUIC_EV_CONN_CLOSE, qc); |
| if (qc->flags & QUIC_FL_CONN_IMMEDIATE_CLOSE) |
| goto leave; |
| |
| TRACE_STATE("setting immediate close", QUIC_EV_CONN_CLOSE, qc); |
| qc->flags |= QUIC_FL_CONN_IMMEDIATE_CLOSE; |
| qc->err.code = err.code; |
| qc->err.app = err.app; |
| |
| leave: |
| TRACE_LEAVE(QUIC_EV_CONN_CLOSE, qc); |
| } |
| |
| /* Set <alert> TLS alert as QUIC CRYPTO_ERROR error */ |
| void quic_set_tls_alert(struct quic_conn *qc, int alert) |
| { |
| TRACE_ENTER(QUIC_EV_CONN_SSLALERT, qc); |
| |
| if (!(qc->flags & QUIC_FL_CONN_HALF_OPEN_CNT_DECREMENTED)) { |
| qc->flags |= QUIC_FL_CONN_HALF_OPEN_CNT_DECREMENTED; |
| TRACE_DEVEL("dec half open counter", QUIC_EV_CONN_SSLALERT, qc); |
| HA_ATOMIC_DEC(&qc->prx_counters->half_open_conn); |
| } |
| quic_set_connection_close(qc, quic_err_tls(alert)); |
| qc->flags |= QUIC_FL_CONN_TLS_ALERT; |
| TRACE_STATE("Alert set", QUIC_EV_CONN_SSLALERT, qc); |
| |
| TRACE_LEAVE(QUIC_EV_CONN_SSLALERT, qc); |
| } |
| |
| /* Set the application for <qc> QUIC connection. |
| * Return 1 if succeeded, 0 if not. |
| */ |
| int quic_set_app_ops(struct quic_conn *qc, const unsigned char *alpn, size_t alpn_len) |
| { |
| if (alpn_len >= 2 && memcmp(alpn, "h3", 2) == 0) |
| qc->app_ops = &h3_ops; |
| else if (alpn_len >= 10 && memcmp(alpn, "hq-interop", 10) == 0) |
| qc->app_ops = &hq_interop_ops; |
| else |
| return 0; |
| |
| return 1; |
| } |
| |
| /* ->add_handshake_data QUIC TLS callback used by the QUIC TLS stack when it |
| * wants to provide the QUIC layer with CRYPTO data. |
| * Returns 1 if succeeded, 0 if not. |
| */ |
| int ha_quic_add_handshake_data(SSL *ssl, enum ssl_encryption_level_t level, |
| const uint8_t *data, size_t len) |
| { |
| struct quic_conn *qc; |
| enum quic_tls_enc_level tel; |
| struct quic_enc_level *qel; |
| int ret = 0; |
| |
| qc = SSL_get_ex_data(ssl, ssl_qc_app_data_index); |
| TRACE_ENTER(QUIC_EV_CONN_ADDDATA, qc); |
| |
| if (qc->flags & QUIC_FL_CONN_TO_KILL) { |
| TRACE_PROTO("connection to be killed", QUIC_EV_CONN_ADDDATA, qc); |
| goto out; |
| } |
| |
| if (qc->flags & QUIC_FL_CONN_IMMEDIATE_CLOSE) { |
| TRACE_PROTO("CC required", QUIC_EV_CONN_ADDDATA, qc); |
| goto out; |
| } |
| |
| tel = ssl_to_quic_enc_level(level); |
| if (tel == -1) { |
| TRACE_ERROR("Wrong encryption level", QUIC_EV_CONN_ADDDATA, qc); |
| goto leave; |
| } |
| |
| qel = &qc->els[tel]; |
| if (!quic_crypto_data_cpy(qc, qel, data, len)) { |
| TRACE_ERROR("Could not bufferize", QUIC_EV_CONN_ADDDATA, qc); |
| goto leave; |
| } |
| |
| TRACE_DEVEL("CRYPTO data buffered", QUIC_EV_CONN_ADDDATA, |
| qc, &level, &len); |
| out: |
| ret = 1; |
| leave: |
| TRACE_LEAVE(QUIC_EV_CONN_ADDDATA, qc); |
| return ret; |
| } |
| |
| int ha_quic_flush_flight(SSL *ssl) |
| { |
| struct quic_conn *qc = SSL_get_ex_data(ssl, ssl_qc_app_data_index); |
| |
| TRACE_ENTER(QUIC_EV_CONN_FFLIGHT, qc); |
| TRACE_LEAVE(QUIC_EV_CONN_FFLIGHT, qc); |
| |
| return 1; |
| } |
| |
| int ha_quic_send_alert(SSL *ssl, enum ssl_encryption_level_t level, uint8_t alert) |
| { |
| struct quic_conn *qc = SSL_get_ex_data(ssl, ssl_qc_app_data_index); |
| |
| TRACE_ENTER(QUIC_EV_CONN_SSLALERT, qc); |
| |
| TRACE_PROTO("Received TLS alert", QUIC_EV_CONN_SSLALERT, qc, &alert, &level); |
| |
| quic_set_tls_alert(qc, alert); |
| TRACE_LEAVE(QUIC_EV_CONN_SSLALERT, qc); |
| return 1; |
| } |
| |
| /* QUIC TLS methods */ |
| static SSL_QUIC_METHOD ha_quic_method = { |
| .set_encryption_secrets = ha_quic_set_encryption_secrets, |
| .add_handshake_data = ha_quic_add_handshake_data, |
| .flush_flight = ha_quic_flush_flight, |
| .send_alert = ha_quic_send_alert, |
| }; |
| |
| /* Initialize the TLS context of a listener with <bind_conf> as configuration. |
| * Returns an error count. |
| */ |
| int ssl_quic_initial_ctx(struct bind_conf *bind_conf) |
| { |
| struct ssl_bind_conf __maybe_unused *ssl_conf_cur; |
| int cfgerr = 0; |
| |
| long options = |
| (SSL_OP_ALL & ~SSL_OP_DONT_INSERT_EMPTY_FRAGMENTS) | |
| SSL_OP_SINGLE_ECDH_USE | |
| SSL_OP_CIPHER_SERVER_PREFERENCE; |
| SSL_CTX *ctx; |
| |
| ctx = SSL_CTX_new(TLS_server_method()); |
| bind_conf->initial_ctx = ctx; |
| |
| SSL_CTX_set_options(ctx, options); |
| SSL_CTX_set_mode(ctx, SSL_MODE_RELEASE_BUFFERS); |
| SSL_CTX_set_min_proto_version(ctx, TLS1_3_VERSION); |
| SSL_CTX_set_max_proto_version(ctx, TLS1_3_VERSION); |
| |
| #ifdef SSL_CTRL_SET_TLSEXT_HOSTNAME |
| # if defined(HAVE_SSL_CLIENT_HELLO_CB) |
| # if defined(SSL_OP_NO_ANTI_REPLAY) |
| if (bind_conf->ssl_conf.early_data) { |
| SSL_CTX_set_options(ctx, SSL_OP_NO_ANTI_REPLAY); |
| # ifdef USE_QUIC_OPENSSL_COMPAT |
| ha_warning("Binding [%s:%d] for %s %s: 0-RTT is not supported in limited QUIC compatibility mode, ignored.\n", |
| bind_conf->file, bind_conf->line, proxy_type_str(bind_conf->frontend), bind_conf->frontend->id); |
| # else |
| SSL_CTX_set_max_early_data(ctx, 0xffffffff); |
| # endif /* ! USE_QUIC_OPENSSL_COMPAT */ |
| } |
| # endif /* !SSL_OP_NO_ANTI_REPLAY */ |
| SSL_CTX_set_client_hello_cb(ctx, ssl_sock_switchctx_cbk, NULL); |
| SSL_CTX_set_tlsext_servername_callback(ctx, ssl_sock_switchctx_err_cbk); |
| # else /* ! HAVE_SSL_CLIENT_HELLO_CB */ |
| SSL_CTX_set_tlsext_servername_callback(ctx, ssl_sock_switchctx_cbk); |
| # endif |
| SSL_CTX_set_tlsext_servername_arg(ctx, bind_conf); |
| #endif |
| #ifdef USE_QUIC_OPENSSL_COMPAT |
| if (!quic_tls_compat_init(bind_conf, ctx)) |
| cfgerr++; |
| #endif |
| |
| return cfgerr; |
| } |
| |
| /* Decode an expected packet number from <truncated_on> its truncated value, |
| * depending on <largest_pn> the largest received packet number, and <pn_nbits> |
| * the number of bits used to encode this packet number (its length in bytes * 8). |
| * See https://quicwg.org/base-drafts/draft-ietf-quic-transport.html#packet-encoding |
| */ |
| static uint64_t decode_packet_number(uint64_t largest_pn, |
| uint32_t truncated_pn, unsigned int pn_nbits) |
| { |
| uint64_t expected_pn = largest_pn + 1; |
| uint64_t pn_win = (uint64_t)1 << pn_nbits; |
| uint64_t pn_hwin = pn_win / 2; |
| uint64_t pn_mask = pn_win - 1; |
| uint64_t candidate_pn; |
| |
| |
| candidate_pn = (expected_pn & ~pn_mask) | truncated_pn; |
| /* Note that <pn_win> > <pn_hwin>. */ |
| if (candidate_pn < QUIC_MAX_PACKET_NUM - pn_win && |
| candidate_pn + pn_hwin <= expected_pn) |
| return candidate_pn + pn_win; |
| |
| if (candidate_pn > expected_pn + pn_hwin && candidate_pn >= pn_win) |
| return candidate_pn - pn_win; |
| |
| return candidate_pn; |
| } |
| |
| /* Remove the header protection of <pkt> QUIC packet using <tls_ctx> as QUIC TLS |
| * cryptographic context. |
| * <largest_pn> is the largest received packet number and <pn> the address of |
| * the packet number field for this packet with <byte0> address of its first byte. |
| * <end> points to one byte past the end of this packet. |
| * Returns 1 if succeeded, 0 if not. |
| */ |
| static int qc_do_rm_hp(struct quic_conn *qc, |
| struct quic_rx_packet *pkt, struct quic_tls_ctx *tls_ctx, |
| int64_t largest_pn, unsigned char *pn, unsigned char *byte0) |
| { |
| int ret, i, pnlen; |
| uint64_t packet_number; |
| uint32_t truncated_pn = 0; |
| unsigned char mask[5] = {0}; |
| unsigned char *sample; |
| |
| TRACE_ENTER(QUIC_EV_CONN_RMHP, qc); |
| |
| ret = 0; |
| |
| /* Check there is enough data in this packet. */ |
| if (pkt->len - (pn - byte0) < QUIC_PACKET_PN_MAXLEN + sizeof mask) { |
| TRACE_PROTO("too short packet", QUIC_EV_CONN_RMHP, qc, pkt); |
| goto leave; |
| } |
| |
| sample = pn + QUIC_PACKET_PN_MAXLEN; |
| |
| if (!quic_tls_aes_decrypt(mask, sample, sizeof mask, tls_ctx->rx.hp_ctx)) { |
| TRACE_ERROR("HP removing failed", QUIC_EV_CONN_RMHP, qc, pkt); |
| goto leave; |
| } |
| |
| *byte0 ^= mask[0] & (*byte0 & QUIC_PACKET_LONG_HEADER_BIT ? 0xf : 0x1f); |
| pnlen = (*byte0 & QUIC_PACKET_PNL_BITMASK) + 1; |
| for (i = 0; i < pnlen; i++) { |
| pn[i] ^= mask[i + 1]; |
| truncated_pn = (truncated_pn << 8) | pn[i]; |
| } |
| |
| packet_number = decode_packet_number(largest_pn, truncated_pn, pnlen * 8); |
| /* Store remaining information for this unprotected header */ |
| pkt->pn = packet_number; |
| pkt->pnl = pnlen; |
| |
| ret = 1; |
| leave: |
| TRACE_LEAVE(QUIC_EV_CONN_RMHP, qc); |
| return ret; |
| } |
| |
| /* Encrypt the payload of a QUIC packet with <pn> as number found at <payload> |
| * address, with <payload_len> as payload length, <aad> as address of |
| * the ADD and <aad_len> as AAD length depending on the <tls_ctx> QUIC TLS |
| * context. |
| * |
| * TODO no error is expected as encryption is done in place but encryption |
| * manual is unclear. <fail> will be set to true if an error is detected. |
| */ |
| static void quic_packet_encrypt(unsigned char *payload, size_t payload_len, |
| unsigned char *aad, size_t aad_len, uint64_t pn, |
| struct quic_tls_ctx *tls_ctx, struct quic_conn *qc, |
| int *fail) |
| { |
| unsigned char iv[QUIC_TLS_IV_LEN]; |
| unsigned char *tx_iv = tls_ctx->tx.iv; |
| size_t tx_iv_sz = tls_ctx->tx.ivlen; |
| struct enc_debug_info edi; |
| |
| TRACE_ENTER(QUIC_EV_CONN_ENCPKT, qc); |
| *fail = 0; |
| |
| quic_aead_iv_build(iv, sizeof iv, tx_iv, tx_iv_sz, pn); |
| |
| if (!quic_tls_encrypt(payload, payload_len, aad, aad_len, |
| tls_ctx->tx.ctx, tls_ctx->tx.aead, iv)) { |
| TRACE_ERROR("QUIC packet encryption failed", QUIC_EV_CONN_ENCPKT, qc); |
| *fail = 1; |
| enc_debug_info_init(&edi, payload, payload_len, aad, aad_len, pn); |
| } |
| |
| TRACE_LEAVE(QUIC_EV_CONN_ENCPKT, qc); |
| } |
| |
| /* Select the correct TLS cipher context to used to decipher <pkt> packet |
| * attached to <qc> connection from <qel> encryption level. |
| */ |
| static inline struct quic_tls_ctx *qc_select_tls_ctx(struct quic_conn *qc, |
| struct quic_enc_level *qel, |
| struct quic_rx_packet *pkt) |
| { |
| return pkt->type != QUIC_PACKET_TYPE_INITIAL ? &qel->tls_ctx : |
| pkt->version == qc->negotiated_version ? &qc->negotiated_ictx : &qel->tls_ctx; |
| } |
| |
| /* Decrypt <pkt> packet using encryption level <qel> for <qc> connection. |
| * Decryption is done in place in packet buffer. |
| * |
| * Returns 1 on success else 0. |
| */ |
| static int qc_pkt_decrypt(struct quic_conn *qc, struct quic_enc_level *qel, |
| struct quic_rx_packet *pkt) |
| { |
| int ret, kp_changed; |
| unsigned char iv[QUIC_TLS_IV_LEN]; |
| struct quic_tls_ctx *tls_ctx = qc_select_tls_ctx(qc, qel, pkt); |
| EVP_CIPHER_CTX *rx_ctx = tls_ctx->rx.ctx; |
| unsigned char *rx_iv = tls_ctx->rx.iv; |
| size_t rx_iv_sz = tls_ctx->rx.ivlen; |
| unsigned char *rx_key = tls_ctx->rx.key; |
| |
| TRACE_ENTER(QUIC_EV_CONN_RXPKT, qc); |
| |
| ret = 0; |
| kp_changed = 0; |
| |
| if (pkt->type == QUIC_PACKET_TYPE_SHORT) { |
| /* The two tested bits are not at the same position, |
| * this is why they are first both inversed. |
| */ |
| if (!(*pkt->data & QUIC_PACKET_KEY_PHASE_BIT) ^ !(tls_ctx->flags & QUIC_FL_TLS_KP_BIT_SET)) { |
| if (pkt->pn < tls_ctx->rx.pn) { |
| /* The lowest packet number of a previous key phase |
| * cannot be null if it really stores previous key phase |
| * secrets. |
| */ |
| // TODO: check if BUG_ON() more suitable |
| if (!qc->ku.prv_rx.pn) { |
| TRACE_ERROR("null previous packet number", QUIC_EV_CONN_RXPKT, qc); |
| goto leave; |
| } |
| |
| rx_ctx = qc->ku.prv_rx.ctx; |
| rx_iv = qc->ku.prv_rx.iv; |
| rx_key = qc->ku.prv_rx.key; |
| } |
| else if (pkt->pn > qel->pktns->rx.largest_pn) { |
| /* Next key phase */ |
| TRACE_PROTO("Key phase changed", QUIC_EV_CONN_RXPKT, qc); |
| kp_changed = 1; |
| rx_ctx = qc->ku.nxt_rx.ctx; |
| rx_iv = qc->ku.nxt_rx.iv; |
| rx_key = qc->ku.nxt_rx.key; |
| } |
| } |
| } |
| |
| quic_aead_iv_build(iv, sizeof iv, rx_iv, rx_iv_sz, pkt->pn); |
| |
| ret = quic_tls_decrypt(pkt->data + pkt->aad_len, pkt->len - pkt->aad_len, |
| pkt->data, pkt->aad_len, |
| rx_ctx, tls_ctx->rx.aead, rx_key, iv); |
| if (!ret) { |
| TRACE_ERROR("quic_tls_decrypt() failed", QUIC_EV_CONN_RXPKT, qc); |
| goto leave; |
| } |
| |
| /* Update the keys only if the packet decryption succeeded. */ |
| if (kp_changed) { |
| quic_tls_rotate_keys(qc); |
| /* Toggle the Key Phase bit */ |
| tls_ctx->flags ^= QUIC_FL_TLS_KP_BIT_SET; |
| /* Store the lowest packet number received for the current key phase */ |
| tls_ctx->rx.pn = pkt->pn; |
| /* Prepare the next key update */ |
| if (!quic_tls_key_update(qc)) { |
| TRACE_ERROR("quic_tls_key_update() failed", QUIC_EV_CONN_RXPKT, qc); |
| goto leave; |
| } |
| } |
| |
| /* Update the packet length (required to parse the frames). */ |
| pkt->len -= QUIC_TLS_TAG_LEN; |
| ret = 1; |
| leave: |
| TRACE_LEAVE(QUIC_EV_CONN_RXPKT, qc); |
| return ret; |
| } |
| |
| |
| /* Release <frm> frame and mark its copies as acknowledged */ |
| void qc_release_frm(struct quic_conn *qc, struct quic_frame *frm) |
| { |
| uint64_t pn; |
| struct quic_frame *origin, *f, *tmp; |
| |
| TRACE_ENTER(QUIC_EV_CONN_PRSAFRM, qc); |
| |
| /* Identify this frame: a frame copy or one of its copies */ |
| origin = frm->origin ? frm->origin : frm; |
| /* Ensure the source of the copies is flagged as acked, <frm> being |
| * possibly a copy of <origin> |
| */ |
| origin->flags |= QUIC_FL_TX_FRAME_ACKED; |
| /* Mark all the copy of <origin> as acknowledged. We must |
| * not release the packets (releasing the frames) at this time as |
| * they are possibly also to be acknowledged alongside the |
| * the current one. |
| */ |
| list_for_each_entry_safe(f, tmp, &origin->reflist, ref) { |
| if (f->pkt) { |
| f->flags |= QUIC_FL_TX_FRAME_ACKED; |
| f->origin = NULL; |
| LIST_DEL_INIT(&f->ref); |
| pn = f->pkt->pn_node.key; |
| TRACE_DEVEL("mark frame as acked from packet", |
| QUIC_EV_CONN_PRSAFRM, qc, f, &pn); |
| } |
| else { |
| TRACE_DEVEL("freeing unsent frame", |
| QUIC_EV_CONN_PRSAFRM, qc, f); |
| LIST_DEL_INIT(&f->ref); |
| qc_frm_free(&f); |
| } |
| } |
| LIST_DEL_INIT(&frm->list); |
| pn = frm->pkt->pn_node.key; |
| quic_tx_packet_refdec(frm->pkt); |
| TRACE_DEVEL("freeing frame from packet", |
| QUIC_EV_CONN_PRSAFRM, qc, frm, &pn); |
| qc_frm_free(&frm); |
| |
| TRACE_LEAVE(QUIC_EV_CONN_PRSAFRM, qc); |
| } |
| |
| /* Schedule a CONNECTION_CLOSE emission on <qc> if the MUX has been released |
| * and all STREAM data are acknowledged. The MUX is responsible to have set |
| * <qc.err> before as it is reused for the CONNECTION_CLOSE frame. |
| * |
| * TODO this should also be called on lost packet detection |
| */ |
| void qc_check_close_on_released_mux(struct quic_conn *qc) |
| { |
| TRACE_ENTER(QUIC_EV_CONN_CLOSE, qc); |
| |
| if (qc->mux_state == QC_MUX_RELEASED && eb_is_empty(&qc->streams_by_id)) { |
| /* Reuse errcode which should have been previously set by the MUX on release. */ |
| quic_set_connection_close(qc, qc->err); |
| tasklet_wakeup(qc->wait_event.tasklet); |
| } |
| |
| TRACE_LEAVE(QUIC_EV_CONN_CLOSE, qc); |
| } |
| |
| /* Remove from <stream> the acknowledged frames. |
| * |
| * Returns 1 if at least one frame was removed else 0. |
| */ |
| static int quic_stream_try_to_consume(struct quic_conn *qc, |
| struct qc_stream_desc *stream) |
| { |
| int ret; |
| struct eb64_node *frm_node; |
| |
| TRACE_ENTER(QUIC_EV_CONN_ACKSTRM, qc); |
| |
| ret = 0; |
| frm_node = eb64_first(&stream->acked_frms); |
| while (frm_node) { |
| struct qf_stream *strm_frm; |
| struct quic_frame *frm; |
| size_t offset, len; |
| |
| strm_frm = eb64_entry(frm_node, struct qf_stream, offset); |
| offset = strm_frm->offset.key; |
| len = strm_frm->len; |
| |
| if (offset > stream->ack_offset) |
| break; |
| |
| if (qc_stream_desc_ack(&stream, offset, len)) { |
| /* cf. next comment : frame may be freed at this stage. */ |
| TRACE_DEVEL("stream consumed", QUIC_EV_CONN_ACKSTRM, |
| qc, stream ? strm_frm : NULL, stream); |
| ret = 1; |
| } |
| |
| /* If stream is NULL after qc_stream_desc_ack(), it means frame |
| * has been freed. with the stream frames tree. Nothing to do |
| * anymore in here. |
| */ |
| if (!stream) { |
| qc_check_close_on_released_mux(qc); |
| ret = 1; |
| goto leave; |
| } |
| |
| frm_node = eb64_next(frm_node); |
| eb64_delete(&strm_frm->offset); |
| |
| frm = container_of(strm_frm, struct quic_frame, stream); |
| qc_release_frm(qc, frm); |
| } |
| |
| leave: |
| TRACE_LEAVE(QUIC_EV_CONN_ACKSTRM, qc); |
| return ret; |
| } |
| |
| /* Treat <frm> frame whose packet it is attached to has just been acknowledged. */ |
| static inline void qc_treat_acked_tx_frm(struct quic_conn *qc, |
| struct quic_frame *frm) |
| { |
| TRACE_ENTER(QUIC_EV_CONN_PRSAFRM, qc); |
| TRACE_PROTO("RX ack TX frm", QUIC_EV_CONN_PRSAFRM, qc, frm); |
| |
| switch (frm->type) { |
| case QUIC_FT_STREAM_8 ... QUIC_FT_STREAM_F: |
| { |
| struct qf_stream *strm_frm = &frm->stream; |
| struct eb64_node *node = NULL; |
| struct qc_stream_desc *stream = NULL; |
| const size_t offset = strm_frm->offset.key; |
| const size_t len = strm_frm->len; |
| |
| /* do not use strm_frm->stream as the qc_stream_desc instance |
| * might be freed at this stage. Use the id to do a proper |
| * lookup. |
| * |
| * TODO if lookup operation impact on the perf is noticeable, |
| * implement a refcount on qc_stream_desc instances. |
| */ |
| node = eb64_lookup(&qc->streams_by_id, strm_frm->id); |
| if (!node) { |
| TRACE_DEVEL("acked stream for released stream", QUIC_EV_CONN_ACKSTRM, qc, strm_frm); |
| qc_release_frm(qc, frm); |
| /* early return */ |
| goto leave; |
| } |
| stream = eb64_entry(node, struct qc_stream_desc, by_id); |
| |
| TRACE_DEVEL("acked stream", QUIC_EV_CONN_ACKSTRM, qc, strm_frm, stream); |
| if (offset <= stream->ack_offset) { |
| if (qc_stream_desc_ack(&stream, offset, len)) { |
| TRACE_DEVEL("stream consumed", QUIC_EV_CONN_ACKSTRM, |
| qc, strm_frm, stream); |
| } |
| |
| if (!stream) { |
| /* no need to continue if stream freed. */ |
| TRACE_DEVEL("stream released and freed", QUIC_EV_CONN_ACKSTRM, qc); |
| qc_release_frm(qc, frm); |
| qc_check_close_on_released_mux(qc); |
| break; |
| } |
| |
| TRACE_DEVEL("stream consumed", QUIC_EV_CONN_ACKSTRM, |
| qc, strm_frm, stream); |
| qc_release_frm(qc, frm); |
| } |
| else { |
| eb64_insert(&stream->acked_frms, &strm_frm->offset); |
| } |
| |
| quic_stream_try_to_consume(qc, stream); |
| } |
| break; |
| default: |
| qc_release_frm(qc, frm); |
| } |
| |
| leave: |
| TRACE_LEAVE(QUIC_EV_CONN_PRSAFRM, qc); |
| } |
| |
| /* Collect newly acknowledged TX packets from <pkts> ebtree into <newly_acked_pkts> |
| * list depending on <largest> and <smallest> packet number of a range of acknowledged |
| * packets announced in an ACK frame. <largest_node> may be provided to start |
| * looking from this packet node. |
| */ |
| static void qc_newly_acked_pkts(struct quic_conn *qc, struct eb_root *pkts, |
| struct list *newly_acked_pkts, |
| struct eb64_node *largest_node, |
| uint64_t largest, uint64_t smallest) |
| { |
| struct eb64_node *node; |
| struct quic_tx_packet *pkt; |
| |
| TRACE_ENTER(QUIC_EV_CONN_PRSAFRM, qc); |
| |
| node = eb64_lookup_ge(pkts, smallest); |
| if (!node) |
| goto leave; |
| |
| largest_node = largest_node ? largest_node : eb64_lookup_le(pkts, largest); |
| if (!largest_node) |
| goto leave; |
| |
| while (node && node->key <= largest_node->key) { |
| pkt = eb64_entry(node, struct quic_tx_packet, pn_node); |
| LIST_APPEND(newly_acked_pkts, &pkt->list); |
| node = eb64_next(node); |
| eb64_delete(&pkt->pn_node); |
| } |
| |
| leave: |
| TRACE_LEAVE(QUIC_EV_CONN_PRSAFRM, qc); |
| } |
| |
| /* Remove <largest> down to <smallest> node entries from <pkts> tree of TX packet, |
| * deallocating them, and their TX frames. |
| * May be NULL if <largest> node could not be found. |
| */ |
| static void qc_ackrng_pkts(struct quic_conn *qc, |
| unsigned int *pkt_flags, struct list *newly_acked_pkts) |
| { |
| struct quic_tx_packet *pkt, *tmp; |
| |
| TRACE_ENTER(QUIC_EV_CONN_PRSAFRM, qc); |
| |
| list_for_each_entry_safe(pkt, tmp, newly_acked_pkts, list) { |
| struct quic_frame *frm, *frmbak; |
| |
| *pkt_flags |= pkt->flags; |
| TRACE_DEVEL("Removing packet #", QUIC_EV_CONN_PRSAFRM, qc, NULL, &pkt->pn_node.key); |
| list_for_each_entry_safe(frm, frmbak, &pkt->frms, list) |
| qc_treat_acked_tx_frm(qc, frm); |
| /* If there are others packet in the same datagram <pkt> is attached to, |
| * detach the previous one and the next one from <pkt>. |
| */ |
| quic_tx_packet_dgram_detach(pkt); |
| eb64_delete(&pkt->pn_node); |
| } |
| |
| leave: |
| TRACE_LEAVE(QUIC_EV_CONN_PRSAFRM, qc); |
| } |
| |
| /* Remove all frames from <pkt_frm_list> and reinsert them in the same order |
| * they have been sent into <pktns_frm_list>. The loss counter of each frame is |
| * incremented and checked if it does not exceed retransmission limit. |
| * |
| * Returns 1 on success, 0 if a frame loss limit is exceeded. A |
| * CONNECTION_CLOSE is scheduled in this case. |
| */ |
| static inline int qc_requeue_nacked_pkt_tx_frms(struct quic_conn *qc, |
| struct quic_tx_packet *pkt, |
| struct list *pktns_frm_list) |
| { |
| struct quic_frame *frm, *frmbak; |
| struct list *pkt_frm_list = &pkt->frms; |
| uint64_t pn = pkt->pn_node.key; |
| int close = 0; |
| |
| TRACE_ENTER(QUIC_EV_CONN_PRSAFRM, qc); |
| |
| list_for_each_entry_safe(frm, frmbak, pkt_frm_list, list) { |
| /* First remove this frame from the packet it was attached to */ |
| LIST_DEL_INIT(&frm->list); |
| quic_tx_packet_refdec(pkt); |
| /* At this time, this frame is not freed but removed from its packet */ |
| frm->pkt = NULL; |
| /* Remove any reference to this frame */ |
| qc_frm_unref(frm, qc); |
| switch (frm->type) { |
| case QUIC_FT_STREAM_8 ... QUIC_FT_STREAM_F: |
| { |
| struct qf_stream *strm_frm = &frm->stream; |
| struct eb64_node *node = NULL; |
| struct qc_stream_desc *stream_desc; |
| |
| node = eb64_lookup(&qc->streams_by_id, strm_frm->id); |
| if (!node) { |
| TRACE_DEVEL("released stream", QUIC_EV_CONN_PRSAFRM, qc, frm); |
| TRACE_DEVEL("freeing frame from packet", QUIC_EV_CONN_PRSAFRM, |
| qc, frm, &pn); |
| qc_frm_free(&frm); |
| continue; |
| } |
| |
| stream_desc = eb64_entry(node, struct qc_stream_desc, by_id); |
| /* Do not resend this frame if in the "already acked range" */ |
| if (strm_frm->offset.key + strm_frm->len <= stream_desc->ack_offset) { |
| TRACE_DEVEL("ignored frame in already acked range", |
| QUIC_EV_CONN_PRSAFRM, qc, frm); |
| qc_frm_free(&frm); |
| continue; |
| } |
| else if (strm_frm->offset.key < stream_desc->ack_offset) { |
| uint64_t diff = stream_desc->ack_offset - strm_frm->offset.key; |
| |
| qc_stream_frm_mv_fwd(frm, diff); |
| TRACE_DEVEL("updated partially acked frame", |
| QUIC_EV_CONN_PRSAFRM, qc, frm); |
| } |
| break; |
| } |
| |
| default: |
| break; |
| } |
| |
| /* Do not resend probing packet with old data */ |
| if (pkt->flags & QUIC_FL_TX_PACKET_PROBE_WITH_OLD_DATA) { |
| TRACE_DEVEL("ignored frame with old data from packet", QUIC_EV_CONN_PRSAFRM, |
| qc, frm, &pn); |
| if (frm->origin) |
| LIST_DEL_INIT(&frm->ref); |
| qc_frm_free(&frm); |
| continue; |
| } |
| |
| if (frm->flags & QUIC_FL_TX_FRAME_ACKED) { |
| TRACE_DEVEL("already acked frame", QUIC_EV_CONN_PRSAFRM, qc, frm); |
| TRACE_DEVEL("freeing frame from packet", QUIC_EV_CONN_PRSAFRM, |
| qc, frm, &pn); |
| qc_frm_free(&frm); |
| } |
| else { |
| if (++frm->loss_count >= global.tune.quic_max_frame_loss) { |
| TRACE_ERROR("retransmission limit reached, closing the connection", QUIC_EV_CONN_PRSAFRM, qc); |
| quic_set_connection_close(qc, quic_err_transport(QC_ERR_INTERNAL_ERROR)); |
| qc_notify_err(qc); |
| close = 1; |
| } |
| |
| LIST_APPEND(pktns_frm_list, &frm->list); |
| TRACE_DEVEL("frame requeued", QUIC_EV_CONN_PRSAFRM, qc, frm); |
| } |
| } |
| |
| end: |
| TRACE_LEAVE(QUIC_EV_CONN_PRSAFRM, qc); |
| return !close; |
| } |
| |
| /* Free <pkt> TX packet and its attached frames. |
| * This is the responsibility of the caller to remove this packet of |
| * any data structure it was possibly attached to. |
| */ |
| static inline void free_quic_tx_packet(struct quic_conn *qc, |
| struct quic_tx_packet *pkt) |
| { |
| struct quic_frame *frm, *frmbak; |
| |
| TRACE_ENTER(QUIC_EV_CONN_TXPKT, qc); |
| |
| if (!pkt) |
| goto leave; |
| |
| list_for_each_entry_safe(frm, frmbak, &pkt->frms, list) |
| qc_frm_free(&frm); |
| pool_free(pool_head_quic_tx_packet, pkt); |
| |
| leave: |
| TRACE_LEAVE(QUIC_EV_CONN_TXPKT, qc); |
| } |
| |
| /* Free the TX packets of <pkts> list */ |
| static inline __maybe_unused void free_quic_tx_pkts(struct quic_conn *qc, struct list *pkts) |
| { |
| struct quic_tx_packet *pkt, *tmp; |
| |
| TRACE_ENTER(QUIC_EV_CONN_TXPKT, qc); |
| |
| list_for_each_entry_safe(pkt, tmp, pkts, list) { |
| LIST_DELETE(&pkt->list); |
| eb64_delete(&pkt->pn_node); |
| free_quic_tx_packet(qc, pkt); |
| } |
| |
| TRACE_LEAVE(QUIC_EV_CONN_TXPKT, qc); |
| } |
| |
| /* Remove already sent ranges of acknowledged packet numbers from |
| * <pktns> packet number space tree below <largest_acked_pn> possibly |
| * updating the range which contains <largest_acked_pn>. |
| * Never fails. |
| */ |
| static void qc_treat_ack_of_ack(struct quic_conn *qc, |
| struct quic_pktns *pktns, |
| int64_t largest_acked_pn) |
| { |
| struct eb64_node *ar, *next_ar; |
| struct quic_arngs *arngs = &pktns->rx.arngs; |
| |
| TRACE_ENTER(QUIC_EV_CONN_PRSAFRM, qc); |
| |
| ar = eb64_first(&arngs->root); |
| while (ar) { |
| struct quic_arng_node *ar_node; |
| |
| next_ar = eb64_next(ar); |
| ar_node = eb64_entry(ar, struct quic_arng_node, first); |
| |
| if ((int64_t)ar_node->first.key > largest_acked_pn) { |
| TRACE_DEVEL("first.key > largest", QUIC_EV_CONN_PRSAFRM, qc); |
| break; |
| } |
| |
| if (largest_acked_pn < ar_node->last) { |
| eb64_delete(ar); |
| ar_node->first.key = largest_acked_pn + 1; |
| eb64_insert(&arngs->root, ar); |
| break; |
| } |
| |
| /* Do not empty the tree: the first ACK range contains the |
| * largest acknowledged packet number. |
| */ |
| if (arngs->sz == 1) |
| break; |
| |
| eb64_delete(ar); |
| pool_free(pool_head_quic_arng, ar_node); |
| arngs->sz--; |
| ar = next_ar; |
| } |
| |
| TRACE_LEAVE(QUIC_EV_CONN_PRSAFRM, qc); |
| } |
| |
| /* Send a packet ack event nofication for each newly acked packet of |
| * <newly_acked_pkts> list and free them. |
| * Always succeeds. |
| */ |
| static inline void qc_treat_newly_acked_pkts(struct quic_conn *qc, |
| struct list *newly_acked_pkts) |
| { |
| struct quic_tx_packet *pkt, *tmp; |
| struct quic_cc_event ev = { .type = QUIC_CC_EVT_ACK, }; |
| |
| TRACE_ENTER(QUIC_EV_CONN_PRSAFRM, qc); |
| |
| list_for_each_entry_safe(pkt, tmp, newly_acked_pkts, list) { |
| pkt->pktns->tx.in_flight -= pkt->in_flight_len; |
| qc->path->prep_in_flight -= pkt->in_flight_len; |
| qc->path->in_flight -= pkt->in_flight_len; |
| if (pkt->flags & QUIC_FL_TX_PACKET_ACK_ELICITING) |
| qc->path->ifae_pkts--; |
| /* If this packet contained an ACK frame, proceed to the |
| * acknowledging of range of acks from the largest acknowledged |
| * packet number which was sent in an ACK frame by this packet. |
| */ |
| if (pkt->largest_acked_pn != -1) |
| qc_treat_ack_of_ack(qc, pkt->pktns, pkt->largest_acked_pn); |
| ev.ack.acked = pkt->in_flight_len; |
| ev.ack.time_sent = pkt->time_sent; |
| quic_cc_event(&qc->path->cc, &ev); |
| LIST_DEL_INIT(&pkt->list); |
| quic_tx_packet_refdec(pkt); |
| } |
| |
| TRACE_LEAVE(QUIC_EV_CONN_PRSAFRM, qc); |
| |
| } |
| |
| /* Release all the frames attached to <pktns> packet number space */ |
| void qc_release_pktns_frms(struct quic_conn *qc, struct quic_pktns *pktns) |
| { |
| struct quic_frame *frm, *frmbak; |
| |
| TRACE_ENTER(QUIC_EV_CONN_PHPKTS, qc); |
| |
| if (!pktns) |
| goto leave; |
| |
| list_for_each_entry_safe(frm, frmbak, &pktns->tx.frms, list) |
| qc_frm_free(&frm); |
| |
| leave: |
| TRACE_LEAVE(QUIC_EV_CONN_PHPKTS, qc); |
| } |
| |
| /* Handle <pkts> list of lost packets detected at <now_us> handling their TX |
| * frames. Send a packet loss event to the congestion controller if in flight |
| * packet have been lost. Also frees the packet in <pkts> list. |
| * |
| * Returns 1 on success else 0 if loss limit has been exceeded. A |
| * CONNECTION_CLOSE was prepared to close the connection ASAP. |
| */ |
| static inline int qc_release_lost_pkts(struct quic_conn *qc, |
| struct quic_pktns *pktns, |
| struct list *pkts, |
| uint64_t now_us) |
| { |
| struct quic_tx_packet *pkt, *tmp, *oldest_lost, *newest_lost; |
| int close = 0; |
| |
| TRACE_ENTER(QUIC_EV_CONN_PRSAFRM, qc); |
| |
| if (LIST_ISEMPTY(pkts)) |
| goto leave; |
| |
| oldest_lost = newest_lost = NULL; |
| list_for_each_entry_safe(pkt, tmp, pkts, list) { |
| struct list tmp = LIST_HEAD_INIT(tmp); |
| |
| pkt->pktns->tx.in_flight -= pkt->in_flight_len; |
| qc->path->prep_in_flight -= pkt->in_flight_len; |
| qc->path->in_flight -= pkt->in_flight_len; |
| if (pkt->flags & QUIC_FL_TX_PACKET_ACK_ELICITING) |
| qc->path->ifae_pkts--; |
| /* Treat the frames of this lost packet. */ |
| if (!qc_requeue_nacked_pkt_tx_frms(qc, pkt, &pktns->tx.frms)) |
| close = 1; |
| LIST_DELETE(&pkt->list); |
| if (!oldest_lost) { |
| oldest_lost = newest_lost = pkt; |
| } |
| else { |
| if (newest_lost != oldest_lost) |
| quic_tx_packet_refdec(newest_lost); |
| newest_lost = pkt; |
| } |
| } |
| |
| if (!close) { |
| if (newest_lost) { |
| /* Sent a congestion event to the controller */ |
| struct quic_cc_event ev = { }; |
| |
| ev.type = QUIC_CC_EVT_LOSS; |
| ev.loss.time_sent = newest_lost->time_sent; |
| |
| quic_cc_event(&qc->path->cc, &ev); |
| } |
| |
| /* If an RTT have been already sampled, <rtt_min> has been set. |
| * We must check if we are experiencing a persistent congestion. |
| * If this is the case, the congestion controller must re-enter |
| * slow start state. |
| */ |
| if (qc->path->loss.rtt_min && newest_lost != oldest_lost) { |
| unsigned int period = newest_lost->time_sent - oldest_lost->time_sent; |
| |
| if (quic_loss_persistent_congestion(&qc->path->loss, period, |
| now_ms, qc->max_ack_delay)) |
| qc->path->cc.algo->slow_start(&qc->path->cc); |
| } |
| } |
| |
| /* <oldest_lost> cannot be NULL at this stage because we have ensured |
| * that <pkts> list is not empty. Without this, GCC 12.2.0 reports a |
| * possible overflow on a 0 byte region with O2 optimization. |
| */ |
| ALREADY_CHECKED(oldest_lost); |
| quic_tx_packet_refdec(oldest_lost); |
| if (newest_lost != oldest_lost) |
| quic_tx_packet_refdec(newest_lost); |
| |
| leave: |
| TRACE_LEAVE(QUIC_EV_CONN_PRSAFRM, qc); |
| return !close; |
| } |
| |
| /* Parse ACK frame into <frm> from a buffer at <buf> address with <end> being at |
| * one byte past the end of this buffer. Also update <rtt_sample> if needed, i.e. |
| * if the largest acked packet was newly acked and if there was at least one newly |
| * acked ack-eliciting packet. |
| * Return 1, if succeeded, 0 if not. |
| */ |
| static inline int qc_parse_ack_frm(struct quic_conn *qc, |
| struct quic_frame *frm, |
| struct quic_enc_level *qel, |
| unsigned int *rtt_sample, |
| const unsigned char **pos, const unsigned char *end) |
| { |
| struct qf_ack *ack_frm = &frm->ack; |
| uint64_t smallest, largest; |
| struct eb_root *pkts; |
| struct eb64_node *largest_node; |
| unsigned int time_sent, pkt_flags; |
| struct list newly_acked_pkts = LIST_HEAD_INIT(newly_acked_pkts); |
| struct list lost_pkts = LIST_HEAD_INIT(lost_pkts); |
| int ret = 0, new_largest_acked_pn = 0; |
| struct quic_tx_packet *pkt, *tmp; |
| |
| TRACE_ENTER(QUIC_EV_CONN_PRSAFRM, qc); |
| |
| pkts = &qel->pktns->tx.pkts; |
| if (ack_frm->largest_ack > qel->pktns->tx.next_pn) { |
| TRACE_DEVEL("ACK for not sent packet", QUIC_EV_CONN_PRSAFRM, |
| qc, NULL, &ack_frm->largest_ack); |
| goto err; |
| } |
| |
| if (ack_frm->first_ack_range > ack_frm->largest_ack) { |
| TRACE_DEVEL("too big first ACK range", QUIC_EV_CONN_PRSAFRM, |
| qc, NULL, &ack_frm->first_ack_range); |
| goto err; |
| } |
| |
| largest = ack_frm->largest_ack; |
| smallest = largest - ack_frm->first_ack_range; |
| pkt_flags = 0; |
| largest_node = NULL; |
| time_sent = 0; |
| |
| if ((int64_t)ack_frm->largest_ack > qel->pktns->rx.largest_acked_pn) { |
| largest_node = eb64_lookup(pkts, largest); |
| if (!largest_node) { |
| TRACE_DEVEL("Largest acked packet not found", |
| QUIC_EV_CONN_PRSAFRM, qc); |
| } |
| else { |
| time_sent = eb64_entry(largest_node, |
| struct quic_tx_packet, pn_node)->time_sent; |
| new_largest_acked_pn = 1; |
| } |
| } |
| |
| TRACE_PROTO("RX ack range", QUIC_EV_CONN_PRSAFRM, |
| qc, NULL, &largest, &smallest); |
| do { |
| uint64_t gap, ack_range; |
| |
| qc_newly_acked_pkts(qc, pkts, &newly_acked_pkts, |
| largest_node, largest, smallest); |
| if (!ack_frm->ack_range_num--) |
| break; |
| |
| if (!quic_dec_int(&gap, pos, end)) { |
| TRACE_ERROR("quic_dec_int(gap) failed", QUIC_EV_CONN_PRSAFRM, qc); |
| goto err; |
| } |
| |
| if (smallest < gap + 2) { |
| TRACE_DEVEL("wrong gap value", QUIC_EV_CONN_PRSAFRM, |
| qc, NULL, &gap, &smallest); |
| goto err; |
| } |
| |
| largest = smallest - gap - 2; |
| if (!quic_dec_int(&ack_range, pos, end)) { |
| TRACE_ERROR("quic_dec_int(ack_range) failed", QUIC_EV_CONN_PRSAFRM, qc); |
| goto err; |
| } |
| |
| if (largest < ack_range) { |
| TRACE_DEVEL("wrong ack range value", QUIC_EV_CONN_PRSAFRM, |
| qc, NULL, &largest, &ack_range); |
| goto err; |
| } |
| |
| /* Do not use this node anymore. */ |
| largest_node = NULL; |
| /* Next range */ |
| smallest = largest - ack_range; |
| |
| TRACE_PROTO("RX next ack range", QUIC_EV_CONN_PRSAFRM, |
| qc, NULL, &largest, &smallest); |
| } while (1); |
| |
| if (!LIST_ISEMPTY(&newly_acked_pkts)) { |
| qc_ackrng_pkts(qc, &pkt_flags, &newly_acked_pkts); |
| if (new_largest_acked_pn && (pkt_flags & QUIC_FL_TX_PACKET_ACK_ELICITING)) { |
| *rtt_sample = tick_remain(time_sent, now_ms); |
| qel->pktns->rx.largest_acked_pn = ack_frm->largest_ack; |
| } |
| |
| if (!eb_is_empty(&qel->pktns->tx.pkts)) { |
| qc_packet_loss_lookup(qel->pktns, qc, &lost_pkts); |
| if (!qc_release_lost_pkts(qc, qel->pktns, &lost_pkts, now_ms)) |
| goto leave; |
| } |
| qc_treat_newly_acked_pkts(qc, &newly_acked_pkts); |
| if (quic_peer_validated_addr(qc)) |
| qc->path->loss.pto_count = 0; |
| qc_set_timer(qc); |
| qc_notify_send(qc); |
| } |
| |
| ret = 1; |
| leave: |
| TRACE_LEAVE(QUIC_EV_CONN_PRSAFRM, qc); |
| return ret; |
| |
| err: |
| /* Move back these packets into their tree. */ |
| list_for_each_entry_safe(pkt, tmp, &newly_acked_pkts, list) { |
| LIST_DEL_INIT(&pkt->list); |
| eb64_insert(pkts, &pkt->pn_node); |
| } |
| goto leave; |
| } |
| |
| /* This function gives the detail of the SSL error. It is used only |
| * if the debug mode and the verbose mode are activated. It dump all |
| * the SSL error until the stack was empty. |
| */ |
| static forceinline void qc_ssl_dump_errors(struct connection *conn) |
| { |
| if (unlikely(global.mode & MODE_DEBUG)) { |
| while (1) { |
| const char *func = NULL; |
| unsigned long ret; |
| |
| ERR_peek_error_func(&func); |
| ret = ERR_get_error(); |
| if (!ret) |
| return; |
| |
| fprintf(stderr, "conn. @%p OpenSSL error[0x%lx] %s: %s\n", conn, ret, |
| func, ERR_reason_error_string(ret)); |
| } |
| } |
| } |
| |
| int ssl_sock_get_alpn(const struct connection *conn, void *xprt_ctx, |
| const char **str, int *len); |
| |
| /* Finalize <qc> QUIC connection: |
| * - initialize the Initial QUIC TLS context for negotiated version, |
| * - derive the secrets for this context, |
| * - set them into the TLS stack, |
| * |
| * MUST be called after having received the remote transport parameters which |
| * are parsed when the TLS callback for the ClientHello message is called upon |
| * SSL_do_handshake() calls, not necessarily at the first time as this TLS |
| * message may be split between packets |
| * Return 1 if succeeded, 0 if not. |
| */ |
| static int qc_conn_finalize(struct quic_conn *qc, int server) |
| { |
| int ret = 0; |
| |
| TRACE_ENTER(QUIC_EV_CONN_NEW, qc); |
| |
| if (qc->flags & QUIC_FL_CONN_FINALIZED) |
| goto finalized; |
| |
| if (qc->negotiated_version && |
| !qc_new_isecs(qc, &qc->negotiated_ictx, qc->negotiated_version, |
| qc->odcid.data, qc->odcid.len, server)) |
| goto out; |
| |
| /* This connection is functional (ready to send/receive) */ |
| qc->flags |= QUIC_FL_CONN_FINALIZED; |
| |
| finalized: |
| ret = 1; |
| out: |
| TRACE_LEAVE(QUIC_EV_CONN_NEW, qc); |
| return ret; |
| } |
| |
| /* Provide CRYPTO data to the TLS stack found at <data> with <len> as length |
| * from <qel> encryption level with <ctx> as QUIC connection context. |
| * Remaining parameter are there for debugging purposes. |
| * Return 1 if succeeded, 0 if not. |
| */ |
| static inline int qc_provide_cdata(struct quic_enc_level *el, |
| struct ssl_sock_ctx *ctx, |
| const unsigned char *data, size_t len, |
| struct quic_rx_packet *pkt, |
| struct quic_rx_crypto_frm *cf) |
| { |
| #ifdef DEBUG_STRICT |
| enum ncb_ret ncb_ret; |
| #endif |
| int ssl_err, state; |
| struct quic_conn *qc; |
| int ret = 0; |
| struct ncbuf *ncbuf = &el->cstream->rx.ncbuf; |
| |
| ssl_err = SSL_ERROR_NONE; |
| qc = ctx->qc; |
| |
| TRACE_ENTER(QUIC_EV_CONN_SSLDATA, qc); |
| |
| if (SSL_provide_quic_data(ctx->ssl, el->level, data, len) != 1) { |
| TRACE_ERROR("SSL_provide_quic_data() error", |
| QUIC_EV_CONN_SSLDATA, qc, pkt, cf, ctx->ssl); |
| goto leave; |
| } |
| |
| TRACE_PROTO("in order CRYPTO data", |
| QUIC_EV_CONN_SSLDATA, qc, NULL, cf, ctx->ssl); |
| |
| state = qc->state; |
| if (state < QUIC_HS_ST_COMPLETE) { |
| ssl_err = SSL_do_handshake(ctx->ssl); |
| |
| if (qc->flags & QUIC_FL_CONN_TO_KILL) { |
| TRACE_DEVEL("connection to be killed", QUIC_EV_CONN_IO_CB, qc); |
| goto leave; |
| } |
| |
| /* Finalize the connection as soon as possible if the peer transport parameters |
| * have been received. This may be useful to send packets even if this |
| * handshake fails. |
| */ |
| if ((qc->flags & QUIC_FL_CONN_TX_TP_RECEIVED) && !qc_conn_finalize(qc, 1)) { |
| TRACE_ERROR("connection finalization failed", QUIC_EV_CONN_IO_CB, qc, &state); |
| goto leave; |
| } |
| |
| if (ssl_err != 1) { |
| ssl_err = SSL_get_error(ctx->ssl, ssl_err); |
| if (ssl_err == SSL_ERROR_WANT_READ || ssl_err == SSL_ERROR_WANT_WRITE) { |
| TRACE_PROTO("SSL handshake in progress", |
| QUIC_EV_CONN_IO_CB, qc, &state, &ssl_err); |
| goto out; |
| } |
| |
| /* TODO: Should close the connection asap */ |
| if (!(qc->flags & QUIC_FL_CONN_HALF_OPEN_CNT_DECREMENTED)) { |
| qc->flags |= QUIC_FL_CONN_HALF_OPEN_CNT_DECREMENTED; |
| HA_ATOMIC_DEC(&qc->prx_counters->half_open_conn); |
| HA_ATOMIC_INC(&qc->prx_counters->hdshk_fail); |
| } |
| TRACE_ERROR("SSL handshake error", QUIC_EV_CONN_IO_CB, qc, &state, &ssl_err); |
| qc_ssl_dump_errors(ctx->conn); |
| ERR_clear_error(); |
| goto leave; |
| } |
| |
| TRACE_PROTO("SSL handshake OK", QUIC_EV_CONN_IO_CB, qc, &state); |
| |
| /* Check the alpn could be negotiated */ |
| if (!qc->app_ops) { |
| TRACE_ERROR("No negotiated ALPN", QUIC_EV_CONN_IO_CB, qc, &state); |
| quic_set_tls_alert(qc, SSL_AD_NO_APPLICATION_PROTOCOL); |
| goto leave; |
| } |
| |
| if (!(qc->flags & QUIC_FL_CONN_HALF_OPEN_CNT_DECREMENTED)) { |
| TRACE_DEVEL("dec half open counter", QUIC_EV_CONN_IO_CB, qc, &state); |
| qc->flags |= QUIC_FL_CONN_HALF_OPEN_CNT_DECREMENTED; |
| HA_ATOMIC_DEC(&qc->prx_counters->half_open_conn); |
| } |
| /* I/O callback switch */ |
| qc->wait_event.tasklet->process = quic_conn_app_io_cb; |
| if (qc_is_listener(ctx->qc)) { |
| qc->flags |= QUIC_FL_CONN_NEED_POST_HANDSHAKE_FRMS; |
| qc->state = QUIC_HS_ST_CONFIRMED; |
| /* The connection is ready to be accepted. */ |
| quic_accept_push_qc(qc); |
| } |
| else { |
| qc->state = QUIC_HS_ST_COMPLETE; |
| } |
| |
| /* Prepare the next key update */ |
| if (!quic_tls_key_update(qc)) { |
| TRACE_ERROR("quic_tls_key_update() failed", QUIC_EV_CONN_IO_CB, qc); |
| goto leave; |
| } |
| } else { |
| ssl_err = SSL_process_quic_post_handshake(ctx->ssl); |
| if (ssl_err != 1) { |
| ssl_err = SSL_get_error(ctx->ssl, ssl_err); |
| if (ssl_err == SSL_ERROR_WANT_READ || ssl_err == SSL_ERROR_WANT_WRITE) { |
| TRACE_PROTO("SSL post handshake in progress", |
| QUIC_EV_CONN_IO_CB, qc, &state, &ssl_err); |
| goto out; |
| } |
| |
| TRACE_ERROR("SSL post handshake error", |
| QUIC_EV_CONN_IO_CB, qc, &state, &ssl_err); |
| goto leave; |
| } |
| |
| TRACE_STATE("SSL post handshake succeeded", QUIC_EV_CONN_IO_CB, qc, &state); |
| } |
| |
| out: |
| ret = 1; |
| leave: |
| /* The CRYPTO data are consumed even in case of an error to release |
| * the memory asap. |
| */ |
| if (!ncb_is_null(ncbuf)) { |
| #ifdef DEBUG_STRICT |
| ncb_ret = ncb_advance(ncbuf, len); |
| /* ncb_advance() must always succeed. This is guaranteed as |
| * this is only done inside a data block. If false, this will |
| * lead to handshake failure with quic_enc_level offset shifted |
| * from buffer data. |
| */ |
| BUG_ON(ncb_ret != NCB_RET_OK); |
| #else |
| ncb_advance(ncbuf, len); |
| #endif |
| } |
| |
| TRACE_LEAVE(QUIC_EV_CONN_SSLDATA, qc); |
| return ret; |
| } |
| |
| /* Parse a STREAM frame <strm_frm> received in <pkt> packet for <qc> |
| * connection. <fin> is true if FIN bit is set on frame type. |
| * |
| * Return 1 on success. On error, 0 is returned. In this case, the packet |
| * containing the frame must not be acknowledged. |
| */ |
| static inline int qc_handle_strm_frm(struct quic_rx_packet *pkt, |
| struct qf_stream *strm_frm, |
| struct quic_conn *qc, char fin) |
| { |
| int ret; |
| |
| /* RFC9000 13.1. Packet Processing |
| * |
| * A packet MUST NOT be acknowledged until packet protection has been |
| * successfully removed and all frames contained in the packet have |
| * been processed. For STREAM frames, this means the data has been |
| * enqueued in preparation to be received by the application protocol, |
| * but it does not require that data be delivered and consumed. |
| */ |
| TRACE_ENTER(QUIC_EV_CONN_PRSFRM, qc); |
| |
| ret = qcc_recv(qc->qcc, strm_frm->id, strm_frm->len, |
| strm_frm->offset.key, fin, (char *)strm_frm->data); |
| |
| /* frame rejected - packet must not be acknowledeged */ |
| TRACE_LEAVE(QUIC_EV_CONN_PRSFRM, qc); |
| return !ret; |
| } |
| |
| /* Duplicate all frames from <pkt_frm_list> list into <out_frm_list> list |
| * for <qc> QUIC connection. |
| * This is a best effort function which never fails even if no memory could be |
| * allocated to duplicate these frames. |
| */ |
| static void qc_dup_pkt_frms(struct quic_conn *qc, |
| struct list *pkt_frm_list, struct list *out_frm_list) |
| { |
| struct quic_frame *frm, *frmbak; |
| struct list tmp = LIST_HEAD_INIT(tmp); |
| |
| TRACE_ENTER(QUIC_EV_CONN_PRSAFRM, qc); |
| |
| list_for_each_entry_safe(frm, frmbak, pkt_frm_list, list) { |
| struct quic_frame *dup_frm, *origin; |
| |
| if (frm->flags & QUIC_FL_TX_FRAME_ACKED) { |
| TRACE_DEVEL("already acknowledged frame", QUIC_EV_CONN_PRSAFRM, qc, frm); |
| continue; |
| } |
| |
| switch (frm->type) { |
| case QUIC_FT_STREAM_8 ... QUIC_FT_STREAM_F: |
| { |
| struct qf_stream *strm_frm = &frm->stream; |
| struct eb64_node *node = NULL; |
| struct qc_stream_desc *stream_desc; |
| |
| node = eb64_lookup(&qc->streams_by_id, strm_frm->id); |
| if (!node) { |
| TRACE_DEVEL("ignored frame for a released stream", QUIC_EV_CONN_PRSAFRM, qc, frm); |
| continue; |
| } |
| |
| stream_desc = eb64_entry(node, struct qc_stream_desc, by_id); |
| /* Do not resend this frame if in the "already acked range" */ |
| if (strm_frm->offset.key + strm_frm->len <= stream_desc->ack_offset) { |
| TRACE_DEVEL("ignored frame in already acked range", |
| QUIC_EV_CONN_PRSAFRM, qc, frm); |
| continue; |
| } |
| else if (strm_frm->offset.key < stream_desc->ack_offset) { |
| uint64_t diff = stream_desc->ack_offset - strm_frm->offset.key; |
| |
| qc_stream_frm_mv_fwd(frm, diff); |
| TRACE_DEVEL("updated partially acked frame", |
| QUIC_EV_CONN_PRSAFRM, qc, frm); |
| } |
| |
| strm_frm->dup = 1; |
| break; |
| } |
| |
| default: |
| break; |
| } |
| |
| /* If <frm> is already a copy of another frame, we must take |
| * its original frame as source for the copy. |
| */ |
| origin = frm->origin ? frm->origin : frm; |
| dup_frm = qc_frm_dup(origin); |
| if (!dup_frm) { |
| TRACE_ERROR("could not duplicate frame", QUIC_EV_CONN_PRSAFRM, qc, frm); |
| break; |
| } |
| |
| TRACE_DEVEL("built probing frame", QUIC_EV_CONN_PRSAFRM, qc, origin); |
| if (origin->pkt) { |
| TRACE_DEVEL("duplicated from packet", QUIC_EV_CONN_PRSAFRM, |
| qc, NULL, &origin->pkt->pn_node.key); |
| } |
| else { |
| /* <origin> is a frame which was sent from a packet detected as lost. */ |
| TRACE_DEVEL("duplicated from lost packet", QUIC_EV_CONN_PRSAFRM, qc); |
| } |
| |
| LIST_APPEND(&tmp, &dup_frm->list); |
| } |
| |
| LIST_SPLICE(out_frm_list, &tmp); |
| |
| TRACE_LEAVE(QUIC_EV_CONN_PRSAFRM, qc); |
| } |
| |
| /* Boolean function which return 1 if <pkt> TX packet is only made of |
| * already acknowledged frame. |
| */ |
| static inline int qc_pkt_with_only_acked_frms(struct quic_tx_packet *pkt) |
| { |
| struct quic_frame *frm; |
| |
| list_for_each_entry(frm, &pkt->frms, list) |
| if (!(frm->flags & QUIC_FL_TX_FRAME_ACKED)) |
| return 0; |
| |
| return 1; |
| } |
| |
| /* Prepare a fast retransmission from <qel> encryption level */ |
| static void qc_prep_fast_retrans(struct quic_conn *qc, |
| struct quic_enc_level *qel, |
| struct list *frms1, struct list *frms2) |
| { |
| struct eb_root *pkts = &qel->pktns->tx.pkts; |
| struct list *frms = frms1; |
| struct eb64_node *node; |
| struct quic_tx_packet *pkt; |
| |
| TRACE_ENTER(QUIC_EV_CONN_SPPKTS, qc); |
| |
| BUG_ON(frms1 == frms2); |
| |
| pkt = NULL; |
| node = eb64_first(pkts); |
| start: |
| while (node) { |
| struct quic_tx_packet *p; |
| |
| p = eb64_entry(node, struct quic_tx_packet, pn_node); |
| node = eb64_next(node); |
| /* Skip the empty and coalesced packets */ |
| TRACE_PRINTF(TRACE_LEVEL_PROTO, QUIC_EV_CONN_SPPKTS, qc, 0, 0, 0, |
| "--> pn=%llu (%d %d %d)", (ull)p->pn_node.key, |
| LIST_ISEMPTY(&p->frms), !!(p->flags & QUIC_FL_TX_PACKET_COALESCED), |
| qc_pkt_with_only_acked_frms(p)); |
| if (!LIST_ISEMPTY(&p->frms) && !qc_pkt_with_only_acked_frms(p)) { |
| pkt = p; |
| break; |
| } |
| } |
| |
| if (!pkt) |
| goto leave; |
| |
| /* When building a packet from another one, the field which may increase the |
| * packet size is the packet number. And the maximum increase is 4 bytes. |
| */ |
| if (!quic_peer_validated_addr(qc) && qc_is_listener(qc) && |
| pkt->len + 4 > 3 * qc->rx.bytes - qc->tx.prep_bytes) { |
| qc->flags |= QUIC_FL_CONN_ANTI_AMPLIFICATION_REACHED; |
| TRACE_PROTO("anti-amplification limit would be reached", QUIC_EV_CONN_SPPKTS, qc, pkt); |
| goto leave; |
| } |
| |
| TRACE_PROTO("duplicating packet", QUIC_EV_CONN_SPPKTS, qc, pkt); |
| qc_dup_pkt_frms(qc, &pkt->frms, frms); |
| if (frms == frms1 && frms2) { |
| frms = frms2; |
| goto start; |
| } |
| leave: |
| TRACE_LEAVE(QUIC_EV_CONN_SPPKTS, qc); |
| } |
| |
| /* Prepare a fast retransmission during a handshake after a client |
| * has resent Initial packets. According to the RFC a server may retransmit |
| * Initial packets send them coalescing with others (Handshake here). |
| * (Listener only function). |
| */ |
| static void qc_prep_hdshk_fast_retrans(struct quic_conn *qc, |
| struct list *ifrms, struct list *hfrms) |
| { |
| struct list itmp = LIST_HEAD_INIT(itmp); |
| struct list htmp = LIST_HEAD_INIT(htmp); |
| |
| struct quic_enc_level *iqel = &qc->els[QUIC_TLS_ENC_LEVEL_INITIAL]; |
| struct quic_enc_level *hqel = &qc->els[QUIC_TLS_ENC_LEVEL_HANDSHAKE]; |
| struct quic_enc_level *qel = iqel; |
| struct eb_root *pkts; |
| struct eb64_node *node; |
| struct quic_tx_packet *pkt; |
| struct list *tmp = &itmp; |
| |
| TRACE_ENTER(QUIC_EV_CONN_SPPKTS, qc); |
| start: |
| pkt = NULL; |
| pkts = &qel->pktns->tx.pkts; |
| node = eb64_first(pkts); |
| /* Skip the empty packet (they have already been retransmitted) */ |
| while (node) { |
| struct quic_tx_packet *p; |
| |
| p = eb64_entry(node, struct quic_tx_packet, pn_node); |
| TRACE_PRINTF(TRACE_LEVEL_PROTO, QUIC_EV_CONN_SPPKTS, qc, 0, 0, 0, |
| "--> pn=%llu (%d %d)", (ull)p->pn_node.key, |
| LIST_ISEMPTY(&p->frms), !!(p->flags & QUIC_FL_TX_PACKET_COALESCED)); |
| if (!LIST_ISEMPTY(&p->frms) && !(p->flags & QUIC_FL_TX_PACKET_COALESCED) && |
| !qc_pkt_with_only_acked_frms(p)) { |
| pkt = p; |
| break; |
| } |
| |
| node = eb64_next(node); |
| } |
| |
| if (!pkt) |
| goto end; |
| |
| /* When building a packet from another one, the field which may increase the |
| * packet size is the packet number. And the maximum increase is 4 bytes. |
| */ |
| if (!quic_peer_validated_addr(qc) && qc_is_listener(qc)) { |
| size_t dglen = pkt->len + 4; |
| |
| dglen += pkt->next ? pkt->next->len + 4 : 0; |
| if (dglen > 3 * qc->rx.bytes - qc->tx.prep_bytes) { |
| qc->flags |= QUIC_FL_CONN_ANTI_AMPLIFICATION_REACHED; |
| TRACE_PROTO("anti-amplification limit would be reached", QUIC_EV_CONN_SPPKTS, qc, pkt); |
| if (pkt->next) |
| TRACE_PROTO("anti-amplification limit would be reached", QUIC_EV_CONN_SPPKTS, qc, pkt->next); |
| goto end; |
| } |
| } |
| |
| qel->pktns->tx.pto_probe += 1; |
| |
| /* No risk to loop here, #packet per datagram is bounded */ |
| requeue: |
| TRACE_PROTO("duplicating packet", QUIC_EV_CONN_PRSAFRM, qc, NULL, &pkt->pn_node.key); |
| qc_dup_pkt_frms(qc, &pkt->frms, tmp); |
| if (qel == iqel) { |
| if (pkt->next && pkt->next->type == QUIC_PACKET_TYPE_HANDSHAKE) { |
| pkt = pkt->next; |
| tmp = &htmp; |
| hqel->pktns->tx.pto_probe += 1; |
| TRACE_DEVEL("looping for next packet", QUIC_EV_CONN_SPPKTS, qc); |
| goto requeue; |
| } |
| } |
| |
| end: |
| LIST_SPLICE(ifrms, &itmp); |
| LIST_SPLICE(hfrms, &htmp); |
| |
| TRACE_LEAVE(QUIC_EV_CONN_SPPKTS, qc); |
| } |
| |
| static void qc_cc_err_count_inc(struct quic_conn *qc, struct quic_frame *frm) |
| { |
| TRACE_ENTER(QUIC_EV_CONN_CLOSE, qc); |
| |
| if (frm->type == QUIC_FT_CONNECTION_CLOSE) |
| quic_stats_transp_err_count_inc(qc->prx_counters, frm->connection_close.error_code); |
| else if (frm->type == QUIC_FT_CONNECTION_CLOSE_APP) { |
| if (qc->mux_state != QC_MUX_READY || !qc->qcc->app_ops->inc_err_cnt) |
| goto out; |
| |
| qc->qcc->app_ops->inc_err_cnt(qc->qcc->ctx, frm->connection_close_app.error_code); |
| } |
| |
| out: |
| TRACE_LEAVE(QUIC_EV_CONN_CLOSE, qc); |
| } |
| |
| /* Cancel a request on connection <qc> for stream id <id>. This is useful when |
| * the client opens a new stream but the MUX has already been released. A |
| * STOP_SENDING + RESET_STREAM frames are prepared for emission. |
| * |
| * TODO this function is closely related to H3. Its place should be in H3 layer |
| * instead of quic-conn but this requires an architecture adjustment. |
| * |
| * Returns 1 on success else 0. |
| */ |
| static int qc_h3_request_reject(struct quic_conn *qc, uint64_t id) |
| { |
| int ret = 0; |
| struct quic_frame *ss, *rs; |
| struct quic_enc_level *qel = &qc->els[QUIC_TLS_ENC_LEVEL_APP]; |
| const uint64_t app_error_code = H3_REQUEST_REJECTED; |
| |
| TRACE_ENTER(QUIC_EV_CONN_PRSHPKT, qc); |
| |
| /* Do not emit rejection for unknown unidirectional stream as it is |
| * forbidden to close some of them (H3 control stream and QPACK |
| * encoder/decoder streams). |
| */ |
| if (quic_stream_is_uni(id)) { |
| ret = 1; |
| goto out; |
| } |
| |
| ss = qc_frm_alloc(QUIC_FT_STOP_SENDING); |
| if (!ss) { |
| TRACE_ERROR("failed to allocate quic_frame", QUIC_EV_CONN_PRSHPKT, qc); |
| goto out; |
| } |
| |
| ss->stop_sending.id = id; |
| ss->stop_sending.app_error_code = app_error_code; |
| |
| rs = qc_frm_alloc(QUIC_FT_RESET_STREAM); |
| if (!rs) { |
| TRACE_ERROR("failed to allocate quic_frame", QUIC_EV_CONN_PRSHPKT, qc); |
| qc_frm_free(&ss); |
| goto out; |
| } |
| |
| rs->reset_stream.id = id; |
| rs->reset_stream.app_error_code = app_error_code; |
| rs->reset_stream.final_size = 0; |
| |
| LIST_APPEND(&qel->pktns->tx.frms, &ss->list); |
| LIST_APPEND(&qel->pktns->tx.frms, &rs->list); |
| ret = 1; |
| out: |
| TRACE_LEAVE(QUIC_EV_CONN_PRSHPKT, qc); |
| return ret; |
| } |
| |
| /* Release the underlying memory use by <ncbuf> non-contiguous buffer */ |
| static void quic_free_ncbuf(struct ncbuf *ncbuf) |
| { |
| struct buffer buf; |
| |
| if (ncb_is_null(ncbuf)) |
| return; |
| |
| buf = b_make(ncbuf->area, ncbuf->size, 0, 0); |
| b_free(&buf); |
| offer_buffers(NULL, 1); |
| |
| *ncbuf = NCBUF_NULL; |
| } |
| |
| /* Allocate the underlying required memory for <ncbuf> non-contiguous buffer */ |
| static struct ncbuf *quic_get_ncbuf(struct ncbuf *ncbuf) |
| { |
| struct buffer buf = BUF_NULL; |
| |
| if (!ncb_is_null(ncbuf)) |
| return ncbuf; |
| |
| b_alloc(&buf); |
| BUG_ON(b_is_null(&buf)); |
| |
| *ncbuf = ncb_make(buf.area, buf.size, 0); |
| ncb_init(ncbuf, 0); |
| |
| return ncbuf; |
| } |
| |
| /* Parse <frm> CRYPTO frame coming with <pkt> packet at <qel> <qc> connectionn. |
| * Returns 1 if succeeded, 0 if not. Also set <*fast_retrans> to 1 if the |
| * speed up handshake completion may be run after having received duplicated |
| * CRYPTO data. |
| */ |
| static int qc_handle_crypto_frm(struct quic_conn *qc, |
| struct qf_crypto *crypto_frm, struct quic_rx_packet *pkt, |
| struct quic_enc_level *qel, int *fast_retrans) |
| { |
| int ret = 0; |
| enum ncb_ret ncb_ret; |
| /* XXX TO DO: <cfdebug> is used only for the traces. */ |
| struct quic_rx_crypto_frm cfdebug = { |
| .offset_node.key = crypto_frm->offset, |
| .len = crypto_frm->len, |
| }; |
| struct quic_cstream *cstream = qel->cstream; |
| struct ncbuf *ncbuf = &qel->cstream->rx.ncbuf; |
| |
| TRACE_ENTER(QUIC_EV_CONN_PRSHPKT, qc); |
| if (unlikely(qel->tls_ctx.flags & QUIC_FL_TLS_SECRETS_DCD)) { |
| TRACE_PROTO("CRYPTO data discarded", |
| QUIC_EV_CONN_RXPKT, qc, pkt, &cfdebug); |
| goto done; |
| } |
| |
| if (unlikely(crypto_frm->offset < cstream->rx.offset)) { |
| size_t diff; |
| |
| if (crypto_frm->offset + crypto_frm->len <= cstream->rx.offset) { |
| /* Nothing to do */ |
| TRACE_PROTO("Already received CRYPTO data", |
| QUIC_EV_CONN_RXPKT, qc, pkt, &cfdebug); |
| if (qc_is_listener(qc) && qel == &qc->els[QUIC_TLS_ENC_LEVEL_INITIAL] && |
| !(qc->flags & QUIC_FL_CONN_HANDSHAKE_SPEED_UP)) |
| *fast_retrans = 1; |
| goto done; |
| } |
| |
| TRACE_PROTO("Partially already received CRYPTO data", |
| QUIC_EV_CONN_RXPKT, qc, pkt, &cfdebug); |
| |
| diff = cstream->rx.offset - crypto_frm->offset; |
| crypto_frm->len -= diff; |
| crypto_frm->data += diff; |
| crypto_frm->offset = cstream->rx.offset; |
| } |
| |
| if (crypto_frm->offset == cstream->rx.offset && ncb_is_empty(ncbuf)) { |
| if (!qc_provide_cdata(qel, qc->xprt_ctx, crypto_frm->data, crypto_frm->len, |
| pkt, &cfdebug)) { |
| // trace already emitted by function above |
| goto leave; |
| } |
| |
| cstream->rx.offset += crypto_frm->len; |
| TRACE_DEVEL("increment crypto level offset", QUIC_EV_CONN_PHPKTS, qc, qel); |
| goto done; |
| } |
| |
| if (!quic_get_ncbuf(ncbuf) || |
| ncb_is_null(ncbuf)) { |
| TRACE_ERROR("CRYPTO ncbuf allocation failed", QUIC_EV_CONN_PRSHPKT, qc); |
| goto leave; |
| } |
| |
| /* crypto_frm->offset > cstream-trx.offset */ |
| ncb_ret = ncb_add(ncbuf, crypto_frm->offset - cstream->rx.offset, |
| (const char *)crypto_frm->data, crypto_frm->len, NCB_ADD_COMPARE); |
| if (ncb_ret != NCB_RET_OK) { |
| if (ncb_ret == NCB_RET_DATA_REJ) { |
| TRACE_ERROR("overlapping data rejected", QUIC_EV_CONN_PRSHPKT, qc); |
| quic_set_connection_close(qc, quic_err_transport(QC_ERR_PROTOCOL_VIOLATION)); |
| qc_notify_err(qc); |
| } |
| else if (ncb_ret == NCB_RET_GAP_SIZE) { |
| TRACE_ERROR("cannot bufferize frame due to gap size limit", |
| QUIC_EV_CONN_PRSHPKT, qc); |
| } |
| goto leave; |
| } |
| |
| done: |
| ret = 1; |
| leave: |
| TRACE_LEAVE(QUIC_EV_CONN_PRSHPKT, qc); |
| return ret; |
| } |
| |
| /* Build a NEW_CONNECTION_ID frame for <conn_id> CID of <qc> connection. |
| * |
| * Returns 1 on success else 0. |
| */ |
| static int qc_build_new_connection_id_frm(struct quic_conn *qc, |
| struct quic_connection_id *conn_id) |
| { |
| int ret = 0; |
| struct quic_frame *frm; |
| struct quic_enc_level *qel; |
| |
| TRACE_ENTER(QUIC_EV_CONN_PRSHPKT, qc); |
| |
| qel = &qc->els[QUIC_TLS_ENC_LEVEL_APP]; |
| frm = qc_frm_alloc(QUIC_FT_NEW_CONNECTION_ID); |
| if (!frm) { |
| TRACE_ERROR("frame allocation error", QUIC_EV_CONN_IO_CB, qc); |
| goto leave; |
| } |
| |
| quic_connection_id_to_frm_cpy(frm, conn_id); |
| LIST_APPEND(&qel->pktns->tx.frms, &frm->list); |
| ret = 1; |
| leave: |
| TRACE_LEAVE(QUIC_EV_CONN_PRSHPKT, qc); |
| return ret; |
| } |
| |
| |
| /* Handle RETIRE_CONNECTION_ID frame from <frm> frame. |
| * Return 1 if succeeded, 0 if not. If succeeded, also set <to_retire> |
| * to the CID to be retired if not already retired. |
| */ |
| static int qc_handle_retire_connection_id_frm(struct quic_conn *qc, |
| struct quic_frame *frm, |
| struct quic_cid *dcid, |
| struct quic_connection_id **to_retire) |
| { |
| int ret = 0; |
| struct qf_retire_connection_id *rcid_frm = &frm->retire_connection_id; |
| struct eb64_node *node; |
| struct quic_connection_id *conn_id; |
| |
| TRACE_ENTER(QUIC_EV_CONN_PRSHPKT, qc); |
| |
| /* RFC 9000 19.16. RETIRE_CONNECTION_ID Frames: |
| * Receipt of a RETIRE_CONNECTION_ID frame containing a sequence number greater |
| * than any previously sent to the peer MUST be treated as a connection error |
| * of type PROTOCOL_VIOLATION. |
| */ |
| if (rcid_frm->seq_num >= qc->next_cid_seq_num) { |
| TRACE_PROTO("CID seq. number too big", QUIC_EV_CONN_PSTRM, qc, frm); |
| goto protocol_violation; |
| } |
| |
| /* RFC 9000 19.16. RETIRE_CONNECTION_ID Frames: |
| * The sequence number specified in a RETIRE_CONNECTION_ID frame MUST NOT refer to |
| * the Destination Connection ID field of the packet in which the frame is contained. |
| * The peer MAY treat this as a connection error of type PROTOCOL_VIOLATION. |
| */ |
| node = eb64_lookup(&qc->cids, rcid_frm->seq_num); |
| if (!node) { |
| TRACE_PROTO("CID already retired", QUIC_EV_CONN_PSTRM, qc, frm); |
| goto out; |
| } |
| |
| conn_id = eb64_entry(node, struct quic_connection_id, seq_num); |
| /* Note that the length of <dcid> has already been checked. It must match the |
| * length of the CIDs which have been provided to the peer. |
| */ |
| if (!memcmp(dcid->data, conn_id->cid.data, QUIC_HAP_CID_LEN)) { |
| TRACE_PROTO("cannot retire the current CID", QUIC_EV_CONN_PSTRM, qc, frm); |
| goto protocol_violation; |
| } |
| |
| *to_retire = conn_id; |
| out: |
| ret = 1; |
| leave: |
| TRACE_LEAVE(QUIC_EV_CONN_PRSHPKT, qc); |
| return ret; |
| protocol_violation: |
| quic_set_connection_close(qc, quic_err_transport(QC_ERR_PROTOCOL_VIOLATION)); |
| qc_notify_err(qc); |
| goto leave; |
| } |
| |
| /* Remove a <qc> quic-conn from its ha_thread_ctx list. If <closing> is true, |
| * it will immediately be reinserted in the ha_thread_ctx quic_conns_clo list. |
| */ |
| static void qc_detach_th_ctx_list(struct quic_conn *qc, int closing) |
| { |
| struct bref *bref, *back; |
| |
| /* Detach CLI context watchers currently dumping this connection. |
| * Reattach them to the next quic_conn instance. |
| */ |
| list_for_each_entry_safe(bref, back, &qc->back_refs, users) { |
| /* Remove watcher from this quic_conn instance. */ |
| LIST_DEL_INIT(&bref->users); |
| |
| /* Attach it to next instance unless it was the last list element. */ |
| if (qc->el_th_ctx.n != &th_ctx->quic_conns && |
| qc->el_th_ctx.n != &th_ctx->quic_conns_clo) { |
| struct quic_conn *next = LIST_NEXT(&qc->el_th_ctx, |
| struct quic_conn *, |
| el_th_ctx); |
| LIST_APPEND(&next->back_refs, &bref->users); |
| } |
| bref->ref = qc->el_th_ctx.n; |
| __ha_barrier_store(); |
| } |
| |
| /* Remove quic_conn from global ha_thread_ctx list. */ |
| LIST_DEL_INIT(&qc->el_th_ctx); |
| |
| if (closing) |
| LIST_APPEND(&th_ctx->quic_conns_clo, &qc->el_th_ctx); |
| } |
| |
| /* Parse all the frames of <pkt> QUIC packet for QUIC connection <qc> and <qel> |
| * as encryption level. |
| * Returns 1 if succeeded, 0 if failed. |
| */ |
| static int qc_parse_pkt_frms(struct quic_conn *qc, struct quic_rx_packet *pkt, |
| struct quic_enc_level *qel) |
| { |
| struct quic_frame frm; |
| const unsigned char *pos, *end; |
| int fast_retrans = 0, ret = 0; |
| |
| TRACE_ENTER(QUIC_EV_CONN_PRSHPKT, qc); |
| /* Skip the AAD */ |
| pos = pkt->data + pkt->aad_len; |
| end = pkt->data + pkt->len; |
| |
| /* Packet with no frame. */ |
| if (pos == end) { |
| /* RFC9000 12.4. Frames and Frame Types |
| * |
| * The payload of a packet that contains frames MUST contain at least |
| * one frame, and MAY contain multiple frames and multiple frame types. |
| * An endpoint MUST treat receipt of a packet containing no frames as a |
| * connection error of type PROTOCOL_VIOLATION. Frames always fit within |
| * a single QUIC packet and cannot span multiple packets. |
| */ |
| quic_set_connection_close(qc, quic_err_transport(QC_ERR_PROTOCOL_VIOLATION)); |
| goto leave; |
| } |
| |
| while (pos < end) { |
| if (!qc_parse_frm(&frm, pkt, &pos, end, qc)) { |
| // trace already emitted by function above |
| goto leave; |
| } |
| |
| switch (frm.type) { |
| case QUIC_FT_PADDING: |
| break; |
| case QUIC_FT_PING: |
| break; |
| case QUIC_FT_ACK: |
| { |
| unsigned int rtt_sample; |
| |
| rtt_sample = UINT_MAX; |
| if (!qc_parse_ack_frm(qc, &frm, qel, &rtt_sample, &pos, end)) { |
| // trace already emitted by function above |
| goto leave; |
| } |
| |
| if (rtt_sample != UINT_MAX) { |
| unsigned int ack_delay; |
| |
| ack_delay = !quic_application_pktns(qel->pktns, qc) ? 0 : |
| qc->state >= QUIC_HS_ST_CONFIRMED ? |
| MS_TO_TICKS(QUIC_MIN(quic_ack_delay_ms(&frm.ack, qc), qc->max_ack_delay)) : |
| MS_TO_TICKS(quic_ack_delay_ms(&frm.ack, qc)); |
| quic_loss_srtt_update(&qc->path->loss, rtt_sample, ack_delay, qc); |
| } |
| break; |
| } |
| case QUIC_FT_RESET_STREAM: |
| if (qc->mux_state == QC_MUX_READY) { |
| struct qf_reset_stream *rs_frm = &frm.reset_stream; |
| qcc_recv_reset_stream(qc->qcc, rs_frm->id, rs_frm->app_error_code, rs_frm->final_size); |
| } |
| break; |
| case QUIC_FT_STOP_SENDING: |
| { |
| struct qf_stop_sending *ss_frm = &frm.stop_sending; |
| if (qc->mux_state == QC_MUX_READY) { |
| if (qcc_recv_stop_sending(qc->qcc, ss_frm->id, |
| ss_frm->app_error_code)) { |
| TRACE_ERROR("qcc_recv_stop_sending() failed", QUIC_EV_CONN_PRSHPKT, qc); |
| goto leave; |
| } |
| } |
| break; |
| } |
| case QUIC_FT_CRYPTO: |
| if (!qc_handle_crypto_frm(qc, &frm.crypto, pkt, qel, &fast_retrans)) |
| goto leave; |
| break; |
| case QUIC_FT_STREAM_8 ... QUIC_FT_STREAM_F: |
| { |
| struct qf_stream *strm_frm = &frm.stream; |
| unsigned nb_streams = qc->rx.strms[qcs_id_type(strm_frm->id)].nb_streams; |
| const char fin = frm.type & QUIC_STREAM_FRAME_TYPE_FIN_BIT; |
| |
| /* The upper layer may not be allocated. */ |
| if (qc->mux_state != QC_MUX_READY) { |
| if ((strm_frm->id >> QCS_ID_TYPE_SHIFT) < nb_streams) { |
| TRACE_DATA("Already closed stream", QUIC_EV_CONN_PRSHPKT, qc); |
| } |
| else { |
| TRACE_DEVEL("No mux for new stream", QUIC_EV_CONN_PRSHPKT, qc); |
| if (qc->app_ops == &h3_ops) { |
| if (!qc_h3_request_reject(qc, strm_frm->id)) { |
| TRACE_ERROR("error on request rejection", QUIC_EV_CONN_PRSHPKT, qc); |
| /* This packet will not be acknowledged */ |
| goto leave; |
| } |
| } |
| else { |
| /* This packet will not be acknowledged */ |
| goto leave; |
| } |
| } |
| |
| break; |
| } |
| |
| if (!qc_handle_strm_frm(pkt, strm_frm, qc, fin)) { |
| TRACE_ERROR("qc_handle_strm_frm() failed", QUIC_EV_CONN_PRSHPKT, qc); |
| goto leave; |
| } |
| |
| break; |
| } |
| case QUIC_FT_MAX_DATA: |
| if (qc->mux_state == QC_MUX_READY) { |
| struct qf_max_data *md_frm = &frm.max_data; |
| qcc_recv_max_data(qc->qcc, md_frm->max_data); |
| } |
| break; |
| case QUIC_FT_MAX_STREAM_DATA: |
| if (qc->mux_state == QC_MUX_READY) { |
| struct qf_max_stream_data *msd_frm = &frm.max_stream_data; |
| if (qcc_recv_max_stream_data(qc->qcc, msd_frm->id, |
| msd_frm->max_stream_data)) { |
| TRACE_ERROR("qcc_recv_max_stream_data() failed", QUIC_EV_CONN_PRSHPKT, qc); |
| goto leave; |
| } |
| } |
| break; |
| case QUIC_FT_MAX_STREAMS_BIDI: |
| case QUIC_FT_MAX_STREAMS_UNI: |
| break; |
| case QUIC_FT_DATA_BLOCKED: |
| qc->cntrs.data_blocked++; |
| break; |
| case QUIC_FT_STREAM_DATA_BLOCKED: |
| qc->cntrs.stream_data_blocked++; |
| break; |
| case QUIC_FT_STREAMS_BLOCKED_BIDI: |
| qc->cntrs.streams_blocked_bidi++; |
| break; |
| case QUIC_FT_STREAMS_BLOCKED_UNI: |
| qc->cntrs.streams_blocked_uni++; |
| break; |
| case QUIC_FT_NEW_CONNECTION_ID: |
| /* XXX TO DO XXX */ |
| break; |
| case QUIC_FT_RETIRE_CONNECTION_ID: |
| { |
| struct quic_connection_id *conn_id = NULL; |
| |
| if (!qc_handle_retire_connection_id_frm(qc, &frm, &pkt->dcid, &conn_id)) |
| goto leave; |
| |
| if (!conn_id) |
| break; |
| |
| ebmb_delete(&conn_id->node); |
| eb64_delete(&conn_id->seq_num); |
| pool_free(pool_head_quic_connection_id, conn_id); |
| TRACE_PROTO("CID retired", QUIC_EV_CONN_PSTRM, qc); |
| |
| conn_id = new_quic_cid(&qc->cids, qc, NULL, NULL); |
| if (!conn_id) { |
| TRACE_ERROR("CID allocation error", QUIC_EV_CONN_IO_CB, qc); |
| } |
| else { |
| quic_cid_insert(conn_id); |
| qc_build_new_connection_id_frm(qc, conn_id); |
| } |
| break; |
| } |
| case QUIC_FT_CONNECTION_CLOSE: |
| case QUIC_FT_CONNECTION_CLOSE_APP: |
| /* Increment the error counters */ |
| qc_cc_err_count_inc(qc, &frm); |
| if (!(qc->flags & QUIC_FL_CONN_DRAINING)) { |
| if (!(qc->flags & QUIC_FL_CONN_HALF_OPEN_CNT_DECREMENTED)) { |
| qc->flags |= QUIC_FL_CONN_HALF_OPEN_CNT_DECREMENTED; |
| HA_ATOMIC_DEC(&qc->prx_counters->half_open_conn); |
| } |
| TRACE_STATE("Entering draining state", QUIC_EV_CONN_PRSHPKT, qc); |
| /* RFC 9000 10.2. Immediate Close: |
| * The closing and draining connection states exist to ensure |
| * that connections close cleanly and that delayed or reordered |
| * packets are properly discarded. These states SHOULD persist |
| * for at least three times the current PTO interval... |
| * |
| * Rearm the idle timeout only one time when entering draining |
| * state. |
| */ |
| qc->flags |= QUIC_FL_CONN_DRAINING|QUIC_FL_CONN_IMMEDIATE_CLOSE; |
| qc_detach_th_ctx_list(qc, 1); |
| qc_idle_timer_do_rearm(qc, 0); |
| qc_notify_err(qc); |
| } |
| break; |
| case QUIC_FT_HANDSHAKE_DONE: |
| if (qc_is_listener(qc)) { |
| TRACE_ERROR("non accepted QUIC_FT_HANDSHAKE_DONE frame", |
| QUIC_EV_CONN_PRSHPKT, qc); |
| goto leave; |
| } |
| |
| qc->state = QUIC_HS_ST_CONFIRMED; |
| break; |
| default: |
| TRACE_ERROR("unknosw frame type", QUIC_EV_CONN_PRSHPKT, qc); |
| goto leave; |
| } |
| } |
| |
| /* Flag this packet number space as having received a packet. */ |
| qel->pktns->flags |= QUIC_FL_PKTNS_PKT_RECEIVED; |
| |
| if (fast_retrans) { |
| struct quic_enc_level *iqel = &qc->els[QUIC_TLS_ENC_LEVEL_INITIAL]; |
| struct quic_enc_level *hqel = &qc->els[QUIC_TLS_ENC_LEVEL_HANDSHAKE]; |
| |
| TRACE_PROTO("speeding up handshake completion", QUIC_EV_CONN_PRSHPKT, qc); |
| qc_prep_hdshk_fast_retrans(qc, &iqel->pktns->tx.frms, &hqel->pktns->tx.frms); |
| qc->flags |= QUIC_FL_CONN_HANDSHAKE_SPEED_UP; |
| } |
| |
| /* The server must switch from INITIAL to HANDSHAKE handshake state when it |
| * has successfully parse a Handshake packet. The Initial encryption must also |
| * be discarded. |
| */ |
| if (pkt->type == QUIC_PACKET_TYPE_HANDSHAKE && qc_is_listener(qc)) { |
| if (qc->state >= QUIC_HS_ST_SERVER_INITIAL) { |
| if (!(qc->els[QUIC_TLS_ENC_LEVEL_INITIAL].tls_ctx.flags & |
| QUIC_FL_TLS_SECRETS_DCD)) { |
| quic_tls_discard_keys(&qc->els[QUIC_TLS_ENC_LEVEL_INITIAL]); |
| TRACE_PROTO("discarding Initial pktns", QUIC_EV_CONN_PRSHPKT, qc); |
| quic_pktns_discard(qc->els[QUIC_TLS_ENC_LEVEL_INITIAL].pktns, qc); |
| qc_set_timer(qc); |
| qc_el_rx_pkts_del(&qc->els[QUIC_TLS_ENC_LEVEL_INITIAL]); |
| qc_release_pktns_frms(qc, qc->els[QUIC_TLS_ENC_LEVEL_INITIAL].pktns); |
| } |
| if (qc->state < QUIC_HS_ST_SERVER_HANDSHAKE) |
| qc->state = QUIC_HS_ST_SERVER_HANDSHAKE; |
| } |
| } |
| |
| ret = 1; |
| leave: |
| TRACE_LEAVE(QUIC_EV_CONN_PRSHPKT, qc); |
| return ret; |
| } |
| |
| |
| /* Allocate Tx buffer from <qc> quic-conn if needed. |
| * |
| * Returns allocated buffer or NULL on error. |
| */ |
| static struct buffer *qc_txb_alloc(struct quic_conn *qc) |
| { |
| struct buffer *buf = &qc->tx.buf; |
| if (!b_alloc(buf)) |
| return NULL; |
| |
| return buf; |
| } |
| |
| /* Free Tx buffer from <qc> if it is empty. */ |
| static void qc_txb_release(struct quic_conn *qc) |
| { |
| struct buffer *buf = &qc->tx.buf; |
| |
| /* For the moment sending function is responsible to purge the buffer |
| * entirely. It may change in the future but this requires to be able |
| * to reuse old data. |
| * For the momemt we do not care to leave data in the buffer for |
| * a connection which is supposed to be killed asap. |
| */ |
| BUG_ON_HOT(buf && b_data(buf)); |
| |
| if (!b_data(buf)) { |
| b_free(buf); |
| offer_buffers(NULL, 1); |
| } |
| } |
| |
| /* Commit a datagram payload written into <buf> of length <length>. <first_pkt> |
| * must contains the address of the first packet stored in the payload. |
| * |
| * Caller is responsible that there is enough space in the buffer. |
| */ |
| static void qc_txb_store(struct buffer *buf, uint16_t length, |
| struct quic_tx_packet *first_pkt) |
| { |
| const size_t hdlen = sizeof(uint16_t) + sizeof(void *); |
| BUG_ON_HOT(b_contig_space(buf) < hdlen); /* this must not happen */ |
| |
| write_u16(b_tail(buf), length); |
| write_ptr(b_tail(buf) + sizeof(length), first_pkt); |
| b_add(buf, hdlen + length); |
| } |
| |
| /* Returns 1 if a packet may be built for <qc> from <qel> encryption level |
| * with <frms> as ack-eliciting frame list to send, 0 if not. |
| * <cc> must equal to 1 if an immediate close was asked, 0 if not. |
| * <probe> must equalt to 1 if a probing packet is required, 0 if not. |
| * Also set <*must_ack> to inform the caller if an acknowledgement should be sent. |
| */ |
| static int qc_may_build_pkt(struct quic_conn *qc, struct list *frms, |
| struct quic_enc_level *qel, int cc, int probe, |
| int *must_ack) |
| { |
| int force_ack = |
| qel == &qc->els[QUIC_TLS_ENC_LEVEL_INITIAL] || |
| qel == &qc->els[QUIC_TLS_ENC_LEVEL_HANDSHAKE]; |
| int nb_aepkts_since_last_ack = qel->pktns->rx.nb_aepkts_since_last_ack; |
| |
| /* An acknowledgement must be sent if this has been forced by the caller, |
| * typically during the handshake when the packets must be acknowledged as |
| * soon as possible. This is also the case when the ack delay timer has been |
| * triggered, or at least every QUIC_MAX_RX_AEPKTS_SINCE_LAST_ACK packets. |
| */ |
| *must_ack = (qc->flags & QUIC_FL_CONN_ACK_TIMER_FIRED) || |
| ((qel->pktns->flags & QUIC_FL_PKTNS_ACK_REQUIRED) && |
| (force_ack || nb_aepkts_since_last_ack >= QUIC_MAX_RX_AEPKTS_SINCE_LAST_ACK)); |
| |
| /* Do not build any more packet if the TX secrets are not available or |
| * if there is nothing to send, i.e. if no CONNECTION_CLOSE or ACK are required |
| * and if there is no more packets to send upon PTO expiration |
| * and if there is no more ack-eliciting frames to send or in flight |
| * congestion control limit is reached for prepared data |
| */ |
| if (!quic_tls_has_tx_sec(qel) || |
| (!cc && !probe && !*must_ack && |
| (LIST_ISEMPTY(frms) || qc->path->prep_in_flight >= qc->path->cwnd))) { |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| /* Prepare as much as possible QUIC packets for sending from prebuilt frames |
| * <frms>. Each packet is stored in a distinct datagram written to <buf>. |
| * |
| * Each datagram is prepended by a two fields header : the datagram length and |
| * the address of the packet contained in the datagram. |
| * |
| * Returns the number of bytes prepared in packets if succeeded (may be 0), or |
| * -1 if something wrong happened. |
| */ |
| static int qc_prep_app_pkts(struct quic_conn *qc, struct buffer *buf, |
| struct list *frms) |
| { |
| int ret = -1; |
| struct quic_enc_level *qel; |
| unsigned char *end, *pos; |
| struct quic_tx_packet *pkt; |
| size_t total; |
| /* Each datagram is prepended with its length followed by the address |
| * of the first packet in the datagram. |
| */ |
| const size_t dg_headlen = sizeof(uint16_t) + sizeof(pkt); |
| |
| TRACE_ENTER(QUIC_EV_CONN_PHPKTS, qc); |
| |
| qel = &qc->els[QUIC_TLS_ENC_LEVEL_APP]; |
| total = 0; |
| pos = (unsigned char *)b_tail(buf); |
| while (b_contig_space(buf) >= (int)qc->path->mtu + dg_headlen) { |
| int err, probe, cc, must_ack; |
| |
| TRACE_PROTO("TX prep app pkts", QUIC_EV_CONN_PHPKTS, qc, qel, frms); |
| probe = 0; |
| cc = qc->flags & QUIC_FL_CONN_IMMEDIATE_CLOSE; |
| /* We do not probe if an immediate close was asked */ |
| if (!cc) |
| probe = qel->pktns->tx.pto_probe; |
| |
| if (!qc_may_build_pkt(qc, frms, qel, cc, probe, &must_ack)) |
| break; |
| |
| /* Leave room for the datagram header */ |
| pos += dg_headlen; |
| if (!quic_peer_validated_addr(qc) && qc_is_listener(qc)) { |
| end = pos + QUIC_MIN((uint64_t)qc->path->mtu, 3 * qc->rx.bytes - qc->tx.prep_bytes); |
| } |
| else { |
| end = pos + qc->path->mtu; |
| } |
| |
| pkt = qc_build_pkt(&pos, end, qel, &qel->tls_ctx, frms, qc, NULL, 0, |
| QUIC_PACKET_TYPE_SHORT, must_ack, 0, probe, cc, &err); |
| switch (err) { |
| case -3: |
| qc_purge_txbuf(qc, buf); |
| goto leave; |
| case -2: |
| // trace already emitted by function above |
| goto leave; |
| case -1: |
| /* As we provide qc_build_pkt() with an enough big buffer to fulfill an |
| * MTU, we are here because of the congestion control window. There is |
| * no need to try to reuse this buffer. |
| */ |
| TRACE_PROTO("could not prepare anymore packet", QUIC_EV_CONN_PHPKTS, qc, qel); |
| goto out; |
| default: |
| break; |
| } |
| |
| /* This is to please to GCC. We cannot have (err >= 0 && !pkt) */ |
| BUG_ON(!pkt); |
| |
| if (qc->flags & QUIC_FL_CONN_RETRANS_OLD_DATA) |
| pkt->flags |= QUIC_FL_TX_PACKET_PROBE_WITH_OLD_DATA; |
| |
| total += pkt->len; |
| |
| /* Write datagram header. */ |
| qc_txb_store(buf, pkt->len, pkt); |
| } |
| |
| out: |
| ret = total; |
| leave: |
| TRACE_LEAVE(QUIC_EV_CONN_PHPKTS, qc); |
| return ret; |
| } |
| |
| /* Prepare as much as possible QUIC packets for sending from prebuilt frames |
| * <frms>. Several packets can be regrouped in a single datagram. The result is |
| * written into <buf>. |
| * |
| * Each datagram is prepended by a two fields header : the datagram length and |
| * the address of first packet in the datagram. |
| * |
| * Returns the number of bytes prepared in packets if succeeded (may be 0), or |
| * -1 if something wrong happened. |
| */ |
| static int qc_prep_pkts(struct quic_conn *qc, struct buffer *buf, |
| enum quic_tls_enc_level tel, struct list *tel_frms, |
| enum quic_tls_enc_level next_tel, struct list *next_tel_frms) |
| { |
| struct quic_enc_level *qel; |
| unsigned char *end, *pos; |
| struct quic_tx_packet *first_pkt, *cur_pkt, *prv_pkt; |
| /* length of datagrams */ |
| uint16_t dglen; |
| size_t total; |
| int ret = -1, padding; |
| /* Each datagram is prepended with its length followed by the address |
| * of the first packet in the datagram. |
| */ |
| const size_t dg_headlen = sizeof(uint16_t) + sizeof(first_pkt); |
| struct list *frms; |
| |
| TRACE_ENTER(QUIC_EV_CONN_PHPKTS, qc); |
| |
| /* Currently qc_prep_pkts() does not handle buffer wrapping so the |
| * caller must ensure that buf is reset. |
| */ |
| BUG_ON_HOT(buf->head || buf->data); |
| |
| total = 0; |
| qel = &qc->els[tel]; |
| frms = tel_frms; |
| dglen = 0; |
| padding = 0; |
| pos = (unsigned char *)b_head(buf); |
| first_pkt = prv_pkt = NULL; |
| while (b_contig_space(buf) >= (int)qc->path->mtu + dg_headlen || prv_pkt) { |
| int err, probe, cc, must_ack; |
| enum quic_pkt_type pkt_type; |
| struct quic_tls_ctx *tls_ctx; |
| const struct quic_version *ver; |
| |
| TRACE_PROTO("TX prep pkts", QUIC_EV_CONN_PHPKTS, qc, qel); |
| probe = 0; |
| cc = qc->flags & QUIC_FL_CONN_IMMEDIATE_CLOSE; |
| /* We do not probe if an immediate close was asked */ |
| if (!cc) |
| probe = qel->pktns->tx.pto_probe; |
| |
| if (!qc_may_build_pkt(qc, frms, qel, cc, probe, &must_ack)) { |
| if (prv_pkt) |
| qc_txb_store(buf, dglen, first_pkt); |
| /* Let's select the next encryption level */ |
| if (tel != next_tel && next_tel != QUIC_TLS_ENC_LEVEL_NONE) { |
| tel = next_tel; |
| frms = next_tel_frms; |
| qel = &qc->els[tel]; |
| /* Build a new datagram */ |
| prv_pkt = NULL; |
| TRACE_DEVEL("next encryption level selected", QUIC_EV_CONN_PHPKTS, qc); |
| continue; |
| } |
| break; |
| } |
| |
| pkt_type = quic_tls_level_pkt_type(tel); |
| if (!prv_pkt) { |
| /* Leave room for the datagram header */ |
| pos += dg_headlen; |
| if (!quic_peer_validated_addr(qc) && qc_is_listener(qc)) { |
| end = pos + QUIC_MIN((uint64_t)qc->path->mtu, 3 * qc->rx.bytes - qc->tx.prep_bytes); |
| } |
| else { |
| end = pos + qc->path->mtu; |
| } |
| } |
| |
| /* RFC 9000 14.1 Initial datagram size |
| * a server MUST expand the payload of all UDP datagrams carrying ack-eliciting |
| * Initial packets to at least the smallest allowed maximum datagram size of |
| * 1200 bytes. |
| * |
| * Ensure that no ack-eliciting packets are sent into too small datagrams |
| */ |
| if (pkt_type == QUIC_PACKET_TYPE_INITIAL && !LIST_ISEMPTY(tel_frms)) { |
| if (end - pos < QUIC_INITIAL_PACKET_MINLEN) { |
| TRACE_PROTO("No more enough room to build an Initial packet", |
| QUIC_EV_CONN_PHPKTS, qc); |
| goto out; |
| } |
| |
| /* Pad this Initial packet if there is no ack-eliciting frames to send from |
| * the next packet number space. |
| */ |
| if (!next_tel_frms || LIST_ISEMPTY(next_tel_frms)) |
| padding = 1; |
| } |
| |
| if (qc->negotiated_version) { |
| ver = qc->negotiated_version; |
| if (qel == &qc->els[QUIC_TLS_ENC_LEVEL_INITIAL]) |
| tls_ctx = &qc->negotiated_ictx; |
| else |
| tls_ctx = &qel->tls_ctx; |
| } |
| else { |
| ver = qc->original_version; |
| tls_ctx = &qel->tls_ctx; |
| } |
| |
| cur_pkt = qc_build_pkt(&pos, end, qel, tls_ctx, frms, |
| qc, ver, dglen, pkt_type, |
| must_ack, padding, probe, cc, &err); |
| switch (err) { |
| case -3: |
| qc_purge_tx_buf(buf); |
| goto leave; |
| case -2: |
| // trace already emitted by function above |
| goto leave; |
| case -1: |
| /* If there was already a correct packet present, set the |
| * current datagram as prepared into <cbuf>. |
| */ |
| if (prv_pkt) |
| qc_txb_store(buf, dglen, first_pkt); |
| TRACE_PROTO("could not prepare anymore packet", QUIC_EV_CONN_PHPKTS, qc, qel); |
| goto out; |
| default: |
| break; |
| } |
| |
| /* This is to please to GCC. We cannot have (err >= 0 && !cur_pkt) */ |
| BUG_ON(!cur_pkt); |
| |
| if (qc->flags & QUIC_FL_CONN_RETRANS_OLD_DATA) |
| cur_pkt->flags |= QUIC_FL_TX_PACKET_PROBE_WITH_OLD_DATA; |
| |
| total += cur_pkt->len; |
| /* keep trace of the first packet in the datagram */ |
| if (!first_pkt) |
| first_pkt = cur_pkt; |
| /* Attach the current one to the previous one and vice versa */ |
| if (prv_pkt) { |
| prv_pkt->next = cur_pkt; |
| cur_pkt->prev = prv_pkt; |
| cur_pkt->flags |= QUIC_FL_TX_PACKET_COALESCED; |
| } |
| /* Let's say we have to build a new dgram */ |
| prv_pkt = NULL; |
| dglen += cur_pkt->len; |
| /* If the data for the current encryption level have all been sent, |
| * select the next level. |
| */ |
| if ((tel == QUIC_TLS_ENC_LEVEL_INITIAL || tel == QUIC_TLS_ENC_LEVEL_HANDSHAKE) && |
| next_tel != QUIC_TLS_ENC_LEVEL_NONE && (LIST_ISEMPTY(frms))) { |
| /* If QUIC_TLS_ENC_LEVEL_HANDSHAKE was already reached let's try QUIC_TLS_ENC_LEVEL_APP */ |
| if (tel == QUIC_TLS_ENC_LEVEL_HANDSHAKE && next_tel == tel) |
| next_tel = QUIC_TLS_ENC_LEVEL_APP; |
| tel = next_tel; |
| if (tel == QUIC_TLS_ENC_LEVEL_APP) |
| frms = &qc->els[tel].pktns->tx.frms; |
| else |
| frms = next_tel_frms; |
| qel = &qc->els[tel]; |
| if (!LIST_ISEMPTY(frms)) { |
| /* If there is data for the next level, do not |
| * consume a datagram. |
| */ |
| prv_pkt = cur_pkt; |
| } |
| } |
| |
| /* If we have to build a new datagram, set the current datagram as |
| * prepared into <cbuf>. |
| */ |
| if (!prv_pkt) { |
| qc_txb_store(buf, dglen, first_pkt); |
| first_pkt = NULL; |
| dglen = 0; |
| padding = 0; |
| } |
| else if (prv_pkt->type == QUIC_TLS_ENC_LEVEL_INITIAL && |
| (!qc_is_listener(qc) || |
| prv_pkt->flags & QUIC_FL_TX_PACKET_ACK_ELICITING)) { |
| padding = 1; |
| } |
| } |
| |
| out: |
| ret = total; |
| leave: |
| TRACE_LEAVE(QUIC_EV_CONN_PHPKTS, qc); |
| return ret; |
| } |
| |
| /* Free all frames in <l> list. In addition also remove all these frames |
| * from the original ones if they are the results of duplications. |
| */ |
| static inline void qc_free_frm_list(struct list *l) |
| { |
| struct quic_frame *frm, *frmbak; |
| |
| list_for_each_entry_safe(frm, frmbak, l, list) { |
| LIST_DEL_INIT(&frm->ref); |
| qc_frm_free(&frm); |
| } |
| } |
| |
| /* Free <pkt> TX packet and all the packets coalesced to it. */ |
| static inline void qc_free_tx_coalesced_pkts(struct quic_tx_packet *p) |
| { |
| struct quic_tx_packet *pkt, *nxt_pkt; |
| |
| for (pkt = p; pkt; pkt = nxt_pkt) { |
| qc_free_frm_list(&pkt->frms); |
| nxt_pkt = pkt->next; |
| pool_free(pool_head_quic_tx_packet, pkt); |
| } |
| } |
| |
| /* Purge <buf> TX buffer from its prepare packets. */ |
| static void qc_purge_tx_buf(struct buffer *buf) |
| { |
| while (b_contig_data(buf, 0)) { |
| uint16_t dglen; |
| struct quic_tx_packet *pkt; |
| size_t headlen = sizeof dglen + sizeof pkt; |
| |
| dglen = read_u16(b_head(buf)); |
| pkt = read_ptr(b_head(buf) + sizeof dglen); |
| qc_free_tx_coalesced_pkts(pkt); |
| b_del(buf, dglen + headlen); |
| } |
| |
| BUG_ON(b_data(buf)); |
| } |
| |
| /* Send datagrams stored in <buf>. |
| * |
| * This function returns 1 for success. On error, there is several behavior |
| * depending on underlying sendto() error : |
| * - for an unrecoverable error, 0 is returned and connection is killed. |
| * - a transient error is handled differently if connection has its owned |
| * socket. If this is the case, 0 is returned and socket is subscribed on the |
| * poller. The other case is assimilated to a success case with 1 returned. |
| * Remaining data are purged from the buffer and will eventually be detected |
| * as lost which gives the opportunity to retry sending. |
| */ |
| int qc_send_ppkts(struct buffer *buf, struct ssl_sock_ctx *ctx) |
| { |
| int ret = 0; |
| struct quic_conn *qc; |
| char skip_sendto = 0; |
| |
| qc = ctx->qc; |
| TRACE_ENTER(QUIC_EV_CONN_SPPKTS, qc); |
| while (b_contig_data(buf, 0)) { |
| unsigned char *pos; |
| struct buffer tmpbuf = { }; |
| struct quic_tx_packet *first_pkt, *pkt, *next_pkt; |
| uint16_t dglen; |
| size_t headlen = sizeof dglen + sizeof first_pkt; |
| unsigned int time_sent; |
| |
| pos = (unsigned char *)b_head(buf); |
| dglen = read_u16(pos); |
| BUG_ON_HOT(!dglen); /* this should not happen */ |
| |
| pos += sizeof dglen; |
| first_pkt = read_ptr(pos); |
| pos += sizeof first_pkt; |
| tmpbuf.area = (char *)pos; |
| tmpbuf.size = tmpbuf.data = dglen; |
| |
| TRACE_PROTO("TX dgram", QUIC_EV_CONN_SPPKTS, qc); |
| /* If sendto is on error just skip the call to it for the rest |
| * of the loop but continue to purge the buffer. Data will be |
| * transmitted when QUIC packets are detected as lost on our |
| * side. |
| * |
| * TODO use fd-monitoring to detect when send operation can be |
| * retry. This should improve the bandwidth without relying on |
| * retransmission timer. However, it requires a major rework on |
| * quic-conn fd management. |
| */ |
| if (!skip_sendto) { |
| int ret = qc_snd_buf(qc, &tmpbuf, tmpbuf.data, 0); |
| if (ret < 0) { |
| TRACE_ERROR("sendto fatal error", QUIC_EV_CONN_SPPKTS, qc, first_pkt); |
| qc_kill_conn(qc); |
| qc_free_tx_coalesced_pkts(first_pkt); |
| b_del(buf, dglen + headlen); |
| qc_purge_tx_buf(buf); |
| goto leave; |
| } |
| else if (!ret) { |
| /* Connection owned socket : poller will wake us up when transient error is cleared. */ |
| if (qc_test_fd(qc)) { |
| TRACE_ERROR("sendto error, subscribe to poller", QUIC_EV_CONN_SPPKTS, qc); |
| goto leave; |
| } |
| |
| /* No connection owned-socket : rely on retransmission to retry sending. */ |
| skip_sendto = 1; |
| TRACE_ERROR("sendto error, simulate sending for the rest of data", QUIC_EV_CONN_SPPKTS, qc); |
| } |
| } |
| |
| b_del(buf, dglen + headlen); |
| qc->tx.bytes += tmpbuf.data; |
| time_sent = now_ms; |
| |
| for (pkt = first_pkt; pkt; pkt = next_pkt) { |
| /* RFC 9000 14.1 Initial datagram size |
| * a server MUST expand the payload of all UDP datagrams carrying ack-eliciting |
| * Initial packets to at least the smallest allowed maximum datagram size of |
| * 1200 bytes. |
| */ |
| qc->cntrs.sent_pkt++; |
| BUG_ON_HOT(pkt->type == QUIC_PACKET_TYPE_INITIAL && |
| (pkt->flags & QUIC_FL_TX_PACKET_ACK_ELICITING) && |
| dglen < QUIC_INITIAL_PACKET_MINLEN); |
| |
| pkt->time_sent = time_sent; |
| if (pkt->flags & QUIC_FL_TX_PACKET_ACK_ELICITING) { |
| pkt->pktns->tx.time_of_last_eliciting = time_sent; |
| qc->path->ifae_pkts++; |
| if (qc->flags & QUIC_FL_CONN_IDLE_TIMER_RESTARTED_AFTER_READ) |
| qc_idle_timer_rearm(qc, 0, 0); |
| } |
| if (!(qc->flags & QUIC_FL_CONN_CLOSING) && |
| (pkt->flags & QUIC_FL_TX_PACKET_CC)) { |
| qc->flags |= QUIC_FL_CONN_CLOSING; |
| qc_detach_th_ctx_list(qc, 1); |
| |
| /* RFC 9000 10.2. Immediate Close: |
| * The closing and draining connection states exist to ensure |
| * that connections close cleanly and that delayed or reordered |
| * packets are properly discarded. These states SHOULD persist |
| * for at least three times the current PTO interval... |
| * |
| * Rearm the idle timeout only one time when entering closing |
| * state. |
| */ |
| qc_idle_timer_do_rearm(qc, 0); |
| if (qc->timer_task) { |
| task_destroy(qc->timer_task); |
| qc->timer_task = NULL; |
| } |
| } |
| qc->path->in_flight += pkt->in_flight_len; |
| pkt->pktns->tx.in_flight += pkt->in_flight_len; |
| if (pkt->in_flight_len) |
| qc_set_timer(qc); |
| TRACE_PROTO("TX pkt", QUIC_EV_CONN_SPPKTS, qc, pkt); |
| next_pkt = pkt->next; |
| quic_tx_packet_refinc(pkt); |
| eb64_insert(&pkt->pktns->tx.pkts, &pkt->pn_node); |
| } |
| } |
| |
| ret = 1; |
| leave: |
| TRACE_LEAVE(QUIC_EV_CONN_SPPKTS, qc); |
| |
| return ret; |
| } |
| |
| /* Copy at <pos> position a stateless reset token depending on the |
| * <salt> salt input. This is the cluster secret which will be derived |
| * as HKDF input secret to generate this token. |
| * Return 1 if succeeded, 0 if not. |
| */ |
| static int quic_stateless_reset_token_cpy(unsigned char *pos, size_t len, |
| const unsigned char *salt, size_t saltlen) |
| { |
| /* Input secret */ |
| const unsigned char *key = global.cluster_secret; |
| size_t keylen = sizeof global.cluster_secret; |
| /* Info */ |
| const unsigned char label[] = "stateless token"; |
| size_t labellen = sizeof label - 1; |
| int ret; |
| |
| ret = quic_hkdf_extract_and_expand(EVP_sha256(), pos, len, |
| key, keylen, salt, saltlen, label, labellen); |
| return ret; |
| } |
| |
| /* Initialize the stateless reset token attached to <conn_id> connection ID. |
| * Returns 1 if succeeded, 0 if not. |
| */ |
| static int quic_stateless_reset_token_init(struct quic_connection_id *conn_id) |
| { |
| /* Output secret */ |
| unsigned char *token = conn_id->stateless_reset_token; |
| size_t tokenlen = sizeof conn_id->stateless_reset_token; |
| /* Salt */ |
| const unsigned char *cid = conn_id->cid.data; |
| size_t cidlen = conn_id->cid.len; |
| |
| return quic_stateless_reset_token_cpy(token, tokenlen, cid, cidlen); |
| } |
| |
| /* Generate a CID directly derived from <orig> CID and <addr> address. |
| * |
| * Returns the derived CID. |
| */ |
| struct quic_cid quic_derive_cid(const struct quic_cid *orig, |
| const struct sockaddr_storage *addr) |
| { |
| struct quic_cid cid; |
| const struct sockaddr_in *in; |
| const struct sockaddr_in6 *in6; |
| char *pos = trash.area; |
| size_t idx = 0; |
| uint64_t hash; |
| int i; |
| |
| /* Prepare buffer for hash using original CID first. */ |
| memcpy(pos, orig->data, orig->len); |
| idx += orig->len; |
| |
| /* Concatenate client address. */ |
| switch (addr->ss_family) { |
| case AF_INET: |
| in = (struct sockaddr_in *)addr; |
| |
| memcpy(&pos[idx], &in->sin_addr, sizeof(in->sin_addr)); |
| idx += sizeof(in->sin_addr); |
| memcpy(&pos[idx], &in->sin_port, sizeof(in->sin_port)); |
| idx += sizeof(in->sin_port); |
| break; |
| |
| case AF_INET6: |
| in6 = (struct sockaddr_in6 *)addr; |
| |
| memcpy(&pos[idx], &in6->sin6_addr, sizeof(in6->sin6_addr)); |
| idx += sizeof(in6->sin6_addr); |
| memcpy(&pos[idx], &in6->sin6_port, sizeof(in6->sin6_port)); |
| idx += sizeof(in6->sin6_port); |
| break; |
| |
| default: |
| /* TODO to implement */ |
| ABORT_NOW(); |
| } |
| |
| /* Avoid similar values between multiple haproxy process. */ |
| memcpy(&pos[idx], boot_seed, sizeof(boot_seed)); |
| idx += sizeof(boot_seed); |
| |
| /* Hash the final buffer content. */ |
| hash = XXH64(pos, idx, 0); |
| |
| for (i = 0; i < sizeof(hash); ++i) |
| cid.data[i] = hash >> ((sizeof(hash) * 7) - (8 * i)); |
| cid.len = sizeof(hash); |
| |
| return cid; |
| } |
| |
| /* Retrieve the thread ID associated to QUIC connection ID <cid> of length |
| * <cid_len>. CID may be not found on the CID tree because it is an ODCID. In |
| * this case, it will derived using client address <cli_addr> as hash |
| * parameter. However, this is done only if <pos> points to an INITIAL or 0RTT |
| * packet of length <len>. |
| * |
| * Returns the thread ID or a negative error code. |
| */ |
| int quic_get_cid_tid(const unsigned char *cid, size_t cid_len, |
| const struct sockaddr_storage *cli_addr, |
| unsigned char *pos, size_t len) |
| { |
| struct quic_cid_tree *tree; |
| struct quic_connection_id *conn_id; |
| struct ebmb_node *node; |
| |
| tree = &quic_cid_trees[_quic_cid_tree_idx(cid)]; |
| HA_RWLOCK_RDLOCK(QC_CID_LOCK, &tree->lock); |
| node = ebmb_lookup(&tree->root, cid, cid_len); |
| HA_RWLOCK_RDUNLOCK(QC_CID_LOCK, &tree->lock); |
| |
| if (!node) { |
| struct quic_cid orig, derive_cid; |
| struct quic_rx_packet pkt; |
| |
| if (!qc_parse_hd_form(&pkt, &pos, pos + len)) |
| goto not_found; |
| |
| if (pkt.type != QUIC_PACKET_TYPE_INITIAL && |
| pkt.type != QUIC_PACKET_TYPE_0RTT) { |
| goto not_found; |
| } |
| |
| memcpy(orig.data, cid, cid_len); |
| orig.len = cid_len; |
| derive_cid = quic_derive_cid(&orig, cli_addr); |
| |
| tree = &quic_cid_trees[quic_cid_tree_idx(&derive_cid)]; |
| HA_RWLOCK_RDLOCK(QC_CID_LOCK, &tree->lock); |
| node = ebmb_lookup(&tree->root, cid, cid_len); |
| HA_RWLOCK_RDUNLOCK(QC_CID_LOCK, &tree->lock); |
| } |
| |
| if (!node) |
| goto not_found; |
| |
| conn_id = ebmb_entry(node, struct quic_connection_id, node); |
| return HA_ATOMIC_LOAD(&conn_id->tid); |
| |
| not_found: |
| return -1; |
| } |
| |
| /* Allocate a new CID and attach it to <root> ebtree. |
| * |
| * If <orig> and <addr> params are non null, the new CID value is directly |
| * derived from them. Else a random value is generated. The CID is then marked |
| * with the current thread ID. |
| * |
| * Returns the new CID if succeeded, NULL if not. |
| */ |
| static struct quic_connection_id *new_quic_cid(struct eb_root *root, |
| struct quic_conn *qc, |
| const struct quic_cid *orig, |
| const struct sockaddr_storage *addr) |
| { |
| struct quic_connection_id *conn_id; |
| |
| TRACE_ENTER(QUIC_EV_CONN_TXPKT, qc); |
| |
| /* Caller must set either none or both values. */ |
| BUG_ON(!!orig != !!addr); |
| |
| conn_id = pool_alloc(pool_head_quic_connection_id); |
| if (!conn_id) { |
| TRACE_ERROR("cid allocation failed", QUIC_EV_CONN_TXPKT, qc); |
| goto err; |
| } |
| |
| conn_id->cid.len = QUIC_HAP_CID_LEN; |
| |
| if (!orig) { |
| /* TODO: RAND_bytes() should be replaced */ |
| if (RAND_bytes(conn_id->cid.data, conn_id->cid.len) != 1) { |
| TRACE_ERROR("RAND_bytes() failed", QUIC_EV_CONN_TXPKT, qc); |
| goto err; |
| } |
| } |
| else { |
| /* Derive the new CID value from original CID. */ |
| conn_id->cid = quic_derive_cid(orig, addr); |
| } |
| |
| if (quic_stateless_reset_token_init(conn_id) != 1) { |
| TRACE_ERROR("quic_stateless_reset_token_init() failed", QUIC_EV_CONN_TXPKT, qc); |
| goto err; |
| } |
| |
| conn_id->qc = qc; |
| HA_ATOMIC_STORE(&conn_id->tid, tid); |
| |
| conn_id->seq_num.key = qc ? qc->next_cid_seq_num++ : 0; |
| conn_id->retire_prior_to = 0; |
| /* insert the allocated CID in the quic_conn tree */ |
| if (root) |
| eb64_insert(root, &conn_id->seq_num); |
| |
| TRACE_LEAVE(QUIC_EV_CONN_TXPKT, qc); |
| return conn_id; |
| |
| err: |
| pool_free(pool_head_quic_connection_id, conn_id); |
| TRACE_LEAVE(QUIC_EV_CONN_TXPKT, qc); |
| return NULL; |
| } |
| |
| /* Build all the frames which must be sent just after the handshake have succeeded. |
| * This is essentially NEW_CONNECTION_ID frames. A QUIC server must also send |
| * a HANDSHAKE_DONE frame. |
| * Return 1 if succeeded, 0 if not. |
| */ |
| static int quic_build_post_handshake_frames(struct quic_conn *qc) |
| { |
| int ret = 0, max; |
| struct quic_enc_level *qel; |
| struct quic_frame *frm, *frmbak; |
| struct list frm_list = LIST_HEAD_INIT(frm_list); |
| struct eb64_node *node; |
| |
| TRACE_ENTER(QUIC_EV_CONN_IO_CB, qc); |
| |
| qel = &qc->els[QUIC_TLS_ENC_LEVEL_APP]; |
| /* Only servers must send a HANDSHAKE_DONE frame. */ |
| if (qc_is_listener(qc)) { |
| frm = qc_frm_alloc(QUIC_FT_HANDSHAKE_DONE); |
| if (!frm) { |
| TRACE_ERROR("frame allocation error", QUIC_EV_CONN_IO_CB, qc); |
| goto leave; |
| } |
| |
| LIST_APPEND(&frm_list, &frm->list); |
| } |
| |
| /* Initialize <max> connection IDs minus one: there is |
| * already one connection ID used for the current connection. Also limit |
| * the number of connection IDs sent to the peer to 4 (3 from this function |
| * plus 1 for the current connection. |
| * Note that active_connection_id_limit >= 2: this has been already checked |
| * when receiving this parameter. |
| */ |
| max = QUIC_MIN(qc->tx.params.active_connection_id_limit - 1, (uint64_t)3); |
| while (max--) { |
| struct quic_connection_id *conn_id; |
| |
| frm = qc_frm_alloc(QUIC_FT_NEW_CONNECTION_ID); |
| if (!frm) { |
| TRACE_ERROR("frame allocation error", QUIC_EV_CONN_IO_CB, qc); |
| goto err; |
| } |
| |
| conn_id = new_quic_cid(&qc->cids, qc, NULL, NULL); |
| if (!conn_id) { |
| qc_frm_free(&frm); |
| TRACE_ERROR("CID allocation error", QUIC_EV_CONN_IO_CB, qc); |
| goto err; |
| } |
| |
| /* TODO To prevent CID tree locking, all CIDs created here |
| * could be allocated at the same time as the first one. |
| */ |
| quic_cid_insert(conn_id); |
| |
| quic_connection_id_to_frm_cpy(frm, conn_id); |
| LIST_APPEND(&frm_list, &frm->list); |
| } |
| |
| LIST_SPLICE(&qel->pktns->tx.frms, &frm_list); |
| qc->flags &= ~QUIC_FL_CONN_NEED_POST_HANDSHAKE_FRMS; |
| |
| ret = 1; |
| leave: |
| TRACE_LEAVE(QUIC_EV_CONN_IO_CB, qc); |
| return ret; |
| |
| err: |
| /* free the frames */ |
| list_for_each_entry_safe(frm, frmbak, &frm_list, list) |
| qc_frm_free(&frm); |
| |
| /* The first CID sequence number value used to allocated CIDs by this function is 1, |
| * 0 being the sequence number of the CID for this connection. |
| */ |
| node = eb64_lookup_ge(&qc->cids, 1); |
| while (node) { |
| struct quic_connection_id *conn_id; |
| |
| conn_id = eb64_entry(node, struct quic_connection_id, seq_num); |
| if (conn_id->seq_num.key >= max) |
| break; |
| |
| node = eb64_next(node); |
| quic_cid_delete(conn_id); |
| |
| eb64_delete(&conn_id->seq_num); |
| pool_free(pool_head_quic_connection_id, conn_id); |
| } |
| goto leave; |
| } |
| |
| /* Deallocate <l> list of ACK ranges. */ |
| void quic_free_arngs(struct quic_conn *qc, struct quic_arngs *arngs) |
| { |
| struct eb64_node *n; |
| struct quic_arng_node *ar; |
| |
| TRACE_ENTER(QUIC_EV_CONN_CLOSE, qc); |
| |
| n = eb64_first(&arngs->root); |
| while (n) { |
| struct eb64_node *next; |
| |
| ar = eb64_entry(n, struct quic_arng_node, first); |
| next = eb64_next(n); |
| eb64_delete(n); |
| pool_free(pool_head_quic_arng, ar); |
| n = next; |
| } |
| |
| TRACE_LEAVE(QUIC_EV_CONN_CLOSE, qc); |
| } |
| |
| /* Return the gap value between <p> and <q> ACK ranges where <q> follows <p> in |
| * descending order. |
| */ |
| static inline size_t sack_gap(struct quic_arng_node *p, |
| struct quic_arng_node *q) |
| { |
| return p->first.key - q->last - 2; |
| } |
| |
| /* Set the encoded size of <arngs> QUIC ack ranges. */ |
| static void quic_arngs_set_enc_sz(struct quic_conn *qc, struct quic_arngs *arngs) |
| { |
| struct eb64_node *node, *next; |
| struct quic_arng_node *ar, *ar_next; |
| |
| TRACE_ENTER(QUIC_EV_CONN_TXPKT, qc); |
| |
| node = eb64_last(&arngs->root); |
| if (!node) |
| goto leave; |
| |
| ar = eb64_entry(node, struct quic_arng_node, first); |
| arngs->enc_sz = quic_int_getsize(ar->last) + |
| quic_int_getsize(ar->last - ar->first.key) + quic_int_getsize(arngs->sz - 1); |
| |
| while ((next = eb64_prev(node))) { |
| ar_next = eb64_entry(next, struct quic_arng_node, first); |
| arngs->enc_sz += quic_int_getsize(sack_gap(ar, ar_next)) + |
| quic_int_getsize(ar_next->last - ar_next->first.key); |
| node = next; |
| ar = eb64_entry(node, struct quic_arng_node, first); |
| } |
| |
| leave: |
| TRACE_LEAVE(QUIC_EV_CONN_TXPKT, qc); |
| } |
| |
| /* Insert <ar> ack range into <argns> tree of ack ranges. |
| * Returns the ack range node which has been inserted if succeeded, NULL if not. |
| */ |
| static inline |
| struct quic_arng_node *quic_insert_new_range(struct quic_conn *qc, |
| struct quic_arngs *arngs, |
| struct quic_arng *ar) |
| { |
| struct quic_arng_node *new_ar; |
| |
| TRACE_ENTER(QUIC_EV_CONN_RXPKT, qc); |
| |
| if (arngs->sz >= QUIC_MAX_ACK_RANGES) { |
| struct eb64_node *last; |
| |
| last = eb64_last(&arngs->root); |
| BUG_ON(last == NULL); |
| eb64_delete(last); |
| pool_free(pool_head_quic_arng, last); |
| arngs->sz--; |
| } |
| |
| new_ar = pool_alloc(pool_head_quic_arng); |
| if (!new_ar) { |
| TRACE_ERROR("ack range allocation failed", QUIC_EV_CONN_RXPKT, qc); |
| goto leave; |
| } |
| |
| new_ar->first.key = ar->first; |
| new_ar->last = ar->last; |
| eb64_insert(&arngs->root, &new_ar->first); |
| arngs->sz++; |
| |
| leave: |
| TRACE_LEAVE(QUIC_EV_CONN_RXPKT, qc); |
| return new_ar; |
| } |
| |
| /* Update <arngs> tree of ACK ranges with <ar> as new ACK range value. |
| * Note that this function computes the number of bytes required to encode |
| * this tree of ACK ranges in descending order. |
| * |
| * Descending order |
| * -------------> |
| * range1 range2 |
| * ..........|--------|..............|--------| |
| * ^ ^ ^ ^ |
| * | | | | |
| * last1 first1 last2 first2 |
| * ..........+--------+--------------+--------+...... |
| * diff1 gap12 diff2 |
| * |
| * To encode the previous list of ranges we must encode integers as follows in |
| * descending order: |
| * enc(last2),enc(diff2),enc(gap12),enc(diff1) |
| * with diff1 = last1 - first1 |
| * diff2 = last2 - first2 |
| * gap12 = first1 - last2 - 2 (>= 0) |
| * |
| |
| returns 0 on error |
| |
| */ |
| int quic_update_ack_ranges_list(struct quic_conn *qc, |
| struct quic_arngs *arngs, |
| struct quic_arng *ar) |
| { |
| int ret = 0; |
| struct eb64_node *le; |
| struct quic_arng_node *new_node; |
| struct eb64_node *new; |
| |
| TRACE_ENTER(QUIC_EV_CONN_RXPKT, qc); |
| |
| new = NULL; |
| if (eb_is_empty(&arngs->root)) { |
| new_node = quic_insert_new_range(qc, arngs, ar); |
| if (new_node) |
| ret = 1; |
| |
| goto leave; |
| } |
| |
| le = eb64_lookup_le(&arngs->root, ar->first); |
| if (!le) { |
| new_node = quic_insert_new_range(qc, arngs, ar); |
| if (!new_node) |
| goto leave; |
| |
| new = &new_node->first; |
| } |
| else { |
| struct quic_arng_node *le_ar = |
| eb64_entry(le, struct quic_arng_node, first); |
| |
| /* Already existing range */ |
| if (le_ar->last >= ar->last) { |
| ret = 1; |
| } |
| else if (le_ar->last + 1 >= ar->first) { |
| le_ar->last = ar->last; |
| new = le; |
| new_node = le_ar; |
| } |
| else { |
| new_node = quic_insert_new_range(qc, arngs, ar); |
| if (!new_node) |
| goto leave; |
| |
| new = &new_node->first; |
| } |
| } |
| |
| /* Verify that the new inserted node does not overlap the nodes |
| * which follow it. |
| */ |
| if (new) { |
| struct eb64_node *next; |
| struct quic_arng_node *next_node; |
| |
| while ((next = eb64_next(new))) { |
| next_node = |
| eb64_entry(next, struct quic_arng_node, first); |
| if (new_node->last + 1 < next_node->first.key) |
| break; |
| |
| if (next_node->last > new_node->last) |
| new_node->last = next_node->last; |
| eb64_delete(next); |
| pool_free(pool_head_quic_arng, next_node); |
| /* Decrement the size of these ranges. */ |
| arngs->sz--; |
| } |
| } |
| |
| ret = 1; |
| leave: |
| quic_arngs_set_enc_sz(qc, arngs); |
| TRACE_LEAVE(QUIC_EV_CONN_RXPKT, qc); |
| return ret; |
| } |
| |
| /* Detect the value of the spin bit to be used. */ |
| static inline void qc_handle_spin_bit(struct quic_conn *qc, struct quic_rx_packet *pkt, |
| struct quic_enc_level *qel) |
| { |
| uint64_t largest_pn = qel->pktns->rx.largest_pn; |
| |
| if (qel != &qc->els[QUIC_TLS_ENC_LEVEL_APP] || largest_pn == -1 || |
| pkt->pn <= largest_pn) |
| return; |
| |
| if (qc_is_listener(qc)) { |
| if (pkt->flags & QUIC_FL_RX_PACKET_SPIN_BIT) |
| qc->flags |= QUIC_FL_CONN_SPIN_BIT; |
| else |
| qc->flags &= ~QUIC_FL_CONN_SPIN_BIT; |
| } |
| else { |
| if (pkt->flags & QUIC_FL_RX_PACKET_SPIN_BIT) |
| qc->flags &= ~QUIC_FL_CONN_SPIN_BIT; |
| else |
| qc->flags |= QUIC_FL_CONN_SPIN_BIT; |
| } |
| } |
| |
| /* Remove the header protection of packets at <el> encryption level. |
| * Always succeeds. |
| */ |
| static inline void qc_rm_hp_pkts(struct quic_conn *qc, struct quic_enc_level *el) |
| { |
| struct quic_rx_packet *pqpkt, *pkttmp; |
| struct quic_enc_level *app_qel; |
| |
| TRACE_ENTER(QUIC_EV_CONN_ELRMHP, qc); |
| app_qel = &qc->els[QUIC_TLS_ENC_LEVEL_APP]; |
| /* A server must not process incoming 1-RTT packets before the handshake is complete. */ |
| if (el == app_qel && qc_is_listener(qc) && qc->state < QUIC_HS_ST_COMPLETE) { |
| TRACE_PROTO("RX hp not removed (handshake not completed)", |
| QUIC_EV_CONN_ELRMHP, qc); |
| goto out; |
| } |
| |
| list_for_each_entry_safe(pqpkt, pkttmp, &el->rx.pqpkts, list) { |
| struct quic_tls_ctx *tls_ctx; |
| |
| tls_ctx = qc_select_tls_ctx(qc, el, pqpkt); |
| if (!qc_do_rm_hp(qc, pqpkt, tls_ctx, el->pktns->rx.largest_pn, |
| pqpkt->data + pqpkt->pn_offset, pqpkt->data)) { |
| TRACE_ERROR("RX hp removing error", QUIC_EV_CONN_ELRMHP, qc); |
| } |
| else { |
| qc_handle_spin_bit(qc, pqpkt, el); |
| /* The AAD includes the packet number field */ |
| pqpkt->aad_len = pqpkt->pn_offset + pqpkt->pnl; |
| /* Store the packet into the tree of packets to decrypt. */ |
| pqpkt->pn_node.key = pqpkt->pn; |
| eb64_insert(&el->rx.pkts, &pqpkt->pn_node); |
| quic_rx_packet_refinc(pqpkt); |
| TRACE_PROTO("RX hp removed", QUIC_EV_CONN_ELRMHP, qc, pqpkt); |
| } |
| LIST_DELETE(&pqpkt->list); |
| quic_rx_packet_refdec(pqpkt); |
| } |
| |
| out: |
| TRACE_LEAVE(QUIC_EV_CONN_ELRMHP, qc); |
| } |
| |
| /* Process all the CRYPTO frame at <el> encryption level. This is the |
| * responsibility of the called to ensure there exists a CRYPTO data |
| * stream for this level. |
| * Return 1 if succeeded, 0 if not. |
| */ |
| static inline int qc_treat_rx_crypto_frms(struct quic_conn *qc, |
| struct quic_enc_level *el, |
| struct ssl_sock_ctx *ctx) |
| { |
| int ret = 0; |
| struct ncbuf *ncbuf; |
| struct quic_cstream *cstream = el->cstream; |
| ncb_sz_t data; |
| |
| TRACE_ENTER(QUIC_EV_CONN_PHPKTS, qc); |
| |
| BUG_ON(!cstream); |
| ncbuf = &cstream->rx.ncbuf; |
| if (ncb_is_null(ncbuf)) |
| goto done; |
| |
| /* TODO not working if buffer is wrapping */ |
| while ((data = ncb_data(ncbuf, 0))) { |
| const unsigned char *cdata = (const unsigned char *)ncb_head(ncbuf); |
| |
| if (!qc_provide_cdata(el, ctx, cdata, data, NULL, NULL)) |
| goto leave; |
| |
| cstream->rx.offset += data; |
| TRACE_DEVEL("buffered crypto data were provided to TLS stack", |
| QUIC_EV_CONN_PHPKTS, qc, el); |
| } |
| |
| done: |
| ret = 1; |
| leave: |
| if (!ncb_is_null(ncbuf) && ncb_is_empty(ncbuf)) { |
| TRACE_DEVEL("freeing crypto buf", QUIC_EV_CONN_PHPKTS, qc, el); |
| quic_free_ncbuf(ncbuf); |
| } |
| TRACE_LEAVE(QUIC_EV_CONN_PHPKTS, qc); |
| return ret; |
| } |
| |
| /* Process all the packets at <el> and <next_el> encryption level. |
| * This is the caller responsibility to check that <cur_el> is different of <next_el> |
| * as pointer value. |
| * Return 1 if succeeded, 0 if not. |
| */ |
| int qc_treat_rx_pkts(struct quic_conn *qc, struct quic_enc_level *cur_el, |
| struct quic_enc_level *next_el) |
| { |
| int ret = 0; |
| struct eb64_node *node; |
| int64_t largest_pn = -1; |
| unsigned int largest_pn_time_received = 0; |
| struct quic_enc_level *qel = cur_el; |
| |
| TRACE_ENTER(QUIC_EV_CONN_RXPKT, qc); |
| qel = cur_el; |
| next_tel: |
| if (!qel) |
| goto out; |
| |
| node = eb64_first(&qel->rx.pkts); |
| while (node) { |
| struct quic_rx_packet *pkt; |
| |
| pkt = eb64_entry(node, struct quic_rx_packet, pn_node); |
| TRACE_DATA("new packet", QUIC_EV_CONN_RXPKT, |
| qc, pkt, NULL, qc->xprt_ctx->ssl); |
| if (!qc_pkt_decrypt(qc, qel, pkt)) { |
| /* Drop the packet */ |
| TRACE_ERROR("packet decryption failed -> dropped", |
| QUIC_EV_CONN_RXPKT, qc, pkt); |
| } |
| else { |
| if (!qc_parse_pkt_frms(qc, pkt, qel)) { |
| /* Drop the packet */ |
| TRACE_ERROR("packet parsing failed -> dropped", |
| QUIC_EV_CONN_RXPKT, qc, pkt); |
| qc->cntrs.dropped_parsing++; |
| } |
| else { |
| struct quic_arng ar = { .first = pkt->pn, .last = pkt->pn }; |
| |
| /* Update the list of ranges to acknowledge. */ |
| if (quic_update_ack_ranges_list(qc, &qel->pktns->rx.arngs, &ar)) { |
| if (pkt->flags & QUIC_FL_RX_PACKET_ACK_ELICITING) { |
| int arm_ack_timer = |
| qc->state >= QUIC_HS_ST_COMPLETE && |
| qel->pktns == &qc->pktns[QUIC_TLS_PKTNS_01RTT]; |
| |
| qel->pktns->flags |= QUIC_FL_PKTNS_ACK_REQUIRED; |
| qel->pktns->rx.nb_aepkts_since_last_ack++; |
| qc_idle_timer_rearm(qc, 1, arm_ack_timer); |
| } |
| |
| if (pkt->pn > largest_pn) { |
| largest_pn = pkt->pn; |
| largest_pn_time_received = pkt->time_received; |
| } |
| } |
| else { |
| TRACE_ERROR("Could not update ack range list", |
| QUIC_EV_CONN_RXPKT, qc); |
| } |
| } |
| } |
| node = eb64_next(node); |
| eb64_delete(&pkt->pn_node); |
| quic_rx_packet_refdec(pkt); |
| } |
| |
| if (largest_pn != -1 && largest_pn > qel->pktns->rx.largest_pn) { |
| /* Update the largest packet number. */ |
| qel->pktns->rx.largest_pn = largest_pn; |
| /* Update the largest acknowledged packet timestamps */ |
| qel->pktns->rx.largest_time_received = largest_pn_time_received; |
| qel->pktns->flags |= QUIC_FL_PKTNS_NEW_LARGEST_PN; |
| } |
| |
| if (qel->cstream && !qc_treat_rx_crypto_frms(qc, qel, qc->xprt_ctx)) { |
| // trace already emitted by function above |
| goto leave; |
| } |
| |
| if (qel == cur_el) { |
| BUG_ON(qel == next_el); |
| qel = next_el; |
| largest_pn = -1; |
| goto next_tel; |
| } |
| |
| out: |
| ret = 1; |
| leave: |
| TRACE_LEAVE(QUIC_EV_CONN_RXPKT, qc); |
| return ret; |
| } |
| |
| /* Check if it's possible to remove header protection for packets related to |
| * encryption level <qel>. If <qel> is NULL, assume it's false. |
| * |
| * Return true if the operation is possible else false. |
| */ |
| static int qc_qel_may_rm_hp(struct quic_conn *qc, struct quic_enc_level *qel) |
| { |
| int ret = 0; |
| enum quic_tls_enc_level tel; |
| |
| TRACE_ENTER(QUIC_EV_CONN_TRMHP, qc); |
| |
| if (!qel) |
| goto cant_rm_hp; |
| |
| tel = ssl_to_quic_enc_level(qel->level); |
| |
| /* check if tls secrets are available */ |
| if (qel->tls_ctx.flags & QUIC_FL_TLS_SECRETS_DCD) { |
| TRACE_PROTO("Discarded keys", QUIC_EV_CONN_TRMHP, qc); |
| goto cant_rm_hp; |
| } |
| |
| if (!quic_tls_has_rx_sec(qel)) { |
| TRACE_PROTO("non available secrets", QUIC_EV_CONN_TRMHP, qc); |
| goto cant_rm_hp; |
| } |
| |
| if (tel == QUIC_TLS_ENC_LEVEL_APP && qc->state < QUIC_HS_ST_COMPLETE) { |
| TRACE_PROTO("handshake not complete", QUIC_EV_CONN_TRMHP, qc); |
| goto cant_rm_hp; |
| } |
| |
| /* check if the connection layer is ready before using app level */ |
| if ((tel == QUIC_TLS_ENC_LEVEL_APP || tel == QUIC_TLS_ENC_LEVEL_EARLY_DATA) && |
| qc->mux_state == QC_MUX_NULL) { |
| TRACE_PROTO("connection layer not ready", QUIC_EV_CONN_TRMHP, qc); |
| goto cant_rm_hp; |
| } |
| |
| ret = 1; |
| cant_rm_hp: |
| TRACE_LEAVE(QUIC_EV_CONN_TRMHP, qc); |
| return ret; |
| } |
| |
| /* Flush txbuf for <qc> connection. This must be called prior to a packet |
| * preparation when txbuf contains older data. A send will be conducted for |
| * these data. |
| * |
| * Returns 1 on success : buffer is empty and can be use for packet |
| * preparation. On error 0 is returned. |
| */ |
| static int qc_purge_txbuf(struct quic_conn *qc, struct buffer *buf) |
| { |
| TRACE_ENTER(QUIC_EV_CONN_TXPKT, qc); |
| |
| /* This operation can only be conducted if txbuf is not empty. This |
| * case only happens for connection with their owned socket due to an |
| * older transient sendto() error. |
| */ |
| BUG_ON(!qc_test_fd(qc)); |
| |
| if (b_data(buf) && !qc_send_ppkts(buf, qc->xprt_ctx)) { |
| if (qc->flags & QUIC_FL_CONN_TO_KILL) |
| qc_txb_release(qc); |
| TRACE_DEVEL("leaving in error", QUIC_EV_CONN_TXPKT, qc); |
| return 0; |
| } |
| |
| TRACE_LEAVE(QUIC_EV_CONN_TXPKT, qc); |
| return 1; |
| } |
| |
| /* Try to send application frames from list <frms> on connection <qc>. |
| * |
| * Use qc_send_app_probing wrapper when probing with old data. |
| * |
| * Returns 1 on success. Some data might not have been sent due to congestion, |
| * in this case they are left in <frms> input list. The caller may subscribe on |
| * quic-conn to retry later. |
| * |
| * Returns 0 on critical error. |
| * TODO review and classify more distinctly transient from definitive errors to |
| * allow callers to properly handle it. |
| */ |
| static int qc_send_app_pkts(struct quic_conn *qc, struct list *frms) |
| { |
| int status = 0, ret; |
| struct buffer *buf; |
| |
| TRACE_ENTER(QUIC_EV_CONN_TXPKT, qc); |
| |
| buf = qc_txb_alloc(qc); |
| if (!buf) { |
| TRACE_ERROR("buffer allocation failed", QUIC_EV_CONN_TXPKT, qc); |
| goto err; |
| } |
| |
| if (b_data(buf) && !qc_purge_txbuf(qc, buf)) |
| goto err; |
| |
| /* Prepare and send packets until we could not further prepare packets. */ |
| do { |
| /* Currently buf cannot be non-empty at this stage. Even if a |
| * previous sendto() has failed it is emptied to simulate |
| * packet emission and rely on QUIC lost detection to try to |
| * emit it. |
| */ |
| BUG_ON_HOT(b_data(buf)); |
| b_reset(buf); |
| |
| ret = qc_prep_app_pkts(qc, buf, frms); |
| |
| if (b_data(buf) && !qc_send_ppkts(buf, qc->xprt_ctx)) { |
| if (qc->flags & QUIC_FL_CONN_TO_KILL) |
| qc_txb_release(qc); |
| goto err; |
| } |
| } while (ret > 0); |
| |
| qc_txb_release(qc); |
| if (ret < 0) |
| goto err; |
| |
| status = 1; |
| TRACE_LEAVE(QUIC_EV_CONN_TXPKT, qc); |
| return status; |
| |
| err: |
| TRACE_DEVEL("leaving in error", QUIC_EV_CONN_TXPKT, qc); |
| return 0; |
| } |
| |
| /* Try to send application frames from list <frms> on connection <qc>. Use this |
| * function when probing is required. |
| * |
| * Returns the result from qc_send_app_pkts function. |
| */ |
| static forceinline int qc_send_app_probing(struct quic_conn *qc, |
| struct list *frms) |
| { |
| int ret; |
| |
| TRACE_ENTER(QUIC_EV_CONN_TXPKT, qc); |
| |
| TRACE_PROTO("preparing old data (probing)", QUIC_EV_CONN_FRMLIST, qc, frms); |
| qc->flags |= QUIC_FL_CONN_RETRANS_OLD_DATA; |
| ret = qc_send_app_pkts(qc, frms); |
| qc->flags &= ~QUIC_FL_CONN_RETRANS_OLD_DATA; |
| |
| TRACE_LEAVE(QUIC_EV_CONN_TXPKT, qc); |
| return ret; |
| } |
| |
| /* Try to send application frames from list <frms> on connection <qc>. This |
| * function is provided for MUX upper layer usage only. |
| * |
| * Returns the result from qc_send_app_pkts function. |
| */ |
| int qc_send_mux(struct quic_conn *qc, struct list *frms) |
| { |
| int ret; |
| |
| TRACE_ENTER(QUIC_EV_CONN_TXPKT, qc); |
| BUG_ON(qc->mux_state != QC_MUX_READY); /* Only MUX can uses this function so it must be ready. */ |
| |
| if (qc->conn->flags & CO_FL_SOCK_WR_SH) { |
| qc->conn->flags |= CO_FL_ERROR | CO_FL_SOCK_RD_SH; |
| TRACE_DEVEL("connection on error", QUIC_EV_CONN_TXPKT, qc); |
| return 0; |
| } |
| |
| /* Try to send post handshake frames first unless on 0-RTT. */ |
| if ((qc->flags & QUIC_FL_CONN_NEED_POST_HANDSHAKE_FRMS) && |
| qc->state >= QUIC_HS_ST_COMPLETE) { |
| struct quic_enc_level *qel = &qc->els[QUIC_TLS_ENC_LEVEL_APP]; |
| quic_build_post_handshake_frames(qc); |
| qc_send_app_pkts(qc, &qel->pktns->tx.frms); |
| } |
| |
| TRACE_STATE("preparing data (from MUX)", QUIC_EV_CONN_TXPKT, qc); |
| qc->flags |= QUIC_FL_CONN_TX_MUX_CONTEXT; |
| ret = qc_send_app_pkts(qc, frms); |
| qc->flags &= ~QUIC_FL_CONN_TX_MUX_CONTEXT; |
| |
| TRACE_LEAVE(QUIC_EV_CONN_TXPKT, qc); |
| return ret; |
| } |
| |
| /* Sends handshake packets from up to two encryption levels <tel> and <next_te> |
| * with <tel_frms> and <next_tel_frms> as frame list respectively for <qc> |
| * QUIC connection. <old_data> is used as boolean to send data already sent but |
| * not already acknowledged (in flight). |
| * Returns 1 if succeeded, 0 if not. |
| */ |
| int qc_send_hdshk_pkts(struct quic_conn *qc, int old_data, |
| enum quic_tls_enc_level tel, struct list *tel_frms, |
| enum quic_tls_enc_level next_tel, struct list *next_tel_frms) |
| { |
| int ret, status = 0; |
| struct buffer *buf = qc_txb_alloc(qc); |
| |
| TRACE_ENTER(QUIC_EV_CONN_TXPKT, qc); |
| |
| if (!buf) { |
| TRACE_ERROR("buffer allocation failed", QUIC_EV_CONN_TXPKT, qc); |
| goto leave; |
| } |
| |
| if (b_data(buf) && !qc_purge_txbuf(qc, buf)) |
| goto out; |
| |
| /* Currently buf cannot be non-empty at this stage. Even if a previous |
| * sendto() has failed it is emptied to simulate packet emission and |
| * rely on QUIC lost detection to try to emit it. |
| */ |
| BUG_ON_HOT(b_data(buf)); |
| b_reset(buf); |
| |
| if (old_data) { |
| TRACE_STATE("old data for probing asked", QUIC_EV_CONN_TXPKT, qc); |
| qc->flags |= QUIC_FL_CONN_RETRANS_OLD_DATA; |
| } |
| |
| ret = qc_prep_pkts(qc, buf, tel, tel_frms, next_tel, next_tel_frms); |
| if (ret == -1) { |
| qc_txb_release(qc); |
| goto out; |
| } |
| |
| if (ret && !qc_send_ppkts(buf, qc->xprt_ctx)) { |
| if (qc->flags & QUIC_FL_CONN_TO_KILL) |
| qc_txb_release(qc); |
| goto out; |
| } |
| |
| qc_txb_release(qc); |
| status = 1; |
| |
| out: |
| TRACE_STATE("no more need old data for probing", QUIC_EV_CONN_TXPKT, qc); |
| qc->flags &= ~QUIC_FL_CONN_RETRANS_OLD_DATA; |
| leave: |
| TRACE_LEAVE(QUIC_EV_CONN_TXPKT, qc); |
| return status; |
| } |
| |
| /* Retransmit up to two datagrams depending on packet number space. |
| * Return 0 when failed, 0 if not. |
| */ |
| static int qc_dgrams_retransmit(struct quic_conn *qc) |
| { |
| int ret = 0; |
| struct quic_enc_level *iqel = &qc->els[QUIC_TLS_ENC_LEVEL_INITIAL]; |
| struct quic_enc_level *hqel = &qc->els[QUIC_TLS_ENC_LEVEL_HANDSHAKE]; |
| struct quic_enc_level *aqel = &qc->els[QUIC_TLS_ENC_LEVEL_APP]; |
| |
| TRACE_ENTER(QUIC_EV_CONN_TXPKT, qc); |
| |
| if (iqel->pktns->flags & QUIC_FL_PKTNS_PROBE_NEEDED) { |
| int i; |
| |
| for (i = 0; i < QUIC_MAX_NB_PTO_DGRAMS; i++) { |
| struct list ifrms = LIST_HEAD_INIT(ifrms); |
| struct list hfrms = LIST_HEAD_INIT(hfrms); |
| |
| qc_prep_hdshk_fast_retrans(qc, &ifrms, &hfrms); |
| TRACE_DEVEL("Avail. ack eliciting frames", QUIC_EV_CONN_FRMLIST, qc, &ifrms); |
| TRACE_DEVEL("Avail. ack eliciting frames", QUIC_EV_CONN_FRMLIST, qc, &hfrms); |
| if (!LIST_ISEMPTY(&ifrms)) { |
| iqel->pktns->tx.pto_probe = 1; |
| if (!LIST_ISEMPTY(&hfrms)) |
| hqel->pktns->tx.pto_probe = 1; |
| if (!qc_send_hdshk_pkts(qc, 1, QUIC_TLS_ENC_LEVEL_INITIAL, &ifrms, |
| QUIC_TLS_ENC_LEVEL_HANDSHAKE, &hfrms)) |
| goto leave; |
| /* Put back unsent frames in their packet number spaces */ |
| LIST_SPLICE(&iqel->pktns->tx.frms, &ifrms); |
| LIST_SPLICE(&hqel->pktns->tx.frms, &hfrms); |
| } |
| else { |
| if (!(qc->flags & QUIC_FL_CONN_ANTI_AMPLIFICATION_REACHED)) { |
| iqel->pktns->tx.pto_probe = 1; |
| if (!qc_send_hdshk_pkts(qc, 0, QUIC_TLS_ENC_LEVEL_INITIAL, &ifrms, |
| QUIC_TLS_ENC_LEVEL_NONE, NULL)) |
| goto leave; |
| } |
| } |
| } |
| TRACE_STATE("no more need to probe Initial packet number space", |
| QUIC_EV_CONN_TXPKT, qc); |
| iqel->pktns->flags &= ~QUIC_FL_PKTNS_PROBE_NEEDED; |
| hqel->pktns->flags &= ~QUIC_FL_PKTNS_PROBE_NEEDED; |
| } |
| else { |
| int i; |
| |
| if (hqel->pktns->flags & QUIC_FL_PKTNS_PROBE_NEEDED) { |
| hqel->pktns->tx.pto_probe = 0; |
| for (i = 0; i < QUIC_MAX_NB_PTO_DGRAMS; i++) { |
| struct list frms1 = LIST_HEAD_INIT(frms1); |
| |
| qc_prep_fast_retrans(qc, hqel, &frms1, NULL); |
| TRACE_DEVEL("Avail. ack eliciting frames", QUIC_EV_CONN_FRMLIST, qc, &frms1); |
| if (!LIST_ISEMPTY(&frms1)) { |
| hqel->pktns->tx.pto_probe = 1; |
| if (!qc_send_hdshk_pkts(qc, 1, QUIC_TLS_ENC_LEVEL_HANDSHAKE, &frms1, |
| QUIC_TLS_ENC_LEVEL_NONE, NULL)) |
| goto leave; |
| |
| /* Put back unsent frames into their packet number spaces */ |
| LIST_SPLICE(&hqel->pktns->tx.frms, &frms1); |
| } |
| } |
| TRACE_STATE("no more need to probe Handshake packet number space", |
| QUIC_EV_CONN_TXPKT, qc); |
| hqel->pktns->flags &= ~QUIC_FL_PKTNS_PROBE_NEEDED; |
| } |
| else if (aqel->pktns->flags & QUIC_FL_PKTNS_PROBE_NEEDED) { |
| struct list frms2 = LIST_HEAD_INIT(frms2); |
| struct list frms1 = LIST_HEAD_INIT(frms1); |
| |
| aqel->pktns->tx.pto_probe = 0; |
| qc_prep_fast_retrans(qc, aqel, &frms1, &frms2); |
| TRACE_PROTO("Avail. ack eliciting frames", QUIC_EV_CONN_FRMLIST, qc, &frms1); |
| TRACE_PROTO("Avail. ack eliciting frames", QUIC_EV_CONN_FRMLIST, qc, &frms2); |
| if (!LIST_ISEMPTY(&frms1)) { |
| aqel->pktns->tx.pto_probe = 1; |
| if (!qc_send_app_probing(qc, &frms1)) { |
| qc_free_frm_list(&frms1); |
| qc_free_frm_list(&frms2); |
| goto leave; |
| } |
| |
| /* Put back unsent frames into their packet number spaces */ |
| LIST_SPLICE(&aqel->pktns->tx.frms, &frms1); |
| } |
| if (!LIST_ISEMPTY(&frms2)) { |
| aqel->pktns->tx.pto_probe = 1; |
| if (!qc_send_app_probing(qc, &frms2)) { |
| qc_free_frm_list(&frms2); |
| goto leave; |
| } |
| /* Put back unsent frames into their packet number spaces */ |
| LIST_SPLICE(&aqel->pktns->tx.frms, &frms2); |
| } |
| TRACE_STATE("no more need to probe 01RTT packet number space", |
| QUIC_EV_CONN_TXPKT, qc); |
| aqel->pktns->flags &= ~QUIC_FL_PKTNS_PROBE_NEEDED; |
| } |
| } |
| |
| ret = 1; |
| leave: |
| TRACE_LEAVE(QUIC_EV_CONN_TXPKT, qc); |
| return ret; |
| } |
| |
| /* QUIC connection packet handler task (post handshake) */ |
| struct task *quic_conn_app_io_cb(struct task *t, void *context, unsigned int state) |
| { |
| struct quic_conn *qc = context; |
| struct quic_enc_level *qel; |
| |
| TRACE_ENTER(QUIC_EV_CONN_IO_CB, qc); |
| |
| qel = &qc->els[QUIC_TLS_ENC_LEVEL_APP]; |
| TRACE_STATE("connection handshake state", QUIC_EV_CONN_IO_CB, qc, &qc->state); |
| |
| if (qc_test_fd(qc)) |
| qc_rcv_buf(qc); |
| |
| /* Prepare post-handshake frames |
| * - after connection is instantiated (accept is done) |
| * - handshake state is completed (may not be the case here in 0-RTT) |
| */ |
| if ((qc->flags & QUIC_FL_CONN_NEED_POST_HANDSHAKE_FRMS) && qc->conn && |
| qc->state >= QUIC_HS_ST_COMPLETE) { |
| quic_build_post_handshake_frames(qc); |
| } |
| |
| /* Retranmissions */ |
| if (qc->flags & QUIC_FL_CONN_RETRANS_NEEDED) { |
| TRACE_STATE("retransmission needed", QUIC_EV_CONN_IO_CB, qc); |
| qc->flags &= ~QUIC_FL_CONN_RETRANS_NEEDED; |
| if (!qc_dgrams_retransmit(qc)) |
| goto out; |
| } |
| |
| if (!LIST_ISEMPTY(&qel->rx.pqpkts) && qc_qel_may_rm_hp(qc, qel)) |
| qc_rm_hp_pkts(qc, qel); |
| |
| if (!qc_treat_rx_pkts(qc, qel, NULL)) { |
| TRACE_DEVEL("qc_treat_rx_pkts() failed", QUIC_EV_CONN_IO_CB, qc); |
| goto out; |
| } |
| |
| if (qc->flags & QUIC_FL_CONN_TO_KILL) { |
| TRACE_DEVEL("connection to be killed", QUIC_EV_CONN_IO_CB, qc); |
| goto out; |
| } |
| |
| if ((qc->flags & QUIC_FL_CONN_DRAINING) && |
| !(qc->flags & QUIC_FL_CONN_IMMEDIATE_CLOSE)) { |
| TRACE_STATE("draining connection (must not send packets)", QUIC_EV_CONN_IO_CB, qc); |
| goto out; |
| } |
| |
| /* XXX TODO: how to limit the list frames to send */ |
| if (!qc_send_app_pkts(qc, &qel->pktns->tx.frms)) { |
| TRACE_DEVEL("qc_send_app_pkts() failed", QUIC_EV_CONN_IO_CB, qc); |
| goto out; |
| } |
| |
| out: |
| TRACE_LEAVE(QUIC_EV_CONN_IO_CB, qc); |
| return t; |
| } |
| |
| /* Returns a boolean if <qc> needs to emit frames for <qel> encryption level. */ |
| static int qc_need_sending(struct quic_conn *qc, struct quic_enc_level *qel) |
| { |
| return (qc->flags & QUIC_FL_CONN_IMMEDIATE_CLOSE) || |
| (qel->pktns->flags & QUIC_FL_PKTNS_ACK_REQUIRED) || |
| qel->pktns->tx.pto_probe || |
| !LIST_ISEMPTY(&qel->pktns->tx.frms); |
| } |
| |
| /* QUIC connection packet handler task. */ |
| struct task *quic_conn_io_cb(struct task *t, void *context, unsigned int state) |
| { |
| int ret, ssl_err; |
| struct quic_conn *qc = context; |
| enum quic_tls_enc_level tel, next_tel; |
| struct quic_enc_level *qel, *next_qel; |
| /* Early-data encryption level */ |
| struct quic_enc_level *eqel; |
| struct buffer *buf = NULL; |
| int st, zero_rtt; |
| |
| TRACE_ENTER(QUIC_EV_CONN_IO_CB, qc); |
| |
| eqel = &qc->els[QUIC_TLS_ENC_LEVEL_EARLY_DATA]; |
| st = qc->state; |
| TRACE_PROTO("connection state", QUIC_EV_CONN_IO_CB, qc, &st); |
| |
| /* Retranmissions */ |
| if (qc->flags & QUIC_FL_CONN_RETRANS_NEEDED) { |
| TRACE_DEVEL("retransmission needed", QUIC_EV_CONN_PHPKTS, qc); |
| qc->flags &= ~QUIC_FL_CONN_RETRANS_NEEDED; |
| if (!qc_dgrams_retransmit(qc)) |
| goto out; |
| } |
| |
| ssl_err = SSL_ERROR_NONE; |
| zero_rtt = st < QUIC_HS_ST_COMPLETE && |
| quic_tls_has_rx_sec(eqel) && |
| (!LIST_ISEMPTY(&eqel->rx.pqpkts) || qc_el_rx_pkts(eqel)); |
| |
| if (qc_test_fd(qc)) |
| qc_rcv_buf(qc); |
| |
| if (st >= QUIC_HS_ST_COMPLETE && |
| qc_el_rx_pkts(&qc->els[QUIC_TLS_ENC_LEVEL_HANDSHAKE])) { |
| TRACE_DEVEL("remaining Handshake packets", QUIC_EV_CONN_PHPKTS, qc); |
| /* There may be remaining Handshake packets to treat and acknowledge. */ |
| tel = QUIC_TLS_ENC_LEVEL_HANDSHAKE; |
| next_tel = QUIC_TLS_ENC_LEVEL_APP; |
| } |
| else if (!quic_get_tls_enc_levels(&tel, &next_tel, qc, st, zero_rtt)) |
| goto out; |
| |
| qel = &qc->els[tel]; |
| next_qel = next_tel == QUIC_TLS_ENC_LEVEL_NONE ? NULL : &qc->els[next_tel]; |
| |
| next_level: |
| /* Treat packets waiting for header packet protection decryption */ |
| if (!LIST_ISEMPTY(&qel->rx.pqpkts) && qc_qel_may_rm_hp(qc, qel)) |
| qc_rm_hp_pkts(qc, qel); |
| |
| if (!qc_treat_rx_pkts(qc, qel, next_qel)) |
| goto out; |
| |
| if (qc->flags & QUIC_FL_CONN_TO_KILL) { |
| TRACE_DEVEL("connection to be killed", QUIC_EV_CONN_PHPKTS, qc); |
| goto out; |
| } |
| |
| if ((qc->flags & QUIC_FL_CONN_DRAINING) && |
| !(qc->flags & QUIC_FL_CONN_IMMEDIATE_CLOSE)) |
| goto out; |
| |
| zero_rtt = st < QUIC_HS_ST_COMPLETE && |
| quic_tls_has_rx_sec(eqel) && |
| (!LIST_ISEMPTY(&eqel->rx.pqpkts) || qc_el_rx_pkts(eqel)); |
| if (next_qel && next_qel == eqel && zero_rtt) { |
| TRACE_DEVEL("select 0RTT as next encryption level", |
| QUIC_EV_CONN_PHPKTS, qc); |
| qel = next_qel; |
| next_qel = NULL; |
| goto next_level; |
| } |
| |
| st = qc->state; |
| if (st >= QUIC_HS_ST_COMPLETE) { |
| if (!(qc->els[QUIC_TLS_ENC_LEVEL_HANDSHAKE].tls_ctx.flags & |
| QUIC_FL_TLS_SECRETS_DCD)) { |
| /* Discard the Handshake keys. */ |
| quic_tls_discard_keys(&qc->els[QUIC_TLS_ENC_LEVEL_HANDSHAKE]); |
| TRACE_PROTO("discarding Handshake pktns", QUIC_EV_CONN_PHPKTS, qc); |
| quic_pktns_discard(qc->els[QUIC_TLS_ENC_LEVEL_HANDSHAKE].pktns, qc); |
| qc_set_timer(qc); |
| qc_el_rx_pkts_del(&qc->els[QUIC_TLS_ENC_LEVEL_HANDSHAKE]); |
| qc_release_pktns_frms(qc, qc->els[QUIC_TLS_ENC_LEVEL_HANDSHAKE].pktns); |
| } |
| |
| if (qc->els[QUIC_TLS_ENC_LEVEL_HANDSHAKE].pktns->flags & QUIC_FL_PKTNS_ACK_REQUIRED) { |
| /* There may be remaining handshake to build (acks) */ |
| st = QUIC_HS_ST_SERVER_HANDSHAKE; |
| } |
| } |
| |
| /* A listener does not send any O-RTT packet. O-RTT packet number space must not |
| * be considered. |
| */ |
| if (!quic_get_tls_enc_levels(&tel, &next_tel, qc, st, 0)) |
| goto out; |
| |
| if (!qc_need_sending(qc, qel) && |
| (!next_qel || !qc_need_sending(qc, next_qel))) { |
| goto skip_send; |
| } |
| |
| buf = qc_txb_alloc(qc); |
| if (!buf) |
| goto out; |
| |
| if (b_data(buf) && !qc_purge_txbuf(qc, buf)) |
| goto skip_send; |
| |
| /* Currently buf cannot be non-empty at this stage. Even if a previous |
| * sendto() has failed it is emptied to simulate packet emission and |
| * rely on QUIC lost detection to try to emit it. |
| */ |
| BUG_ON_HOT(b_data(buf)); |
| b_reset(buf); |
| |
| ret = qc_prep_pkts(qc, buf, tel, &qc->els[tel].pktns->tx.frms, |
| next_tel, &qc->els[next_tel].pktns->tx.frms); |
| if (ret == -1) { |
| qc_txb_release(qc); |
| goto out; |
| } |
| |
| if (ret && !qc_send_ppkts(buf, qc->xprt_ctx)) { |
| if (qc->flags & QUIC_FL_CONN_TO_KILL) |
| qc_txb_release(qc); |
| goto out; |
| } |
| |
| qc_txb_release(qc); |
| |
| skip_send: |
| /* Check if there is something to do for the next level. |
| */ |
| if (next_qel && next_qel != qel && |
| quic_tls_has_rx_sec(next_qel) && |
| (!LIST_ISEMPTY(&next_qel->rx.pqpkts) || qc_el_rx_pkts(next_qel))) { |
| qel = next_qel; |
| next_qel = NULL; |
| goto next_level; |
| } |
| |
| out: |
| TRACE_PROTO("ssl error", QUIC_EV_CONN_IO_CB, qc, &st, &ssl_err); |
| TRACE_LEAVE(QUIC_EV_CONN_IO_CB, qc); |
| return t; |
| } |
| |
| /* Release the memory allocated for <cs> CRYPTO stream */ |
| void quic_cstream_free(struct quic_cstream *cs) |
| { |
| if (!cs) { |
| /* This is the case for ORTT encryption level */ |
| return; |
| } |
| |
| quic_free_ncbuf(&cs->rx.ncbuf); |
| |
| qc_stream_desc_release(cs->desc); |
| pool_free(pool_head_quic_cstream, cs); |
| } |
| |
| /* Allocate a new QUIC stream for <qc>. |
| * Return it if succeeded, NULL if not. |
| */ |
| struct quic_cstream *quic_cstream_new(struct quic_conn *qc) |
| { |
| struct quic_cstream *cs, *ret_cs = NULL; |
| |
| TRACE_ENTER(QUIC_EV_CONN_LPKT, qc); |
| cs = pool_alloc(pool_head_quic_cstream); |
| if (!cs) { |
| TRACE_ERROR("crypto stream allocation failed", QUIC_EV_CONN_INIT, qc); |
| goto leave; |
| } |
| |
| cs->rx.offset = 0; |
| cs->rx.ncbuf = NCBUF_NULL; |
| cs->rx.offset = 0; |
| |
| cs->tx.offset = 0; |
| cs->tx.sent_offset = 0; |
| cs->tx.buf = BUF_NULL; |
| cs->desc = qc_stream_desc_new((uint64_t)-1, -1, cs, qc); |
| if (!cs->desc) { |
| TRACE_ERROR("crypto stream allocation failed", QUIC_EV_CONN_INIT, qc); |
| goto err; |
| } |
| |
| ret_cs = cs; |
| leave: |
| TRACE_LEAVE(QUIC_EV_CONN_LPKT, qc); |
| return ret_cs; |
| |
| err: |
| pool_free(pool_head_quic_cstream, cs); |
| goto leave; |
| } |
| |
| /* Uninitialize <qel> QUIC encryption level. Never fails. */ |
| static void quic_conn_enc_level_uninit(struct quic_conn *qc, struct quic_enc_level *qel) |
| { |
| int i; |
| |
| TRACE_ENTER(QUIC_EV_CONN_CLOSE, qc); |
| |
| for (i = 0; i < qel->tx.crypto.nb_buf; i++) { |
| if (qel->tx.crypto.bufs[i]) { |
| pool_free(pool_head_quic_crypto_buf, qel->tx.crypto.bufs[i]); |
| qel->tx.crypto.bufs[i] = NULL; |
| } |
| } |
| ha_free(&qel->tx.crypto.bufs); |
| quic_cstream_free(qel->cstream); |
| |
| TRACE_LEAVE(QUIC_EV_CONN_CLOSE, qc); |
| } |
| |
| /* Initialize QUIC TLS encryption level with <level<> as level for <qc> QUIC |
| * connection allocating everything needed. |
| * |
| * Returns 1 if succeeded, 0 if not. On error the caller is responsible to use |
| * quic_conn_enc_level_uninit() to cleanup partially allocated content. |
| */ |
| static int quic_conn_enc_level_init(struct quic_conn *qc, |
| enum quic_tls_enc_level level) |
| { |
| int ret = 0; |
| struct quic_enc_level *qel; |
| |
| TRACE_ENTER(QUIC_EV_CONN_CLOSE, qc); |
| |
| qel = &qc->els[level]; |
| qel->level = quic_to_ssl_enc_level(level); |
| qel->tls_ctx.rx.aead = qel->tls_ctx.tx.aead = NULL; |
| qel->tls_ctx.rx.md = qel->tls_ctx.tx.md = NULL; |
| qel->tls_ctx.rx.hp = qel->tls_ctx.tx.hp = NULL; |
| qel->tls_ctx.flags = 0; |
| |
| qel->rx.pkts = EB_ROOT; |
| LIST_INIT(&qel->rx.pqpkts); |
| |
| /* Allocate only one buffer. */ |
| /* TODO: use a pool */ |
| qel->tx.crypto.bufs = malloc(sizeof *qel->tx.crypto.bufs); |
| if (!qel->tx.crypto.bufs) |
| goto leave; |
| |
| qel->tx.crypto.bufs[0] = pool_alloc(pool_head_quic_crypto_buf); |
| if (!qel->tx.crypto.bufs[0]) |
| goto leave; |
| |
| qel->tx.crypto.bufs[0]->sz = 0; |
| qel->tx.crypto.nb_buf = 1; |
| |
| qel->tx.crypto.sz = 0; |
| qel->tx.crypto.offset = 0; |
| /* No CRYPTO data for early data TLS encryption level */ |
| if (level == QUIC_TLS_ENC_LEVEL_EARLY_DATA) |
| qel->cstream = NULL; |
| else { |
| qel->cstream = quic_cstream_new(qc); |
| if (!qel->cstream) |
| goto leave; |
| } |
| |
| ret = 1; |
| leave: |
| TRACE_LEAVE(QUIC_EV_CONN_CLOSE, qc); |
| return ret; |
| } |
| |
| /* Return 1 if <qc> connection may probe the Initial packet number space, 0 if not. |
| * This is not the case if the remote peer address is not validated and if |
| * it cannot send at least QUIC_INITIAL_PACKET_MINLEN bytes. |
| */ |
| static int qc_may_probe_ipktns(struct quic_conn *qc) |
| { |
| return quic_peer_validated_addr(qc) || |
| (int)(3 * qc->rx.bytes - qc->tx.prep_bytes) >= QUIC_INITIAL_PACKET_MINLEN; |
| } |
| |
| /* Callback called upon loss detection and PTO timer expirations. */ |
| struct task *qc_process_timer(struct task *task, void *ctx, unsigned int state) |
| { |
| struct quic_conn *qc = ctx; |
| struct quic_pktns *pktns; |
| |
| TRACE_ENTER(QUIC_EV_CONN_PTIMER, qc); |
| TRACE_PROTO("process timer", QUIC_EV_CONN_PTIMER, qc, |
| NULL, NULL, &qc->path->ifae_pkts); |
| |
| task->expire = TICK_ETERNITY; |
| pktns = quic_loss_pktns(qc); |
| |
| if (qc->flags & (QUIC_FL_CONN_DRAINING|QUIC_FL_CONN_TO_KILL)) { |
| TRACE_PROTO("cancelled action (draining state)", QUIC_EV_CONN_PTIMER, qc); |
| goto out; |
| } |
| |
| if (tick_isset(pktns->tx.loss_time)) { |
| struct list lost_pkts = LIST_HEAD_INIT(lost_pkts); |
| |
| qc_packet_loss_lookup(pktns, qc, &lost_pkts); |
| if (!LIST_ISEMPTY(&lost_pkts)) |
| tasklet_wakeup(qc->wait_event.tasklet); |
| if (qc_release_lost_pkts(qc, pktns, &lost_pkts, now_ms)) |
| qc_set_timer(qc); |
| goto out; |
| } |
| |
| if (qc->path->in_flight) { |
| pktns = quic_pto_pktns(qc, qc->state >= QUIC_HS_ST_CONFIRMED, NULL); |
| if (!pktns->tx.in_flight) { |
| TRACE_PROTO("No in flight packets to probe with", QUIC_EV_CONN_TXPKT, qc); |
| goto out; |
| } |
| |
| if (pktns == &qc->pktns[QUIC_TLS_PKTNS_INITIAL]) { |
| if (qc_may_probe_ipktns(qc)) { |
| qc->flags |= QUIC_FL_CONN_RETRANS_NEEDED; |
| pktns->flags |= QUIC_FL_PKTNS_PROBE_NEEDED; |
| TRACE_STATE("needs to probe Initial packet number space", QUIC_EV_CONN_TXPKT, qc); |
| } |
| else { |
| TRACE_STATE("Cannot probe Initial packet number space", QUIC_EV_CONN_TXPKT, qc); |
| } |
| if (qc->pktns[QUIC_TLS_PKTNS_HANDSHAKE].tx.in_flight) { |
| qc->flags |= QUIC_FL_CONN_RETRANS_NEEDED; |
| qc->pktns[QUIC_TLS_PKTNS_HANDSHAKE].flags |= QUIC_FL_PKTNS_PROBE_NEEDED; |
| TRACE_STATE("needs to probe Handshake packet number space", QUIC_EV_CONN_TXPKT, qc); |
| } |
| } |
| else if (pktns == &qc->pktns[QUIC_TLS_PKTNS_HANDSHAKE]) { |
| TRACE_STATE("needs to probe Handshake packet number space", QUIC_EV_CONN_TXPKT, qc); |
| qc->flags |= QUIC_FL_CONN_RETRANS_NEEDED; |
| pktns->flags |= QUIC_FL_PKTNS_PROBE_NEEDED; |
| if (qc->pktns[QUIC_TLS_PKTNS_INITIAL].tx.in_flight) { |
| if (qc_may_probe_ipktns(qc)) { |
| qc->pktns[QUIC_TLS_PKTNS_INITIAL].flags |= QUIC_FL_PKTNS_PROBE_NEEDED; |
| TRACE_STATE("needs to probe Initial packet number space", QUIC_EV_CONN_TXPKT, qc); |
| } |
| else { |
| TRACE_STATE("Cannot probe Initial packet number space", QUIC_EV_CONN_TXPKT, qc); |
| } |
| } |
| } |
| else if (pktns == &qc->pktns[QUIC_TLS_PKTNS_01RTT]) { |
| pktns->tx.pto_probe = QUIC_MAX_NB_PTO_DGRAMS; |
| /* Wake up upper layer if waiting to send new data. */ |
| if (!qc_notify_send(qc)) { |
| TRACE_STATE("needs to probe 01RTT packet number space", QUIC_EV_CONN_TXPKT, qc); |
| qc->flags |= QUIC_FL_CONN_RETRANS_NEEDED; |
| pktns->flags |= QUIC_FL_PKTNS_PROBE_NEEDED; |
| } |
| } |
| } |
| else if (!qc_is_listener(qc) && qc->state <= QUIC_HS_ST_COMPLETE) { |
| struct quic_enc_level *iel = &qc->els[QUIC_TLS_ENC_LEVEL_INITIAL]; |
| struct quic_enc_level *hel = &qc->els[QUIC_TLS_ENC_LEVEL_HANDSHAKE]; |
| |
| if (quic_tls_has_tx_sec(hel)) |
| hel->pktns->tx.pto_probe = 1; |
| if (quic_tls_has_tx_sec(iel)) |
| iel->pktns->tx.pto_probe = 1; |
| } |
| |
| tasklet_wakeup(qc->wait_event.tasklet); |
| qc->path->loss.pto_count++; |
| |
| out: |
| TRACE_PROTO("process timer", QUIC_EV_CONN_PTIMER, qc, pktns); |
| TRACE_LEAVE(QUIC_EV_CONN_PTIMER, qc); |
| |
| return task; |
| } |
| |
| /* Parse the Retry token from buffer <token> with <end> a pointer to |
| * one byte past the end of this buffer. This will extract the ODCID |
| * which will be stored into <odcid> |
| * |
| * Returns 0 on success else non-zero. |
| */ |
| static int parse_retry_token(struct quic_conn *qc, |
| const unsigned char *token, const unsigned char *end, |
| struct quic_cid *odcid) |
| { |
| int ret = 0; |
| uint64_t odcid_len; |
| uint32_t timestamp; |
| uint32_t now_sec = (uint32_t)date.tv_sec; |
| |
| TRACE_ENTER(QUIC_EV_CONN_LPKT, qc); |
| |
| if (!quic_dec_int(&odcid_len, &token, end)) { |
| TRACE_ERROR("quic_dec_int() error", QUIC_EV_CONN_LPKT, qc); |
| goto leave; |
| } |
| |
| /* RFC 9000 7.2. Negotiating Connection IDs: |
| * When an Initial packet is sent by a client that has not previously |
| * received an Initial or Retry packet from the server, the client |
| * populates the Destination Connection ID field with an unpredictable |
| * value. This Destination Connection ID MUST be at least 8 bytes in length. |
| */ |
| if (odcid_len < QUIC_ODCID_MINLEN || odcid_len > QUIC_CID_MAXLEN) { |
| TRACE_ERROR("wrong ODCID length", QUIC_EV_CONN_LPKT, qc); |
| goto leave; |
| } |
| |
| if (end - token < odcid_len + sizeof timestamp) { |
| TRACE_ERROR("too long ODCID length", QUIC_EV_CONN_LPKT, qc); |
| goto leave; |
| } |
| |
| timestamp = ntohl(read_u32(token + odcid_len)); |
| /* check if elapsed time is +/- QUIC_RETRY_DURATION_SEC |
| * to tolerate token generator is not perfectly time synced |
| */ |
| if ((uint32_t)(now_sec - timestamp) > QUIC_RETRY_DURATION_SEC && |
| (uint32_t)(timestamp - now_sec) > QUIC_RETRY_DURATION_SEC) { |
| TRACE_ERROR("token has expired", QUIC_EV_CONN_LPKT, qc); |
| goto leave; |
| } |
| |
| ret = 1; |
| memcpy(odcid->data, token, odcid_len); |
| odcid->len = odcid_len; |
| leave: |
| TRACE_LEAVE(QUIC_EV_CONN_LPKT, qc); |
| return !ret; |
| } |
| |
| /* Allocate a new QUIC connection with <version> as QUIC version. <ipv4> |
| * boolean is set to 1 for IPv4 connection, 0 for IPv6. <server> is set to 1 |
| * for QUIC servers (or haproxy listeners). |
| * <dcid> is the destination connection ID, <scid> is the source connection ID. |
| * This latter <scid> CID as the same value on the wire as the one for <conn_id> |
| * which is the first CID of this connection but a different internal representation used to build |
| * NEW_CONNECTION_ID frames. This is the responsability of the caller to insert |
| * <conn_id> in the CIDs tree for this connection (qc->cids). |
| * <token> is the token found to be used for this connection with <token_len> as |
| * length. Endpoints addresses are specified via <local_addr> and <peer_addr>. |
| * Returns the connection if succeeded, NULL if not. |
| */ |
| static struct quic_conn *qc_new_conn(const struct quic_version *qv, int ipv4, |
| struct quic_cid *dcid, struct quic_cid *scid, |
| const struct quic_cid *token_odcid, |
| struct quic_connection_id *conn_id, |
| struct sockaddr_storage *local_addr, |
| struct sockaddr_storage *peer_addr, |
| int server, int token, void *owner) |
| { |
| int i; |
| struct quic_conn *qc = NULL; |
| /* Initial CID. */ |
| char *buf_area = NULL; |
| struct listener *l = NULL; |
| struct quic_cc_algo *cc_algo = NULL; |
| struct quic_tls_ctx *ictx; |
| unsigned int next_actconn = 0, next_sslconn = 0; |
| TRACE_ENTER(QUIC_EV_CONN_INIT); |
| |
| next_actconn = increment_actconn(); |
| if (!next_actconn) { |
| _HA_ATOMIC_INC(&maxconn_reached); |
| TRACE_STATE("maxconn reached", QUIC_EV_CONN_INIT); |
| goto err; |
| } |
| |
| next_sslconn = increment_sslconn(); |
| if (!next_sslconn) { |
| TRACE_STATE("sslconn reached", QUIC_EV_CONN_INIT); |
| goto err; |
| } |
| |
| /* TODO replace pool_zalloc by pool_alloc(). This requires special care |
| * to properly initialized internal quic_conn members to safely use |
| * quic_conn_release() on alloc failure. |
| */ |
| qc = pool_zalloc(pool_head_quic_conn); |
| if (!qc) { |
| TRACE_ERROR("Could not allocate a new connection", QUIC_EV_CONN_INIT); |
| goto err; |
| } |
| |
| /* Now that quic_conn instance is allocated, quic_conn_release() will |
| * ensure global accounting is decremented. |
| */ |
| next_sslconn = next_actconn = 0; |
| |
| /* Initialize in priority qc members required for a safe dealloc. */ |
| |
| /* required to use MTLIST_IN_LIST */ |
| MT_LIST_INIT(&qc->accept_list); |
| |
| LIST_INIT(&qc->rx.pkt_list); |
| |
| qc_init_fd(qc); |
| |
| LIST_INIT(&qc->back_refs); |
| LIST_INIT(&qc->el_th_ctx); |
| |
| /* Now proceeds to allocation of qc members. */ |
| |
| buf_area = pool_alloc(pool_head_quic_conn_rxbuf); |
| if (!buf_area) { |
| TRACE_ERROR("Could not allocate a new RX buffer", QUIC_EV_CONN_INIT, qc); |
| goto err; |
| } |
| |
| qc->cids = EB_ROOT; |
| /* QUIC Server (or listener). */ |
| if (server) { |
| struct proxy *prx; |
| |
| l = owner; |
| prx = l->bind_conf->frontend; |
| cc_algo = l->bind_conf->quic_cc_algo; |
| |
| qc->prx_counters = EXTRA_COUNTERS_GET(prx->extra_counters_fe, |
| &quic_stats_module); |
| qc->flags |= QUIC_FL_CONN_LISTENER; |
| qc->state = QUIC_HS_ST_SERVER_INITIAL; |
| /* Copy the client original DCID. */ |
| qc->odcid.len = dcid->len; |
| memcpy(qc->odcid.data, dcid->data, dcid->len); |
| |
| /* copy the packet SCID to reuse it as DCID for sending */ |
| if (scid->len) |
| memcpy(qc->dcid.data, scid->data, scid->len); |
| qc->dcid.len = scid->len; |
| qc->tx.buf = BUF_NULL; |
| qc->li = l; |
| } |
| /* QUIC Client (outgoing connection to servers) */ |
| else { |
| qc->state = QUIC_HS_ST_CLIENT_INITIAL; |
| if (dcid->len) |
| memcpy(qc->dcid.data, dcid->data, dcid->len); |
| qc->dcid.len = dcid->len; |
| } |
| qc->mux_state = QC_MUX_NULL; |
| qc->err = quic_err_transport(QC_ERR_NO_ERROR); |
| |
| conn_id->qc = qc; |
| |
| if ((global.tune.options & GTUNE_QUIC_SOCK_PER_CONN) && |
| is_addr(local_addr)) { |
| TRACE_USER("Allocate a socket for QUIC connection", QUIC_EV_CONN_INIT, qc); |
| qc_alloc_fd(qc, local_addr, peer_addr); |
| |
| /* haproxy soft-stop is supported only for QUIC connections |
| * with their owned socket. |
| */ |
| if (qc_test_fd(qc)) |
| _HA_ATOMIC_INC(&jobs); |
| } |
| |
| /* Select our SCID which is the first CID with 0 as sequence number. */ |
| qc->scid = conn_id->cid; |
| |
| /* Packet number spaces initialization. */ |
| for (i = 0; i < QUIC_TLS_PKTNS_MAX; i++) |
| quic_pktns_init(&qc->pktns[i]); |
| /* QUIC encryption level context initialization. */ |
| for (i = 0; i < QUIC_TLS_ENC_LEVEL_MAX; i++) { |
| if (!quic_conn_enc_level_init(qc, i)) { |
| TRACE_ERROR("Could not initialize an encryption level", QUIC_EV_CONN_INIT, qc); |
| goto err; |
| } |
| /* Initialize the packet number space. */ |
| qc->els[i].pktns = &qc->pktns[quic_tls_pktns(i)]; |
| } |
| |
| qc->original_version = qv; |
| qc->tps_tls_ext = (qc->original_version->num & 0xff000000) == 0xff000000 ? |
| TLS_EXTENSION_QUIC_TRANSPORT_PARAMETERS_DRAFT: |
| TLS_EXTENSION_QUIC_TRANSPORT_PARAMETERS; |
| /* TX part. */ |
| LIST_INIT(&qc->tx.frms_to_send); |
| qc->tx.nb_buf = QUIC_CONN_TX_BUFS_NB; |
| qc->tx.wbuf = qc->tx.rbuf = 0; |
| qc->tx.bytes = 0; |
| qc->tx.buf = BUF_NULL; |
| /* RX part. */ |
| qc->rx.bytes = 0; |
| qc->rx.buf = b_make(buf_area, QUIC_CONN_RX_BUFSZ, 0, 0); |
| for (i = 0; i < QCS_MAX_TYPES; i++) |
| qc->rx.strms[i].nb_streams = 0; |
| |
| qc->nb_pkt_for_cc = 1; |
| qc->nb_pkt_since_cc = 0; |
| |
| if (!quic_tls_ku_init(qc)) { |
| TRACE_ERROR("Key update initialization failed", QUIC_EV_CONN_INIT, qc); |
| goto err; |
| } |
| |
| /* XXX TO DO: Only one path at this time. */ |
| qc->path = &qc->paths[0]; |
| quic_path_init(qc->path, ipv4, cc_algo ? cc_algo : default_quic_cc_algo, qc); |
| |
| qc->streams_by_id = EB_ROOT_UNIQUE; |
| qc->stream_buf_count = 0; |
| memcpy(&qc->local_addr, local_addr, sizeof(qc->local_addr)); |
| memcpy(&qc->peer_addr, peer_addr, sizeof qc->peer_addr); |
| |
| if (server && !qc_lstnr_params_init(qc, &l->bind_conf->quic_params, |
| conn_id->stateless_reset_token, |
| dcid->data, dcid->len, |
| qc->scid.data, qc->scid.len, token_odcid)) |
| goto err; |
| |
| /* Initialize the idle timeout of the connection at the "max_idle_timeout" |
| * value from local transport parameters. |
| */ |
| qc->max_idle_timeout = qc->rx.params.max_idle_timeout; |
| qc->wait_event.tasklet = tasklet_new(); |
| if (!qc->wait_event.tasklet) { |
| TRACE_ERROR("tasklet_new() failed", QUIC_EV_CONN_TXPKT); |
| goto err; |
| } |
| qc->wait_event.tasklet->process = quic_conn_io_cb; |
| qc->wait_event.tasklet->context = qc; |
| qc->wait_event.events = 0; |
| qc->subs = NULL; |
| |
| if (qc_conn_alloc_ssl_ctx(qc) || |
| !quic_conn_init_timer(qc) || |
| !quic_conn_init_idle_timer_task(qc)) |
| goto err; |
| |
| ictx = &qc->els[QUIC_TLS_ENC_LEVEL_INITIAL].tls_ctx; |
| if (!qc_new_isecs(qc, ictx,qc->original_version, dcid->data, dcid->len, 1)) |
| goto err; |
| |
| /* Counters initialization */ |
| memset(&qc->cntrs, 0, sizeof qc->cntrs); |
| |
| LIST_APPEND(&th_ctx->quic_conns, &qc->el_th_ctx); |
| qc->qc_epoch = HA_ATOMIC_LOAD(&qc_epoch); |
| |
| TRACE_LEAVE(QUIC_EV_CONN_INIT, qc); |
| |
| return qc; |
| |
| err: |
| pool_free(pool_head_quic_conn_rxbuf, buf_area); |
| if (qc) { |
| qc->rx.buf.area = NULL; |
| quic_conn_release(qc); |
| } |
| |
| /* Decrement global counters. Done only for errors happening before or |
| * on pool_head_quic_conn alloc. All other cases are covered by |
| * quic_conn_release(). |
| */ |
| if (next_actconn) |
| _HA_ATOMIC_DEC(&actconn); |
| if (next_sslconn) |
| _HA_ATOMIC_DEC(&global.sslconns); |
| |
| TRACE_LEAVE(QUIC_EV_CONN_INIT); |
| return NULL; |
| } |
| |
| /* Update the proxy counters of <qc> QUIC connection from its counters */ |
| static inline void quic_conn_prx_cntrs_update(struct quic_conn *qc) |
| { |
| if (!qc->prx_counters) |
| return; |
| |
| HA_ATOMIC_ADD(&qc->prx_counters->dropped_pkt, qc->cntrs.dropped_pkt); |
| HA_ATOMIC_ADD(&qc->prx_counters->dropped_pkt_bufoverrun, qc->cntrs.dropped_pkt_bufoverrun); |
| HA_ATOMIC_ADD(&qc->prx_counters->dropped_parsing, qc->cntrs.dropped_parsing); |
| HA_ATOMIC_ADD(&qc->prx_counters->socket_full, qc->cntrs.socket_full); |
| HA_ATOMIC_ADD(&qc->prx_counters->sendto_err, qc->cntrs.sendto_err); |
| HA_ATOMIC_ADD(&qc->prx_counters->sendto_err_unknown, qc->cntrs.sendto_err_unknown); |
| HA_ATOMIC_ADD(&qc->prx_counters->sent_pkt, qc->cntrs.sent_pkt); |
| HA_ATOMIC_ADD(&qc->prx_counters->lost_pkt, qc->path->loss.nb_lost_pkt); |
| HA_ATOMIC_ADD(&qc->prx_counters->conn_migration_done, qc->cntrs.conn_migration_done); |
| /* Stream related counters */ |
| HA_ATOMIC_ADD(&qc->prx_counters->data_blocked, qc->cntrs.data_blocked); |
| HA_ATOMIC_ADD(&qc->prx_counters->stream_data_blocked, qc->cntrs.stream_data_blocked); |
| HA_ATOMIC_ADD(&qc->prx_counters->streams_blocked_bidi, qc->cntrs.streams_blocked_bidi); |
| HA_ATOMIC_ADD(&qc->prx_counters->streams_blocked_uni, qc->cntrs.streams_blocked_uni); |
| } |
| |
| /* Release the quic_conn <qc>. The connection is removed from the CIDs tree. |
| * The connection tasklet is killed. |
| * |
| * This function must only be called by the thread responsible of the quic_conn |
| * tasklet. |
| */ |
| void quic_conn_release(struct quic_conn *qc) |
| { |
| int i; |
| struct ssl_sock_ctx *conn_ctx; |
| struct eb64_node *node; |
| struct quic_tls_ctx *app_tls_ctx; |
| struct quic_rx_packet *pkt, *pktback; |
| |
| TRACE_ENTER(QUIC_EV_CONN_CLOSE, qc); |
| |
| /* We must not free the quic-conn if the MUX is still allocated. */ |
| BUG_ON(qc->mux_state == QC_MUX_READY); |
| |
| if (qc_test_fd(qc)) |
| _HA_ATOMIC_DEC(&jobs); |
| |
| /* Close quic-conn socket fd. */ |
| qc_release_fd(qc, 0); |
| |
| /* in the unlikely (but possible) case the connection was just added to |
| * the accept_list we must delete it from there. |
| */ |
| MT_LIST_DELETE(&qc->accept_list); |
| |
| /* free remaining stream descriptors */ |
| node = eb64_first(&qc->streams_by_id); |
| while (node) { |
| struct qc_stream_desc *stream; |
| |
| stream = eb64_entry(node, struct qc_stream_desc, by_id); |
| node = eb64_next(node); |
| |
| /* all streams attached to the quic-conn are released, so |
| * qc_stream_desc_free will liberate the stream instance. |
| */ |
| BUG_ON(!stream->release); |
| qc_stream_desc_free(stream, 1); |
| } |
| |
| /* Purge Rx packet list. */ |
| list_for_each_entry_safe(pkt, pktback, &qc->rx.pkt_list, qc_rx_pkt_list) { |
| LIST_DELETE(&pkt->qc_rx_pkt_list); |
| pool_free(pool_head_quic_rx_packet, pkt); |
| } |
| |
| if (qc->idle_timer_task) { |
| task_destroy(qc->idle_timer_task); |
| qc->idle_timer_task = NULL; |
| } |
| |
| if (qc->timer_task) { |
| task_destroy(qc->timer_task); |
| qc->timer_task = NULL; |
| } |
| |
| tasklet_free(qc->wait_event.tasklet); |
| |
| /* remove the connection from receiver cids trees */ |
| free_quic_conn_cids(qc); |
| |
| conn_ctx = qc->xprt_ctx; |
| if (conn_ctx) { |
| SSL_free(conn_ctx->ssl); |
| pool_free(pool_head_quic_conn_ctx, conn_ctx); |
| } |
| |
| quic_tls_ku_free(qc); |
| for (i = 0; i < QUIC_TLS_ENC_LEVEL_MAX; i++) { |
| quic_tls_ctx_secs_free(&qc->els[i].tls_ctx); |
| quic_conn_enc_level_uninit(qc, &qc->els[i]); |
| } |
| quic_tls_ctx_secs_free(&qc->negotiated_ictx); |
| |
| app_tls_ctx = &qc->els[QUIC_TLS_ENC_LEVEL_APP].tls_ctx; |
| pool_free(pool_head_quic_tls_secret, app_tls_ctx->rx.secret); |
| pool_free(pool_head_quic_tls_secret, app_tls_ctx->tx.secret); |
| |
| for (i = 0; i < QUIC_TLS_PKTNS_MAX; i++) { |
| quic_pktns_tx_pkts_release(&qc->pktns[i], qc); |
| quic_free_arngs(qc, &qc->pktns[i].rx.arngs); |
| qc_release_pktns_frms(qc, &qc->pktns[i]); |
| } |
| |
| qc_detach_th_ctx_list(qc, 0); |
| |
| quic_conn_prx_cntrs_update(qc); |
| pool_free(pool_head_quic_conn_rxbuf, qc->rx.buf.area); |
| pool_free(pool_head_quic_conn, qc); |
| qc = NULL; |
| |
| /* Decrement global counters when quic_conn is deallocated. |
| * quic_cc_conn instances are not accounted as they run for a short |
| * time with limited ressources. |
| */ |
| _HA_ATOMIC_DEC(&actconn); |
| _HA_ATOMIC_DEC(&global.sslconns); |
| |
| TRACE_PROTO("QUIC conn. freed", QUIC_EV_CONN_FREED, qc); |
| |
| TRACE_LEAVE(QUIC_EV_CONN_CLOSE, qc); |
| } |
| |
| /* Initialize the timer task of <qc> QUIC connection. |
| * Returns 1 if succeeded, 0 if not. |
| */ |
| static int quic_conn_init_timer(struct quic_conn *qc) |
| { |
| int ret = 0; |
| /* Attach this task to the same thread ID used for the connection */ |
| TRACE_ENTER(QUIC_EV_CONN_NEW, qc); |
| |
| qc->timer_task = task_new_here(); |
| if (!qc->timer_task) { |
| TRACE_ERROR("timer task allocation failed", QUIC_EV_CONN_NEW, qc); |
| goto leave; |
| } |
| |
| qc->timer = TICK_ETERNITY; |
| qc->timer_task->process = qc_process_timer; |
| qc->timer_task->context = qc; |
| |
| ret = 1; |
| leave: |
| TRACE_LEAVE(QUIC_EV_CONN_NEW, qc); |
| return ret; |
| } |
| |
| /* Rearm the idle timer or the ack timer (if not already armde) for <qc> QUIC |
| * connection. */ |
| static void qc_idle_timer_do_rearm(struct quic_conn *qc, int arm_ack) |
| { |
| unsigned int expire; |
| |
| /* It is possible the idle timer task has been already released. */ |
| if (!qc->idle_timer_task) |
| return; |
| |
| if (stopping && qc->flags & (QUIC_FL_CONN_CLOSING|QUIC_FL_CONN_DRAINING)) { |
| TRACE_PROTO("executing idle timer immediately on stopping", QUIC_EV_CONN_IDLE_TIMER, qc); |
| qc->ack_expire = TICK_ETERNITY; |
| task_wakeup(qc->idle_timer_task, TASK_WOKEN_MSG); |
| } |
| else { |
| if (qc->flags & (QUIC_FL_CONN_CLOSING|QUIC_FL_CONN_DRAINING)) { |
| /* RFC 9000 10.2. Immediate Close |
| * |
| * The closing and draining connection states exist to ensure that |
| * connections close cleanly and that delayed or reordered packets are |
| * properly discarded. These states SHOULD persist for at least three |
| * times the current PTO interval as defined in [QUIC-RECOVERY]. |
| */ |
| |
| /* Delay is limited to 1s which should cover most of |
| * network conditions. The process should not be |
| * impacted by a connection with a high RTT. |
| */ |
| expire = MIN(3 * quic_pto(qc), 1000); |
| } |
| else { |
| /* RFC 9000 10.1. Idle Timeout |
| * |
| * To avoid excessively small idle timeout periods, endpoints MUST |
| * increase the idle timeout period to be at least three times the |
| * current Probe Timeout (PTO). This allows for multiple PTOs to expire, |
| * and therefore multiple probes to be sent and lost, prior to idle |
| * timeout. |
| */ |
| expire = QUIC_MAX(3 * quic_pto(qc), qc->max_idle_timeout); |
| } |
| |
| qc->idle_expire = tick_add(now_ms, MS_TO_TICKS(expire)); |
| if (arm_ack) { |
| /* Arm the ack timer only if not already armed. */ |
| if (!tick_isset(qc->ack_expire)) { |
| qc->ack_expire = tick_add(now_ms, MS_TO_TICKS(QUIC_ACK_DELAY)); |
| qc->idle_timer_task->expire = qc->ack_expire; |
| task_queue(qc->idle_timer_task); |
| TRACE_PROTO("ack timer armed", QUIC_EV_CONN_IDLE_TIMER, qc); |
| } |
| } |
| else { |
| qc->idle_timer_task->expire = tick_first(qc->ack_expire, qc->idle_expire); |
| task_queue(qc->idle_timer_task); |
| TRACE_PROTO("idle timer armed", QUIC_EV_CONN_IDLE_TIMER, qc); |
| } |
| } |
| } |
| |
| /* Rearm the idle timer or ack timer for <qc> QUIC connection depending on <read> |
| * and <arm_ack> booleans. The former is set to 1 when receiving a packet , |
| * and 0 when sending packet. <arm_ack> is set to 1 if this is the ack timer |
| * which must be rearmed. |
| */ |
| static void qc_idle_timer_rearm(struct quic_conn *qc, int read, int arm_ack) |
| { |
| TRACE_ENTER(QUIC_EV_CONN_IDLE_TIMER, qc); |
| |
| if (read) { |
| qc->flags |= QUIC_FL_CONN_IDLE_TIMER_RESTARTED_AFTER_READ; |
| } |
| else { |
| qc->flags &= ~QUIC_FL_CONN_IDLE_TIMER_RESTARTED_AFTER_READ; |
| } |
| qc_idle_timer_do_rearm(qc, arm_ack); |
| |
| TRACE_LEAVE(QUIC_EV_CONN_IDLE_TIMER, qc); |
| } |
| |
| /* The task handling the idle timeout */ |
| struct task *qc_idle_timer_task(struct task *t, void *ctx, unsigned int state) |
| { |
| struct quic_conn *qc = ctx; |
| struct quic_counters *prx_counters = qc->prx_counters; |
| unsigned int qc_flags = qc->flags; |
| |
| TRACE_ENTER(QUIC_EV_CONN_IDLE_TIMER, qc); |
| |
| if ((state & TASK_WOKEN_ANY) == TASK_WOKEN_TIMER && !tick_is_expired(t->expire, now_ms)) |
| goto requeue; |
| |
| if (tick_is_expired(qc->ack_expire, now_ms)) { |
| TRACE_PROTO("ack timer expired", QUIC_EV_CONN_IDLE_TIMER, qc); |
| qc->ack_expire = TICK_ETERNITY; |
| /* Note that ->idle_expire is always set. */ |
| t->expire = qc->idle_expire; |
| /* Do not wakeup the I/O handler in DRAINING state or if the |
| * connection must be killed as soon as possible. |
| */ |
| if (!(qc->flags & (QUIC_FL_CONN_DRAINING|QUIC_FL_CONN_TO_KILL))) { |
| qc->flags |= QUIC_FL_CONN_ACK_TIMER_FIRED; |
| tasklet_wakeup(qc->wait_event.tasklet); |
| } |
| |
| goto requeue; |
| } |
| |
| TRACE_PROTO("idle timer task running", QUIC_EV_CONN_IDLE_TIMER, qc); |
| /* Notify the MUX before settings QUIC_FL_CONN_EXP_TIMER or the MUX |
| * might free the quic-conn too early via quic_close(). |
| */ |
| qc_notify_err(qc); |
| |
| /* If the MUX is still alive, keep the quic-conn. The MUX is |
| * responsible to call quic_close to release it. |
| */ |
| qc->flags |= QUIC_FL_CONN_EXP_TIMER; |
| if (qc->mux_state != QC_MUX_READY) { |
| quic_conn_release(qc); |
| qc = NULL; |
| } |
| else { |
| task_destroy(t); |
| qc->idle_timer_task = NULL; |
| } |
| |
| t = NULL; |
| |
| /* TODO if the quic-conn cannot be freed because of the MUX, we may at |
| * least clean some parts of it such as the tasklet. |
| */ |
| |
| if (!(qc_flags & QUIC_FL_CONN_HALF_OPEN_CNT_DECREMENTED)) { |
| qc_flags |= QUIC_FL_CONN_HALF_OPEN_CNT_DECREMENTED; |
| TRACE_DEVEL("dec half open counter", QUIC_EV_CONN_IDLE_TIMER, qc); |
| HA_ATOMIC_DEC(&prx_counters->half_open_conn); |
| } |
| |
| requeue: |
| TRACE_LEAVE(QUIC_EV_CONN_IDLE_TIMER, qc); |
| return t; |
| } |
| |
| /* Initialize the idle timeout task for <qc>. |
| * Returns 1 if succeeded, 0 if not. |
| */ |
| static int quic_conn_init_idle_timer_task(struct quic_conn *qc) |
| { |
| int ret = 0; |
| |
| TRACE_ENTER(QUIC_EV_CONN_NEW, qc); |
| |
| qc->idle_timer_task = task_new_here(); |
| if (!qc->idle_timer_task) { |
| TRACE_ERROR("Idle timer task allocation failed", QUIC_EV_CONN_NEW, qc); |
| goto leave; |
| } |
| |
| qc->idle_timer_task->process = qc_idle_timer_task; |
| qc->idle_timer_task->context = qc; |
| qc->ack_expire = TICK_ETERNITY; |
| qc_idle_timer_rearm(qc, 1, 0); |
| task_queue(qc->idle_timer_task); |
| |
| ret = 1; |
| leave: |
| TRACE_LEAVE(QUIC_EV_CONN_NEW, qc); |
| return ret; |
| } |
| |
| /* Parse into <pkt> a long header located at <*pos> position, <end> begin a pointer to the end |
| * past one byte of this buffer. |
| */ |
| static inline int quic_packet_read_long_header(unsigned char **pos, const unsigned char *end, |
| struct quic_rx_packet *pkt) |
| { |
| int ret = 0; |
| unsigned char dcid_len, scid_len; |
| |
| TRACE_ENTER(QUIC_EV_CONN_RXPKT); |
| |
| if (end == *pos) { |
| TRACE_ERROR("buffer data consumed", QUIC_EV_CONN_RXPKT); |
| goto leave; |
| } |
| |
| /* Destination Connection ID Length */ |
| dcid_len = *(*pos)++; |
| /* We want to be sure we can read <dcid_len> bytes and one more for <scid_len> value */ |
| if (dcid_len > QUIC_CID_MAXLEN || end - *pos < dcid_len + 1) { |
| TRACE_ERROR("too long DCID", QUIC_EV_CONN_RXPKT); |
| goto leave; |
| } |
| |
| if (dcid_len) { |
| /* Check that the length of this received DCID matches the CID lengths |
| * of our implementation for non Initials packets only. |
| */ |
| if (pkt->version && pkt->version->num && |
| pkt->type != QUIC_PACKET_TYPE_INITIAL && |
| pkt->type != QUIC_PACKET_TYPE_0RTT && |
| dcid_len != QUIC_HAP_CID_LEN) { |
| TRACE_ERROR("wrong DCID length", QUIC_EV_CONN_RXPKT); |
| goto leave; |
| } |
| |
| memcpy(pkt->dcid.data, *pos, dcid_len); |
| } |
| |
| pkt->dcid.len = dcid_len; |
| *pos += dcid_len; |
| |
| /* Source Connection ID Length */ |
| scid_len = *(*pos)++; |
| if (scid_len > QUIC_CID_MAXLEN || end - *pos < scid_len) { |
| TRACE_ERROR("too long SCID", QUIC_EV_CONN_RXPKT); |
| goto leave; |
| } |
| |
| if (scid_len) |
| memcpy(pkt->scid.data, *pos, scid_len); |
| pkt->scid.len = scid_len; |
| *pos += scid_len; |
| |
| ret = 1; |
| leave: |
| TRACE_LEAVE(QUIC_EV_CONN_RXPKT); |
| return ret; |
| } |
| |
| /* Insert <pkt> RX packet in its <qel> RX packets tree */ |
| static void qc_pkt_insert(struct quic_conn *qc, |
| struct quic_rx_packet *pkt, struct quic_enc_level *qel) |
| { |
| TRACE_ENTER(QUIC_EV_CONN_RXPKT, qc); |
| |
| pkt->pn_node.key = pkt->pn; |
| quic_rx_packet_refinc(pkt); |
| eb64_insert(&qel->rx.pkts, &pkt->pn_node); |
| |
| TRACE_LEAVE(QUIC_EV_CONN_RXPKT, qc); |
| } |
| |
| /* Try to remove the header protection of <pkt> QUIC packet with <beg> the |
| * address of the packet first byte, using the keys from encryption level <el>. |
| * |
| * If header protection has been successfully removed, packet data are copied |
| * into <qc> Rx buffer. If <el> secrets are not yet available, the copy is also |
| * proceeded, and the packet is inserted into <qc> protected packets tree. In |
| * both cases, packet can now be considered handled by the <qc> connection. |
| * |
| * If header protection cannot be removed due to <el> secrets already |
| * discarded, no operation is conducted. |
| * |
| * Returns 1 on success : packet data is now handled by the connection. On |
| * error 0 is returned : packet should be dropped by the caller. |
| */ |
| static inline int qc_try_rm_hp(struct quic_conn *qc, |
| struct quic_rx_packet *pkt, |
| unsigned char *beg, |
| struct quic_enc_level **el) |
| { |
| int ret = 0; |
| unsigned char *pn = NULL; /* Packet number field */ |
| enum quic_tls_enc_level tel; |
| struct quic_enc_level *qel; |
| /* Only for traces. */ |
| |
| TRACE_ENTER(QUIC_EV_CONN_TRMHP, qc); |
| BUG_ON(!pkt->pn_offset); |
| |
| /* The packet number is here. This is also the start minus |
| * QUIC_PACKET_PN_MAXLEN of the sample used to add/remove the header |
| * protection. |
| */ |
| pn = beg + pkt->pn_offset; |
| |
| tel = quic_packet_type_enc_level(pkt->type); |
| qel = &qc->els[tel]; |
| |
| if (qc_qel_may_rm_hp(qc, qel)) { |
| struct quic_tls_ctx *tls_ctx = qc_select_tls_ctx(qc, qel, pkt); |
| |
| /* Note that the following function enables us to unprotect the packet |
| * number and its length subsequently used to decrypt the entire |
| * packets. |
| */ |
| if (!qc_do_rm_hp(qc, pkt, tls_ctx, |
| qel->pktns->rx.largest_pn, pn, beg)) { |
| TRACE_PROTO("hp error", QUIC_EV_CONN_TRMHP, qc); |
| goto out; |
| } |
| |
| qc_handle_spin_bit(qc, pkt, qel); |
| /* The AAD includes the packet number field. */ |
| pkt->aad_len = pkt->pn_offset + pkt->pnl; |
| if (pkt->len - pkt->aad_len < QUIC_TLS_TAG_LEN) { |
| TRACE_PROTO("Too short packet", QUIC_EV_CONN_TRMHP, qc); |
| goto out; |
| } |
| |
| TRACE_PROTO("RX hp removed", QUIC_EV_CONN_TRMHP, qc, pkt); |
| } |
| else { |
| if (qel->tls_ctx.flags & QUIC_FL_TLS_SECRETS_DCD) { |
| /* If the packet number space has been discarded, this packet |
| * will be not parsed. |
| */ |
| TRACE_PROTO("Discarded pktns", QUIC_EV_CONN_TRMHP, qc, pkt); |
| goto out; |
| } |
| |
| TRACE_PROTO("RX hp not removed", QUIC_EV_CONN_TRMHP, qc, pkt); |
| LIST_APPEND(&qel->rx.pqpkts, &pkt->list); |
| quic_rx_packet_refinc(pkt); |
| } |
| |
| *el = qel; |
| /* No reference counter incrementation here!!! */ |
| LIST_APPEND(&qc->rx.pkt_list, &pkt->qc_rx_pkt_list); |
| memcpy(b_tail(&qc->rx.buf), beg, pkt->len); |
| pkt->data = (unsigned char *)b_tail(&qc->rx.buf); |
| b_add(&qc->rx.buf, pkt->len); |
| |
| ret = 1; |
| out: |
| TRACE_LEAVE(QUIC_EV_CONN_TRMHP, qc); |
| return ret; |
| } |
| |
| /* Return the QUIC version (quic_version struct) with <version> as version number |
| * if supported or NULL if not. |
| */ |
| static inline const struct quic_version *qc_supported_version(uint32_t version) |
| { |
| int i; |
| |
| if (unlikely(!version)) |
| return &quic_version_VN_reserved; |
| |
| for (i = 0; i < quic_versions_nb; i++) |
| if (quic_versions[i].num == version) |
| return &quic_versions[i]; |
| |
| return NULL; |
| } |
| |
| /* Parse a QUIC packet header starting at <pos> position without exceeding <end>. |
| * Version and type are stored in <pkt> packet instance. Type is set to unknown |
| * on two occasions : for unsupported version, in this case version field is |
| * set to NULL; for Version Negotiation packet with version number set to 0. |
| * |
| * Returns 1 on success else 0. |
| */ |
| int qc_parse_hd_form(struct quic_rx_packet *pkt, |
| unsigned char **pos, const unsigned char *end) |
| { |
| uint32_t version; |
| int ret = 0; |
| const unsigned char byte0 = **pos; |
| |
| TRACE_ENTER(QUIC_EV_CONN_RXPKT); |
| pkt->version = NULL; |
| pkt->type = QUIC_PACKET_TYPE_UNKNOWN; |
| |
| (*pos)++; |
| if (byte0 & QUIC_PACKET_LONG_HEADER_BIT) { |
| unsigned char type = |
| (byte0 >> QUIC_PACKET_TYPE_SHIFT) & QUIC_PACKET_TYPE_BITMASK; |
| |
| /* Version */ |
| if (!quic_read_uint32(&version, (const unsigned char **)pos, end)) { |
| TRACE_ERROR("could not read the packet version", QUIC_EV_CONN_RXPKT); |
| goto out; |
| } |
| |
| pkt->version = qc_supported_version(version); |
| if (version && pkt->version) { |
| if (version != QUIC_PROTOCOL_VERSION_2) { |
| pkt->type = type; |
| } |
| else { |
| switch (type) { |
| case 0: |
| pkt->type = QUIC_PACKET_TYPE_RETRY; |
| break; |
| case 1: |
| pkt->type = QUIC_PACKET_TYPE_INITIAL; |
| break; |
| case 2: |
| pkt->type = QUIC_PACKET_TYPE_0RTT; |
| break; |
| case 3: |
| pkt->type = QUIC_PACKET_TYPE_HANDSHAKE; |
| break; |
| } |
| } |
| } |
| } |
| else { |
| if (byte0 & QUIC_PACKET_SPIN_BIT) |
| pkt->flags |= QUIC_FL_RX_PACKET_SPIN_BIT; |
| pkt->type = QUIC_PACKET_TYPE_SHORT; |
| } |
| |
| ret = 1; |
| out: |
| TRACE_LEAVE(QUIC_EV_CONN_RXPKT); |
| return ret; |
| } |
| |
| /* |
| * Send a Version Negotiation packet on response to <pkt> on socket <fd> to |
| * address <addr>. |
| * Implementation of RFC9000 6. Version Negotiation |
| * |
| * TODO implement a rate-limiting sending of Version Negotiation packets |
| * |
| * Returns 0 on success else non-zero |
| */ |
| static int send_version_negotiation(int fd, struct sockaddr_storage *addr, |
| struct quic_rx_packet *pkt) |
| { |
| char buf[256]; |
| int ret = 0, i = 0, j; |
| uint32_t version; |
| const socklen_t addrlen = get_addr_len(addr); |
| |
| TRACE_ENTER(QUIC_EV_CONN_TXPKT); |
| /* |
| * header form |
| * long header, fixed bit to 0 for Version Negotiation |
| */ |
| /* TODO: RAND_bytes() should be replaced? */ |
| if (RAND_bytes((unsigned char *)buf, 1) != 1) { |
| TRACE_ERROR("RAND_bytes() error", QUIC_EV_CONN_TXPKT); |
| goto out; |
| } |
| |
| buf[i++] |= '\x80'; |
| /* null version for Version Negotiation */ |
| buf[i++] = '\x00'; |
| buf[i++] = '\x00'; |
| buf[i++] = '\x00'; |
| buf[i++] = '\x00'; |
| |
| /* source connection id */ |
| buf[i++] = pkt->scid.len; |
| memcpy(&buf[i], pkt->scid.data, pkt->scid.len); |
| i += pkt->scid.len; |
| |
| /* destination connection id */ |
| buf[i++] = pkt->dcid.len; |
| memcpy(&buf[i], pkt->dcid.data, pkt->dcid.len); |
| i += pkt->dcid.len; |
| |
| /* supported version */ |
| for (j = 0; j < quic_versions_nb; j++) { |
| version = htonl(quic_versions[j].num); |
| memcpy(&buf[i], &version, sizeof(version)); |
| i += sizeof(version); |
| } |
| |
| if (sendto(fd, buf, i, 0, (struct sockaddr *)addr, addrlen) < 0) |
| goto out; |
| |
| ret = 1; |
| out: |
| TRACE_LEAVE(QUIC_EV_CONN_TXPKT); |
| return !ret; |
| } |
| |
| /* Send a stateless reset packet depending on <pkt> RX packet information |
| * from <fd> UDP socket to <dst> |
| * Return 1 if succeeded, 0 if not. |
| */ |
| static int send_stateless_reset(struct listener *l, struct sockaddr_storage *dstaddr, |
| struct quic_rx_packet *rxpkt) |
| { |
| int ret = 0, pktlen, rndlen; |
| unsigned char pkt[64]; |
| const socklen_t addrlen = get_addr_len(dstaddr); |
| struct proxy *prx; |
| struct quic_counters *prx_counters; |
| |
| TRACE_ENTER(QUIC_EV_STATELESS_RST); |
| |
| prx = l->bind_conf->frontend; |
| prx_counters = EXTRA_COUNTERS_GET(prx->extra_counters_fe, &quic_stats_module); |
| /* 10.3 Stateless Reset (https://www.rfc-editor.org/rfc/rfc9000.html#section-10.3) |
| * The resulting minimum size of 21 bytes does not guarantee that a Stateless |
| * Reset is difficult to distinguish from other packets if the recipient requires |
| * the use of a connection ID. To achieve that end, the endpoint SHOULD ensure |
| * that all packets it sends are at least 22 bytes longer than the minimum |
| * connection ID length that it requests the peer to include in its packets, |
| * adding PADDING frames as necessary. This ensures that any Stateless Reset |
| * sent by the peer is indistinguishable from a valid packet sent to the endpoint. |
| * An endpoint that sends a Stateless Reset in response to a packet that is |
| * 43 bytes or shorter SHOULD send a Stateless Reset that is one byte shorter |
| * than the packet it responds to. |
| */ |
| |
| /* Note that we build at most a 42 bytes QUIC packet to mimic a short packet */ |
| pktlen = rxpkt->len <= 43 ? rxpkt->len - 1 : 0; |
| pktlen = QUIC_MAX(QUIC_STATELESS_RESET_PACKET_MINLEN, pktlen); |
| rndlen = pktlen - QUIC_STATELESS_RESET_TOKEN_LEN; |
| |
| /* Put a header of random bytes */ |
| /* TODO: RAND_bytes() should be replaced */ |
| if (RAND_bytes(pkt, rndlen) != 1) { |
| TRACE_ERROR("RAND_bytes() failed", QUIC_EV_STATELESS_RST); |
| goto leave; |
| } |
| |
| /* Clear the most significant bit, and set the second one */ |
| *pkt = (*pkt & ~0x80) | 0x40; |
| if (!quic_stateless_reset_token_cpy(pkt + rndlen, QUIC_STATELESS_RESET_TOKEN_LEN, |
| rxpkt->dcid.data, rxpkt->dcid.len)) |
| goto leave; |
| |
| if (sendto(l->rx.fd, pkt, pktlen, 0, (struct sockaddr *)dstaddr, addrlen) < 0) |
| goto leave; |
| |
| ret = 1; |
| HA_ATOMIC_INC(&prx_counters->stateless_reset_sent); |
| TRACE_PROTO("stateless reset sent", QUIC_EV_STATELESS_RST, NULL, &rxpkt->dcid); |
| leave: |
| TRACE_LEAVE(QUIC_EV_STATELESS_RST); |
| return ret; |
| } |
| |
| /* QUIC server only function. |
| * Add AAD to <add> buffer from <cid> connection ID and <addr> socket address. |
| * This is the responsibility of the caller to check <aad> size is big enough |
| * to contain these data. |
| * Return the number of bytes copied to <aad>. |
| */ |
| static int quic_generate_retry_token_aad(unsigned char *aad, |
| uint32_t version, |
| const struct quic_cid *cid, |
| const struct sockaddr_storage *addr) |
| { |
| unsigned char *p; |
| |
| p = aad; |
| *(uint32_t *)p = htonl(version); |
| p += sizeof version; |
| p += quic_saddr_cpy(p, addr); |
| memcpy(p, cid->data, cid->len); |
| p += cid->len; |
| |
| return p - aad; |
| } |
| |
| /* QUIC server only function. |
| * Generate the token to be used in Retry packets. The token is written to |
| * <token> with <len> as length. <odcid> is the original destination connection |
| * ID and <dcid> is our side destination connection ID (or client source |
| * connection ID). |
| * Returns the length of the encoded token or 0 on error. |
| */ |
| static int quic_generate_retry_token(unsigned char *token, size_t len, |
| const uint32_t version, |
| const struct quic_cid *odcid, |
| const struct quic_cid *dcid, |
| struct sockaddr_storage *addr) |
| { |
| int ret = 0; |
| unsigned char *p; |
| unsigned char aad[sizeof(uint32_t) + sizeof(in_port_t) + |
| sizeof(struct in6_addr) + QUIC_CID_MAXLEN]; |
| size_t aadlen; |
| unsigned char salt[QUIC_RETRY_TOKEN_SALTLEN]; |
| unsigned char key[QUIC_TLS_KEY_LEN]; |
| unsigned char iv[QUIC_TLS_IV_LEN]; |
| const unsigned char *sec = global.cluster_secret; |
| size_t seclen = sizeof global.cluster_secret; |
| EVP_CIPHER_CTX *ctx = NULL; |
| const EVP_CIPHER *aead = EVP_aes_128_gcm(); |
| uint32_t timestamp = (uint32_t)date.tv_sec; |
| |
| TRACE_ENTER(QUIC_EV_CONN_TXPKT); |
| |
| /* The token is made of the token format byte, the ODCID prefixed by its one byte |
| * length, the creation timestamp, an AEAD TAG, and finally |
| * the random bytes used to derive the secret to encrypt the token. |
| */ |
| if (1 + odcid->len + 1 + sizeof(timestamp) + QUIC_TLS_TAG_LEN + QUIC_RETRY_TOKEN_SALTLEN > len) |
| goto err; |
| |
| aadlen = quic_generate_retry_token_aad(aad, version, dcid, addr); |
| /* TODO: RAND_bytes() should be replaced */ |
| if (RAND_bytes(salt, sizeof salt) != 1) { |
| TRACE_ERROR("RAND_bytes()", QUIC_EV_CONN_TXPKT); |
| goto err; |
| } |
| |
| if (!quic_tls_derive_retry_token_secret(EVP_sha256(), key, sizeof key, iv, sizeof iv, |
| salt, sizeof salt, sec, seclen)) { |
| TRACE_ERROR("quic_tls_derive_retry_token_secret() failed", QUIC_EV_CONN_TXPKT); |
| goto err; |
| } |
| |
| if (!quic_tls_tx_ctx_init(&ctx, aead, key)) { |
| TRACE_ERROR("quic_tls_tx_ctx_init() failed", QUIC_EV_CONN_TXPKT); |
| goto err; |
| } |
| |
| /* Token build */ |
| p = token; |
| *p++ = QUIC_TOKEN_FMT_RETRY, |
| *p++ = odcid->len; |
| memcpy(p, odcid->data, odcid->len); |
| p += odcid->len; |
| write_u32(p, htonl(timestamp)); |
| p += sizeof timestamp; |
| |
| /* Do not encrypt the QUIC_TOKEN_FMT_RETRY byte */ |
| if (!quic_tls_encrypt(token + 1, p - token - 1, aad, aadlen, ctx, aead, iv)) { |
| TRACE_ERROR("quic_tls_encrypt() failed", QUIC_EV_CONN_TXPKT); |
| goto err; |
| } |
| |
| p += QUIC_TLS_TAG_LEN; |
| memcpy(p, salt, sizeof salt); |
| p += sizeof salt; |
| EVP_CIPHER_CTX_free(ctx); |
| |
| ret = p - token; |
| leave: |
| TRACE_LEAVE(QUIC_EV_CONN_TXPKT); |
| return ret; |
| |
| err: |
| if (ctx) |
| EVP_CIPHER_CTX_free(ctx); |
| goto leave; |
| } |
| |
| /* QUIC server only function. |
| * |
| * Check the validity of the Retry token from Initial packet <pkt>. <dgram> is |
| * the UDP datagram containing <pkt> and <l> is the listener instance on which |
| * it was received. If the token is valid, the ODCID of <qc> QUIC connection |
| * will be put into <odcid>. <qc> is used to retrieve the QUIC version needed |
| * to validate the token but it can be NULL : in this case the version will be |
| * retrieved from the packet. |
| * |
| * Return 1 if succeeded, 0 if not. |
| */ |
| |
| static int quic_retry_token_check(struct quic_rx_packet *pkt, |
| struct quic_dgram *dgram, |
| struct listener *l, |
| struct quic_conn *qc, |
| struct quic_cid *odcid) |
| { |
| struct proxy *prx; |
| struct quic_counters *prx_counters; |
| int ret = 0; |
| unsigned char *token = pkt->token; |
| const uint64_t tokenlen = pkt->token_len; |
| unsigned char buf[128]; |
| unsigned char aad[sizeof(uint32_t) + sizeof(in_port_t) + |
| sizeof(struct in6_addr) + QUIC_CID_MAXLEN]; |
| size_t aadlen; |
| const unsigned char *salt; |
| unsigned char key[QUIC_TLS_KEY_LEN]; |
| unsigned char iv[QUIC_TLS_IV_LEN]; |
| const unsigned char *sec = global.cluster_secret; |
| size_t seclen = sizeof global.cluster_secret; |
| EVP_CIPHER_CTX *ctx = NULL; |
| const EVP_CIPHER *aead = EVP_aes_128_gcm(); |
| const struct quic_version *qv = qc ? qc->original_version : |
| pkt->version; |
| |
| TRACE_ENTER(QUIC_EV_CONN_LPKT, qc); |
| |
| /* The caller must ensure this. */ |
| BUG_ON(!pkt->token_len); |
| |
| prx = l->bind_conf->frontend; |
| prx_counters = EXTRA_COUNTERS_GET(prx->extra_counters_fe, &quic_stats_module); |
| |
| if (*pkt->token != QUIC_TOKEN_FMT_RETRY) { |
| /* TODO: New token check */ |
| TRACE_PROTO("Packet dropped", QUIC_EV_CONN_LPKT, qc, NULL, NULL, pkt->version); |
| goto leave; |
| } |
| |
| if (sizeof buf < tokenlen) { |
| TRACE_ERROR("too short buffer", QUIC_EV_CONN_LPKT, qc); |
| goto err; |
| } |
| |
| /* The token is made of the token format byte, the ODCID prefixed by its one byte |
| * length, the creation timestamp, an AEAD TAG, and finally |
| * the random bytes used to derive the secret to encrypt the token. |
| */ |
| if (tokenlen < 2 + QUIC_ODCID_MINLEN + sizeof(uint32_t) + QUIC_TLS_TAG_LEN + QUIC_RETRY_TOKEN_SALTLEN || |
| tokenlen > 2 + QUIC_CID_MAXLEN + sizeof(uint32_t) + QUIC_TLS_TAG_LEN + QUIC_RETRY_TOKEN_SALTLEN) { |
| TRACE_ERROR("invalid token length", QUIC_EV_CONN_LPKT, qc); |
| goto err; |
| } |
| |
| aadlen = quic_generate_retry_token_aad(aad, qv->num, &pkt->scid, &dgram->saddr); |
| salt = token + tokenlen - QUIC_RETRY_TOKEN_SALTLEN; |
| if (!quic_tls_derive_retry_token_secret(EVP_sha256(), key, sizeof key, iv, sizeof iv, |
| salt, QUIC_RETRY_TOKEN_SALTLEN, sec, seclen)) { |
| TRACE_ERROR("Could not derive retry secret", QUIC_EV_CONN_LPKT, qc); |
| goto err; |
| } |
| |
| if (!quic_tls_rx_ctx_init(&ctx, aead, key)) { |
| TRACE_ERROR("quic_tls_rx_ctx_init() failed", QUIC_EV_CONN_LPKT, qc); |
| goto err; |
| } |
| |
| /* The token is prefixed by a one-byte length format which is not ciphered. */ |
| if (!quic_tls_decrypt2(buf, token + 1, tokenlen - QUIC_RETRY_TOKEN_SALTLEN - 1, aad, aadlen, |
| ctx, aead, key, iv)) { |
| TRACE_ERROR("Could not decrypt retry token", QUIC_EV_CONN_LPKT, qc); |
| goto err; |
| } |
| |
| if (parse_retry_token(qc, buf, buf + tokenlen - QUIC_RETRY_TOKEN_SALTLEN - 1, odcid)) { |
| TRACE_ERROR("Error during Initial token parsing", QUIC_EV_CONN_LPKT, qc); |
| goto err; |
| } |
| |
| EVP_CIPHER_CTX_free(ctx); |
| |
| ret = 1; |
| HA_ATOMIC_INC(&prx_counters->retry_validated); |
| |
| leave: |
| TRACE_LEAVE(QUIC_EV_CONN_LPKT, qc); |
| return ret; |
| |
| err: |
| HA_ATOMIC_INC(&prx_counters->retry_error); |
| if (ctx) |
| EVP_CIPHER_CTX_free(ctx); |
| goto leave; |
| } |
| |
| /* Generate a Retry packet and send it on <fd> socket to <addr> in response to |
| * the Initial <pkt> packet. |
| * |
| * Returns 0 on success else non-zero. |
| */ |
| static int send_retry(int fd, struct sockaddr_storage *addr, |
| struct quic_rx_packet *pkt, const struct quic_version *qv) |
| { |
| int ret = 0; |
| unsigned char buf[128]; |
| int i = 0, token_len; |
| const socklen_t addrlen = get_addr_len(addr); |
| struct quic_cid scid; |
| |
| TRACE_ENTER(QUIC_EV_CONN_TXPKT); |
| |
| /* long header(1) | fixed bit(1) | packet type QUIC_PACKET_TYPE_RETRY(2) | unused random bits(4)*/ |
| buf[i++] = (QUIC_PACKET_LONG_HEADER_BIT | QUIC_PACKET_FIXED_BIT) | |
| (quic_pkt_type(QUIC_PACKET_TYPE_RETRY, qv->num) << QUIC_PACKET_TYPE_SHIFT) | |
| statistical_prng_range(16); |
| /* version */ |
| write_n32(&buf[i], qv->num); |
| i += sizeof(uint32_t); |
| |
| /* Use the SCID from <pkt> for Retry DCID. */ |
| buf[i++] = pkt->scid.len; |
| memcpy(&buf[i], pkt->scid.data, pkt->scid.len); |
| i += pkt->scid.len; |
| |
| /* Generate a new CID to be used as SCID for the Retry packet. */ |
| scid.len = QUIC_HAP_CID_LEN; |
| /* TODO: RAND_bytes() should be replaced */ |
| if (RAND_bytes(scid.data, scid.len) != 1) { |
| TRACE_ERROR("RAND_bytes() failed", QUIC_EV_CONN_TXPKT); |
| goto out; |
| } |
| |
| buf[i++] = scid.len; |
| memcpy(&buf[i], scid.data, scid.len); |
| i += scid.len; |
| |
| /* token */ |
| if (!(token_len = quic_generate_retry_token(&buf[i], sizeof(buf) - i, qv->num, |
| &pkt->dcid, &pkt->scid, addr))) { |
| TRACE_ERROR("quic_generate_retry_token() failed", QUIC_EV_CONN_TXPKT); |
| goto out; |
| } |
| |
| i += token_len; |
| |
| /* token integrity tag */ |
| if ((sizeof(buf) - i < QUIC_TLS_TAG_LEN) || |
| !quic_tls_generate_retry_integrity_tag(pkt->dcid.data, |
| pkt->dcid.len, buf, i, qv)) { |
| TRACE_ERROR("quic_tls_generate_retry_integrity_tag() failed", QUIC_EV_CONN_TXPKT); |
| goto out; |
| } |
| |
| i += QUIC_TLS_TAG_LEN; |
| |
| if (sendto(fd, buf, i, 0, (struct sockaddr *)addr, addrlen) < 0) { |
| TRACE_ERROR("quic_tls_generate_retry_integrity_tag() failed", QUIC_EV_CONN_TXPKT); |
| goto out; |
| } |
| |
| ret = 1; |
| out: |
| TRACE_LEAVE(QUIC_EV_CONN_TXPKT); |
| return !ret; |
| } |
| |
| /* Retrieve a quic_conn instance from the <pkt> DCID field. If the packet is an |
| * INITIAL or 0RTT type, we may have to use client address <saddr> if an ODCID |
| * is used. |
| * |
| * Returns the instance or NULL if not found. |
| */ |
| static struct quic_conn *retrieve_qc_conn_from_cid(struct quic_rx_packet *pkt, |
| struct listener *l, |
| struct sockaddr_storage *saddr, |
| int *new_tid) |
| { |
| struct quic_conn *qc = NULL; |
| struct ebmb_node *node; |
| struct quic_connection_id *conn_id; |
| struct quic_cid_tree *tree; |
| uint conn_id_tid; |
| |
| TRACE_ENTER(QUIC_EV_CONN_RXPKT); |
| *new_tid = -1; |
| |
| /* First look into DCID tree. */ |
| tree = &quic_cid_trees[_quic_cid_tree_idx(pkt->dcid.data)]; |
| HA_RWLOCK_RDLOCK(QC_CID_LOCK, &tree->lock); |
| node = ebmb_lookup(&tree->root, pkt->dcid.data, pkt->dcid.len); |
| |
| /* If not found on an Initial/0-RTT packet, it could be because an |
| * ODCID is reused by the client. Calculate the derived CID value to |
| * retrieve it from the DCID tree. |
| */ |
| if (!node && (pkt->type == QUIC_PACKET_TYPE_INITIAL || |
| pkt->type == QUIC_PACKET_TYPE_0RTT)) { |
| const struct quic_cid derive_cid = quic_derive_cid(&pkt->dcid, saddr); |
| |
| HA_RWLOCK_RDUNLOCK(QC_CID_LOCK, &tree->lock); |
| |
| tree = &quic_cid_trees[quic_cid_tree_idx(&derive_cid)]; |
| HA_RWLOCK_RDLOCK(QC_CID_LOCK, &tree->lock); |
| node = ebmb_lookup(&tree->root, derive_cid.data, derive_cid.len); |
| } |
| |
| if (!node) |
| goto end; |
| |
| conn_id = ebmb_entry(node, struct quic_connection_id, node); |
| conn_id_tid = HA_ATOMIC_LOAD(&conn_id->tid); |
| if (conn_id_tid != tid) { |
| *new_tid = conn_id_tid; |
| goto end; |
| } |
| qc = conn_id->qc; |
| |
| end: |
| HA_RWLOCK_RDUNLOCK(QC_CID_LOCK, &tree->lock); |
| TRACE_LEAVE(QUIC_EV_CONN_RXPKT, qc); |
| return qc; |
| } |
| |
| /* Try to allocate the <*ssl> SSL session object for <qc> QUIC connection |
| * with <ssl_ctx> as SSL context inherited settings. Also set the transport |
| * parameters of this session. |
| * This is the responsibility of the caller to check the validity of all the |
| * pointers passed as parameter to this function. |
| * Return 0 if succeeded, -1 if not. If failed, sets the ->err_code member of <qc->conn> to |
| * CO_ER_SSL_NO_MEM. |
| */ |
| static int qc_ssl_sess_init(struct quic_conn *qc, SSL_CTX *ssl_ctx, SSL **ssl, |
| unsigned char *params, size_t params_len) |
| { |
| int retry, ret = -1; |
| |
| TRACE_ENTER(QUIC_EV_CONN_NEW, qc); |
| |
| retry = 1; |
| retry: |
| *ssl = SSL_new(ssl_ctx); |
| if (!*ssl) { |
| if (!retry--) |
| goto leave; |
| |
| pool_gc(NULL); |
| goto retry; |
| } |
| |
| if (!SSL_set_ex_data(*ssl, ssl_qc_app_data_index, qc) || |
| !SSL_set_quic_method(*ssl, &ha_quic_method)) { |
| SSL_free(*ssl); |
| *ssl = NULL; |
| if (!retry--) |
| goto leave; |
| |
| pool_gc(NULL); |
| goto retry; |
| } |
| |
| ret = 0; |
| leave: |
| TRACE_LEAVE(QUIC_EV_CONN_NEW, qc); |
| return ret; |
| } |
| |
| /* Allocate the ssl_sock_ctx from connection <qc>. This creates the tasklet |
| * used to process <qc> received packets. The allocated context is stored in |
| * <qc.xprt_ctx>. |
| * |
| * Returns 0 on success else non-zero. |
| */ |
| static int qc_conn_alloc_ssl_ctx(struct quic_conn *qc) |
| { |
| int ret = 0; |
| struct bind_conf *bc = qc->li->bind_conf; |
| struct ssl_sock_ctx *ctx = NULL; |
| |
| TRACE_ENTER(QUIC_EV_CONN_NEW, qc); |
| |
| ctx = pool_zalloc(pool_head_quic_conn_ctx); |
| if (!ctx) { |
| TRACE_ERROR("SSL context allocation failed", QUIC_EV_CONN_TXPKT); |
| goto err; |
| } |
| |
| ctx->subs = NULL; |
| ctx->xprt_ctx = NULL; |
| ctx->qc = qc; |
| |
| if (qc_is_listener(qc)) { |
| if (qc_ssl_sess_init(qc, bc->initial_ctx, &ctx->ssl, |
| qc->enc_params, qc->enc_params_len) == -1) { |
| goto err; |
| } |
| #if (HA_OPENSSL_VERSION_NUMBER >= 0x10101000L) |
| #ifndef USE_QUIC_OPENSSL_COMPAT |
| /* Enabling 0-RTT */ |
| if (bc->ssl_conf.early_data) |
| SSL_set_quic_early_data_enabled(ctx->ssl, 1); |
| #endif |
| #endif |
| |
| SSL_set_accept_state(ctx->ssl); |
| } |
| |
| ctx->xprt = xprt_get(XPRT_QUIC); |
| |
| /* Store the allocated context in <qc>. */ |
| qc->xprt_ctx = ctx; |
| |
| /* global.sslconns is already incremented on INITIAL packet parsing. */ |
| _HA_ATOMIC_INC(&global.totalsslconns); |
| |
| ret = 1; |
| leave: |
| TRACE_LEAVE(QUIC_EV_CONN_NEW, qc); |
| return !ret; |
| |
| err: |
| pool_free(pool_head_quic_conn_ctx, ctx); |
| goto leave; |
| } |
| |
| /* Check that all the bytes between <pos> included and <end> address |
| * excluded are null. This is the responsibility of the caller to |
| * check that there is at least one byte between <pos> end <end>. |
| * Return 1 if this all the bytes are null, 0 if not. |
| */ |
| static inline int quic_padding_check(const unsigned char *pos, |
| const unsigned char *end) |
| { |
| while (pos < end && !*pos) |
| pos++; |
| |
| return pos == end; |
| } |
| |
| /* Find the associated connection to the packet <pkt> or create a new one if |
| * this is an Initial packet. <dgram> is the datagram containing the packet and |
| * <l> is the listener instance on which it was received. |
| * |
| * By default, <new_tid> is set to -1. However, if thread affinity has been |
| * chanbed, it will be set to its new thread ID. |
| * |
| * Returns the quic-conn instance or NULL if not found or thread affinity |
| * changed. |
| */ |
| static struct quic_conn *quic_rx_pkt_retrieve_conn(struct quic_rx_packet *pkt, |
| struct quic_dgram *dgram, |
| struct listener *l, |
| int *new_tid) |
| { |
| struct quic_cid token_odcid = { .len = 0 }; |
| struct quic_conn *qc = NULL; |
| struct proxy *prx; |
| struct quic_counters *prx_counters; |
| |
| TRACE_ENTER(QUIC_EV_CONN_LPKT); |
| |
| *new_tid = -1; |
| |
| prx = l->bind_conf->frontend; |
| prx_counters = EXTRA_COUNTERS_GET(prx->extra_counters_fe, &quic_stats_module); |
| |
| qc = retrieve_qc_conn_from_cid(pkt, l, &dgram->saddr, new_tid); |
| |
| /* If connection already created or rebinded on another thread. */ |
| if (!qc && *new_tid != -1 && tid != *new_tid) |
| goto out; |
| |
| if (pkt->type == QUIC_PACKET_TYPE_INITIAL) { |
| BUG_ON(!pkt->version); /* This must not happen. */ |
| |
| if (!qc) { |
| struct quic_cid_tree *tree; |
| struct ebmb_node *node; |
| struct quic_connection_id *conn_id; |
| int ipv4; |
| |
| if (pkt->token_len) { |
| /* Validate the token only when connection is unknown. */ |
| if (!quic_retry_token_check(pkt, dgram, l, qc, &token_odcid)) |
| goto err; |
| } |
| else if (!(l->bind_conf->options & BC_O_QUIC_FORCE_RETRY) && |
| HA_ATOMIC_LOAD(&prx_counters->half_open_conn) >= global.tune.quic_retry_threshold) { |
| TRACE_PROTO("Initial without token, sending retry", |
| QUIC_EV_CONN_LPKT, NULL, NULL, NULL, pkt->version); |
| if (send_retry(l->rx.fd, &dgram->saddr, pkt, pkt->version)) { |
| TRACE_ERROR("Error during Retry generation", |
| QUIC_EV_CONN_LPKT, NULL, NULL, NULL, pkt->version); |
| goto out; |
| } |
| |
| HA_ATOMIC_INC(&prx_counters->retry_sent); |
| goto out; |
| } |
| |
| /* RFC 9000 7.2. Negotiating Connection IDs: |
| * When an Initial packet is sent by a client that has not previously |
| * received an Initial or Retry packet from the server, the client |
| * populates the Destination Connection ID field with an unpredictable |
| * value. This Destination Connection ID MUST be at least 8 bytes in length. |
| */ |
| if (pkt->dcid.len < QUIC_ODCID_MINLEN) { |
| TRACE_PROTO("dropped packet", |
| QUIC_EV_CONN_LPKT, NULL, NULL, NULL, pkt->version); |
| goto err; |
| } |
| |
| pkt->saddr = dgram->saddr; |
| ipv4 = dgram->saddr.ss_family == AF_INET; |
| |
| /* Generate the first connection CID. This is derived from the client |
| * ODCID and address. This allows to retrieve the connection from the |
| * ODCID without storing it in the CID tree. This is an interesting |
| * optimization as the client is expected to stop using its ODCID in |
| * favor of our generated value. |
| */ |
| conn_id = new_quic_cid(NULL, NULL, &pkt->dcid, &pkt->saddr); |
| if (!conn_id) |
| goto err; |
| |
| qc = qc_new_conn(pkt->version, ipv4, &pkt->dcid, &pkt->scid, &token_odcid, |
| conn_id, &dgram->daddr, &pkt->saddr, 1, |
| !!pkt->token_len, l); |
| if (qc == NULL) { |
| pool_free(pool_head_quic_connection_id, conn_id); |
| goto err; |
| } |
| |
| tree = &quic_cid_trees[quic_cid_tree_idx(&conn_id->cid)]; |
| HA_RWLOCK_WRLOCK(QC_CID_LOCK, &tree->lock); |
| node = ebmb_insert(&tree->root, &conn_id->node, conn_id->cid.len); |
| if (node != &conn_id->node) { |
| pool_free(pool_head_quic_connection_id, conn_id); |
| |
| conn_id = ebmb_entry(node, struct quic_connection_id, node); |
| *new_tid = HA_ATOMIC_LOAD(&conn_id->tid); |
| quic_conn_release(qc); |
| qc = NULL; |
| } |
| else { |
| /* From here, <qc> is the correct connection for this <pkt> Initial |
| * packet. <conn_id> must be inserted in the CIDs tree for this |
| * connection. |
| */ |
| eb64_insert(&qc->cids, &conn_id->seq_num); |
| /* Initialize the next CID sequence number to be used for this connection. */ |
| qc->next_cid_seq_num = 1; |
| } |
| HA_RWLOCK_WRUNLOCK(QC_CID_LOCK, &tree->lock); |
| |
| if (*new_tid != -1) |
| goto out; |
| |
| HA_ATOMIC_INC(&prx_counters->half_open_conn); |
| } |
| } |
| else if (!qc) { |
| TRACE_PROTO("RX non Initial pkt without connection", QUIC_EV_CONN_LPKT, NULL, NULL, NULL, pkt->version); |
| if (!send_stateless_reset(l, &dgram->saddr, pkt)) |
| TRACE_ERROR("stateless reset not sent", QUIC_EV_CONN_LPKT, qc); |
| goto err; |
| } |
| |
| out: |
| TRACE_LEAVE(QUIC_EV_CONN_LPKT, qc); |
| return qc; |
| |
| err: |
| if (qc) |
| qc->cntrs.dropped_pkt++; |
| else |
| HA_ATOMIC_INC(&prx_counters->dropped_pkt); |
| |
| TRACE_LEAVE(QUIC_EV_CONN_LPKT); |
| return NULL; |
| } |
| |
| /* Parse a QUIC packet starting at <pos>. Data won't be read after <end> even |
| * if the packet is incomplete. This function will populate fields of <pkt> |
| * instance, most notably its length. <dgram> is the UDP datagram which |
| * contains the parsed packet. <l> is the listener instance on which it was |
| * received. |
| * |
| * Returns 0 on success else non-zero. Packet length is guaranteed to be set to |
| * the real packet value or to cover all data between <pos> and <end> : this is |
| * useful to reject a whole datagram. |
| */ |
| static int quic_rx_pkt_parse(struct quic_rx_packet *pkt, |
| unsigned char *pos, const unsigned char *end, |
| struct quic_dgram *dgram, struct listener *l) |
| { |
| const unsigned char *beg = pos; |
| struct proxy *prx; |
| struct quic_counters *prx_counters; |
| |
| TRACE_ENTER(QUIC_EV_CONN_LPKT); |
| |
| prx = l->bind_conf->frontend; |
| prx_counters = EXTRA_COUNTERS_GET(prx->extra_counters_fe, &quic_stats_module); |
| /* This ist only to please to traces and distinguish the |
| * packet with parsed packet number from others. |
| */ |
| pkt->pn_node.key = (uint64_t)-1; |
| if (end <= pos) { |
| TRACE_PROTO("Packet dropped", QUIC_EV_CONN_LPKT); |
| goto drop; |
| } |
| |
| /* Fixed bit */ |
| if (!(*pos & QUIC_PACKET_FIXED_BIT)) { |
| if (!(pkt->flags & QUIC_FL_RX_PACKET_DGRAM_FIRST) && |
| quic_padding_check(pos, end)) { |
| /* Some browsers may pad the remaining datagram space with null bytes. |
| * That is what we called add padding out of QUIC packets. Such |
| * datagrams must be considered as valid. But we can only consume |
| * the remaining space. |
| */ |
| pkt->len = end - pos; |
| goto drop_silent; |
| } |
| |
| TRACE_PROTO("Packet dropped", QUIC_EV_CONN_LPKT); |
| goto drop; |
| } |
| |
| /* Header form */ |
| if (!qc_parse_hd_form(pkt, &pos, end)) { |
| TRACE_PROTO("Packet dropped", QUIC_EV_CONN_LPKT); |
| goto drop; |
| } |
| |
| if (pkt->type != QUIC_PACKET_TYPE_SHORT) { |
| uint64_t len; |
| TRACE_PROTO("long header packet received", QUIC_EV_CONN_LPKT); |
| |
| if (!quic_packet_read_long_header(&pos, end, pkt)) { |
| TRACE_PROTO("Packet dropped", QUIC_EV_CONN_LPKT); |
| goto drop; |
| } |
| |
| /* When multiple QUIC packets are coalesced on the same UDP datagram, |
| * they must have the same DCID. |
| */ |
| if (!(pkt->flags & QUIC_FL_RX_PACKET_DGRAM_FIRST) && |
| (pkt->dcid.len != dgram->dcid_len || |
| memcmp(dgram->dcid, pkt->dcid.data, pkt->dcid.len))) { |
| TRACE_PROTO("Packet dropped", QUIC_EV_CONN_LPKT); |
| goto drop; |
| } |
| |
| /* Retry of Version Negotiation packets are only sent by servers */ |
| if (pkt->type == QUIC_PACKET_TYPE_RETRY || |
| (pkt->version && !pkt->version->num)) { |
| TRACE_PROTO("Packet dropped", QUIC_EV_CONN_LPKT); |
| goto drop; |
| } |
| |
| /* RFC9000 6. Version Negotiation */ |
| if (!pkt->version) { |
| /* unsupported version, send Negotiation packet */ |
| if (send_version_negotiation(l->rx.fd, &dgram->saddr, pkt)) { |
| TRACE_ERROR("VN packet not sent", QUIC_EV_CONN_LPKT); |
| goto drop_silent; |
| } |
| |
| TRACE_PROTO("VN packet sent", QUIC_EV_CONN_LPKT); |
| goto drop_silent; |
| } |
| |
| /* For Initial packets, and for servers (QUIC clients connections), |
| * there is no Initial connection IDs storage. |
| */ |
| if (pkt->type == QUIC_PACKET_TYPE_INITIAL) { |
| uint64_t token_len; |
| |
| if (!quic_dec_int(&token_len, (const unsigned char **)&pos, end) || |
| end - pos < token_len) { |
| TRACE_PROTO("Packet dropped", |
| QUIC_EV_CONN_LPKT, NULL, NULL, NULL, pkt->version); |
| goto drop; |
| } |
| |
| /* TODO Retry should be automatically activated if |
| * suspect network usage is detected. |
| */ |
| if (!token_len) { |
| if (l->bind_conf->options & BC_O_QUIC_FORCE_RETRY) { |
| TRACE_PROTO("Initial without token, sending retry", |
| QUIC_EV_CONN_LPKT, NULL, NULL, NULL, pkt->version); |
| if (send_retry(l->rx.fd, &dgram->saddr, pkt, pkt->version)) { |
| TRACE_PROTO("Error during Retry generation", |
| QUIC_EV_CONN_LPKT, NULL, NULL, NULL, pkt->version); |
| goto drop_silent; |
| } |
| |
| HA_ATOMIC_INC(&prx_counters->retry_sent); |
| goto drop_silent; |
| } |
| } |
| |
| pkt->token = pos; |
| pkt->token_len = token_len; |
| pos += pkt->token_len; |
| } |
| else if (pkt->type != QUIC_PACKET_TYPE_0RTT) { |
| if (pkt->dcid.len != QUIC_HAP_CID_LEN) { |
| TRACE_PROTO("Packet dropped", |
| QUIC_EV_CONN_LPKT, NULL, NULL, NULL, pkt->version); |
| goto drop; |
| } |
| } |
| |
| if (!quic_dec_int(&len, (const unsigned char **)&pos, end) || |
| end - pos < len) { |
| TRACE_PROTO("Packet dropped", |
| QUIC_EV_CONN_LPKT, NULL, NULL, NULL, pkt->version); |
| goto drop; |
| } |
| |
| /* Packet Number is stored here. Packet Length totalizes the |
| * rest of the content. |
| */ |
| pkt->pn_offset = pos - beg; |
| pkt->len = pkt->pn_offset + len; |
| |
| /* RFC 9000. Initial Datagram Size |
| * |
| * A server MUST discard an Initial packet that is carried in a UDP datagram |
| * with a payload that is smaller than the smallest allowed maximum datagram |
| * size of 1200 bytes. |
| */ |
| if (pkt->type == QUIC_PACKET_TYPE_INITIAL && |
| dgram->len < QUIC_INITIAL_PACKET_MINLEN) { |
| TRACE_PROTO("RX too short datagram with an Initial packet", QUIC_EV_CONN_LPKT); |
| HA_ATOMIC_INC(&prx_counters->too_short_initial_dgram); |
| goto drop; |
| } |
| |
| /* Interrupt parsing after packet length retrieval : this |
| * ensures that only the packet is dropped but not the whole |
| * datagram. |
| */ |
| if (pkt->type == QUIC_PACKET_TYPE_0RTT && !l->bind_conf->ssl_conf.early_data) { |
| TRACE_PROTO("RX 0-RTT packet not supported", QUIC_EV_CONN_LPKT); |
| goto drop; |
| } |
| } |
| else { |
| TRACE_PROTO("RX short header packet", QUIC_EV_CONN_LPKT); |
| if (end - pos < QUIC_HAP_CID_LEN) { |
| TRACE_PROTO("RX pkt dropped", QUIC_EV_CONN_LPKT); |
| goto drop; |
| } |
| |
| memcpy(pkt->dcid.data, pos, QUIC_HAP_CID_LEN); |
| pkt->dcid.len = QUIC_HAP_CID_LEN; |
| |
| /* When multiple QUIC packets are coalesced on the same UDP datagram, |
| * they must have the same DCID. |
| */ |
| if (!(pkt->flags & QUIC_FL_RX_PACKET_DGRAM_FIRST) && |
| (pkt->dcid.len != dgram->dcid_len || |
| memcmp(dgram->dcid, pkt->dcid.data, pkt->dcid.len))) { |
| TRACE_PROTO("RX pkt dropped", QUIC_EV_CONN_LPKT); |
| goto drop; |
| } |
| |
| pos += QUIC_HAP_CID_LEN; |
| |
| pkt->pn_offset = pos - beg; |
| /* A short packet is the last one of a UDP datagram. */ |
| pkt->len = end - beg; |
| } |
| |
| TRACE_PROTO("RX pkt parsed", QUIC_EV_CONN_LPKT, NULL, pkt, NULL, pkt->version); |
| TRACE_LEAVE(QUIC_EV_CONN_LPKT); |
| return 0; |
| |
| drop: |
| HA_ATOMIC_INC(&prx_counters->dropped_pkt); |
| drop_silent: |
| if (!pkt->len) |
| pkt->len = end - beg; |
| TRACE_PROTO("RX pkt parsing failed", QUIC_EV_CONN_LPKT, NULL, pkt, NULL, pkt->version); |
| TRACE_LEAVE(QUIC_EV_CONN_LPKT); |
| return -1; |
| } |
| |
| /* Check if received packet <pkt> should be drop due to <qc> already in closing |
| * state. This can be true if a CONNECTION_CLOSE has already been emitted for |
| * this connection. |
| * |
| * Returns false if connection is not in closing state else true. The caller |
| * should drop the whole datagram in the last case to not mess up <qc> |
| * CONNECTION_CLOSE rate limit counter. |
| */ |
| static int qc_rx_check_closing(struct quic_conn *qc, |
| struct quic_rx_packet *pkt) |
| { |
| if (!(qc->flags & QUIC_FL_CONN_CLOSING)) |
| return 0; |
| |
| TRACE_STATE("Closing state connection", QUIC_EV_CONN_LPKT, qc, NULL, NULL, pkt->version); |
| |
| /* Check if CONNECTION_CLOSE rate reemission is reached. */ |
| if (++qc->nb_pkt_since_cc >= qc->nb_pkt_for_cc) { |
| qc->flags |= QUIC_FL_CONN_IMMEDIATE_CLOSE; |
| qc->nb_pkt_for_cc++; |
| qc->nb_pkt_since_cc = 0; |
| } |
| |
| return 1; |
| } |
| |
| /* React to a connection migration initiated on <qc> by a client with the new |
| * path addresses <peer_addr>/<local_addr>. |
| * |
| * Returns 0 on success else non-zero. |
| */ |
| static int qc_handle_conn_migration(struct quic_conn *qc, |
| const struct sockaddr_storage *peer_addr, |
| const struct sockaddr_storage *local_addr) |
| { |
| TRACE_ENTER(QUIC_EV_CONN_LPKT, qc); |
| |
| /* RFC 9000. Connection Migration |
| * |
| * If the peer sent the disable_active_migration transport parameter, |
| * an endpoint also MUST NOT send packets (including probing packets; |
| * see Section 9.1) from a different local address to the address the peer |
| * used during the handshake, unless the endpoint has acted on a |
| * preferred_address transport parameter from the peer. |
| */ |
| if (qc->li->bind_conf->quic_params.disable_active_migration) { |
| TRACE_ERROR("Active migration was disabled, datagram dropped", QUIC_EV_CONN_LPKT, qc); |
| goto err; |
| } |
| |
| /* RFC 9000 9. Connection Migration |
| * |
| * The design of QUIC relies on endpoints retaining a stable address for |
| * the duration of the handshake. An endpoint MUST NOT initiate |
| * connection migration before the handshake is confirmed, as defined in |
| * Section 4.1.2 of [QUIC-TLS]. |
| */ |
| if (qc->state < QUIC_HS_ST_COMPLETE) { |
| TRACE_STATE("Connection migration during handshake rejected", QUIC_EV_CONN_LPKT, qc); |
| goto err; |
| } |
| |
| /* RFC 9000 9. Connection Migration |
| * |
| * TODO |
| * An endpoint MUST |
| * perform path validation (Section 8.2) if it detects any change to a |
| * peer's address, unless it has previously validated that address. |
| */ |
| |
| /* Update quic-conn owned socket if in used. |
| * TODO try to reuse it instead of closing and opening a new one. |
| */ |
| if (qc_test_fd(qc)) { |
| /* TODO try to reuse socket instead of closing it and opening a new one. */ |
| TRACE_STATE("Connection migration detected, allocate a new connection socket", QUIC_EV_CONN_LPKT, qc); |
| qc_release_fd(qc, 1); |
| /* TODO need to adjust <jobs> on socket allocation failure. */ |
| qc_alloc_fd(qc, local_addr, peer_addr); |
| } |
| |
| qc->local_addr = *local_addr; |
| qc->peer_addr = *peer_addr; |
| qc->cntrs.conn_migration_done++; |
| |
| TRACE_LEAVE(QUIC_EV_CONN_LPKT, qc); |
| return 0; |
| |
| err: |
| TRACE_LEAVE(QUIC_EV_CONN_LPKT, qc); |
| return 1; |
| } |
| |
| /* Release the memory for the RX packets which are no more referenced |
| * and consume their payloads which have been copied to the RX buffer |
| * for the connection. |
| * Always succeeds. |
| */ |
| static inline void quic_rx_pkts_del(struct quic_conn *qc) |
| { |
| struct quic_rx_packet *pkt, *pktback; |
| |
| list_for_each_entry_safe(pkt, pktback, &qc->rx.pkt_list, qc_rx_pkt_list) { |
| TRACE_PRINTF(TRACE_LEVEL_DEVELOPER, QUIC_EV_CONN_LPKT, qc, 0, 0, 0, |
| "pkt #%lld(type=%d,len=%llu,rawlen=%llu,refcnt=%u) (diff: %zd)", |
| (long long)pkt->pn_node.key, |
| pkt->type, (ull)pkt->len, (ull)pkt->raw_len, pkt->refcnt, |
| (unsigned char *)b_head(&qc->rx.buf) - pkt->data); |
| if (pkt->data != (unsigned char *)b_head(&qc->rx.buf)) { |
| size_t cdata; |
| |
| cdata = b_contig_data(&qc->rx.buf, 0); |
| TRACE_PRINTF(TRACE_LEVEL_DEVELOPER, QUIC_EV_CONN_LPKT, qc, 0, 0, 0, |
| "cdata=%llu *b_head()=0x%x", (ull)cdata, *b_head(&qc->rx.buf)); |
| if (cdata && !*b_head(&qc->rx.buf)) { |
| /* Consume the remaining data */ |
| b_del(&qc->rx.buf, cdata); |
| } |
| break; |
| } |
| |
| if (pkt->refcnt) |
| break; |
| |
| b_del(&qc->rx.buf, pkt->raw_len); |
| LIST_DELETE(&pkt->qc_rx_pkt_list); |
| pool_free(pool_head_quic_rx_packet, pkt); |
| } |
| |
| /* In frequent cases the buffer will be emptied at this stage. */ |
| b_realign_if_empty(&qc->rx.buf); |
| } |
| |
| /* Handle a parsed packet <pkt> by the connection <qc>. Data will be copied |
| * into <qc> receive buffer after header protection removal procedure. |
| * |
| * <dgram> must be set to the datagram which contains the QUIC packet. <beg> |
| * must point to packet buffer first byte. |
| * |
| * <tasklist_head> may be non-NULL when the caller treat several datagrams for |
| * different quic-conn. In this case, each quic-conn tasklet will be appended |
| * to it in order to be woken up after the current task. |
| * |
| * The caller can safely removed the packet data. If packet refcount was not |
| * incremented by this function, it means that the connection did not handled |
| * it and it should be freed by the caller. |
| */ |
| static void qc_rx_pkt_handle(struct quic_conn *qc, struct quic_rx_packet *pkt, |
| struct quic_dgram *dgram, unsigned char *beg, |
| struct list **tasklist_head) |
| { |
| const struct quic_version *qv = pkt->version; |
| struct quic_enc_level *qel = NULL; |
| size_t b_cspace; |
| |
| TRACE_ENTER(QUIC_EV_CONN_LPKT, qc); |
| TRACE_PROTO("RX pkt", QUIC_EV_CONN_LPKT, qc, pkt, NULL, qv); |
| |
| if (pkt->flags & QUIC_FL_RX_PACKET_DGRAM_FIRST && |
| qc->flags & QUIC_FL_CONN_ANTI_AMPLIFICATION_REACHED) { |
| TRACE_PROTO("PTO timer must be armed after anti-amplication was reached", |
| QUIC_EV_CONN_LPKT, qc, NULL, NULL, qv); |
| TRACE_DEVEL("needs to wakeup the timer task after the amplification limit was reached", |
| QUIC_EV_CONN_LPKT, qc); |
| /* Reset the anti-amplification bit. It will be set again |
| * when sending the next packet if reached again. |
| */ |
| qc->flags &= ~QUIC_FL_CONN_ANTI_AMPLIFICATION_REACHED; |
| qc_set_timer(qc); |
| if (qc->timer_task && tick_isset(qc->timer) && tick_is_lt(qc->timer, now_ms)) |
| task_wakeup(qc->timer_task, TASK_WOKEN_MSG); |
| } |
| |
| if (qc->flags & QUIC_FL_CONN_IMMEDIATE_CLOSE) { |
| TRACE_PROTO("Connection error", |
| QUIC_EV_CONN_LPKT, qc, NULL, NULL, qv); |
| goto out; |
| } |
| |
| pkt->raw_len = pkt->len; |
| quic_rx_pkts_del(qc); |
| b_cspace = b_contig_space(&qc->rx.buf); |
| if (b_cspace < pkt->len) { |
| TRACE_PRINTF(TRACE_LEVEL_DEVELOPER, QUIC_EV_CONN_LPKT, qc, 0, 0, 0, |
| "bspace=%llu pkt->len=%llu", (ull)b_cspace, (ull)pkt->len); |
| /* Do not consume buf if space not at the end. */ |
| if (b_tail(&qc->rx.buf) + b_cspace < b_wrap(&qc->rx.buf)) { |
| TRACE_PROTO("Packet dropped", |
| QUIC_EV_CONN_LPKT, qc, NULL, NULL, qv); |
| qc->cntrs.dropped_pkt_bufoverrun++; |
| goto drop_silent; |
| } |
| |
| /* Let us consume the remaining contiguous space. */ |
| if (b_cspace) { |
| b_putchr(&qc->rx.buf, 0x00); |
| b_cspace--; |
| } |
| b_add(&qc->rx.buf, b_cspace); |
| if (b_contig_space(&qc->rx.buf) < pkt->len) { |
| TRACE_PROTO("Too big packet", |
| QUIC_EV_CONN_LPKT, qc, pkt, &pkt->len, qv); |
| qc->cntrs.dropped_pkt_bufoverrun++; |
| goto drop_silent; |
| } |
| } |
| |
| if (!qc_try_rm_hp(qc, pkt, beg, &qel)) { |
| TRACE_PROTO("Packet dropped", QUIC_EV_CONN_LPKT, qc, NULL, NULL, qv); |
| goto drop; |
| } |
| |
| TRACE_DATA("New packet", QUIC_EV_CONN_LPKT, qc, pkt, NULL, qv); |
| if (pkt->aad_len) |
| qc_pkt_insert(qc, pkt, qel); |
| out: |
| *tasklist_head = tasklet_wakeup_after(*tasklist_head, |
| qc->wait_event.tasklet); |
| |
| drop_silent: |
| TRACE_PROTO("RX pkt", QUIC_EV_CONN_LPKT, qc ? qc : NULL, pkt, NULL, qv); |
| TRACE_LEAVE(QUIC_EV_CONN_LPKT, qc ? qc : NULL); |
| return; |
| |
| drop: |
| qc->cntrs.dropped_pkt++; |
| TRACE_PROTO("packet drop", QUIC_EV_CONN_LPKT, qc, pkt, NULL, qv); |
| TRACE_LEAVE(QUIC_EV_CONN_LPKT, qc); |
| } |
| |
| /* This function builds into a buffer at <pos> position a QUIC long packet header, |
| * <end> being one byte past the end of this buffer. |
| * Return 1 if enough room to build this header, 0 if not. |
| */ |
| static int quic_build_packet_long_header(unsigned char **pos, const unsigned char *end, |
| int type, size_t pn_len, |
| struct quic_conn *qc, const struct quic_version *ver) |
| { |
| int ret = 0; |
| |
| TRACE_ENTER(QUIC_EV_CONN_LPKT, qc); |
| |
| if (end - *pos < sizeof ver->num + qc->dcid.len + qc->scid.len + 3) { |
| TRACE_DEVEL("not enough room", QUIC_EV_CONN_LPKT, qc); |
| goto leave; |
| } |
| |
| type = quic_pkt_type(type, ver->num); |
| /* #0 byte flags */ |
| *(*pos)++ = QUIC_PACKET_FIXED_BIT | QUIC_PACKET_LONG_HEADER_BIT | |
| (type << QUIC_PACKET_TYPE_SHIFT) | (pn_len - 1); |
| /* Version */ |
| quic_write_uint32(pos, end, ver->num); |
| *(*pos)++ = qc->dcid.len; |
| /* Destination connection ID */ |
| if (qc->dcid.len) { |
| memcpy(*pos, qc->dcid.data, qc->dcid.len); |
| *pos += qc->dcid.len; |
| } |
| /* Source connection ID */ |
| *(*pos)++ = qc->scid.len; |
| if (qc->scid.len) { |
| memcpy(*pos, qc->scid.data, qc->scid.len); |
| *pos += qc->scid.len; |
| } |
| |
| ret = 1; |
| leave: |
| TRACE_LEAVE(QUIC_EV_CONN_LPKT, qc); |
| return ret; |
| } |
| |
| /* This function builds into a buffer at <pos> position a QUIC short packet header, |
| * <end> being one byte past the end of this buffer. |
| * Return 1 if enough room to build this header, 0 if not. |
| */ |
| static int quic_build_packet_short_header(unsigned char **pos, const unsigned char *end, |
| size_t pn_len, struct quic_conn *qc, |
| unsigned char tls_flags) |
| { |
| int ret = 0; |
| unsigned char spin_bit = |
| (qc->flags & QUIC_FL_CONN_SPIN_BIT) ? QUIC_PACKET_SPIN_BIT : 0; |
| |
| TRACE_ENTER(QUIC_EV_CONN_TXPKT, qc); |
| |
| if (end - *pos < 1 + qc->dcid.len) { |
| TRACE_DEVEL("not enough room", QUIC_EV_CONN_LPKT, qc); |
| goto leave; |
| } |
| |
| /* #0 byte flags */ |
| *(*pos)++ = QUIC_PACKET_FIXED_BIT | spin_bit | |
| ((tls_flags & QUIC_FL_TLS_KP_BIT_SET) ? QUIC_PACKET_KEY_PHASE_BIT : 0) | (pn_len - 1); |
| /* Destination connection ID */ |
| if (qc->dcid.len) { |
| memcpy(*pos, qc->dcid.data, qc->dcid.len); |
| *pos += qc->dcid.len; |
| } |
| |
| ret = 1; |
| leave: |
| TRACE_LEAVE(QUIC_EV_CONN_TXPKT, qc); |
| return ret; |
| } |
| |
| /* Apply QUIC header protection to the packet with <pos> as first byte address, |
| * <pn> as address of the Packet number field, <pnlen> being this field length |
| * with <aead> as AEAD cipher and <key> as secret key. |
| * |
| * TODO no error is expected as encryption is done in place but encryption |
| * manual is unclear. <fail> will be set to true if an error is detected. |
| */ |
| void quic_apply_header_protection(struct quic_conn *qc, unsigned char *pos, |
| unsigned char *pn, size_t pnlen, |
| struct quic_tls_ctx *tls_ctx, int *fail) |
| |
| { |
| int i; |
| /* We need an IV of at least 5 bytes: one byte for bytes #0 |
| * and at most 4 bytes for the packet number |
| */ |
| unsigned char mask[5] = {0}; |
| EVP_CIPHER_CTX *aes_ctx = tls_ctx->tx.hp_ctx; |
| |
| TRACE_ENTER(QUIC_EV_CONN_TXPKT, qc); |
| |
| *fail = 0; |
| |
| if (!quic_tls_aes_encrypt(mask, pn + QUIC_PACKET_PN_MAXLEN, sizeof mask, aes_ctx)) { |
| TRACE_ERROR("could not apply header protection", QUIC_EV_CONN_TXPKT, qc); |
| *fail = 1; |
| goto out; |
| } |
| |
| *pos ^= mask[0] & (*pos & QUIC_PACKET_LONG_HEADER_BIT ? 0xf : 0x1f); |
| for (i = 0; i < pnlen; i++) |
| pn[i] ^= mask[i + 1]; |
| |
| out: |
| TRACE_LEAVE(QUIC_EV_CONN_TXPKT, qc); |
| } |
| |
| /* Prepare into <outlist> as most as possible ack-eliciting frame from their |
| * <inlist> prebuilt frames for <qel> encryption level to be encoded in a buffer |
| * with <room> as available room, and <*len> the packet Length field initialized |
| * with the number of bytes already present in this buffer which must be taken |
| * into an account for the Length packet field value. <headlen> is the number of |
| * bytes already present in this packet before building frames. |
| * |
| * Update consequently <*len> to reflect the size of these frames built |
| * by this function. Also attach these frames to <l> frame list. |
| * Return 1 if at least one ack-eleciting frame could be built, 0 if not. |
| */ |
| static inline int qc_build_frms(struct list *outlist, struct list *inlist, |
| size_t room, size_t *len, size_t headlen, |
| struct quic_enc_level *qel, |
| struct quic_conn *qc) |
| { |
| int ret; |
| struct quic_frame *cf, *cfbak; |
| |
| TRACE_ENTER(QUIC_EV_CONN_BCFRMS, qc); |
| |
| ret = 0; |
| if (*len > room) |
| goto leave; |
| |
| /* If we are not probing we must take into an account the congestion |
| * control window. |
| */ |
| if (!qel->pktns->tx.pto_probe) { |
| size_t remain = quic_path_prep_data(qc->path); |
| |
| if (headlen > remain) |
| goto leave; |
| |
| room = QUIC_MIN(room, remain - headlen); |
| } |
| |
| TRACE_PROTO("TX frms build (headlen)", |
| QUIC_EV_CONN_BCFRMS, qc, &headlen); |
| |
| /* NOTE: switch/case block inside a loop, a successful status must be |
| * returned by this function only if at least one frame could be built |
| * in the switch/case block. |
| */ |
| list_for_each_entry_safe(cf, cfbak, inlist, list) { |
| /* header length, data length, frame length. */ |
| size_t hlen, dlen, dlen_sz, avail_room, flen; |
| |
| if (!room) |
| break; |
| |
| switch (cf->type) { |
| case QUIC_FT_CRYPTO: |
| TRACE_DEVEL(" New CRYPTO frame build (room, len)", |
| QUIC_EV_CONN_BCFRMS, qc, &room, len); |
| /* Compute the length of this CRYPTO frame header */ |
| hlen = 1 + quic_int_getsize(cf->crypto.offset); |
| /* Compute the data length of this CRyPTO frame. */ |
| dlen = max_stream_data_size(room, *len + hlen, cf->crypto.len); |
| TRACE_DEVEL(" CRYPTO data length (hlen, crypto.len, dlen)", |
| QUIC_EV_CONN_BCFRMS, qc, &hlen, &cf->crypto.len, &dlen); |
| if (!dlen) |
| continue; |
| |
| /* CRYPTO frame length. */ |
| flen = hlen + quic_int_getsize(dlen) + dlen; |
| TRACE_DEVEL(" CRYPTO frame length (flen)", |
| QUIC_EV_CONN_BCFRMS, qc, &flen); |
| /* Add the CRYPTO data length and its encoded length to the packet |
| * length and the length of this length. |
| */ |
| *len += flen; |
| room -= flen; |
| if (dlen == cf->crypto.len) { |
| /* <cf> CRYPTO data have been consumed. */ |
| LIST_DEL_INIT(&cf->list); |
| LIST_APPEND(outlist, &cf->list); |
| } |
| else { |
| struct quic_frame *new_cf; |
| |
| new_cf = qc_frm_alloc(QUIC_FT_CRYPTO); |
| if (!new_cf) { |
| TRACE_ERROR("No memory for new crypto frame", QUIC_EV_CONN_BCFRMS, qc); |
| continue; |
| } |
| |
| new_cf->crypto.len = dlen; |
| new_cf->crypto.offset = cf->crypto.offset; |
| new_cf->crypto.qel = qel; |
| TRACE_DEVEL("split frame", QUIC_EV_CONN_PRSAFRM, qc, new_cf); |
| if (cf->origin) { |
| TRACE_DEVEL("duplicated frame", QUIC_EV_CONN_PRSAFRM, qc); |
| /* This <cf> frame was duplicated */ |
| LIST_APPEND(&cf->origin->reflist, &new_cf->ref); |
| new_cf->origin = cf->origin; |
| /* Detach the remaining CRYPTO frame from its original frame */ |
| LIST_DEL_INIT(&cf->ref); |
| cf->origin = NULL; |
| } |
| LIST_APPEND(outlist, &new_cf->list); |
| /* Consume <dlen> bytes of the current frame. */ |
| cf->crypto.len -= dlen; |
| cf->crypto.offset += dlen; |
| } |
| break; |
| |
| case QUIC_FT_STREAM_8 ... QUIC_FT_STREAM_F: |
| if (cf->stream.dup) { |
| struct eb64_node *node = NULL; |
| struct qc_stream_desc *stream_desc = NULL; |
| struct qf_stream *strm_frm = &cf->stream; |
| |
| /* As this frame has been already lost, ensure the stream is always |
| * available or the range of this frame is not consumed before |
| * resending it. |
| */ |
| node = eb64_lookup(&qc->streams_by_id, strm_frm->id); |
| if (!node) { |
| TRACE_DEVEL("released stream", QUIC_EV_CONN_PRSAFRM, qc, cf); |
| qc_frm_free(&cf); |
| continue; |
| } |
| |
| stream_desc = eb64_entry(node, struct qc_stream_desc, by_id); |
| if (strm_frm->offset.key + strm_frm->len <= stream_desc->ack_offset) { |
| TRACE_DEVEL("ignored frame frame in already acked range", |
| QUIC_EV_CONN_PRSAFRM, qc, cf); |
| qc_frm_free(&cf); |
| continue; |
| } |
| else if (strm_frm->offset.key < stream_desc->ack_offset) { |
| uint64_t diff = stream_desc->ack_offset - strm_frm->offset.key; |
| |
| qc_stream_frm_mv_fwd(cf, diff); |
| TRACE_DEVEL("updated partially acked frame", |
| QUIC_EV_CONN_PRSAFRM, qc, cf); |
| } |
| } |
| /* Note that these frames are accepted in short packets only without |
| * "Length" packet field. Here, <*len> is used only to compute the |
| * sum of the lengths of the already built frames for this packet. |
| * |
| * Compute the length of this STREAM frame "header" made a all the field |
| * excepting the variable ones. Note that +1 is for the type of this frame. |
| */ |
| hlen = 1 + quic_int_getsize(cf->stream.id) + |
| ((cf->type & QUIC_STREAM_FRAME_TYPE_OFF_BIT) ? quic_int_getsize(cf->stream.offset.key) : 0); |
| /* Compute the data length of this STREAM frame. */ |
| avail_room = room - hlen - *len; |
| if ((ssize_t)avail_room <= 0) |
| continue; |
| |
| TRACE_DEVEL(" New STREAM frame build (room, len)", |
| QUIC_EV_CONN_BCFRMS, qc, &room, len); |
| |
| /* hlen contains STREAM id and offset. Ensure there is |
| * enough room for length field. |
| */ |
| if (cf->type & QUIC_STREAM_FRAME_TYPE_LEN_BIT) { |
| dlen = QUIC_MIN((uint64_t)max_available_room(avail_room, &dlen_sz), |
| cf->stream.len); |
| dlen_sz = quic_int_getsize(dlen); |
| flen = hlen + dlen_sz + dlen; |
| } |
| else { |
| dlen = QUIC_MIN((uint64_t)avail_room, cf->stream.len); |
| flen = hlen + dlen; |
| } |
| |
| if (cf->stream.len && !dlen) { |
| /* Only a small gap is left on buffer, not |
| * enough to encode the STREAM data length. |
| */ |
| continue; |
| } |
| |
| TRACE_DEVEL(" STREAM data length (hlen, stream.len, dlen)", |
| QUIC_EV_CONN_BCFRMS, qc, &hlen, &cf->stream.len, &dlen); |
| TRACE_DEVEL(" STREAM frame length (flen)", |
| QUIC_EV_CONN_BCFRMS, qc, &flen); |
| /* Add the STREAM data length and its encoded length to the packet |
| * length and the length of this length. |
| */ |
| *len += flen; |
| room -= flen; |
| if (dlen == cf->stream.len) { |
| /* <cf> STREAM data have been consumed. */ |
| LIST_DEL_INIT(&cf->list); |
| LIST_APPEND(outlist, &cf->list); |
| |
| /* Do not notify MUX on retransmission. */ |
| if (qc->flags & QUIC_FL_CONN_TX_MUX_CONTEXT) { |
| qcc_streams_sent_done(cf->stream.stream->ctx, |
| cf->stream.len, |
| cf->stream.offset.key); |
| } |
| } |
| else { |
| struct quic_frame *new_cf; |
| struct buffer cf_buf; |
| |
| new_cf = qc_frm_alloc(cf->type); |
| if (!new_cf) { |
| TRACE_ERROR("No memory for new STREAM frame", QUIC_EV_CONN_BCFRMS, qc); |
| continue; |
| } |
| |
| new_cf->stream.stream = cf->stream.stream; |
| new_cf->stream.buf = cf->stream.buf; |
| new_cf->stream.id = cf->stream.id; |
| new_cf->stream.offset = cf->stream.offset; |
| new_cf->stream.len = dlen; |
| new_cf->type |= QUIC_STREAM_FRAME_TYPE_LEN_BIT; |
| /* FIN bit reset */ |
| new_cf->type &= ~QUIC_STREAM_FRAME_TYPE_FIN_BIT; |
| new_cf->stream.data = cf->stream.data; |
| new_cf->stream.dup = cf->stream.dup; |
| TRACE_DEVEL("split frame", QUIC_EV_CONN_PRSAFRM, qc, new_cf); |
| if (cf->origin) { |
| TRACE_DEVEL("duplicated frame", QUIC_EV_CONN_PRSAFRM, qc); |
| /* This <cf> frame was duplicated */ |
| LIST_APPEND(&cf->origin->reflist, &new_cf->ref); |
| new_cf->origin = cf->origin; |
| /* Detach this STREAM frame from its origin */ |
| LIST_DEL_INIT(&cf->ref); |
| cf->origin = NULL; |
| } |
| LIST_APPEND(outlist, &new_cf->list); |
| cf->type |= QUIC_STREAM_FRAME_TYPE_OFF_BIT; |
| /* Consume <dlen> bytes of the current frame. */ |
| cf_buf = b_make(b_orig(cf->stream.buf), |
| b_size(cf->stream.buf), |
| (char *)cf->stream.data - b_orig(cf->stream.buf), 0); |
| cf->stream.len -= dlen; |
| cf->stream.offset.key += dlen; |
| cf->stream.data = (unsigned char *)b_peek(&cf_buf, dlen); |
| |
| /* Do not notify MUX on retransmission. */ |
| if (qc->flags & QUIC_FL_CONN_TX_MUX_CONTEXT) { |
| qcc_streams_sent_done(new_cf->stream.stream->ctx, |
| new_cf->stream.len, |
| new_cf->stream.offset.key); |
| } |
| } |
| |
| /* TODO the MUX is notified about the frame sending via |
| * previous qcc_streams_sent_done call. However, the |
| * sending can fail later, for example if the sendto |
| * system call returns an error. As the MUX has been |
| * notified, the transport layer is responsible to |
| * bufferize and resent the announced data later. |
| */ |
| |
| break; |
| |
| default: |
| flen = qc_frm_len(cf); |
| BUG_ON(!flen); |
| if (flen > room) |
| continue; |
| |
| *len += flen; |
| room -= flen; |
| LIST_DEL_INIT(&cf->list); |
| LIST_APPEND(outlist, &cf->list); |
| break; |
| } |
| |
| /* Successful status as soon as a frame could be built */ |
| ret = 1; |
| } |
| |
| leave: |
| TRACE_LEAVE(QUIC_EV_CONN_BCFRMS, qc); |
| return ret; |
| } |
| |
| /* Generate a CONNECTION_CLOSE frame for <qc> on <qel> encryption level. <out> |
| * is used as return parameter and should be zero'ed by the caller. |
| */ |
| static void qc_build_cc_frm(struct quic_conn *qc, struct quic_enc_level *qel, |
| struct quic_frame *out) |
| { |
| /* TODO improve CONNECTION_CLOSE on Initial/Handshake encryption levels |
| * |
| * A CONNECTION_CLOSE frame should be sent in several packets with |
| * different encryption levels depending on the client context. This is |
| * to ensure that the client can decrypt it. See RFC 9000 10.2.3 for |
| * more details on how to implement it. |
| */ |
| TRACE_ENTER(QUIC_EV_CONN_BFRM, qc); |
| |
| |
| if (qc->err.app) { |
| if (unlikely(qel == &qc->els[QUIC_TLS_ENC_LEVEL_INITIAL] || |
| qel == &qc->els[QUIC_TLS_ENC_LEVEL_HANDSHAKE])) { |
| /* RFC 9000 10.2.3. Immediate Close during the Handshake |
| * |
| * Sending a CONNECTION_CLOSE of type 0x1d in an Initial or Handshake |
| * packet could expose application state or be used to alter application |
| * state. A CONNECTION_CLOSE of type 0x1d MUST be replaced by a |
| * CONNECTION_CLOSE of type 0x1c when sending the frame in Initial or |
| * Handshake packets. Otherwise, information about the application |
| * state might be revealed. Endpoints MUST clear the value of the |
| * Reason Phrase field and SHOULD use the APPLICATION_ERROR code when |
| * converting to a CONNECTION_CLOSE of type 0x1c. |
| */ |
| out->type = QUIC_FT_CONNECTION_CLOSE; |
| out->connection_close.error_code = QC_ERR_APPLICATION_ERROR; |
| out->connection_close.reason_phrase_len = 0; |
| } |
| else { |
| out->type = QUIC_FT_CONNECTION_CLOSE_APP; |
| out->connection_close_app.error_code = qc->err.code; |
| out->connection_close_app.reason_phrase_len = 0; |
| } |
| } |
| else { |
| out->type = QUIC_FT_CONNECTION_CLOSE; |
| out->connection_close.error_code = qc->err.code; |
| } |
| TRACE_LEAVE(QUIC_EV_CONN_BFRM, qc); |
| |
| } |
| |
| /* This function builds a clear packet from <pkt> information (its type) |
| * into a buffer with <pos> as position pointer and <qel> as QUIC TLS encryption |
| * level for <conn> QUIC connection and <qel> as QUIC TLS encryption level, |
| * filling the buffer with as much frames as possible from <frms> list of |
| * prebuilt frames. |
| * The trailing QUIC_TLS_TAG_LEN bytes of this packet are not built. But they are |
| * reserved so that to ensure there is enough room to build this AEAD TAG after |
| * having returned from this function. |
| * This function also updates the value of <buf_pn> pointer to point to the packet |
| * number field in this packet. <pn_len> will also have the packet number |
| * length as value. |
| * |
| * Return 1 if succeeded (enough room to buile this packet), O if not. |
| */ |
| static int qc_do_build_pkt(unsigned char *pos, const unsigned char *end, |
| size_t dglen, struct quic_tx_packet *pkt, |
| int64_t pn, size_t *pn_len, unsigned char **buf_pn, |
| int must_ack, int padding, int cc, int probe, |
| struct quic_enc_level *qel, struct quic_conn *qc, |
| const struct quic_version *ver, struct list *frms) |
| { |
| unsigned char *beg, *payload; |
| size_t len, len_sz, len_frms, padding_len; |
| struct quic_frame frm = { .type = QUIC_FT_CRYPTO, }; |
| struct quic_frame ack_frm = { .type = QUIC_FT_ACK, }; |
| struct quic_frame cc_frm = { }; |
| size_t ack_frm_len, head_len; |
| int64_t rx_largest_acked_pn; |
| int add_ping_frm; |
| struct list frm_list = LIST_HEAD_INIT(frm_list); |
| struct quic_frame *cf; |
| int ret = 0; |
| |
| TRACE_ENTER(QUIC_EV_CONN_TXPKT, qc); |
| |
| /* Length field value with CRYPTO frames if present. */ |
| len_frms = 0; |
| beg = pos; |
| /* When not probing, and no immediate close is required, reduce the size of this |
| * buffer to respect the congestion controller window. |
| * This size will be limited if we have ack-eliciting frames to send from <frms>. |
| */ |
| if (!probe && !LIST_ISEMPTY(frms) && !cc) { |
| size_t path_room; |
| |
| path_room = quic_path_prep_data(qc->path); |
| if (end - beg > path_room) |
| end = beg + path_room; |
| } |
| |
| /* Ensure there is enough room for the TLS encryption tag and a zero token |
| * length field if any. |
| */ |
| if (end - pos < QUIC_TLS_TAG_LEN + |
| (pkt->type == QUIC_PACKET_TYPE_INITIAL ? 1 : 0)) |
| goto no_room; |
| |
| end -= QUIC_TLS_TAG_LEN; |
| rx_largest_acked_pn = qel->pktns->rx.largest_acked_pn; |
| /* packet number length */ |
| *pn_len = quic_packet_number_length(pn, rx_largest_acked_pn); |
| /* Build the header */ |
| if ((pkt->type == QUIC_PACKET_TYPE_SHORT && |
| !quic_build_packet_short_header(&pos, end, *pn_len, qc, qel->tls_ctx.flags)) || |
| (pkt->type != QUIC_PACKET_TYPE_SHORT && |
| !quic_build_packet_long_header(&pos, end, pkt->type, *pn_len, qc, ver))) |
| goto no_room; |
| |
| /* Encode the token length (0) for an Initial packet. */ |
| if (pkt->type == QUIC_PACKET_TYPE_INITIAL) { |
| if (end <= pos) |
| goto no_room; |
| |
| *pos++ = 0; |
| } |
| |
| head_len = pos - beg; |
| /* Build an ACK frame if required. */ |
| ack_frm_len = 0; |
| /* Do not ack and probe at the same time. */ |
| if ((must_ack || (qel->pktns->flags & QUIC_FL_PKTNS_ACK_REQUIRED)) && !qel->pktns->tx.pto_probe) { |
| struct quic_arngs *arngs = &qel->pktns->rx.arngs; |
| BUG_ON(eb_is_empty(&qel->pktns->rx.arngs.root)); |
| ack_frm.tx_ack.arngs = arngs; |
| if (qel->pktns->flags & QUIC_FL_PKTNS_NEW_LARGEST_PN) { |
| qel->pktns->tx.ack_delay = |
| quic_compute_ack_delay_us(qel->pktns->rx.largest_time_received, qc); |
| qel->pktns->flags &= ~QUIC_FL_PKTNS_NEW_LARGEST_PN; |
| } |
| ack_frm.tx_ack.ack_delay = qel->pktns->tx.ack_delay; |
| /* XXX BE CAREFUL XXX : here we reserved at least one byte for the |
| * smallest frame (PING) and <*pn_len> more for the packet number. Note |
| * that from here, we do not know if we will have to send a PING frame. |
| * This will be decided after having computed the ack-eliciting frames |
| * to be added to this packet. |
| */ |
| if (end - pos <= 1 + *pn_len) |
| goto no_room; |
| |
| ack_frm_len = qc_frm_len(&ack_frm); |
| if (ack_frm_len > end - 1 - *pn_len - pos) |
| goto no_room; |
| } |
| |
| /* Length field value without the ack-eliciting frames. */ |
| len = ack_frm_len + *pn_len; |
| len_frms = 0; |
| if (!cc && !LIST_ISEMPTY(frms)) { |
| ssize_t room = end - pos; |
| |
| TRACE_PROTO("Avail. ack eliciting frames", QUIC_EV_CONN_FRMLIST, qc, frms); |
| /* Initialize the length of the frames built below to <len>. |
| * If any frame could be successfully built by qc_build_frms(), |
| * we will have len_frms > len. |
| */ |
| len_frms = len; |
| if (!qc_build_frms(&frm_list, frms, |
| end - pos, &len_frms, pos - beg, qel, qc)) { |
| TRACE_PROTO("Not enough room", QUIC_EV_CONN_TXPKT, |
| qc, NULL, NULL, &room); |
| if (padding) { |
| len_frms = 0; |
| goto comp_pkt_len; |
| } |
| if (!ack_frm_len && !qel->pktns->tx.pto_probe) |
| goto no_room; |
| } |
| } |
| |
| comp_pkt_len: |
| /* Length (of the remaining data). Must not fail because, the buffer size |
| * has been checked above. Note that we have reserved QUIC_TLS_TAG_LEN bytes |
| * for the encryption tag. It must be taken into an account for the length |
| * of this packet. |
| */ |
| if (len_frms) |
| len = len_frms + QUIC_TLS_TAG_LEN; |
| else |
| len += QUIC_TLS_TAG_LEN; |
| /* CONNECTION_CLOSE frame */ |
| if (cc) { |
| qc_build_cc_frm(qc, qel, &cc_frm); |
| len += qc_frm_len(&cc_frm); |
| } |
| add_ping_frm = 0; |
| padding_len = 0; |
| len_sz = quic_int_getsize(len); |
| /* Add this packet size to <dglen> */ |
| dglen += head_len + len_sz + len; |
| /* Note that <padding> is true only when building an Handshake packet |
| * coalesced to an Initial packet. |
| */ |
| if (padding && dglen < QUIC_INITIAL_PACKET_MINLEN) { |
| /* This is a maximum padding size */ |
| padding_len = QUIC_INITIAL_PACKET_MINLEN - dglen; |
| /* The length field value is of this packet is <len> + <padding_len> |
| * the size of which may be greater than the initial computed size |
| * <len_sz>. So, let's deduce the difference between these to packet |
| * sizes from <padding_len>. |
| */ |
| padding_len -= quic_int_getsize(len + padding_len) - len_sz; |
| len += padding_len; |
| } |
| else if (len_frms && len_frms < QUIC_PACKET_PN_MAXLEN) { |
| len += padding_len = QUIC_PACKET_PN_MAXLEN - len_frms; |
| } |
| else if (LIST_ISEMPTY(&frm_list)) { |
| if (qel->pktns->tx.pto_probe) { |
| /* If we cannot send a frame, we send a PING frame. */ |
| add_ping_frm = 1; |
| len += 1; |
| dglen += 1; |
| /* Note that only we are in the case where this Initial packet |
| * is not coalesced to an Handshake packet. We must directly |
| * pad the datragram. |
| */ |
| if (pkt->type == QUIC_PACKET_TYPE_INITIAL) { |
| if (dglen < QUIC_INITIAL_PACKET_MINLEN) { |
| padding_len = QUIC_INITIAL_PACKET_MINLEN - dglen; |
| padding_len -= quic_int_getsize(len + padding_len) - len_sz; |
| len += padding_len; |
| } |
| } |
| else { |
| /* Note that +1 is for the PING frame */ |
| if (*pn_len + 1 < QUIC_PACKET_PN_MAXLEN) |
| len += padding_len = QUIC_PACKET_PN_MAXLEN - *pn_len - 1; |
| } |
| } |
| else { |
| /* If there is no frame at all to follow, add at least a PADDING frame. */ |
| if (!ack_frm_len && !cc) |
| len += padding_len = QUIC_PACKET_PN_MAXLEN - *pn_len; |
| } |
| } |
| |
| if (pkt->type != QUIC_PACKET_TYPE_SHORT && !quic_enc_int(&pos, end, len)) |
| goto no_room; |
| |
| /* Packet number field address. */ |
| *buf_pn = pos; |
| |
| /* Packet number encoding. */ |
| if (!quic_packet_number_encode(&pos, end, pn, *pn_len)) |
| goto no_room; |
| |
| /* payload building (ack-eliciting or not frames) */ |
| payload = pos; |
| if (ack_frm_len) { |
| if (!qc_build_frm(&pos, end, &ack_frm, pkt, qc)) |
| goto no_room; |
| |
| pkt->largest_acked_pn = quic_pktns_get_largest_acked_pn(qel->pktns); |
| pkt->flags |= QUIC_FL_TX_PACKET_ACK; |
| } |
| |
| /* Ack-eliciting frames */ |
| if (!LIST_ISEMPTY(&frm_list)) { |
| struct quic_frame *tmp_cf; |
| list_for_each_entry_safe(cf, tmp_cf, &frm_list, list) { |
| if (!qc_build_frm(&pos, end, cf, pkt, qc)) { |
| ssize_t room = end - pos; |
| TRACE_PROTO("Not enough room", QUIC_EV_CONN_TXPKT, |
| qc, NULL, NULL, &room); |
| /* Note that <cf> was added from <frms> to <frm_list> list by |
| * qc_build_frms(). |
| */ |
| LIST_DEL_INIT(&cf->list); |
| LIST_INSERT(frms, &cf->list); |
| continue; |
| } |
| |
| quic_tx_packet_refinc(pkt); |
| cf->pkt = pkt; |
| } |
| } |
| |
| /* Build a PING frame if needed. */ |
| if (add_ping_frm) { |
| frm.type = QUIC_FT_PING; |
| if (!qc_build_frm(&pos, end, &frm, pkt, qc)) |
| goto no_room; |
| } |
| |
| /* Build a CONNECTION_CLOSE frame if needed. */ |
| if (cc) { |
| if (!qc_build_frm(&pos, end, &cc_frm, pkt, qc)) |
| goto no_room; |
| |
| pkt->flags |= QUIC_FL_TX_PACKET_CC; |
| } |
| |
| /* Build a PADDING frame if needed. */ |
| if (padding_len) { |
| frm.type = QUIC_FT_PADDING; |
| frm.padding.len = padding_len; |
| if (!qc_build_frm(&pos, end, &frm, pkt, qc)) |
| goto no_room; |
| } |
| |
| if (pos == payload) { |
| /* No payload was built because of congestion control */ |
| TRACE_PROTO("limited by congestion control", QUIC_EV_CONN_TXPKT, qc); |
| goto no_room; |
| } |
| |
| /* If this packet is ack-eliciting and we are probing let's |
| * decrement the PTO probe counter. |
| */ |
| if ((pkt->flags & QUIC_FL_TX_PACKET_ACK_ELICITING) && |
| qel->pktns->tx.pto_probe) |
| qel->pktns->tx.pto_probe--; |
| |
| pkt->len = pos - beg; |
| LIST_SPLICE(&pkt->frms, &frm_list); |
| |
| ret = 1; |
| TRACE_PROTO("Packet ack-eliciting frames", QUIC_EV_CONN_TXPKT, qc, pkt); |
| leave: |
| TRACE_LEAVE(QUIC_EV_CONN_TXPKT, qc); |
| return ret; |
| |
| no_room: |
| /* Replace the pre-built frames which could not be add to this packet */ |
| LIST_SPLICE(frms, &frm_list); |
| TRACE_PROTO("Remaining ack-eliciting frames", QUIC_EV_CONN_FRMLIST, qc, frms); |
| goto leave; |
| } |
| |
| static inline void quic_tx_packet_init(struct quic_tx_packet *pkt, int type) |
| { |
| pkt->type = type; |
| pkt->len = 0; |
| pkt->in_flight_len = 0; |
| pkt->pn_node.key = (uint64_t)-1; |
| LIST_INIT(&pkt->frms); |
| pkt->time_sent = TICK_ETERNITY; |
| pkt->next = NULL; |
| pkt->prev = NULL; |
| pkt->largest_acked_pn = -1; |
| pkt->flags = 0; |
| pkt->refcnt = 0; |
| } |
| |
| /* Build a packet into a buffer at <pos> position, <end> pointing to one byte past |
| * the end of this buffer, with <pkt_type> as packet type for <qc> QUIC connection |
| * at <qel> encryption level with <frms> list of prebuilt frames. |
| * |
| + * Return -3 if the packet could not be allocated, -2 if could not be encrypted for |
| + * any reason, -1 if there was not enough room to build a packet. |
| * XXX NOTE XXX |
| * If you provide provide qc_build_pkt() with a big enough buffer to build a packet as big as |
| * possible (to fill an MTU), the unique reason why this function may fail is the congestion |
| * control window limitation. |
| */ |
| static struct quic_tx_packet *qc_build_pkt(unsigned char **pos, |
| const unsigned char *end, |
| struct quic_enc_level *qel, |
| struct quic_tls_ctx *tls_ctx, struct list *frms, |
| struct quic_conn *qc, const struct quic_version *ver, |
| size_t dglen, int pkt_type, int must_ack, |
| int padding, int probe, int cc, int *err) |
| { |
| struct quic_tx_packet *ret_pkt = NULL; |
| /* The pointer to the packet number field. */ |
| unsigned char *buf_pn; |
| unsigned char *first_byte, *last_byte, *payload; |
| int64_t pn; |
| size_t pn_len, payload_len, aad_len; |
| struct quic_tx_packet *pkt; |
| int encrypt_failure = 0; |
| |
| TRACE_ENTER(QUIC_EV_CONN_TXPKT, qc); |
| TRACE_PROTO("TX pkt build", QUIC_EV_CONN_TXPKT, qc, NULL, qel); |
| *err = 0; |
| pkt = pool_alloc(pool_head_quic_tx_packet); |
| if (!pkt) { |
| TRACE_DEVEL("Not enough memory for a new packet", QUIC_EV_CONN_TXPKT, qc); |
| *err = -3; |
| goto err; |
| } |
| |
| quic_tx_packet_init(pkt, pkt_type); |
| first_byte = *pos; |
| pn_len = 0; |
| buf_pn = NULL; |
| |
| pn = qel->pktns->tx.next_pn + 1; |
| if (!qc_do_build_pkt(*pos, end, dglen, pkt, pn, &pn_len, &buf_pn, |
| must_ack, padding, cc, probe, qel, qc, ver, frms)) { |
| // trace already emitted by function above |
| *err = -1; |
| goto err; |
| } |
| |
| last_byte = first_byte + pkt->len; |
| payload = buf_pn + pn_len; |
| payload_len = last_byte - payload; |
| aad_len = payload - first_byte; |
| |
| quic_packet_encrypt(payload, payload_len, first_byte, aad_len, pn, tls_ctx, qc, &encrypt_failure); |
| if (encrypt_failure) { |
| /* TODO Unrecoverable failure, unencrypted data should be returned to the caller. */ |
| WARN_ON("quic_packet_encrypt failure"); |
| *err = -2; |
| goto err; |
| } |
| |
| last_byte += QUIC_TLS_TAG_LEN; |
| pkt->len += QUIC_TLS_TAG_LEN; |
| quic_apply_header_protection(qc, first_byte, buf_pn, pn_len, tls_ctx, &encrypt_failure); |
| if (encrypt_failure) { |
| /* TODO Unrecoverable failure, unencrypted data should be returned to the caller. */ |
| WARN_ON("quic_apply_header_protection failure"); |
| *err = -2; |
| goto err; |
| } |
| |
| /* Consume a packet number */ |
| qel->pktns->tx.next_pn++; |
| qc->tx.prep_bytes += pkt->len; |
| if (qc->tx.prep_bytes >= 3 * qc->rx.bytes && !quic_peer_validated_addr(qc)) { |
| qc->flags |= QUIC_FL_CONN_ANTI_AMPLIFICATION_REACHED; |
| TRACE_PROTO("anti-amplification limit reached", QUIC_EV_CONN_TXPKT, qc); |
| } |
| |
| /* Now that a correct packet is built, let us consume <*pos> buffer. */ |
| *pos = last_byte; |
| /* Attach the built packet to its tree. */ |
| pkt->pn_node.key = pn; |
| /* Set the packet in fligth length for in flight packet only. */ |
| if (pkt->flags & QUIC_FL_TX_PACKET_IN_FLIGHT) { |
| pkt->in_flight_len = pkt->len; |
| qc->path->prep_in_flight += pkt->len; |
| } |
| /* Always reset this flag */ |
| qc->flags &= ~QUIC_FL_CONN_IMMEDIATE_CLOSE; |
| if (pkt->flags & QUIC_FL_TX_PACKET_ACK) { |
| qel->pktns->flags &= ~QUIC_FL_PKTNS_ACK_REQUIRED; |
| qel->pktns->rx.nb_aepkts_since_last_ack = 0; |
| qc->flags &= ~QUIC_FL_CONN_ACK_TIMER_FIRED; |
| if (tick_isset(qc->ack_expire)) { |
| qc->ack_expire = TICK_ETERNITY; |
| qc->idle_timer_task->expire = qc->idle_expire; |
| task_queue(qc->idle_timer_task); |
| TRACE_PROTO("ack timer cancelled", QUIC_EV_CONN_IDLE_TIMER, qc); |
| } |
| } |
| |
| pkt->pktns = qel->pktns; |
| |
| ret_pkt = pkt; |
| leave: |
| TRACE_PROTO("TX pkt built", QUIC_EV_CONN_TXPKT, qc, ret_pkt); |
| TRACE_LEAVE(QUIC_EV_CONN_TXPKT, qc); |
| return ret_pkt; |
| |
| err: |
| /* TODO: what about the frames which have been built |
| * for this packet. |
| */ |
| free_quic_tx_packet(qc, pkt); |
| goto leave; |
| } |
| |
| |
| static void __quic_conn_init(void) |
| { |
| ha_quic_meth = BIO_meth_new(0x666, "ha QUIC methods"); |
| } |
| INITCALL0(STG_REGISTER, __quic_conn_init); |
| |
| static void __quic_conn_deinit(void) |
| { |
| BIO_meth_free(ha_quic_meth); |
| } |
| REGISTER_POST_DEINIT(__quic_conn_deinit); |
| |
| /* Handle a new <dgram> received. Parse each QUIC packets and copied their |
| * content to a quic-conn instance. The datagram content can be released after |
| * this function. |
| * |
| * If datagram has been received on a quic-conn owned FD, <from_qc> must be set |
| * to the connection instance. <li> is the attached listener. The caller is |
| * responsible to ensure that the first packet is destined to this connection |
| * by comparing CIDs. |
| * |
| * If datagram has been received on a receiver FD, <from_qc> will be NULL. This |
| * function will thus retrieve the connection from the CID tree or allocate a |
| * new one if possible. <li> is the listener attached to the receiver. |
| * |
| * Returns 0 on success else non-zero. If an error happens, some packets from |
| * the datagram may not have been parsed. |
| */ |
| int quic_dgram_parse(struct quic_dgram *dgram, struct quic_conn *from_qc, |
| struct listener *li) |
| { |
| struct quic_rx_packet *pkt; |
| struct quic_conn *qc = NULL; |
| unsigned char *pos, *end; |
| struct list *tasklist_head = NULL; |
| |
| TRACE_ENTER(QUIC_EV_CONN_LPKT); |
| |
| pos = dgram->buf; |
| end = pos + dgram->len; |
| do { |
| /* TODO replace zalloc -> alloc. */ |
| pkt = pool_zalloc(pool_head_quic_rx_packet); |
| if (!pkt) { |
| TRACE_ERROR("RX packet allocation failed", QUIC_EV_CONN_LPKT); |
| goto err; |
| } |
| |
| pkt->version = NULL; |
| pkt->pn_offset = 0; |
| |
| /* Set flag if pkt is the first one in dgram. */ |
| if (pos == dgram->buf) |
| pkt->flags |= QUIC_FL_RX_PACKET_DGRAM_FIRST; |
| |
| LIST_INIT(&pkt->qc_rx_pkt_list); |
| pkt->time_received = now_ms; |
| quic_rx_packet_refinc(pkt); |
| if (quic_rx_pkt_parse(pkt, pos, end, dgram, li)) |
| goto next; |
| |
| /* Search quic-conn instance for first packet of the datagram. |
| * quic_rx_packet_parse() is responsible to discard packets |
| * with different DCID as the first one in the same datagram. |
| */ |
| if (!qc) { |
| int new_tid = -1; |
| |
| qc = from_qc ? from_qc : quic_rx_pkt_retrieve_conn(pkt, dgram, li, &new_tid); |
| /* qc is NULL if receiving a non Initial packet for an |
| * unknown connection or on connection affinity rebind. |
| */ |
| if (!qc) { |
| if (new_tid >= 0) { |
| MT_LIST_APPEND(&quic_dghdlrs[new_tid].dgrams, |
| &dgram->handler_list); |
| tasklet_wakeup(quic_dghdlrs[new_tid].task); |
| pool_free(pool_head_quic_rx_packet, pkt); |
| goto out; |
| } |
| |
| /* Skip the entire datagram. */ |
| pkt->len = end - pos; |
| goto next; |
| } |
| |
| dgram->qc = qc; |
| } |
| |
| /* Ensure thread connection migration is finalized ASAP. */ |
| if (qc->flags & QUIC_FL_CONN_AFFINITY_CHANGED) |
| qc_finalize_affinity_rebind(qc); |
| |
| if (qc_rx_check_closing(qc, pkt)) { |
| /* Skip the entire datagram. */ |
| pkt->len = end - pos; |
| goto next; |
| } |
| |
| /* Detect QUIC connection migration. */ |
| if (ipcmp(&qc->peer_addr, &dgram->saddr, 1)) { |
| if (qc_handle_conn_migration(qc, &dgram->saddr, &dgram->daddr)) { |
| /* Skip the entire datagram. */ |
| TRACE_ERROR("error during connection migration, datagram dropped", QUIC_EV_CONN_LPKT, qc); |
| pkt->len = end - pos; |
| goto next; |
| } |
| } |
| |
| qc_rx_pkt_handle(qc, pkt, dgram, pos, &tasklist_head); |
| |
| next: |
| pos += pkt->len; |
| quic_rx_packet_refdec(pkt); |
| |
| /* Free rejected packets */ |
| if (!pkt->refcnt) { |
| BUG_ON(LIST_INLIST(&pkt->qc_rx_pkt_list)); |
| pool_free(pool_head_quic_rx_packet, pkt); |
| } |
| } while (pos < end); |
| |
| /* Increasing the received bytes counter by the UDP datagram length |
| * if this datagram could be associated to a connection. |
| */ |
| if (dgram->qc) |
| dgram->qc->rx.bytes += dgram->len; |
| |
| /* This must never happen. */ |
| BUG_ON(pos > end); |
| BUG_ON(pos < end || pos > dgram->buf + dgram->len); |
| /* Mark this datagram as consumed */ |
| HA_ATOMIC_STORE(&dgram->buf, NULL); |
| |
| out: |
| TRACE_LEAVE(QUIC_EV_CONN_LPKT); |
| return 0; |
| |
| err: |
| /* Mark this datagram as consumed as maybe at least some packets were parsed. */ |
| HA_ATOMIC_STORE(&dgram->buf, NULL); |
| TRACE_LEAVE(QUIC_EV_CONN_LPKT); |
| return -1; |
| } |
| |
| /* Check if connection ID <dcid> of length <dcid_len> belongs to <qc> local |
| * CIDs. This can be used to determine if a datagram is addressed to the right |
| * connection instance. |
| * |
| * Returns a boolean value. |
| */ |
| int qc_check_dcid(struct quic_conn *qc, unsigned char *dcid, size_t dcid_len) |
| { |
| const uchar idx = _quic_cid_tree_idx(dcid); |
| struct quic_connection_id *conn_id; |
| struct ebmb_node *node = NULL; |
| struct quic_cid_tree *tree = &quic_cid_trees[idx]; |
| |
| /* Test against our default CID or client ODCID. */ |
| if ((qc->scid.len == dcid_len && |
| memcmp(qc->scid.data, dcid, dcid_len) == 0) || |
| (qc->odcid.len == dcid_len && |
| memcmp(qc->odcid.data, dcid, dcid_len) == 0)) { |
| return 1; |
| } |
| |
| /* Test against our other CIDs. This can happen if the client has |
| * decided to switch to a new one. |
| * |
| * TODO to avoid locking, loop through qc.cids as an alternative. |
| * |
| * TODO set it to our default CID to avoid this operation next time. |
| */ |
| HA_RWLOCK_RDLOCK(QC_CID_LOCK, &tree->lock); |
| node = ebmb_lookup(&tree->root, dcid, dcid_len); |
| HA_RWLOCK_RDUNLOCK(QC_CID_LOCK, &tree->lock); |
| |
| if (node) { |
| conn_id = ebmb_entry(node, struct quic_connection_id, node); |
| if (qc == conn_id->qc) |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| /* Retrieve the DCID from a QUIC datagram or packet at <pos> position, |
| * <end> being at one byte past the end of this datagram. |
| * Returns 1 if succeeded, 0 if not. |
| */ |
| int quic_get_dgram_dcid(unsigned char *pos, const unsigned char *end, |
| unsigned char **dcid, size_t *dcid_len) |
| { |
| int ret = 0, long_header; |
| size_t minlen, skip; |
| |
| TRACE_ENTER(QUIC_EV_CONN_RXPKT); |
| |
| if (!(*pos & QUIC_PACKET_FIXED_BIT)) { |
| TRACE_PROTO("fixed bit not set", QUIC_EV_CONN_RXPKT); |
| goto err; |
| } |
| |
| long_header = *pos & QUIC_PACKET_LONG_HEADER_BIT; |
| minlen = long_header ? QUIC_LONG_PACKET_MINLEN : |
| QUIC_SHORT_PACKET_MINLEN + QUIC_HAP_CID_LEN + QUIC_TLS_TAG_LEN; |
| skip = long_header ? QUIC_LONG_PACKET_DCID_OFF : QUIC_SHORT_PACKET_DCID_OFF; |
| if (end - pos < minlen) |
| goto err; |
| |
| pos += skip; |
| *dcid_len = long_header ? *pos++ : QUIC_HAP_CID_LEN; |
| if (*dcid_len > QUIC_CID_MAXLEN || end - pos <= *dcid_len) |
| goto err; |
| |
| *dcid = pos; |
| |
| ret = 1; |
| leave: |
| TRACE_LEAVE(QUIC_EV_CONN_RXPKT); |
| return ret; |
| |
| err: |
| TRACE_PROTO("wrong datagram", QUIC_EV_CONN_RXPKT); |
| goto leave; |
| } |
| |
| /* Notify upper layer of a fatal error which forces to close the connection. */ |
| void qc_notify_err(struct quic_conn *qc) |
| { |
| TRACE_ENTER(QUIC_EV_CONN_CLOSE, qc); |
| |
| if (qc->mux_state == QC_MUX_READY) { |
| TRACE_STATE("error notified to mux", QUIC_EV_CONN_CLOSE, qc); |
| |
| /* Mark socket as closed. */ |
| qc->conn->flags |= CO_FL_ERROR | CO_FL_SOCK_RD_SH | CO_FL_SOCK_WR_SH; |
| |
| /* TODO quic-conn layer must stay active until MUX is released. |
| * Thus, we have to wake up directly to ensure upper stream |
| * layer will be notified of the error. If a proper separation |
| * is made between MUX and quic-conn layer, wake up could be |
| * conducted only with qc.subs. |
| */ |
| tasklet_wakeup(qc->qcc->wait_event.tasklet); |
| } |
| |
| TRACE_LEAVE(QUIC_EV_CONN_CLOSE, qc); |
| } |
| |
| /* Wake-up upper layer for sending if all conditions are met : |
| * - room in congestion window or probe packet to sent |
| * - socket FD ready to sent or listener socket used |
| * |
| * Returns 1 if upper layer has been woken up else 0. |
| */ |
| int qc_notify_send(struct quic_conn *qc) |
| { |
| const struct quic_pktns *pktns = &qc->pktns[QUIC_TLS_PKTNS_01RTT]; |
| |
| if (qc->subs && qc->subs->events & SUB_RETRY_SEND) { |
| /* RFC 9002 7.5. Probe Timeout |
| * |
| * Probe packets MUST NOT be blocked by the congestion controller. |
| */ |
| if ((quic_path_prep_data(qc->path) || pktns->tx.pto_probe) && |
| (!qc_test_fd(qc) || !fd_send_active(qc->fd))) { |
| tasklet_wakeup(qc->subs->tasklet); |
| qc->subs->events &= ~SUB_RETRY_SEND; |
| if (!qc->subs->events) |
| qc->subs = NULL; |
| |
| return 1; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* Move a <qc> QUIC connection and its resources from the current thread to the |
| * new one <new_tid> optionally in association with <new_li> (since it may need |
| * to change when migrating to a thread from a different group, otherwise leave |
| * it NULL). After this call, the connection cannot be dereferenced anymore on |
| * the current thread. |
| * |
| * Returns 0 on success else non-zero. |
| */ |
| int qc_set_tid_affinity(struct quic_conn *qc, uint new_tid, struct listener *new_li) |
| { |
| struct task *t1 = NULL, *t2 = NULL; |
| struct tasklet *t3 = NULL; |
| |
| struct quic_connection_id *conn_id; |
| struct eb64_node *node; |
| |
| TRACE_ENTER(QUIC_EV_CONN_SET_AFFINITY, qc); |
| |
| /* Pre-allocate all required resources. This ensures we do not left a |
| * connection with only some of its field rebinded. |
| */ |
| if (((t1 = task_new_on(new_tid)) == NULL) || |
| (qc->timer_task && (t2 = task_new_on(new_tid)) == NULL) || |
| (t3 = tasklet_new()) == NULL) { |
| goto err; |
| } |
| |
| /* Reinit idle timer task. */ |
| task_kill(qc->idle_timer_task); |
| t1->expire = qc->idle_timer_task->expire; |
| qc->idle_timer_task = t1; |
| qc->idle_timer_task->process = qc_idle_timer_task; |
| qc->idle_timer_task->context = qc; |
| |
| /* Reinit timer task if allocated. */ |
| if (qc->timer_task) { |
| task_kill(qc->timer_task); |
| qc->timer_task = t2; |
| qc->timer_task->process = qc_process_timer; |
| qc->timer_task->context = qc; |
| } |
| |
| /* Reinit IO tasklet. */ |
| if (qc->wait_event.tasklet->state & TASK_IN_LIST) |
| qc->flags |= QUIC_FL_CONN_IO_TO_REQUEUE; |
| tasklet_kill(qc->wait_event.tasklet); |
| /* In most cases quic_conn_app_io_cb is used but for 0-RTT quic_conn_io_cb can be still activated. */ |
| t3->process = qc->wait_event.tasklet->process; |
| qc->wait_event.tasklet = t3; |
| qc->wait_event.tasklet->tid = new_tid; |
| qc->wait_event.tasklet->context = qc; |
| qc->wait_event.events = 0; |
| |
| /* Rebind the connection FD. */ |
| if (qc_test_fd(qc)) { |
| /* Reading is reactivated by the new thread. */ |
| fd_migrate_on(qc->fd, new_tid); |
| } |
| |
| /* Remove conn from per-thread list instance. It will be hidden from |
| * "show quic" until rebinding is completed. |
| */ |
| qc_detach_th_ctx_list(qc, 0); |
| |
| node = eb64_first(&qc->cids); |
| BUG_ON(!node || eb64_next(node)); /* One and only one CID must be present before affinity rebind. */ |
| conn_id = eb64_entry(node, struct quic_connection_id, seq_num); |
| |
| /* At this point no connection was accounted for yet on this |
| * listener so it's OK to just swap the pointer. |
| */ |
| if (new_li && new_li != qc->li) |
| qc->li = new_li; |
| |
| /* Rebinding is considered done when CID points to the new thread. No |
| * access should be done to quic-conn instance after it. |
| */ |
| qc->flags |= QUIC_FL_CONN_AFFINITY_CHANGED; |
| HA_ATOMIC_STORE(&conn_id->tid, new_tid); |
| qc = NULL; |
| |
| TRACE_LEAVE(QUIC_EV_CONN_SET_AFFINITY, NULL); |
| return 0; |
| |
| err: |
| task_destroy(t1); |
| task_destroy(t2); |
| tasklet_free(t3); |
| |
| TRACE_DEVEL("leaving on error", QUIC_EV_CONN_SET_AFFINITY, qc); |
| return 1; |
| } |
| |
| /* Must be called after qc_set_tid_affinity() on the new thread. */ |
| void qc_finalize_affinity_rebind(struct quic_conn *qc) |
| { |
| TRACE_ENTER(QUIC_EV_CONN_SET_AFFINITY, qc); |
| |
| /* This function must not be called twice after an affinity rebind. */ |
| BUG_ON(!(qc->flags & QUIC_FL_CONN_AFFINITY_CHANGED)); |
| qc->flags &= ~QUIC_FL_CONN_AFFINITY_CHANGED; |
| |
| /* A connection must not pass to closing state until affinity rebind |
| * is completed. Else quic_handle_stopping() may miss it during process |
| * stopping cleanup. |
| */ |
| BUG_ON(qc->flags & (QUIC_FL_CONN_CLOSING|QUIC_FL_CONN_DRAINING)); |
| |
| /* Reinsert connection in ha_thread_ctx global list. */ |
| LIST_APPEND(&th_ctx->quic_conns, &qc->el_th_ctx); |
| qc->qc_epoch = HA_ATOMIC_LOAD(&qc_epoch); |
| |
| /* Reactivate FD polling if connection socket is active. */ |
| qc_want_recv(qc); |
| |
| /* Reactivate timer task if needed. */ |
| qc_set_timer(qc); |
| |
| /* Idle timer task is always active. */ |
| task_queue(qc->idle_timer_task); |
| |
| /* Reactivate IO tasklet if needed. */ |
| if (qc->flags & QUIC_FL_CONN_IO_TO_REQUEUE) { |
| tasklet_wakeup(qc->wait_event.tasklet); |
| qc->flags &= ~QUIC_FL_CONN_IO_TO_REQUEUE; |
| } |
| |
| TRACE_LEAVE(QUIC_EV_CONN_SET_AFFINITY, qc); |
| } |
| |
| enum quic_dump_format { |
| QUIC_DUMP_FMT_ONELINE, |
| QUIC_DUMP_FMT_FULL, |
| }; |
| |
| /* appctx context used by "show quic" command */ |
| struct show_quic_ctx { |
| unsigned int epoch; |
| struct bref bref; /* back-reference to the quic-conn being dumped */ |
| unsigned int thr; |
| int flags; |
| enum quic_dump_format format; |
| }; |
| |
| #define QC_CLI_FL_SHOW_ALL 0x1 /* show closing/draining connections */ |
| |
| static int cli_parse_show_quic(char **args, char *payload, struct appctx *appctx, void *private) |
| { |
| struct show_quic_ctx *ctx = applet_reserve_svcctx(appctx, sizeof(*ctx)); |
| int argc = 2; |
| |
| if (!cli_has_level(appctx, ACCESS_LVL_OPER)) |
| return 1; |
| |
| ctx->epoch = _HA_ATOMIC_FETCH_ADD(&qc_epoch, 1); |
| ctx->thr = 0; |
| ctx->flags = 0; |
| ctx->format = QUIC_DUMP_FMT_ONELINE; |
| |
| if (strcmp(args[argc], "oneline") == 0) { |
| /* format already used as default value */ |
| ++argc; |
| } |
| else if (strcmp(args[argc], "full") == 0) { |
| ctx->format = QUIC_DUMP_FMT_FULL; |
| ++argc; |
| } |
| |
| while (*args[argc]) { |
| if (strcmp(args[argc], "all") == 0) |
| ctx->flags |= QC_CLI_FL_SHOW_ALL; |
| |
| ++argc; |
| } |
| |
| LIST_INIT(&ctx->bref.users); |
| |
| return 0; |
| } |
| |
| /* Dump for "show quic" with "oneline" format. */ |
| static void dump_quic_oneline(struct show_quic_ctx *ctx, struct quic_conn *qc) |
| { |
| char bufaddr[INET6_ADDRSTRLEN], bufport[6]; |
| int ret; |
| unsigned char cid_len; |
| |
| ret = chunk_appendf(&trash, "%p[%02u]/%-.12s ", qc, ctx->thr, |
| qc->li->bind_conf->frontend->id); |
| chunk_appendf(&trash, "%*s", 36 - ret, " "); /* align output */ |
| |
| /* State */ |
| if (qc->flags & QUIC_FL_CONN_CLOSING) |
| chunk_appendf(&trash, "CLOSE "); |
| else if (qc->flags & QUIC_FL_CONN_DRAINING) |
| chunk_appendf(&trash, "DRAIN "); |
| else if (qc->state < QUIC_HS_ST_COMPLETE) |
| chunk_appendf(&trash, "HDSHK "); |
| else |
| chunk_appendf(&trash, "ESTAB "); |
| |
| /* Bytes in flight / Lost packets */ |
| chunk_appendf(&trash, "%9llu %6llu %6llu ", |
| (ullong)qc->path->in_flight, |
| (ullong)qc->path->ifae_pkts, |
| (ullong)qc->path->loss.nb_lost_pkt); |
| |
| /* Socket */ |
| if (qc->local_addr.ss_family == AF_INET || |
| qc->local_addr.ss_family == AF_INET6) { |
| addr_to_str(&qc->local_addr, bufaddr, sizeof(bufaddr)); |
| port_to_str(&qc->local_addr, bufport, sizeof(bufport)); |
| chunk_appendf(&trash, "%15s:%-5s ", bufaddr, bufport); |
| |
| addr_to_str(&qc->peer_addr, bufaddr, sizeof(bufaddr)); |
| port_to_str(&qc->peer_addr, bufport, sizeof(bufport)); |
| chunk_appendf(&trash, "%15s:%-5s ", bufaddr, bufport); |
| |
| } |
| |
| /* CIDs */ |
| for (cid_len = 0; cid_len < qc->scid.len; ++cid_len) |
| chunk_appendf(&trash, "%02x", qc->scid.data[cid_len]); |
| |
| chunk_appendf(&trash, " "); |
| for (cid_len = 0; cid_len < qc->dcid.len; ++cid_len) |
| chunk_appendf(&trash, "%02x", qc->dcid.data[cid_len]); |
| |
| chunk_appendf(&trash, "\n"); |
| } |
| |
| /* Dump for "show quic" with "full" format. */ |
| static void dump_quic_full(struct show_quic_ctx *ctx, struct quic_conn *qc) |
| { |
| struct quic_pktns *pktns; |
| struct eb64_node *node; |
| struct qc_stream_desc *stream; |
| char bufaddr[INET6_ADDRSTRLEN], bufport[6]; |
| int expire, i, addnl; |
| unsigned char cid_len; |
| |
| addnl = 0; |
| /* CIDs */ |
| chunk_appendf(&trash, "* %p[%02u]: scid=", qc, ctx->thr); |
| for (cid_len = 0; cid_len < qc->scid.len; ++cid_len) |
| chunk_appendf(&trash, "%02x", qc->scid.data[cid_len]); |
| while (cid_len++ < 20) |
| chunk_appendf(&trash, ".."); |
| |
| chunk_appendf(&trash, " dcid="); |
| for (cid_len = 0; cid_len < qc->dcid.len; ++cid_len) |
| chunk_appendf(&trash, "%02x", qc->dcid.data[cid_len]); |
| while (cid_len++ < 20) |
| chunk_appendf(&trash, ".."); |
| |
| chunk_appendf(&trash, "\n"); |
| |
| chunk_appendf(&trash, " loc. TPs:"); |
| quic_transport_params_dump(&trash, qc, &qc->rx.params); |
| chunk_appendf(&trash, "\n"); |
| chunk_appendf(&trash, " rem. TPs:"); |
| quic_transport_params_dump(&trash, qc, &qc->tx.params); |
| chunk_appendf(&trash, "\n"); |
| |
| /* Connection state */ |
| if (qc->flags & QUIC_FL_CONN_CLOSING) |
| chunk_appendf(&trash, " st=closing "); |
| else if (qc->flags & QUIC_FL_CONN_DRAINING) |
| chunk_appendf(&trash, " st=draining "); |
| else if (qc->state < QUIC_HS_ST_CONFIRMED) |
| chunk_appendf(&trash, " st=handshake "); |
| else |
| chunk_appendf(&trash, " st=opened "); |
| |
| if (qc->mux_state == QC_MUX_NULL) |
| chunk_appendf(&trash, "mux=null "); |
| else if (qc->mux_state == QC_MUX_READY) |
| chunk_appendf(&trash, "mux=ready "); |
| else |
| chunk_appendf(&trash, "mux=released "); |
| |
| expire = qc->idle_expire; |
| chunk_appendf(&trash, "expire=%02ds ", |
| TICKS_TO_MS(tick_remain(now_ms, expire)) / 1000); |
| |
| chunk_appendf(&trash, "\n"); |
| |
| /* Socket */ |
| chunk_appendf(&trash, " fd=%d", qc->fd); |
| if (qc->local_addr.ss_family == AF_INET || |
| qc->local_addr.ss_family == AF_INET6) { |
| addr_to_str(&qc->local_addr, bufaddr, sizeof(bufaddr)); |
| port_to_str(&qc->local_addr, bufport, sizeof(bufport)); |
| chunk_appendf(&trash, " local_addr=%s:%s", bufaddr, bufport); |
| |
| addr_to_str(&qc->peer_addr, bufaddr, sizeof(bufaddr)); |
| port_to_str(&qc->peer_addr, bufport, sizeof(bufport)); |
| chunk_appendf(&trash, " foreign_addr=%s:%s", bufaddr, bufport); |
| } |
| |
| chunk_appendf(&trash, "\n"); |
| |
| /* Packet number spaces information */ |
| pktns = &qc->pktns[QUIC_TLS_PKTNS_INITIAL]; |
| chunk_appendf(&trash, " [initl] rx.ackrng=%-6zu tx.inflight=%-6zu", |
| pktns->rx.arngs.sz, pktns->tx.in_flight); |
| pktns = &qc->pktns[QUIC_TLS_PKTNS_HANDSHAKE]; |
| chunk_appendf(&trash, " [hndshk] rx.ackrng=%-6zu tx.inflight=%-6zu\n", |
| pktns->rx.arngs.sz, pktns->tx.in_flight); |
| pktns = &qc->pktns[QUIC_TLS_PKTNS_01RTT]; |
| chunk_appendf(&trash, " [01rtt] rx.ackrng=%-6zu tx.inflight=%-6zu\n", |
| pktns->rx.arngs.sz, pktns->tx.in_flight); |
| |
| chunk_appendf(&trash, " srtt=%-4u rttvar=%-4u rttmin=%-4u ptoc=%-4u cwnd=%-6llu" |
| " mcwnd=%-6llu sentpkts=%-6llu lostpkts=%-6llu\n", |
| qc->path->loss.srtt, qc->path->loss.rtt_var, |
| qc->path->loss.rtt_min, qc->path->loss.pto_count, (ullong)qc->path->cwnd, |
| (ullong)qc->path->mcwnd, (ullong)qc->cntrs.sent_pkt, (ullong)qc->path->loss.nb_lost_pkt); |
| |
| if (qc->cntrs.dropped_pkt) { |
| chunk_appendf(&trash, " droppkts=%-6llu", qc->cntrs.dropped_pkt); |
| addnl = 1; |
| } |
| if (qc->cntrs.dropped_pkt_bufoverrun) { |
| chunk_appendf(&trash, " dropbuff=%-6llu", qc->cntrs.dropped_pkt_bufoverrun); |
| addnl = 1; |
| } |
| if (qc->cntrs.dropped_parsing) { |
| chunk_appendf(&trash, " droppars=%-6llu", qc->cntrs.dropped_parsing); |
| addnl = 1; |
| } |
| if (qc->cntrs.socket_full) { |
| chunk_appendf(&trash, " sockfull=%-6llu", qc->cntrs.socket_full); |
| addnl = 1; |
| } |
| if (qc->cntrs.sendto_err) { |
| chunk_appendf(&trash, " sendtoerr=%-6llu", qc->cntrs.sendto_err); |
| addnl = 1; |
| } |
| if (qc->cntrs.sendto_err_unknown) { |
| chunk_appendf(&trash, " sendtounknerr=%-6llu", qc->cntrs.sendto_err); |
| addnl = 1; |
| } |
| if (qc->cntrs.conn_migration_done) { |
| chunk_appendf(&trash, " migrdone=%-6llu", qc->cntrs.conn_migration_done); |
| addnl = 1; |
| } |
| if (qc->cntrs.data_blocked) { |
| chunk_appendf(&trash, " datablocked=%-6llu", qc->cntrs.data_blocked); |
| addnl = 1; |
| } |
| if (qc->cntrs.stream_data_blocked) { |
| chunk_appendf(&trash, " sdatablocked=%-6llu", qc->cntrs.stream_data_blocked); |
| addnl = 1; |
| } |
| if (qc->cntrs.streams_blocked_bidi) { |
| chunk_appendf(&trash, " sblockebidi=%-6llu", qc->cntrs.streams_blocked_bidi); |
| addnl = 1; |
| } |
| if (qc->cntrs.streams_blocked_uni) { |
| chunk_appendf(&trash, " sblockeduni=%-6llu", qc->cntrs.streams_blocked_uni); |
| addnl = 1; |
| } |
| if (addnl) |
| chunk_appendf(&trash, "\n"); |
| |
| /* Streams */ |
| node = eb64_first(&qc->streams_by_id); |
| i = 0; |
| while (node) { |
| stream = eb64_entry(node, struct qc_stream_desc, by_id); |
| node = eb64_next(node); |
| |
| chunk_appendf(&trash, " | stream=%-8llu", (unsigned long long)stream->by_id.key); |
| chunk_appendf(&trash, " off=%-8llu ack=%-8llu", |
| (unsigned long long)stream->buf_offset, |
| (unsigned long long)stream->ack_offset); |
| |
| if (!(++i % 3)) { |
| chunk_appendf(&trash, "\n"); |
| i = 0; |
| } |
| } |
| |
| chunk_appendf(&trash, "\n"); |
| } |
| |
| static int cli_io_handler_dump_quic(struct appctx *appctx) |
| { |
| struct show_quic_ctx *ctx = appctx->svcctx; |
| struct stconn *sc = appctx_sc(appctx); |
| struct quic_conn *qc; |
| |
| thread_isolate(); |
| |
| if (ctx->thr >= global.nbthread) |
| goto done; |
| |
| /* FIXME: Don't watch the other side !*/ |
| if (unlikely(sc_opposite(sc)->flags & SC_FL_SHUT_DONE)) { |
| /* If we're forced to shut down, we might have to remove our |
| * reference to the last stream being dumped. |
| */ |
| if (!LIST_ISEMPTY(&ctx->bref.users)) |
| LIST_DEL_INIT(&ctx->bref.users); |
| goto done; |
| } |
| |
| chunk_reset(&trash); |
| |
| if (!LIST_ISEMPTY(&ctx->bref.users)) { |
| /* Remove show_quic_ctx from previous quic_conn instance. */ |
| LIST_DEL_INIT(&ctx->bref.users); |
| } |
| else if (!ctx->bref.ref) { |
| /* First invocation. */ |
| ctx->bref.ref = ha_thread_ctx[ctx->thr].quic_conns.n; |
| |
| /* Print legend for oneline format. */ |
| if (ctx->format == QUIC_DUMP_FMT_ONELINE) { |
| chunk_appendf(&trash, "# conn/frontend state " |
| "in_flight infl_p lost_p " |
| "Local Address Foreign Address " |
| "local & remote CIDs\n"); |
| applet_putchk(appctx, &trash); |
| } |
| } |
| |
| while (1) { |
| int done = 0; |
| |
| if (ctx->bref.ref == &ha_thread_ctx[ctx->thr].quic_conns) { |
| /* If closing connections requested through "all", move |
| * to quic_conns_clo list after browsing quic_conns. |
| * Else move directly to the next quic_conns thread. |
| */ |
| if (ctx->flags & QC_CLI_FL_SHOW_ALL) { |
| ctx->bref.ref = ha_thread_ctx[ctx->thr].quic_conns_clo.n; |
| continue; |
| } |
| |
| done = 1; |
| } |
| else if (ctx->bref.ref == &ha_thread_ctx[ctx->thr].quic_conns_clo) { |
| /* Closing list entirely browsed, go to next quic_conns |
| * thread. |
| */ |
| done = 1; |
| } |
| else { |
| /* Retrieve next element of the current list. */ |
| qc = LIST_ELEM(ctx->bref.ref, struct quic_conn *, el_th_ctx); |
| if ((int)(qc->qc_epoch - ctx->epoch) > 0) |
| done = 1; |
| } |
| |
| if (done) { |
| ++ctx->thr; |
| if (ctx->thr >= global.nbthread) |
| break; |
| /* Switch to next thread quic_conns list. */ |
| ctx->bref.ref = ha_thread_ctx[ctx->thr].quic_conns.n; |
| continue; |
| } |
| |
| switch (ctx->format) { |
| case QUIC_DUMP_FMT_FULL: |
| dump_quic_full(ctx, qc); |
| break; |
| case QUIC_DUMP_FMT_ONELINE: |
| dump_quic_oneline(ctx, qc); |
| break; |
| } |
| |
| if (applet_putchk(appctx, &trash) == -1) { |
| /* Register show_quic_ctx to quic_conn instance. */ |
| LIST_APPEND(&qc->back_refs, &ctx->bref.users); |
| goto full; |
| } |
| |
| ctx->bref.ref = qc->el_th_ctx.n; |
| } |
| |
| done: |
| thread_release(); |
| return 1; |
| |
| full: |
| thread_release(); |
| return 0; |
| } |
| |
| static void cli_release_show_quic(struct appctx *appctx) |
| { |
| struct show_quic_ctx *ctx = appctx->svcctx; |
| |
| if (ctx->thr < global.nbthread) { |
| thread_isolate(); |
| if (!LIST_ISEMPTY(&ctx->bref.users)) |
| LIST_DEL_INIT(&ctx->bref.users); |
| thread_release(); |
| } |
| } |
| |
| static struct cli_kw_list cli_kws = {{ }, { |
| { { "show", "quic", NULL }, "show quic [oneline|full] [all] : display quic connections status", cli_parse_show_quic, cli_io_handler_dump_quic, cli_release_show_quic }, |
| {{},} |
| }}; |
| |
| INITCALL1(STG_REGISTER, cli_register_kw, &cli_kws); |
| |
| static void init_quic() |
| { |
| int thr; |
| |
| for (thr = 0; thr < MAX_THREADS; ++thr) { |
| LIST_INIT(&ha_thread_ctx[thr].quic_conns); |
| LIST_INIT(&ha_thread_ctx[thr].quic_conns_clo); |
| } |
| } |
| INITCALL0(STG_INIT, init_quic); |
| |
| /* |
| * Local variables: |
| * c-indent-level: 8 |
| * c-basic-offset: 8 |
| * End: |
| */ |