blob: cef544f12b3373d43e33c317b32ddbdb303f1276 [file] [log] [blame]
/*
* Stream management functions.
*
* Copyright 2000-2012 Willy Tarreau <w@1wt.eu>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*/
#include <stdlib.h>
#include <unistd.h>
#include <import/ebistree.h>
#include <haproxy/acl.h>
#include <haproxy/action.h>
#include <haproxy/activity.h>
#include <haproxy/api.h>
#include <haproxy/applet.h>
#include <haproxy/arg.h>
#include <haproxy/backend.h>
#include <haproxy/capture.h>
#include <haproxy/cfgparse.h>
#include <haproxy/channel.h>
#include <haproxy/check.h>
#include <haproxy/cli.h>
#include <haproxy/connection.h>
#include <haproxy/dict.h>
#include <haproxy/dynbuf.h>
#include <haproxy/fd.h>
#include <haproxy/filters.h>
#include <haproxy/freq_ctr.h>
#include <haproxy/frontend.h>
#include <haproxy/global.h>
#include <haproxy/hlua.h>
#include <haproxy/http_ana.h>
#include <haproxy/http_rules.h>
#include <haproxy/htx.h>
#include <haproxy/istbuf.h>
#include <haproxy/log.h>
#include <haproxy/pipe.h>
#include <haproxy/pool.h>
#include <haproxy/proxy.h>
#include <haproxy/queue.h>
#include <haproxy/sc_strm.h>
#include <haproxy/server.h>
#include <haproxy/resolvers.h>
#include <haproxy/sample.h>
#include <haproxy/session.h>
#include <haproxy/stats-t.h>
#include <haproxy/stconn.h>
#include <haproxy/stick_table.h>
#include <haproxy/stream.h>
#include <haproxy/task.h>
#include <haproxy/tcp_rules.h>
#include <haproxy/thread.h>
#include <haproxy/tools.h>
#include <haproxy/trace.h>
#include <haproxy/vars.h>
DECLARE_POOL(pool_head_stream, "stream", sizeof(struct stream));
DECLARE_POOL(pool_head_uniqueid, "uniqueid", UNIQUEID_LEN);
/* incremented by each "show sess" to fix a delimiter between streams */
unsigned stream_epoch = 0;
/* List of all use-service keywords. */
static struct list service_keywords = LIST_HEAD_INIT(service_keywords);
/* trace source and events */
static void strm_trace(enum trace_level level, uint64_t mask,
const struct trace_source *src,
const struct ist where, const struct ist func,
const void *a1, const void *a2, const void *a3, const void *a4);
/* The event representation is split like this :
* strm - stream
* sc - stream connector
* http - http analyzis
* tcp - tcp analyzis
*
* STRM_EV_* macros are defined in <proto/stream.h>
*/
static const struct trace_event strm_trace_events[] = {
{ .mask = STRM_EV_STRM_NEW, .name = "strm_new", .desc = "new stream" },
{ .mask = STRM_EV_STRM_FREE, .name = "strm_free", .desc = "release stream" },
{ .mask = STRM_EV_STRM_ERR, .name = "strm_err", .desc = "error during stream processing" },
{ .mask = STRM_EV_STRM_ANA, .name = "strm_ana", .desc = "stream analyzers" },
{ .mask = STRM_EV_STRM_PROC, .name = "strm_proc", .desc = "stream processing" },
{ .mask = STRM_EV_CS_ST, .name = "sc_state", .desc = "processing connector states" },
{ .mask = STRM_EV_HTTP_ANA, .name = "http_ana", .desc = "HTTP analyzers" },
{ .mask = STRM_EV_HTTP_ERR, .name = "http_err", .desc = "error during HTTP analyzis" },
{ .mask = STRM_EV_TCP_ANA, .name = "tcp_ana", .desc = "TCP analyzers" },
{ .mask = STRM_EV_TCP_ERR, .name = "tcp_err", .desc = "error during TCP analyzis" },
{ .mask = STRM_EV_FLT_ANA, .name = "flt_ana", .desc = "Filter analyzers" },
{ .mask = STRM_EV_FLT_ERR, .name = "flt_err", .desc = "error during filter analyzis" },
{}
};
static const struct name_desc strm_trace_lockon_args[4] = {
/* arg1 */ { /* already used by the stream */ },
/* arg2 */ { },
/* arg3 */ { },
/* arg4 */ { }
};
static const struct name_desc strm_trace_decoding[] = {
#define STRM_VERB_CLEAN 1
{ .name="clean", .desc="only user-friendly stuff, generally suitable for level \"user\"" },
#define STRM_VERB_MINIMAL 2
{ .name="minimal", .desc="report info on streams and connectors" },
#define STRM_VERB_SIMPLE 3
{ .name="simple", .desc="add info on request and response channels" },
#define STRM_VERB_ADVANCED 4
{ .name="advanced", .desc="add info on channel's buffer for data and developer levels only" },
#define STRM_VERB_COMPLETE 5
{ .name="complete", .desc="add info on channel's buffer" },
{ /* end */ }
};
struct trace_source trace_strm = {
.name = IST("stream"),
.desc = "Applicative stream",
.arg_def = TRC_ARG1_STRM, // TRACE()'s first argument is always a stream
.default_cb = strm_trace,
.known_events = strm_trace_events,
.lockon_args = strm_trace_lockon_args,
.decoding = strm_trace_decoding,
.report_events = ~0, // report everything by default
};
#define TRACE_SOURCE &trace_strm
INITCALL1(STG_REGISTER, trace_register_source, TRACE_SOURCE);
/* the stream traces always expect that arg1, if non-null, is of a stream (from
* which we can derive everything), that arg2, if non-null, is an http
* transaction, that arg3, if non-null, is an http message.
*/
static void strm_trace(enum trace_level level, uint64_t mask, const struct trace_source *src,
const struct ist where, const struct ist func,
const void *a1, const void *a2, const void *a3, const void *a4)
{
const struct stream *s = a1;
const struct http_txn *txn = a2;
const struct http_msg *msg = a3;
struct task *task;
const struct channel *req, *res;
struct htx *htx;
if (!s || src->verbosity < STRM_VERB_CLEAN)
return;
task = s->task;
req = &s->req;
res = &s->res;
htx = (msg ? htxbuf(&msg->chn->buf) : NULL);
/* General info about the stream (htx/tcp, id...) */
chunk_appendf(&trace_buf, " : [%u,%s]",
s->uniq_id, ((s->flags & SF_HTX) ? "HTX" : "TCP"));
if (isttest(s->unique_id)) {
chunk_appendf(&trace_buf, " id=");
b_putist(&trace_buf, s->unique_id);
}
/* Front and back stream connector state */
chunk_appendf(&trace_buf, " SC=(%s,%s)",
sc_state_str(s->scf->state), sc_state_str(s->scb->state));
/* If txn is defined, HTTP req/rep states */
if (txn)
chunk_appendf(&trace_buf, " HTTP=(%s,%s)",
h1_msg_state_str(txn->req.msg_state), h1_msg_state_str(txn->rsp.msg_state));
if (msg)
chunk_appendf(&trace_buf, " %s", ((msg->chn->flags & CF_ISRESP) ? "RESPONSE" : "REQUEST"));
if (src->verbosity == STRM_VERB_CLEAN)
return;
/* If msg defined, display status-line if possible (verbosity > MINIMAL) */
if (src->verbosity > STRM_VERB_MINIMAL && htx && htx_nbblks(htx)) {
const struct htx_blk *blk = __htx_get_head_blk(htx);
const struct htx_sl *sl = htx_get_blk_ptr(htx, blk);
enum htx_blk_type type = htx_get_blk_type(blk);
if (type == HTX_BLK_REQ_SL || type == HTX_BLK_RES_SL)
chunk_appendf(&trace_buf, " - \"%.*s %.*s %.*s\"",
HTX_SL_P1_LEN(sl), HTX_SL_P1_PTR(sl),
HTX_SL_P2_LEN(sl), HTX_SL_P2_PTR(sl),
HTX_SL_P3_LEN(sl), HTX_SL_P3_PTR(sl));
}
chunk_appendf(&trace_buf, " - t=%p t.exp=%d s=(%p,0x%08x,0x%x)",
task, tick_isset(task->expire) ? TICKS_TO_MS(task->expire - now_ms) : TICK_ETERNITY, s, s->flags, s->conn_err_type);
/* If txn defined info about HTTP msgs, otherwise info about SI. */
if (txn) {
chunk_appendf(&trace_buf, " txn.flags=0x%08x, http.flags=(0x%08x,0x%08x) status=%d",
txn->flags, txn->req.flags, txn->rsp.flags, txn->status);
}
else {
chunk_appendf(&trace_buf, " scf=(%p,%d,0x%08x,0x%x) scb=(%p,%d,0x%08x,0x%x) scf.exp(r,w)=(%d,%d) scb.exp(r,w)=(%d,%d) retries=%d",
s->scf, s->scf->state, s->scf->flags, s->scf->sedesc->flags,
s->scb, s->scb->state, s->scb->flags, s->scb->sedesc->flags,
tick_isset(sc_ep_rcv_ex(s->scf)) ? TICKS_TO_MS(sc_ep_rcv_ex(s->scf) - now_ms) : TICK_ETERNITY,
tick_isset(sc_ep_snd_ex(s->scf)) ? TICKS_TO_MS(sc_ep_snd_ex(s->scf) - now_ms) : TICK_ETERNITY,
tick_isset(sc_ep_rcv_ex(s->scb)) ? TICKS_TO_MS(sc_ep_rcv_ex(s->scb) - now_ms) : TICK_ETERNITY,
tick_isset(sc_ep_snd_ex(s->scb)) ? TICKS_TO_MS(sc_ep_snd_ex(s->scb) - now_ms) : TICK_ETERNITY,
s->conn_retries);
}
if (src->verbosity == STRM_VERB_MINIMAL)
return;
/* If txn defined, don't display all channel info */
if (src->verbosity == STRM_VERB_SIMPLE || txn) {
chunk_appendf(&trace_buf, " req=(%p .fl=0x%08x .exp=%d)",
req, req->flags, tick_isset(req->analyse_exp) ? TICKS_TO_MS(req->analyse_exp - now_ms) : TICK_ETERNITY);
chunk_appendf(&trace_buf, " res=(%p .fl=0x%08x .exp=%d)",
res, res->flags, tick_isset(res->analyse_exp) ? TICKS_TO_MS(res->analyse_exp - now_ms) : TICK_ETERNITY);
}
else {
chunk_appendf(&trace_buf, " req=(%p .fl=0x%08x .ana=0x%08x .exp=%u .o=%lu .tot=%llu .to_fwd=%u)",
req, req->flags, req->analysers, req->analyse_exp,
(long)req->output, req->total, req->to_forward);
chunk_appendf(&trace_buf, " res=(%p .fl=0x%08x .ana=0x%08x .exp=%u .o=%lu .tot=%llu .to_fwd=%u)",
res, res->flags, res->analysers, res->analyse_exp,
(long)res->output, res->total, res->to_forward);
}
if (src->verbosity == STRM_VERB_SIMPLE ||
(src->verbosity == STRM_VERB_ADVANCED && src->level < TRACE_LEVEL_DATA))
return;
/* channels' buffer info */
if (s->flags & SF_HTX) {
struct htx *rqhtx = htxbuf(&req->buf);
struct htx *rphtx = htxbuf(&res->buf);
chunk_appendf(&trace_buf, " htx=(%u/%u#%u, %u/%u#%u)",
rqhtx->data, rqhtx->size, htx_nbblks(rqhtx),
rphtx->data, rphtx->size, htx_nbblks(rphtx));
}
else {
chunk_appendf(&trace_buf, " buf=(%u@%p+%u/%u, %u@%p+%u/%u)",
(unsigned int)b_data(&req->buf), b_orig(&req->buf),
(unsigned int)b_head_ofs(&req->buf), (unsigned int)b_size(&req->buf),
(unsigned int)b_data(&res->buf), b_orig(&res->buf),
(unsigned int)b_head_ofs(&res->buf), (unsigned int)b_size(&res->buf));
}
/* If msg defined, display htx info if defined (level > USER) */
if (src->level > TRACE_LEVEL_USER && htx && htx_nbblks(htx)) {
int full = 0;
/* Full htx info (level > STATE && verbosity > SIMPLE) */
if (src->level > TRACE_LEVEL_STATE) {
if (src->verbosity == STRM_VERB_COMPLETE)
full = 1;
}
chunk_memcat(&trace_buf, "\n\t", 2);
htx_dump(&trace_buf, htx, full);
}
}
/* Upgrade an existing stream for stream connector <sc>. Return < 0 on error. This
* is only valid right after a TCP to H1 upgrade. The stream should be
* "reativated" by removing SF_IGNORE flag. And the right mode must be set. On
* success, <input> buffer is transferred to the stream and thus points to
* BUF_NULL. On error, it is unchanged and it is the caller responsibility to
* release it (this never happens for now).
*/
int stream_upgrade_from_sc(struct stconn *sc, struct buffer *input)
{
struct stream *s = __sc_strm(sc);
const struct mux_ops *mux = sc_mux_ops(sc);
if (mux) {
if (mux->flags & MX_FL_HTX)
s->flags |= SF_HTX;
}
if (!b_is_null(input)) {
/* Xfer the input buffer to the request channel. <input> will
* than point to BUF_NULL. From this point, it is the stream
* responsibility to release it.
*/
s->req.buf = *input;
*input = BUF_NULL;
s->req.total = (IS_HTX_STRM(s) ? htxbuf(&s->req.buf)->data : b_data(&s->req.buf));
sc_ep_report_read_activity(s->scf);
}
s->req.flags |= CF_READ_EVENT; /* Always report a read event */
s->flags &= ~SF_IGNORE;
task_wakeup(s->task, TASK_WOKEN_INIT);
return 0;
}
/* Callback used to wake up a stream when an input buffer is available. The
* stream <s>'s stream connectors are checked for a failed buffer allocation
* as indicated by the presence of the SC_FL_NEED_BUFF flag and the lack of a
* buffer, and and input buffer is assigned there (at most one). The function
* returns 1 and wakes the stream up if a buffer was taken, otherwise zero.
* It's designed to be called from __offer_buffer().
*/
int stream_buf_available(void *arg)
{
struct stream *s = arg;
if (!s->req.buf.size && !s->req.pipe && s->scf->flags & SC_FL_NEED_BUFF &&
b_alloc(&s->req.buf))
sc_have_buff(s->scf);
else if (!s->res.buf.size && !s->res.pipe && s->scb->flags & SC_FL_NEED_BUFF &&
b_alloc(&s->res.buf))
sc_have_buff(s->scb);
else
return 0;
task_wakeup(s->task, TASK_WOKEN_RES);
return 1;
}
/* This function is called from the session handler which detects the end of
* handshake, in order to complete initialization of a valid stream. It must be
* called with a completely initialized session. It returns the pointer to
* the newly created stream, or NULL in case of fatal error. The client-facing
* end point is assigned to <origin>, which must be valid. The stream's task
* is configured with a nice value inherited from the listener's nice if any.
* The task's context is set to the new stream, and its function is set to
* process_stream(). Target and analysers are null. <input> is used as input
* buffer for the request channel and may contain data. On success, it is
* transfer to the stream and <input> is set to BUF_NULL. On error, <input>
* buffer is unchanged and it is the caller responsibility to release it.
*/
struct stream *stream_new(struct session *sess, struct stconn *sc, struct buffer *input)
{
struct stream *s;
struct task *t;
DBG_TRACE_ENTER(STRM_EV_STRM_NEW);
if (unlikely((s = pool_alloc(pool_head_stream)) == NULL))
goto out_fail_alloc;
/* minimum stream initialization required for an embryonic stream is
* fairly low. We need very little to execute L4 ACLs, then we need a
* task to make the client-side connection live on its own.
* - flags
* - stick-entry tracking
*/
s->flags = 0;
s->logs.logwait = sess->fe->to_log;
s->logs.level = 0;
tv_zero(&s->logs.tv_request);
s->logs.t_queue = -1;
s->logs.t_connect = -1;
s->logs.t_data = -1;
s->logs.t_close = 0;
s->logs.bytes_in = s->logs.bytes_out = 0;
s->logs.prx_queue_pos = 0; /* we get the number of pending conns before us */
s->logs.srv_queue_pos = 0; /* we will get this number soon */
s->obj_type = OBJ_TYPE_STREAM;
s->logs.accept_date = sess->accept_date;
s->logs.tv_accept = sess->tv_accept;
s->logs.t_handshake = sess->t_handshake;
s->logs.t_idle = sess->t_idle;
/* default logging function */
s->do_log = strm_log;
/* default error reporting function, may be changed by analysers */
s->srv_error = default_srv_error;
/* Initialise the current rule list pointer to NULL. We are sure that
* any rulelist match the NULL pointer.
*/
s->current_rule_list = NULL;
s->current_rule = NULL;
s->rules_exp = TICK_ETERNITY;
s->last_rule_file = NULL;
s->last_rule_line = 0;
s->stkctr = NULL;
if (pool_head_stk_ctr) {
s->stkctr = pool_alloc(pool_head_stk_ctr);
if (!s->stkctr)
goto out_fail_alloc;
/* Copy SC counters for the stream. We don't touch refcounts because
* any reference we have is inherited from the session. Since the stream
* doesn't exist without the session, the session's existence guarantees
* we don't lose the entry. During the store operation, the stream won't
* touch these ones.
*/
memcpy(s->stkctr, sess->stkctr, sizeof(s->stkctr[0]) * global.tune.nb_stk_ctr);
}
s->sess = sess;
s->stream_epoch = _HA_ATOMIC_LOAD(&stream_epoch);
s->uniq_id = _HA_ATOMIC_FETCH_ADD(&global.req_count, 1);
/* OK, we're keeping the stream, so let's properly initialize the stream */
LIST_INIT(&s->back_refs);
LIST_INIT(&s->buffer_wait.list);
s->buffer_wait.target = s;
s->buffer_wait.wakeup_cb = stream_buf_available;
s->lat_time = s->cpu_time = 0;
s->call_rate.curr_tick = s->call_rate.curr_ctr = s->call_rate.prev_ctr = 0;
s->pcli_next_pid = 0;
s->pcli_flags = 0;
s->unique_id = IST_NULL;
if ((t = task_new_here()) == NULL)
goto out_fail_alloc;
s->task = t;
s->pending_events = 0;
s->conn_retries = 0;
s->conn_exp = TICK_ETERNITY;
s->conn_err_type = STRM_ET_NONE;
s->prev_conn_state = SC_ST_INI;
t->process = process_stream;
t->context = s;
t->expire = TICK_ETERNITY;
if (sess->listener)
t->nice = sess->listener->bind_conf->nice;
/* Note: initially, the stream's backend points to the frontend.
* This changes later when switching rules are executed or
* when the default backend is assigned.
*/
s->be = sess->fe;
s->req_cap = NULL;
s->res_cap = NULL;
/* Initialize all the variables contexts even if not used.
* This permits to prune these contexts without errors.
*
* We need to make sure that those lists are not re-initialized
* by stream-dependant underlying code because we could lose
* track of already defined variables, leading to data inconsistency
* and memory leaks...
*
* For reference: we had a very old bug caused by vars_txn and
* vars_reqres being accidentally re-initialized in http_create_txn()
* (https://github.com/haproxy/haproxy/issues/1935)
*/
vars_init_head(&s->vars_txn, SCOPE_TXN);
vars_init_head(&s->vars_reqres, SCOPE_REQ);
/* Set SF_HTX flag for HTTP frontends. */
if (sess->fe->mode == PR_MODE_HTTP)
s->flags |= SF_HTX;
s->scf = sc;
if (sc_attach_strm(s->scf, s) < 0)
goto out_fail_attach_scf;
s->scb = sc_new_from_strm(s, SC_FL_ISBACK);
if (!s->scb)
goto out_fail_alloc_scb;
sc_set_state(s->scf, SC_ST_EST);
if (likely(sess->fe->options2 & PR_O2_INDEPSTR))
s->scf->flags |= SC_FL_INDEP_STR;
if (likely(sess->fe->options2 & PR_O2_INDEPSTR))
s->scb->flags |= SC_FL_INDEP_STR;
if (sc_ep_test(sc, SE_FL_WEBSOCKET))
s->flags |= SF_WEBSOCKET;
if (sc_conn(sc)) {
const struct mux_ops *mux = sc_mux_ops(sc);
if (mux && mux->flags & MX_FL_HTX)
s->flags |= SF_HTX;
}
stream_init_srv_conn(s);
s->target = sess->fe->default_target;
s->pend_pos = NULL;
s->priority_class = 0;
s->priority_offset = 0;
/* init store persistence */
s->store_count = 0;
channel_init(&s->req);
s->req.flags |= CF_READ_EVENT; /* the producer is already connected */
s->req.analysers = sess->listener ? sess->listener->bind_conf->analysers : sess->fe->fe_req_ana;
if (IS_HTX_STRM(s)) {
/* Be sure to have HTTP analysers because in case of
* "destructive" stream upgrade, they may be missing (e.g
* TCP>H2)
*/
s->req.analysers |= AN_REQ_WAIT_HTTP|AN_REQ_HTTP_PROCESS_FE;
}
if (!sess->fe->fe_req_ana) {
channel_auto_connect(&s->req); /* don't wait to establish connection */
channel_auto_close(&s->req); /* let the producer forward close requests */
}
s->scf->ioto = sess->fe->timeout.client;
s->req.analyse_exp = TICK_ETERNITY;
channel_init(&s->res);
s->res.flags |= CF_ISRESP;
s->res.analysers = 0;
if (sess->fe->options2 & PR_O2_NODELAY) {
s->scf->flags |= SC_FL_SND_NEVERWAIT;
s->scb->flags |= SC_FL_SND_NEVERWAIT;
}
s->scb->ioto = TICK_ETERNITY;
s->res.analyse_exp = TICK_ETERNITY;
s->txn = NULL;
s->hlua = NULL;
s->resolv_ctx.requester = NULL;
s->resolv_ctx.hostname_dn = NULL;
s->resolv_ctx.hostname_dn_len = 0;
s->resolv_ctx.parent = NULL;
s->tunnel_timeout = TICK_ETERNITY;
LIST_APPEND(&th_ctx->streams, &s->list);
if (flt_stream_init(s) < 0 || flt_stream_start(s) < 0)
goto out_fail_accept;
/* just in case the caller would have pre-disabled it */
se_will_consume(s->scf->sedesc);
if (sess->fe->accept && sess->fe->accept(s) < 0)
goto out_fail_accept;
if (!b_is_null(input)) {
/* Xfer the input buffer to the request channel. <input> will
* than point to BUF_NULL. From this point, it is the stream
* responsibility to release it.
*/
s->req.buf = *input;
*input = BUF_NULL;
s->req.total = (IS_HTX_STRM(s) ? htxbuf(&s->req.buf)->data : b_data(&s->req.buf));
sc_ep_report_read_activity(s->scf);
}
/* it is important not to call the wakeup function directly but to
* pass through task_wakeup(), because this one knows how to apply
* priorities to tasks. Using multi thread we must be sure that
* stream is fully initialized before calling task_wakeup. So
* the caller must handle the task_wakeup
*/
DBG_TRACE_LEAVE(STRM_EV_STRM_NEW, s);
task_wakeup(s->task, TASK_WOKEN_INIT);
return s;
/* Error unrolling */
out_fail_accept:
flt_stream_release(s, 0);
LIST_DELETE(&s->list);
sc_free(s->scb);
out_fail_alloc_scb:
out_fail_attach_scf:
task_destroy(t);
out_fail_alloc:
if (s)
pool_free(pool_head_stk_ctr, s->stkctr);
pool_free(pool_head_stream, s);
DBG_TRACE_DEVEL("leaving on error", STRM_EV_STRM_NEW|STRM_EV_STRM_ERR);
return NULL;
}
/*
* frees the context associated to a stream. It must have been removed first.
*/
void stream_free(struct stream *s)
{
struct session *sess = strm_sess(s);
struct proxy *fe = sess->fe;
struct bref *bref, *back;
int i;
DBG_TRACE_POINT(STRM_EV_STRM_FREE, s);
/* detach the stream from its own task before even releasing it so
* that walking over a task list never exhibits a dying stream.
*/
s->task->context = NULL;
__ha_barrier_store();
pendconn_free(s);
if (objt_server(s->target)) { /* there may be requests left pending in queue */
if (s->flags & SF_CURR_SESS) {
s->flags &= ~SF_CURR_SESS;
_HA_ATOMIC_DEC(&__objt_server(s->target)->cur_sess);
}
if (may_dequeue_tasks(__objt_server(s->target), s->be))
process_srv_queue(__objt_server(s->target));
}
if (unlikely(s->srv_conn)) {
/* the stream still has a reserved slot on a server, but
* it should normally be only the same as the one above,
* so this should not happen in fact.
*/
sess_change_server(s, NULL);
}
if (s->req.pipe)
put_pipe(s->req.pipe);
if (s->res.pipe)
put_pipe(s->res.pipe);
/* We may still be present in the buffer wait queue */
if (LIST_INLIST(&s->buffer_wait.list))
LIST_DEL_INIT(&s->buffer_wait.list);
if (s->req.buf.size || s->res.buf.size) {
int count = !!s->req.buf.size + !!s->res.buf.size;
b_free(&s->req.buf);
b_free(&s->res.buf);
offer_buffers(NULL, count);
}
pool_free(pool_head_uniqueid, s->unique_id.ptr);
s->unique_id = IST_NULL;
flt_stream_stop(s);
flt_stream_release(s, 0);
hlua_ctx_destroy(s->hlua);
s->hlua = NULL;
if (s->txn)
http_destroy_txn(s);
/* ensure the client-side transport layer is destroyed */
/* Be sure it is useless !! */
/* if (cli_cs) */
/* cs_close(cli_cs); */
for (i = 0; i < s->store_count; i++) {
if (!s->store[i].ts)
continue;
stksess_free(s->store[i].table, s->store[i].ts);
s->store[i].ts = NULL;
}
if (s->resolv_ctx.requester) {
__decl_thread(struct resolvers *resolvers = s->resolv_ctx.parent->arg.resolv.resolvers);
HA_SPIN_LOCK(DNS_LOCK, &resolvers->lock);
ha_free(&s->resolv_ctx.hostname_dn);
s->resolv_ctx.hostname_dn_len = 0;
resolv_unlink_resolution(s->resolv_ctx.requester);
HA_SPIN_UNLOCK(DNS_LOCK, &resolvers->lock);
pool_free(resolv_requester_pool, s->resolv_ctx.requester);
s->resolv_ctx.requester = NULL;
}
if (fe) {
if (s->req_cap) {
struct cap_hdr *h;
for (h = fe->req_cap; h; h = h->next)
pool_free(h->pool, s->req_cap[h->index]);
pool_free(fe->req_cap_pool, s->req_cap);
}
if (s->res_cap) {
struct cap_hdr *h;
for (h = fe->rsp_cap; h; h = h->next)
pool_free(h->pool, s->res_cap[h->index]);
pool_free(fe->rsp_cap_pool, s->res_cap);
}
}
/* Cleanup all variable contexts. */
if (!LIST_ISEMPTY(&s->vars_txn.head))
vars_prune(&s->vars_txn, s->sess, s);
if (!LIST_ISEMPTY(&s->vars_reqres.head))
vars_prune(&s->vars_reqres, s->sess, s);
stream_store_counters(s);
pool_free(pool_head_stk_ctr, s->stkctr);
list_for_each_entry_safe(bref, back, &s->back_refs, users) {
/* we have to unlink all watchers. We must not relink them if
* this stream was the last one in the list. This is safe to do
* here because we're touching our thread's list so we know
* that other streams are not active, and the watchers will
* only touch their node under thread isolation.
*/
LIST_DEL_INIT(&bref->users);
if (s->list.n != &th_ctx->streams)
LIST_APPEND(&LIST_ELEM(s->list.n, struct stream *, list)->back_refs, &bref->users);
bref->ref = s->list.n;
__ha_barrier_store();
}
LIST_DELETE(&s->list);
sc_destroy(s->scb);
sc_destroy(s->scf);
pool_free(pool_head_stream, s);
/* We may want to free the maximum amount of pools if the proxy is stopping */
if (fe && unlikely(fe->flags & (PR_FL_DISABLED|PR_FL_STOPPED))) {
pool_flush(pool_head_buffer);
pool_flush(pool_head_http_txn);
pool_flush(pool_head_requri);
pool_flush(pool_head_capture);
pool_flush(pool_head_stream);
pool_flush(pool_head_session);
pool_flush(pool_head_connection);
pool_flush(pool_head_pendconn);
pool_flush(fe->req_cap_pool);
pool_flush(fe->rsp_cap_pool);
}
}
/* Allocates a work buffer for stream <s>. It is meant to be called inside
* process_stream(). It will only allocate the side needed for the function
* to work fine, which is the response buffer so that an error message may be
* built and returned. Response buffers may be allocated from the reserve, this
* is critical to ensure that a response may always flow and will never block a
* server from releasing a connection. Returns 0 in case of failure, non-zero
* otherwise.
*/
static int stream_alloc_work_buffer(struct stream *s)
{
if (b_alloc(&s->res.buf))
return 1;
return 0;
}
/* releases unused buffers after processing. Typically used at the end of the
* update() functions. It will try to wake up as many tasks/applets as the
* number of buffers that it releases. In practice, most often streams are
* blocked on a single buffer, so it makes sense to try to wake two up when two
* buffers are released at once.
*/
void stream_release_buffers(struct stream *s)
{
int offer = 0;
if (c_size(&s->req) && c_empty(&s->req)) {
offer++;
b_free(&s->req.buf);
}
if (c_size(&s->res) && c_empty(&s->res)) {
offer++;
b_free(&s->res.buf);
}
/* if we're certain to have at least 1 buffer available, and there is
* someone waiting, we can wake up a waiter and offer them.
*/
if (offer)
offer_buffers(s, offer);
}
void stream_process_counters(struct stream *s)
{
struct session *sess = s->sess;
unsigned long long bytes;
int i;
bytes = s->req.total - s->logs.bytes_in;
s->logs.bytes_in = s->req.total;
if (bytes) {
_HA_ATOMIC_ADD(&sess->fe->fe_counters.bytes_in, bytes);
_HA_ATOMIC_ADD(&s->be->be_counters.bytes_in, bytes);
if (objt_server(s->target))
_HA_ATOMIC_ADD(&__objt_server(s->target)->counters.bytes_in, bytes);
if (sess->listener && sess->listener->counters)
_HA_ATOMIC_ADD(&sess->listener->counters->bytes_in, bytes);
for (i = 0; i < global.tune.nb_stk_ctr; i++) {
if (!stkctr_inc_bytes_in_ctr(&s->stkctr[i], bytes))
stkctr_inc_bytes_in_ctr(&sess->stkctr[i], bytes);
}
}
bytes = s->res.total - s->logs.bytes_out;
s->logs.bytes_out = s->res.total;
if (bytes) {
_HA_ATOMIC_ADD(&sess->fe->fe_counters.bytes_out, bytes);
_HA_ATOMIC_ADD(&s->be->be_counters.bytes_out, bytes);
if (objt_server(s->target))
_HA_ATOMIC_ADD(&__objt_server(s->target)->counters.bytes_out, bytes);
if (sess->listener && sess->listener->counters)
_HA_ATOMIC_ADD(&sess->listener->counters->bytes_out, bytes);
for (i = 0; i < global.tune.nb_stk_ctr; i++) {
if (!stkctr_inc_bytes_out_ctr(&s->stkctr[i], bytes))
stkctr_inc_bytes_out_ctr(&sess->stkctr[i], bytes);
}
}
}
/* Abort processing on the both channels in same time */
void stream_abort(struct stream *s)
{
channel_abort(&s->req);
channel_abort(&s->res);
}
/*
* Returns a message to the client ; the connection is shut down for read,
* and the request is cleared so that no server connection can be initiated.
* The buffer is marked for read shutdown on the other side to protect the
* message, and the buffer write is enabled. The message is contained in a
* "chunk". If it is null, then an empty message is used. The reply buffer does
* not need to be empty before this, and its contents will not be overwritten.
* The primary goal of this function is to return error messages to a client.
*/
void stream_retnclose(struct stream *s, const struct buffer *msg)
{
struct channel *ic = &s->req;
struct channel *oc = &s->res;
channel_auto_read(ic);
channel_abort(ic);
channel_erase(ic);
channel_truncate(oc);
if (likely(msg && msg->data))
co_inject(oc, msg->area, msg->data);
channel_auto_read(oc);
channel_auto_close(oc);
channel_shutr_now(oc);
}
int stream_set_timeout(struct stream *s, enum act_timeout_name name, int timeout)
{
switch (name) {
case ACT_TIMEOUT_SERVER:
s->scb->ioto = timeout;
return 1;
case ACT_TIMEOUT_TUNNEL:
s->tunnel_timeout = timeout;
return 1;
default:
return 0;
}
}
/*
* This function handles the transition between the SC_ST_CON state and the
* SC_ST_EST state. It must only be called after switching from SC_ST_CON (or
* SC_ST_INI or SC_ST_RDY) to SC_ST_EST, but only when a ->proto is defined.
* Note that it will switch the interface to SC_ST_DIS if we already have
* the SC_FL_SHUTR flag, it means we were able to forward the request, and
* receive the response, before process_stream() had the opportunity to
* make the switch from SC_ST_CON to SC_ST_EST. When that happens, we want
* to go through back_establish() anyway, to make sure the analysers run.
* Timeouts are cleared. Error are reported on the channel so that analysers
* can handle them.
*/
static void back_establish(struct stream *s)
{
struct connection *conn = sc_conn(s->scb);
struct channel *req = &s->req;
struct channel *rep = &s->res;
DBG_TRACE_ENTER(STRM_EV_STRM_PROC|STRM_EV_CS_ST, s);
/* First, centralize the timers information, and clear any irrelevant
* timeout.
*/
s->logs.t_connect = tv_ms_elapsed(&s->logs.tv_accept, &now);
s->conn_exp = TICK_ETERNITY;
s->flags &= ~SF_CONN_EXP;
/* errors faced after sending data need to be reported */
if (sc_ep_test(s->scb, SE_FL_ERROR) && req->flags & CF_WROTE_DATA) {
s->req.flags |= CF_WRITE_EVENT;
s->res.flags |= CF_READ_EVENT;
s->conn_err_type = STRM_ET_DATA_ERR;
DBG_TRACE_STATE("read/write error", STRM_EV_STRM_PROC|STRM_EV_CS_ST|STRM_EV_STRM_ERR, s);
}
if (objt_server(s->target))
health_adjust(__objt_server(s->target), HANA_STATUS_L4_OK);
if (!IS_HTX_STRM(s)) { /* let's allow immediate data connection in this case */
/* if the user wants to log as soon as possible, without counting
* bytes from the server, then this is the right moment. */
if (!LIST_ISEMPTY(&strm_fe(s)->logformat) && !(s->logs.logwait & LW_BYTES)) {
/* note: no pend_pos here, session is established */
s->logs.t_close = s->logs.t_connect; /* to get a valid end date */
s->do_log(s);
}
}
else {
s->scb->flags |= SC_FL_RCV_ONCE; /* a single read is enough to get response headers */
}
rep->analysers |= strm_fe(s)->fe_rsp_ana | s->be->be_rsp_ana;
se_have_more_data(s->scb->sedesc);
rep->flags |= CF_READ_EVENT; /* producer is now attached */
sc_ep_report_read_activity(s->scb);
if (conn) {
/* real connections have timeouts
* if already defined, it means that a set-timeout rule has
* been executed so do not overwrite them
*/
if (!tick_isset(s->scb->ioto))
s->scb->ioto = s->be->timeout.server;
if (!tick_isset(s->tunnel_timeout))
s->tunnel_timeout = s->be->timeout.tunnel;
/* The connection is now established, try to read data from the
* underlying layer, and subscribe to recv events. We use a
* delayed recv here to give a chance to the data to flow back
* by the time we process other tasks.
*/
sc_chk_rcv(s->scb);
}
/* If we managed to get the whole response, and we don't have anything
* left to send, or can't, switch to SC_ST_DIS now. */
if ((s->scb->flags & SC_FL_SHUTR) || (s->scf->flags & SC_FL_SHUTW)) {
s->scb->state = SC_ST_DIS;
DBG_TRACE_STATE("response channel shutdwn for read/write", STRM_EV_STRM_PROC|STRM_EV_CS_ST|STRM_EV_STRM_ERR, s);
}
DBG_TRACE_LEAVE(STRM_EV_STRM_PROC|STRM_EV_CS_ST, s);
}
/* Set correct stream termination flags in case no analyser has done it. It
* also counts a failed request if the server state has not reached the request
* stage.
*/
void sess_set_term_flags(struct stream *s)
{
if (!(s->flags & SF_FINST_MASK)) {
if (s->scb->state == SC_ST_INI) {
/* anything before REQ in fact */
_HA_ATOMIC_INC(&strm_fe(s)->fe_counters.failed_req);
if (strm_li(s) && strm_li(s)->counters)
_HA_ATOMIC_INC(&strm_li(s)->counters->failed_req);
s->flags |= SF_FINST_R;
}
else if (s->scb->state == SC_ST_QUE)
s->flags |= SF_FINST_Q;
else if (sc_state_in(s->scb->state, SC_SB_REQ|SC_SB_TAR|SC_SB_ASS|SC_SB_CON|SC_SB_CER|SC_SB_RDY))
s->flags |= SF_FINST_C;
else if (s->scb->state == SC_ST_EST || s->prev_conn_state == SC_ST_EST)
s->flags |= SF_FINST_D;
else
s->flags |= SF_FINST_L;
}
}
/* This function parses the use-service action ruleset. It executes
* the associated ACL and set an applet as a stream or txn final node.
* it returns ACT_RET_ERR if an error occurs, the proxy left in
* consistent state. It returns ACT_RET_STOP in success case because
* use-service must be a terminal action. Returns ACT_RET_YIELD
* if the initialisation function require more data.
*/
enum act_return process_use_service(struct act_rule *rule, struct proxy *px,
struct session *sess, struct stream *s, int flags)
{
struct appctx *appctx;
/* Initialises the applet if it is required. */
if (flags & ACT_OPT_FIRST) {
/* Register applet. this function schedules the applet. */
s->target = &rule->applet.obj_type;
appctx = sc_applet_create(s->scb, objt_applet(s->target));
if (unlikely(!appctx))
return ACT_RET_ERR;
/* Finish initialisation of the context. */
appctx->rule = rule;
if (appctx_init(appctx) == -1)
return ACT_RET_ERR;
}
else
appctx = __sc_appctx(s->scb);
if (rule->from != ACT_F_HTTP_REQ) {
if (sess->fe == s->be) /* report it if the request was intercepted by the frontend */
_HA_ATOMIC_INC(&sess->fe->fe_counters.intercepted_req);
/* The flag SF_ASSIGNED prevent from server assignment. */
s->flags |= SF_ASSIGNED;
}
/* Now we can schedule the applet. */
applet_need_more_data(appctx);
appctx_wakeup(appctx);
return ACT_RET_STOP;
}
/* This stream analyser checks the switching rules and changes the backend
* if appropriate. The default_backend rule is also considered, then the
* target backend's forced persistence rules are also evaluated last if any.
* It returns 1 if the processing can continue on next analysers, or zero if it
* either needs more data or wants to immediately abort the request.
*/
static int process_switching_rules(struct stream *s, struct channel *req, int an_bit)
{
struct persist_rule *prst_rule;
struct session *sess = s->sess;
struct proxy *fe = sess->fe;
req->analysers &= ~an_bit;
req->analyse_exp = TICK_ETERNITY;
DBG_TRACE_ENTER(STRM_EV_STRM_ANA, s);
/* now check whether we have some switching rules for this request */
if (!(s->flags & SF_BE_ASSIGNED)) {
struct switching_rule *rule;
list_for_each_entry(rule, &fe->switching_rules, list) {
int ret = 1;
if (rule->cond) {
ret = acl_exec_cond(rule->cond, fe, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL);
ret = acl_pass(ret);
if (rule->cond->pol == ACL_COND_UNLESS)
ret = !ret;
}
if (ret) {
/* If the backend name is dynamic, try to resolve the name.
* If we can't resolve the name, or if any error occurs, break
* the loop and fallback to the default backend.
*/
struct proxy *backend = NULL;
if (rule->dynamic) {
struct buffer *tmp;
tmp = alloc_trash_chunk();
if (!tmp)
goto sw_failed;
if (build_logline(s, tmp->area, tmp->size, &rule->be.expr))
backend = proxy_be_by_name(tmp->area);
free_trash_chunk(tmp);
tmp = NULL;
if (!backend)
break;
}
else
backend = rule->be.backend;
if (!stream_set_backend(s, backend))
goto sw_failed;
break;
}
}
/* To ensure correct connection accounting on the backend, we
* have to assign one if it was not set (eg: a listen). This
* measure also takes care of correctly setting the default
* backend if any. Don't do anything if an upgrade is already in
* progress.
*/
if (!(s->flags & (SF_BE_ASSIGNED|SF_IGNORE)))
if (!stream_set_backend(s, fe->defbe.be ? fe->defbe.be : s->be))
goto sw_failed;
/* No backend assigned but no error reported. It happens when a
* TCP stream is upgraded to HTTP/2.
*/
if ((s->flags & (SF_BE_ASSIGNED|SF_IGNORE)) == SF_IGNORE) {
DBG_TRACE_DEVEL("leaving with no backend because of a destructive upgrade", STRM_EV_STRM_ANA, s);
return 0;
}
}
/* we don't want to run the TCP or HTTP filters again if the backend has not changed */
if (fe == s->be) {
s->req.analysers &= ~AN_REQ_INSPECT_BE;
s->req.analysers &= ~AN_REQ_HTTP_PROCESS_BE;
s->req.analysers &= ~AN_REQ_FLT_START_BE;
}
/* as soon as we know the backend, we must check if we have a matching forced or ignored
* persistence rule, and report that in the stream.
*/
list_for_each_entry(prst_rule, &s->be->persist_rules, list) {
int ret = 1;
if (prst_rule->cond) {
ret = acl_exec_cond(prst_rule->cond, s->be, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL);
ret = acl_pass(ret);
if (prst_rule->cond->pol == ACL_COND_UNLESS)
ret = !ret;
}
if (ret) {
/* no rule, or the rule matches */
if (prst_rule->type == PERSIST_TYPE_FORCE) {
s->flags |= SF_FORCE_PRST;
} else {
s->flags |= SF_IGNORE_PRST;
}
break;
}
}
DBG_TRACE_LEAVE(STRM_EV_STRM_ANA, s);
return 1;
sw_failed:
/* immediately abort this request in case of allocation failure */
stream_abort(s);
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_RESOURCE;
if (!(s->flags & SF_FINST_MASK))
s->flags |= SF_FINST_R;
if (s->txn)
s->txn->status = 500;
s->req.analysers &= AN_REQ_FLT_END;
s->req.analyse_exp = TICK_ETERNITY;
DBG_TRACE_DEVEL("leaving on error", STRM_EV_STRM_ANA|STRM_EV_STRM_ERR, s);
return 0;
}
/* This stream analyser works on a request. It applies all use-server rules on
* it then returns 1. The data must already be present in the buffer otherwise
* they won't match. It always returns 1.
*/
static int process_server_rules(struct stream *s, struct channel *req, int an_bit)
{
struct proxy *px = s->be;
struct session *sess = s->sess;
struct server_rule *rule;
DBG_TRACE_ENTER(STRM_EV_STRM_ANA, s);
if (!(s->flags & SF_ASSIGNED)) {
list_for_each_entry(rule, &px->server_rules, list) {
int ret;
ret = acl_exec_cond(rule->cond, s->be, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL);
ret = acl_pass(ret);
if (rule->cond->pol == ACL_COND_UNLESS)
ret = !ret;
if (ret) {
struct server *srv;
if (rule->dynamic) {
struct buffer *tmp = get_trash_chunk();
if (!build_logline(s, tmp->area, tmp->size, &rule->expr))
break;
srv = findserver(s->be, tmp->area);
if (!srv)
break;
}
else
srv = rule->srv.ptr;
if ((srv->cur_state != SRV_ST_STOPPED) ||
(px->options & PR_O_PERSIST) ||
(s->flags & SF_FORCE_PRST)) {
s->flags |= SF_DIRECT | SF_ASSIGNED;
s->target = &srv->obj_type;
break;
}
/* if the server is not UP, let's go on with next rules
* just in case another one is suited.
*/
}
}
}
req->analysers &= ~an_bit;
req->analyse_exp = TICK_ETERNITY;
DBG_TRACE_LEAVE(STRM_EV_STRM_ANA, s);
return 1;
}
static inline void sticking_rule_find_target(struct stream *s,
struct stktable *t, struct stksess *ts)
{
struct proxy *px = s->be;
struct eb32_node *node;
struct dict_entry *de;
void *ptr;
struct server *srv;
/* Look for the server name previously stored in <t> stick-table */
HA_RWLOCK_RDLOCK(STK_SESS_LOCK, &ts->lock);
ptr = __stktable_data_ptr(t, ts, STKTABLE_DT_SERVER_KEY);
de = stktable_data_cast(ptr, std_t_dict);
HA_RWLOCK_RDUNLOCK(STK_SESS_LOCK, &ts->lock);
if (de) {
struct ebpt_node *node;
if (t->server_key_type == STKTABLE_SRV_NAME) {
node = ebis_lookup(&px->conf.used_server_name, de->value.key);
if (node) {
srv = container_of(node, struct server, conf.name);
goto found;
}
} else if (t->server_key_type == STKTABLE_SRV_ADDR) {
HA_RWLOCK_RDLOCK(PROXY_LOCK, &px->lock);
node = ebis_lookup(&px->used_server_addr, de->value.key);
HA_RWLOCK_RDUNLOCK(PROXY_LOCK, &px->lock);
if (node) {
srv = container_of(node, struct server, addr_node);
goto found;
}
}
}
/* Look for the server ID */
HA_RWLOCK_RDLOCK(STK_SESS_LOCK, &ts->lock);
ptr = __stktable_data_ptr(t, ts, STKTABLE_DT_SERVER_ID);
node = eb32_lookup(&px->conf.used_server_id, stktable_data_cast(ptr, std_t_sint));
HA_RWLOCK_RDUNLOCK(STK_SESS_LOCK, &ts->lock);
if (!node)
return;
srv = container_of(node, struct server, conf.id);
found:
if ((srv->cur_state != SRV_ST_STOPPED) ||
(px->options & PR_O_PERSIST) || (s->flags & SF_FORCE_PRST)) {
s->flags |= SF_DIRECT | SF_ASSIGNED;
s->target = &srv->obj_type;
}
}
/* This stream analyser works on a request. It applies all sticking rules on
* it then returns 1. The data must already be present in the buffer otherwise
* they won't match. It always returns 1.
*/
static int process_sticking_rules(struct stream *s, struct channel *req, int an_bit)
{
struct proxy *px = s->be;
struct session *sess = s->sess;
struct sticking_rule *rule;
DBG_TRACE_ENTER(STRM_EV_STRM_ANA, s);
list_for_each_entry(rule, &px->sticking_rules, list) {
int ret = 1 ;
int i;
/* Only the first stick store-request of each table is applied
* and other ones are ignored. The purpose is to allow complex
* configurations which look for multiple entries by decreasing
* order of precision and to stop at the first which matches.
* An example could be a store of the IP address from an HTTP
* header first, then from the source if not found.
*/
if (rule->flags & STK_IS_STORE) {
for (i = 0; i < s->store_count; i++) {
if (rule->table.t == s->store[i].table)
break;
}
if (i != s->store_count)
continue;
}
if (rule->cond) {
ret = acl_exec_cond(rule->cond, px, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL);
ret = acl_pass(ret);
if (rule->cond->pol == ACL_COND_UNLESS)
ret = !ret;
}
if (ret) {
struct stktable_key *key;
key = stktable_fetch_key(rule->table.t, px, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL, rule->expr, NULL);
if (!key)
continue;
if (rule->flags & STK_IS_MATCH) {
struct stksess *ts;
if ((ts = stktable_lookup_key(rule->table.t, key)) != NULL) {
if (!(s->flags & SF_ASSIGNED))
sticking_rule_find_target(s, rule->table.t, ts);
stktable_touch_local(rule->table.t, ts, 1);
}
}
if (rule->flags & STK_IS_STORE) {
if (s->store_count < (sizeof(s->store) / sizeof(s->store[0]))) {
struct stksess *ts;
ts = stksess_new(rule->table.t, key);
if (ts) {
s->store[s->store_count].table = rule->table.t;
s->store[s->store_count++].ts = ts;
}
}
}
}
}
req->analysers &= ~an_bit;
req->analyse_exp = TICK_ETERNITY;
DBG_TRACE_LEAVE(STRM_EV_STRM_ANA, s);
return 1;
}
/* This stream analyser works on a response. It applies all store rules on it
* then returns 1. The data must already be present in the buffer otherwise
* they won't match. It always returns 1.
*/
static int process_store_rules(struct stream *s, struct channel *rep, int an_bit)
{
struct proxy *px = s->be;
struct session *sess = s->sess;
struct sticking_rule *rule;
int i;
int nbreq = s->store_count;
DBG_TRACE_ENTER(STRM_EV_STRM_ANA, s);
list_for_each_entry(rule, &px->storersp_rules, list) {
int ret = 1 ;
/* Only the first stick store-response of each table is applied
* and other ones are ignored. The purpose is to allow complex
* configurations which look for multiple entries by decreasing
* order of precision and to stop at the first which matches.
* An example could be a store of a set-cookie value, with a
* fallback to a parameter found in a 302 redirect.
*
* The store-response rules are not allowed to override the
* store-request rules for the same table, but they may coexist.
* Thus we can have up to one store-request entry and one store-
* response entry for the same table at any time.
*/
for (i = nbreq; i < s->store_count; i++) {
if (rule->table.t == s->store[i].table)
break;
}
/* skip existing entries for this table */
if (i < s->store_count)
continue;
if (rule->cond) {
ret = acl_exec_cond(rule->cond, px, sess, s, SMP_OPT_DIR_RES|SMP_OPT_FINAL);
ret = acl_pass(ret);
if (rule->cond->pol == ACL_COND_UNLESS)
ret = !ret;
}
if (ret) {
struct stktable_key *key;
key = stktable_fetch_key(rule->table.t, px, sess, s, SMP_OPT_DIR_RES|SMP_OPT_FINAL, rule->expr, NULL);
if (!key)
continue;
if (s->store_count < (sizeof(s->store) / sizeof(s->store[0]))) {
struct stksess *ts;
ts = stksess_new(rule->table.t, key);
if (ts) {
s->store[s->store_count].table = rule->table.t;
s->store[s->store_count++].ts = ts;
}
}
}
}
/* process store request and store response */
for (i = 0; i < s->store_count; i++) {
struct stksess *ts;
void *ptr;
char *key;
struct dict_entry *de;
struct stktable *t = s->store[i].table;
if (!objt_server(s->target) || (__objt_server(s->target)->flags & SRV_F_NON_STICK)) {
stksess_free(s->store[i].table, s->store[i].ts);
s->store[i].ts = NULL;
continue;
}
ts = stktable_set_entry(t, s->store[i].ts);
if (ts != s->store[i].ts) {
/* the entry already existed, we can free ours */
stksess_free(t, s->store[i].ts);
}
s->store[i].ts = NULL;
if (t->server_key_type == STKTABLE_SRV_NAME)
key = __objt_server(s->target)->id;
else if (t->server_key_type == STKTABLE_SRV_ADDR)
key = __objt_server(s->target)->addr_node.key;
else
key = NULL;
HA_RWLOCK_WRLOCK(STK_SESS_LOCK, &ts->lock);
ptr = __stktable_data_ptr(t, ts, STKTABLE_DT_SERVER_ID);
stktable_data_cast(ptr, std_t_sint) = __objt_server(s->target)->puid;
if (key) {
de = dict_insert(&server_key_dict, key);
if (de) {
ptr = __stktable_data_ptr(t, ts, STKTABLE_DT_SERVER_KEY);
stktable_data_cast(ptr, std_t_dict) = de;
}
}
HA_RWLOCK_WRUNLOCK(STK_SESS_LOCK, &ts->lock);
stktable_touch_local(t, ts, 1);
}
s->store_count = 0; /* everything is stored */
rep->analysers &= ~an_bit;
rep->analyse_exp = TICK_ETERNITY;
DBG_TRACE_LEAVE(STRM_EV_STRM_ANA, s);
return 1;
}
/* Set the stream to HTTP mode, if necessary. The minimal request HTTP analysers
* are set and the client mux is upgraded. It returns 1 if the stream processing
* may continue or 0 if it should be stopped. It happens on error or if the
* upgrade required a new stream. The mux protocol may be specified.
*/
int stream_set_http_mode(struct stream *s, const struct mux_proto_list *mux_proto)
{
struct stconn *sc = s->scf;
struct connection *conn;
/* Already an HTTP stream */
if (IS_HTX_STRM(s))
return 1;
s->req.analysers |= AN_REQ_WAIT_HTTP|AN_REQ_HTTP_PROCESS_FE;
if (unlikely(!s->txn && !http_create_txn(s)))
return 0;
conn = sc_conn(sc);
if (conn) {
se_have_more_data(s->scf->sedesc);
/* Make sure we're unsubscribed, the the new
* mux will probably want to subscribe to
* the underlying XPRT
*/
if (s->scf->wait_event.events)
conn->mux->unsubscribe(sc, s->scf->wait_event.events, &(s->scf->wait_event));
if (conn->mux->flags & MX_FL_NO_UPG)
return 0;
sc_conn_prepare_endp_upgrade(sc);
if (conn_upgrade_mux_fe(conn, sc, &s->req.buf,
(mux_proto ? mux_proto->token : ist("")),
PROTO_MODE_HTTP) == -1) {
sc_conn_abort_endp_upgrade(sc);
return 0;
}
sc_conn_commit_endp_upgrade(sc);
s->req.flags &= ~(CF_READ_EVENT|CF_AUTO_CONNECT);
s->req.total = 0;
s->flags |= SF_IGNORE;
if (sc_ep_test(sc, SE_FL_DETACHED)) {
/* If stream connector is detached, it means it was not
* reused by the new mux. Son destroy it, disable
* logging, and abort the stream process. Thus the
* stream will be silently destroyed. The new mux will
* create new streams.
*/
s->logs.logwait = 0;
s->logs.level = 0;
stream_abort(s);
s->req.analysers &= AN_REQ_FLT_END;
s->req.analyse_exp = TICK_ETERNITY;
}
}
return 1;
}
/* Updates at once the channel flags, and timers of both stream connectors of a
* same stream, to complete the work after the analysers, then updates the data
* layer below. This will ensure that any synchronous update performed at the
* data layer will be reflected in the channel flags and/or stream connector.
* Note that this does not change the stream connector's current state, though
* it updates the previous state to the current one.
*/
static void stream_update_both_sc(struct stream *s)
{
struct stconn *scf = s->scf;
struct stconn *scb = s->scb;
struct channel *req = &s->req;
struct channel *res = &s->res;
req->flags &= ~(CF_READ_EVENT|CF_WRITE_EVENT);
res->flags &= ~(CF_READ_EVENT|CF_WRITE_EVENT);
s->prev_conn_state = scb->state;
/* let's recompute both sides states */
if (sc_state_in(scf->state, SC_SB_RDY|SC_SB_EST))
sc_update(scf);
if (sc_state_in(scb->state, SC_SB_RDY|SC_SB_EST))
sc_update(scb);
/* stream connectors are processed outside of process_stream() and must be
* handled at the latest moment.
*/
if (sc_appctx(scf)) {
if (sc_is_recv_allowed(scf) || sc_is_send_allowed(scf))
appctx_wakeup(__sc_appctx(scf));
}
if (sc_appctx(scb)) {
if (sc_is_recv_allowed(scb) || sc_is_send_allowed(scb))
appctx_wakeup(__sc_appctx(scb));
}
}
/* check SC and channel timeouts, and close the corresponding stream connectors
* for future reads or writes.
* Note: this will also concern upper layers but we do not touch any other
* flag. We must be careful and correctly detect state changes when calling
* them.
*/
static void stream_handle_timeouts(struct stream *s)
{
stream_check_conn_timeout(s);
sc_check_timeouts(s->scf);
channel_check_timeout(&s->req);
sc_check_timeouts(s->scb);
channel_check_timeout(&s->res);
if (unlikely(!(s->scb->flags & SC_FL_SHUTW) && (s->req.flags & CF_WRITE_TIMEOUT))) {
s->scb->flags |= SC_FL_NOLINGER;
sc_shutw(s->scb);
}
if (unlikely(!(s->scf->flags & SC_FL_SHUTR) && (s->req.flags & CF_READ_TIMEOUT))) {
if (s->scf->flags & SC_FL_NOHALF)
s->scf->flags |= SC_FL_NOLINGER;
sc_shutr(s->scf);
}
if (unlikely(!(s->scf->flags & SC_FL_SHUTW) && (s->res.flags & CF_WRITE_TIMEOUT))) {
s->scf->flags |= SC_FL_NOLINGER;
sc_shutw(s->scf);
}
if (unlikely(!(s->scb->flags & SC_FL_SHUTR) && (s->res.flags & CF_READ_TIMEOUT))) {
if (s->scb->flags & SC_FL_NOHALF)
s->scb->flags |= SC_FL_NOLINGER;
sc_shutr(s->scb);
}
if (HAS_FILTERS(s))
flt_stream_check_timeouts(s);
}
/* if the current task's wake_date was set, it's being profiled, thus we may
* report latencies and CPU usages in logs, so it's desirable to update the
* latency when entering process_stream().
*/
static void stream_cond_update_cpu_latency(struct stream *s)
{
uint32_t lat = th_ctx->sched_call_date - th_ctx->sched_wake_date;
s->lat_time += lat;
}
/* if the current task's wake_date was set, it's being profiled, thus we may
* report latencies and CPU usages in logs, so it's desirable to do that before
* logging in order to report accurate CPU usage. In this case we count that
* final part and reset the wake date so that the scheduler doesn't do it a
* second time, and by doing so we also avoid an extra call to clock_gettime().
* The CPU usage will be off by the little time needed to run over stream_free()
* but that's only marginal.
*/
static void stream_cond_update_cpu_usage(struct stream *s)
{
uint32_t cpu;
/* stats are only registered for non-zero wake dates */
if (likely(!th_ctx->sched_wake_date))
return;
cpu = (uint32_t)now_mono_time() - th_ctx->sched_call_date;
s->cpu_time += cpu;
HA_ATOMIC_ADD(&th_ctx->sched_profile_entry->cpu_time, cpu);
th_ctx->sched_wake_date = 0;
}
/* this functions is called directly by the scheduler for tasks whose
* ->process points to process_stream(), and is used to keep latencies
* and CPU usage measurements accurate.
*/
void stream_update_timings(struct task *t, uint64_t lat, uint64_t cpu)
{
struct stream *s = t->context;
s->lat_time += lat;
s->cpu_time += cpu;
}
/* This macro is very specific to the function below. See the comments in
* process_stream() below to understand the logic and the tests.
*/
#define UPDATE_ANALYSERS(real, list, back, flag) { \
list = (((list) & ~(flag)) | ~(back)) & (real); \
back = real; \
if (!(list)) \
break; \
if (((list) ^ ((list) & ((list) - 1))) < (flag)) \
continue; \
}
/* These 2 following macros call an analayzer for the specified channel if the
* right flag is set. The first one is used for "filterable" analyzers. If a
* stream has some registered filters, pre and post analyaze callbacks are
* called. The second are used for other analyzers (AN_REQ/RES_FLT_* and
* AN_REQ/RES_HTTP_XFER_BODY) */
#define FLT_ANALYZE(strm, chn, fun, list, back, flag, ...) \
{ \
if ((list) & (flag)) { \
if (HAS_FILTERS(strm)) { \
if (!flt_pre_analyze((strm), (chn), (flag))) \
break; \
if (!fun((strm), (chn), (flag), ##__VA_ARGS__)) \
break; \
if (!flt_post_analyze((strm), (chn), (flag))) \
break; \
} \
else { \
if (!fun((strm), (chn), (flag), ##__VA_ARGS__)) \
break; \
} \
UPDATE_ANALYSERS((chn)->analysers, (list), \
(back), (flag)); \
} \
}
#define ANALYZE(strm, chn, fun, list, back, flag, ...) \
{ \
if ((list) & (flag)) { \
if (!fun((strm), (chn), (flag), ##__VA_ARGS__)) \
break; \
UPDATE_ANALYSERS((chn)->analysers, (list), \
(back), (flag)); \
} \
}
/* Processes the client, server, request and response jobs of a stream task,
* then puts it back to the wait queue in a clean state, or cleans up its
* resources if it must be deleted. Returns in <next> the date the task wants
* to be woken up, or TICK_ETERNITY. In order not to call all functions for
* nothing too many times, the request and response buffers flags are monitored
* and each function is called only if at least another function has changed at
* least one flag it is interested in.
*/
struct task *process_stream(struct task *t, void *context, unsigned int state)
{
struct server *srv;
struct stream *s = context;
struct session *sess = s->sess;
unsigned int scf_flags, scb_flags;
unsigned int rqf_last, rpf_last;
unsigned int rq_prod_last, rq_cons_last;
unsigned int rp_cons_last, rp_prod_last;
unsigned int req_ana_back;
struct channel *req, *res;
struct stconn *scf, *scb;
unsigned int rate;
DBG_TRACE_ENTER(STRM_EV_STRM_PROC, s);
activity[tid].stream_calls++;
stream_cond_update_cpu_latency(s);
req = &s->req;
res = &s->res;
scf = s->scf;
scb = s->scb;
/* First, attempt to receive pending data from I/O layers */
sc_conn_sync_recv(scf);
sc_conn_sync_recv(scb);
/* Let's check if we're looping without making any progress, e.g. due
* to a bogus analyser or the fact that we're ignoring a read0. The
* call_rate counter only counts calls with no progress made.
*/
if (!((req->flags | res->flags) & (CF_READ_EVENT|CF_WRITE_EVENT))) {
rate = update_freq_ctr(&s->call_rate, 1);
if (rate >= 100000 && s->call_rate.prev_ctr) // make sure to wait at least a full second
stream_dump_and_crash(&s->obj_type, read_freq_ctr(&s->call_rate));
}
/* this data may be no longer valid, clear it */
if (s->txn)
memset(&s->txn->auth, 0, sizeof(s->txn->auth));
/* This flag must explicitly be set every time */
req->flags &= ~CF_WAKE_WRITE;
res->flags &= ~CF_WAKE_WRITE;
/* Keep a copy of req/rep flags so that we can detect shutdowns */
rqf_last = req->flags & ~CF_MASK_ANALYSER;
rpf_last = res->flags & ~CF_MASK_ANALYSER;
/* we don't want the stream connector functions to recursively wake us up */
scf->flags |= SC_FL_DONT_WAKE;
scb->flags |= SC_FL_DONT_WAKE;
/* Keep a copy of SC flags */
scf_flags = scf->flags;
scb_flags = scb->flags;
/* update pending events */
s->pending_events |= (state & TASK_WOKEN_ANY);
/* 1a: Check for low level timeouts if needed. We just set a flag on
* stream connectors when their timeouts have expired.
*/
if (unlikely(s->pending_events & TASK_WOKEN_TIMER)) {
stream_handle_timeouts(s);
/* Once in a while we're woken up because the task expires. But
* this does not necessarily mean that a timeout has been reached.
* So let's not run a whole stream processing if only an expiration
* timeout needs to be refreshed.
*/
if (!((scf->flags | scb->flags) & (SC_FL_SHUTR|SC_FL_SHUTW)) &&
!((req->flags | res->flags) & (CF_READ_EVENT|CF_READ_TIMEOUT|CF_WRITE_EVENT|CF_WRITE_TIMEOUT)) &&
!(s->flags & SF_CONN_EXP) &&
!((sc_ep_get(scf) | sc_ep_get(scb)) & SE_FL_ERROR) &&
((s->pending_events & TASK_WOKEN_ANY) == TASK_WOKEN_TIMER)) {
scf->flags &= ~SC_FL_DONT_WAKE;
scb->flags &= ~SC_FL_DONT_WAKE;
goto update_exp_and_leave;
}
}
resync_stconns:
/* below we may emit error messages so we have to ensure that we have
* our buffers properly allocated. If the allocation failed, an error is
* triggered.
*
* NOTE: An error is returned because the mechanism to queue entities
* waiting for a buffer is totally broken for now. However, this
* part must be refactored. When it will be handled, this part
* must be be reviewed too.
*/
if (!stream_alloc_work_buffer(s)) {
sc_ep_set(s->scf, SE_FL_ERROR);
s->conn_err_type = STRM_ET_CONN_RES;
sc_ep_set(s->scb, SE_FL_ERROR);
s->conn_err_type = STRM_ET_CONN_RES;
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_RESOURCE;
sess_set_term_flags(s);
}
/* 1b: check for low-level errors reported at the stream connector.
* First we check if it's a retryable error (in which case we don't
* want to tell the buffer). Otherwise we report the error one level
* upper by setting flags into the buffers. Note that the side towards
* the client cannot have connect (hence retryable) errors. Also, the
* connection setup code must be able to deal with any type of abort.
*/
srv = objt_server(s->target);
if (unlikely(sc_ep_test(scf, SE_FL_ERROR))) {
if (sc_state_in(scf->state, SC_SB_EST|SC_SB_DIS)) {
sc_shutr(scf);
sc_shutw(scf);
//sc_report_error(scf); TODO: Be sure it is useless
if (!(req->analysers) && !(res->analysers)) {
_HA_ATOMIC_INC(&s->be->be_counters.cli_aborts);
_HA_ATOMIC_INC(&sess->fe->fe_counters.cli_aborts);
if (sess->listener && sess->listener->counters)
_HA_ATOMIC_INC(&sess->listener->counters->cli_aborts);
if (srv)
_HA_ATOMIC_INC(&srv->counters.cli_aborts);
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_CLICL;
if (!(s->flags & SF_FINST_MASK))
s->flags |= SF_FINST_D;
}
}
}
if (unlikely(sc_ep_test(scb, SE_FL_ERROR))) {
if (sc_state_in(scb->state, SC_SB_EST|SC_SB_DIS)) {
sc_shutr(scb);
sc_shutw(scb);
//sc_report_error(scb); TODO: Be sure it is useless
_HA_ATOMIC_INC(&s->be->be_counters.failed_resp);
if (srv)
_HA_ATOMIC_INC(&srv->counters.failed_resp);
if (!(req->analysers) && !(res->analysers)) {
_HA_ATOMIC_INC(&s->be->be_counters.srv_aborts);
_HA_ATOMIC_INC(&sess->fe->fe_counters.srv_aborts);
if (sess->listener && sess->listener->counters)
_HA_ATOMIC_INC(&sess->listener->counters->srv_aborts);
if (srv)
_HA_ATOMIC_INC(&srv->counters.srv_aborts);
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_SRVCL;
if (!(s->flags & SF_FINST_MASK))
s->flags |= SF_FINST_D;
}
}
/* note: maybe we should process connection errors here ? */
}
if (sc_state_in(scb->state, SC_SB_CON|SC_SB_RDY)) {
/* we were trying to establish a connection on the server side,
* maybe it succeeded, maybe it failed, maybe we timed out, ...
*/
if (scb->state == SC_ST_RDY)
back_handle_st_rdy(s);
else if (s->scb->state == SC_ST_CON)
back_handle_st_con(s);
if (scb->state == SC_ST_CER)
back_handle_st_cer(s);
else if (scb->state == SC_ST_EST)
back_establish(s);
/* state is now one of SC_ST_CON (still in progress), SC_ST_EST
* (established), SC_ST_DIS (abort), SC_ST_CLO (last error),
* SC_ST_ASS/SC_ST_TAR/SC_ST_REQ for retryable errors.
*/
}
rq_prod_last = scf->state;
rq_cons_last = scb->state;
rp_cons_last = scf->state;
rp_prod_last = scb->state;
/* Check for connection closure */
DBG_TRACE_POINT(STRM_EV_STRM_PROC, s);
/* nothing special to be done on client side */
if (unlikely(scf->state == SC_ST_DIS)) {
scf->state = SC_ST_CLO;
/* This is needed only when debugging is enabled, to indicate
* client-side close.
*/
if (unlikely((global.mode & MODE_DEBUG) &&
(!(global.mode & MODE_QUIET) ||
(global.mode & MODE_VERBOSE)))) {
chunk_printf(&trash, "%08x:%s.clicls[%04x:%04x]\n",
s->uniq_id, s->be->id,
(unsigned short)conn_fd(sc_conn(scf)),
(unsigned short)conn_fd(sc_conn(scb)));
DISGUISE(write(1, trash.area, trash.data));
}
}
/* When a server-side connection is released, we have to count it and
* check for pending connections on this server.
*/
if (unlikely(scb->state == SC_ST_DIS)) {
scb->state = SC_ST_CLO;
srv = objt_server(s->target);
if (srv) {
if (s->flags & SF_CURR_SESS) {
s->flags &= ~SF_CURR_SESS;
_HA_ATOMIC_DEC(&srv->cur_sess);
}
sess_change_server(s, NULL);
if (may_dequeue_tasks(srv, s->be))
process_srv_queue(srv);
}
/* This is needed only when debugging is enabled, to indicate
* server-side close.
*/
if (unlikely((global.mode & MODE_DEBUG) &&
(!(global.mode & MODE_QUIET) ||
(global.mode & MODE_VERBOSE)))) {
if (s->prev_conn_state == SC_ST_EST) {
chunk_printf(&trash, "%08x:%s.srvcls[%04x:%04x]\n",
s->uniq_id, s->be->id,
(unsigned short)conn_fd(sc_conn(scf)),
(unsigned short)conn_fd(sc_conn(scb)));
DISGUISE(write(1, trash.area, trash.data));
}
}
}
/*
* Note: of the transient states (REQ, CER, DIS), only REQ may remain
* at this point.
*/
resync_request:
/* Analyse request */
if (((req->flags & ~rqf_last) & CF_MASK_ANALYSER) ||
((scf->flags ^ scf_flags) & (SC_FL_SHUTR|SC_FL_ABRT_WANTED)) ||
((scb->flags ^ scb_flags) & (SC_FL_SHUTW|SC_FL_SHUTW_NOW)) ||
(req->analysers && (chn_cons(req)->flags & SC_FL_SHUTW)) ||
scf->state != rq_prod_last ||
scb->state != rq_cons_last ||
s->pending_events & TASK_WOKEN_MSG) {
unsigned int scf_flags_ana = scf->flags;
unsigned int scb_flags_ana = scb->flags;
if (sc_state_in(scf->state, SC_SB_EST|SC_SB_DIS|SC_SB_CLO)) {
int max_loops = global.tune.maxpollevents;
unsigned int ana_list;
unsigned int ana_back;
/* it's up to the analysers to stop new connections,
* disable reading or closing. Note: if an analyser
* disables any of these bits, it is responsible for
* enabling them again when it disables itself, so
* that other analysers are called in similar conditions.
*/
channel_auto_read(req);
channel_auto_connect(req);
channel_auto_close(req);
/* We will call all analysers for which a bit is set in
* req->analysers, following the bit order from LSB
* to MSB. The analysers must remove themselves from
* the list when not needed. Any analyser may return 0
* to break out of the loop, either because of missing
* data to take a decision, or because it decides to
* kill the stream. We loop at least once through each
* analyser, and we may loop again if other analysers
* are added in the middle.
*
* We build a list of analysers to run. We evaluate all
* of these analysers in the order of the lower bit to
* the higher bit. This ordering is very important.
* An analyser will often add/remove other analysers,
* including itself. Any changes to itself have no effect
* on the loop. If it removes any other analysers, we
* want those analysers not to be called anymore during
* this loop. If it adds an analyser that is located
* after itself, we want it to be scheduled for being
* processed during the loop. If it adds an analyser
* which is located before it, we want it to switch to
* it immediately, even if it has already been called
* once but removed since.
*
* In order to achieve this, we compare the analyser
* list after the call with a copy of it before the
* call. The work list is fed with analyser bits that
* appeared during the call. Then we compare previous
* work list with the new one, and check the bits that
* appeared. If the lowest of these bits is lower than
* the current bit, it means we have enabled a previous
* analyser and must immediately loop again.
*/
ana_list = ana_back = req->analysers;
while (ana_list && max_loops--) {
/* Warning! ensure that analysers are always placed in ascending order! */
ANALYZE (s, req, flt_start_analyze, ana_list, ana_back, AN_REQ_FLT_START_FE);
FLT_ANALYZE(s, req, tcp_inspect_request, ana_list, ana_back, AN_REQ_INSPECT_FE);
FLT_ANALYZE(s, req, http_wait_for_request, ana_list, ana_back, AN_REQ_WAIT_HTTP);
FLT_ANALYZE(s, req, http_wait_for_request_body, ana_list, ana_back, AN_REQ_HTTP_BODY);
FLT_ANALYZE(s, req, http_process_req_common, ana_list, ana_back, AN_REQ_HTTP_PROCESS_FE, sess->fe);
FLT_ANALYZE(s, req, process_switching_rules, ana_list, ana_back, AN_REQ_SWITCHING_RULES);
ANALYZE (s, req, flt_start_analyze, ana_list, ana_back, AN_REQ_FLT_START_BE);
FLT_ANALYZE(s, req, tcp_inspect_request, ana_list, ana_back, AN_REQ_INSPECT_BE);
FLT_ANALYZE(s, req, http_process_req_common, ana_list, ana_back, AN_REQ_HTTP_PROCESS_BE, s->be);
FLT_ANALYZE(s, req, http_process_tarpit, ana_list, ana_back, AN_REQ_HTTP_TARPIT);
FLT_ANALYZE(s, req, process_server_rules, ana_list, ana_back, AN_REQ_SRV_RULES);
FLT_ANALYZE(s, req, http_process_request, ana_list, ana_back, AN_REQ_HTTP_INNER);
FLT_ANALYZE(s, req, tcp_persist_rdp_cookie, ana_list, ana_back, AN_REQ_PRST_RDP_COOKIE);
FLT_ANALYZE(s, req, process_sticking_rules, ana_list, ana_back, AN_REQ_STICKING_RULES);
ANALYZE (s, req, flt_analyze_http_headers, ana_list, ana_back, AN_REQ_FLT_HTTP_HDRS);
ANALYZE (s, req, http_request_forward_body, ana_list, ana_back, AN_REQ_HTTP_XFER_BODY);
ANALYZE (s, req, pcli_wait_for_request, ana_list, ana_back, AN_REQ_WAIT_CLI);
ANALYZE (s, req, flt_xfer_data, ana_list, ana_back, AN_REQ_FLT_XFER_DATA);
ANALYZE (s, req, flt_end_analyze, ana_list, ana_back, AN_REQ_FLT_END);
break;
}
}
rq_prod_last = scf->state;
rq_cons_last = scb->state;
req->flags &= ~CF_WAKE_ONCE;
rqf_last = req->flags;
scf_flags = (scf_flags & ~(SC_FL_SHUTR|SC_FL_ABRT_WANTED)) | (scf->flags & (SC_FL_SHUTR|SC_FL_ABRT_WANTED));
scb_flags = (scb_flags & ~(SC_FL_SHUTW|SC_FL_SHUTW_NOW)) | (scb->flags & (SC_FL_SHUTW|SC_FL_SHUTW_NOW));
if (((scf->flags ^ scf_flags_ana) & SC_FL_SHUTR) || ((scb->flags ^ scb_flags_ana) & SC_FL_SHUTW))
goto resync_request;
}
/* we'll monitor the request analysers while parsing the response,
* because some response analysers may indirectly enable new request
* analysers (eg: HTTP keep-alive).
*/
req_ana_back = req->analysers;
resync_response:
/* Analyse response */
if (((res->flags & ~rpf_last) & CF_MASK_ANALYSER) ||
((scb->flags ^ scb_flags) & (SC_FL_SHUTR|SC_FL_ABRT_WANTED)) ||
((scf->flags ^ scf_flags) & (SC_FL_SHUTW|SC_FL_SHUTW_NOW)) ||
(res->analysers && (chn_cons(res)->flags & SC_FL_SHUTW)) ||
scf->state != rp_cons_last ||
scb->state != rp_prod_last ||
s->pending_events & TASK_WOKEN_MSG) {
unsigned int scb_flags_ana = scb->flags;
unsigned int scf_flags_ana = scf->flags;
if (sc_state_in(scb->state, SC_SB_EST|SC_SB_DIS|SC_SB_CLO)) {
int max_loops = global.tune.maxpollevents;
unsigned int ana_list;
unsigned int ana_back;
/* it's up to the analysers to stop disable reading or
* closing. Note: if an analyser disables any of these
* bits, it is responsible for enabling them again when
* it disables itself, so that other analysers are called
* in similar conditions.
*/
channel_auto_read(res);
channel_auto_close(res);
/* We will call all analysers for which a bit is set in
* res->analysers, following the bit order from LSB
* to MSB. The analysers must remove themselves from
* the list when not needed. Any analyser may return 0
* to break out of the loop, either because of missing
* data to take a decision, or because it decides to
* kill the stream. We loop at least once through each
* analyser, and we may loop again if other analysers
* are added in the middle.
*/
ana_list = ana_back = res->analysers;
while (ana_list && max_loops--) {
/* Warning! ensure that analysers are always placed in ascending order! */
ANALYZE (s, res, flt_start_analyze, ana_list, ana_back, AN_RES_FLT_START_FE);
ANALYZE (s, res, flt_start_analyze, ana_list, ana_back, AN_RES_FLT_START_BE);
FLT_ANALYZE(s, res, tcp_inspect_response, ana_list, ana_back, AN_RES_INSPECT);
FLT_ANALYZE(s, res, http_wait_for_response, ana_list, ana_back, AN_RES_WAIT_HTTP);
FLT_ANALYZE(s, res, process_store_rules, ana_list, ana_back, AN_RES_STORE_RULES);
FLT_ANALYZE(s, res, http_process_res_common, ana_list, ana_back, AN_RES_HTTP_PROCESS_BE, s->be);
ANALYZE (s, res, flt_analyze_http_headers, ana_list, ana_back, AN_RES_FLT_HTTP_HDRS);
ANALYZE (s, res, http_response_forward_body, ana_list, ana_back, AN_RES_HTTP_XFER_BODY);
ANALYZE (s, res, pcli_wait_for_response, ana_list, ana_back, AN_RES_WAIT_CLI);
ANALYZE (s, res, flt_xfer_data, ana_list, ana_back, AN_RES_FLT_XFER_DATA);
ANALYZE (s, res, flt_end_analyze, ana_list, ana_back, AN_RES_FLT_END);
break;
}
}
rp_cons_last = scf->state;
rp_prod_last = scb->state;
res->flags &= ~CF_WAKE_ONCE;
rpf_last = res->flags;
scb_flags = (scb_flags & ~(SC_FL_SHUTR|SC_FL_ABRT_WANTED)) | (scb->flags & (SC_FL_SHUTR|SC_FL_ABRT_WANTED));
scf_flags = (scf_flags & ~(SC_FL_SHUTW|SC_FL_SHUTW_NOW)) | (scf->flags & (SC_FL_SHUTW|SC_FL_SHUTW_NOW));
if (((scb->flags ^ scb_flags_ana) & SC_FL_SHUTR) || ((scf->flags ^ scf_flags_ana) & SC_FL_SHUTW))
goto resync_response;
}
/* maybe someone has added some request analysers, so we must check and loop */
if (req->analysers & ~req_ana_back)
goto resync_request;
if ((req->flags & ~rqf_last) & CF_MASK_ANALYSER)
goto resync_request;
/* FIXME: here we should call protocol handlers which rely on
* both buffers.
*/
/*
* Now we propagate unhandled errors to the stream. Normally
* we're just in a data phase here since it means we have not
* seen any analyser who could set an error status.
*/
srv = objt_server(s->target);
if (unlikely(!(s->flags & SF_ERR_MASK))) {
if (sc_ep_test(s->scf, SE_FL_ERROR) || req->flags & (CF_READ_TIMEOUT|CF_WRITE_TIMEOUT)) {
/* Report it if the client got an error or a read timeout expired */
req->analysers &= AN_REQ_FLT_END;
if (sc_ep_test(s->scf, SE_FL_ERROR)) {
_HA_ATOMIC_INC(&s->be->be_counters.cli_aborts);
_HA_ATOMIC_INC(&sess->fe->fe_counters.cli_aborts);
if (sess->listener && sess->listener->counters)
_HA_ATOMIC_INC(&sess->listener->counters->cli_aborts);
if (srv)
_HA_ATOMIC_INC(&srv->counters.cli_aborts);
s->flags |= SF_ERR_CLICL;
}
else if (req->flags & CF_READ_TIMEOUT) {
_HA_ATOMIC_INC(&s->be->be_counters.cli_aborts);
_HA_ATOMIC_INC(&sess->fe->fe_counters.cli_aborts);
if (sess->listener && sess->listener->counters)
_HA_ATOMIC_INC(&sess->listener->counters->cli_aborts);
if (srv)
_HA_ATOMIC_INC(&srv->counters.cli_aborts);
s->flags |= SF_ERR_CLITO;
}
else {
_HA_ATOMIC_INC(&s->be->be_counters.srv_aborts);
_HA_ATOMIC_INC(&sess->fe->fe_counters.srv_aborts);
if (sess->listener && sess->listener->counters)
_HA_ATOMIC_INC(&sess->listener->counters->srv_aborts);
if (srv)
_HA_ATOMIC_INC(&srv->counters.srv_aborts);
s->flags |= SF_ERR_SRVTO;
}
sess_set_term_flags(s);
/* Abort the request if a client error occurred while
* the backend stream connector is in the SC_ST_INI
* state. It is switched into the SC_ST_CLO state and
* the request channel is erased. */
if (scb->state == SC_ST_INI) {
s->scb->state = SC_ST_CLO;
channel_abort(req);
if (IS_HTX_STRM(s))
channel_htx_erase(req, htxbuf(&req->buf));
else
channel_erase(req);
}
}
else if (sc_ep_test(s->scb, SE_FL_ERROR) || res->flags & (CF_READ_TIMEOUT|CF_WRITE_TIMEOUT)) {
/* Report it if the server got an error or a read timeout expired */
res->analysers &= AN_RES_FLT_END;
if (sc_ep_test(s->scb, SE_FL_ERROR)) {
_HA_ATOMIC_INC(&s->be->be_counters.srv_aborts);
_HA_ATOMIC_INC(&sess->fe->fe_counters.srv_aborts);
if (sess->listener && sess->listener->counters)
_HA_ATOMIC_INC(&sess->listener->counters->srv_aborts);
if (srv)
_HA_ATOMIC_INC(&srv->counters.srv_aborts);
s->flags |= SF_ERR_SRVCL;
}
else if (res->flags & CF_READ_TIMEOUT) {
_HA_ATOMIC_INC(&s->be->be_counters.srv_aborts);
_HA_ATOMIC_INC(&sess->fe->fe_counters.srv_aborts);
if (sess->listener && sess->listener->counters)
_HA_ATOMIC_INC(&sess->listener->counters->srv_aborts);
if (srv)
_HA_ATOMIC_INC(&srv->counters.srv_aborts);
s->flags |= SF_ERR_SRVTO;
}
else {
_HA_ATOMIC_INC(&s->be->be_counters.cli_aborts);
_HA_ATOMIC_INC(&sess->fe->fe_counters.cli_aborts);
if (sess->listener && sess->listener->counters)
_HA_ATOMIC_INC(&sess->listener->counters->cli_aborts);
if (srv)
_HA_ATOMIC_INC(&srv->counters.cli_aborts);
s->flags |= SF_ERR_CLITO;
}
sess_set_term_flags(s);
}
}
/*
* Here we take care of forwarding unhandled data. This also includes
* connection establishments and shutdown requests.
*/
/* If no one is interested in analysing data, it's time to forward
* everything. We configure the buffer to forward indefinitely.
* Note that we're checking SC_FL_ABRT_WANTED as an indication of a possible
* recent call to channel_abort().
*/
if (unlikely((!req->analysers || (req->analysers == AN_REQ_FLT_END && !(req->flags & CF_FLT_ANALYZE))) &&
!(scf->flags & SC_FL_ABRT_WANTED) && !(scb->flags & SC_FL_SHUTW) &&
(sc_state_in(scf->state, SC_SB_EST|SC_SB_DIS|SC_SB_CLO)) &&
(req->to_forward != CHN_INFINITE_FORWARD))) {
/* This buffer is freewheeling, there's no analyser
* attached to it. If any data are left in, we'll permit them to
* move.
*/
channel_auto_read(req);
channel_auto_connect(req);
channel_auto_close(req);
if (IS_HTX_STRM(s)) {
struct htx *htx = htxbuf(&req->buf);
/* We'll let data flow between the producer (if still connected)
* to the consumer.
*/
co_set_data(req, htx->data);
if ((global.tune.options & GTUNE_USE_FAST_FWD) &&
!(scf->flags & SC_FL_SHUTR) && !(scb->flags & SC_FL_SHUTW_NOW))
channel_htx_forward_forever(req, htx);
}
else {
/* We'll let data flow between the producer (if still connected)
* to the consumer (which might possibly not be connected yet).
*/
c_adv(req, ci_data(req));
if ((global.tune.options & GTUNE_USE_FAST_FWD) &&
!(scf->flags & SC_FL_SHUTR) && !(scb->flags & SC_FL_SHUTW_NOW))
channel_forward_forever(req);
}
}
/* check if it is wise to enable kernel splicing to forward request data */
if (!(req->flags & CF_KERN_SPLICING) &&
!(scf->flags & SC_FL_SHUTR) &&
req->to_forward &&
(global.tune.options & GTUNE_USE_SPLICE) &&
(sc_conn(scf) && __sc_conn(scf)->xprt && __sc_conn(scf)->xprt->rcv_pipe &&
__sc_conn(scf)->mux && __sc_conn(scf)->mux->rcv_pipe) &&
(sc_conn(scb) && __sc_conn(scb)->xprt && __sc_conn(scb)->xprt->snd_pipe &&
__sc_conn(scb)->mux && __sc_conn(scb)->mux->snd_pipe) &&
(pipes_used < global.maxpipes) &&
(((sess->fe->options2|s->be->options2) & PR_O2_SPLIC_REQ) ||
(((sess->fe->options2|s->be->options2) & PR_O2_SPLIC_AUT) &&
(req->flags & CF_STREAMER_FAST)))) {
req->flags |= CF_KERN_SPLICING;
}
/* reflect what the L7 analysers have seen last */
rqf_last = req->flags;
scf_flags = (scf_flags & ~(SC_FL_SHUTR|SC_FL_ABRT_WANTED)) | (scf->flags & (SC_FL_SHUTR|SC_FL_ABRT_WANTED));
scb_flags = (scb_flags & ~(SC_FL_SHUTW|SC_FL_SHUTW_NOW)) | (scb->flags & (SC_FL_SHUTW|SC_FL_SHUTW_NOW));
/* it's possible that an upper layer has requested a connection setup or abort.
* There are 2 situations where we decide to establish a new connection :
* - there are data scheduled for emission in the buffer
* - the CF_AUTO_CONNECT flag is set (active connection)
*/
if (scb->state == SC_ST_INI) {
if (!(scb->flags & SC_FL_SHUTW)) {
if ((req->flags & CF_AUTO_CONNECT) || !channel_is_empty(req)) {
/* If we have an appctx, there is no connect method, so we
* immediately switch to the connected state, otherwise we
* perform a connection request.
*/
scb->state = SC_ST_REQ; /* new connection requested */
s->conn_retries = 0;
if ((s->be->retry_type &~ PR_RE_CONN_FAILED) &&
(s->be->mode == PR_MODE_HTTP) &&
!(s->txn->flags & TX_D_L7_RETRY))
s->txn->flags |= TX_L7_RETRY;
}
}
else {
s->scb->state = SC_ST_CLO; /* shutw+ini = abort */
channel_shutw_now(req); /* fix buffer flags upon abort */
channel_shutr_now(res);
}
}
/* we may have a pending connection request, or a connection waiting
* for completion.
*/
if (sc_state_in(scb->state, SC_SB_REQ|SC_SB_QUE|SC_SB_TAR|SC_SB_ASS)) {
/* prune the request variables and swap to the response variables. */
if (s->vars_reqres.scope != SCOPE_RES) {
if (!LIST_ISEMPTY(&s->vars_reqres.head))
vars_prune(&s->vars_reqres, s->sess, s);
vars_init_head(&s->vars_reqres, SCOPE_RES);
}
do {
/* nb: step 1 might switch from QUE to ASS, but we first want
* to give a chance to step 2 to perform a redirect if needed.
*/
if (scb->state != SC_ST_REQ)
back_try_conn_req(s);
if (scb->state == SC_ST_REQ)
back_handle_st_req(s);
/* get a chance to complete an immediate connection setup */
if (scb->state == SC_ST_RDY)
goto resync_stconns;
/* applets directly go to the ESTABLISHED state. Similarly,
* servers experience the same fate when their connection
* is reused.
*/
if (unlikely(scb->state == SC_ST_EST))
back_establish(s);
srv = objt_server(s->target);
if (scb->state == SC_ST_ASS && srv && srv->rdr_len && (s->flags & SF_REDIRECTABLE))
http_perform_server_redirect(s, scb);
} while (scb->state == SC_ST_ASS);
}
/* Let's see if we can send the pending request now */
sc_conn_sync_send(scb);
/*
* Now forward all shutdown requests between both sides of the request buffer
*/
/* first, let's check if the request buffer needs to shutdown(write), which may
* happen either because the input is closed or because we want to force a close
* once the server has begun to respond. If a half-closed timeout is set, we adjust
* the other side's timeout as well. However this doesn't have effect during the
* connection setup unless the backend has abortonclose set.
*/
if (unlikely((req->flags & CF_AUTO_CLOSE) && (scf->flags & SC_FL_SHUTR) &&
!(scb->flags & (SC_FL_SHUTW|SC_FL_SHUTW_NOW)) &&
(scb->state != SC_ST_CON || (s->be->options & PR_O_ABRT_CLOSE)))) {
channel_shutw_now(req);
}
/* shutdown(write) pending */
if (unlikely((scb->flags & (SC_FL_SHUTW|SC_FL_SHUTW_NOW)) == SC_FL_SHUTW_NOW &&
channel_is_empty(req))) {
if (sc_ep_test(s->scf, SE_FL_ERROR))
scb->flags |= SC_FL_NOLINGER;
sc_shutw(scb);
}
/* shutdown(write) done on server side, we must stop the client too */
if (unlikely((scb->flags & SC_FL_SHUTW) && !(scf->flags & (SC_FL_SHUTR|SC_FL_ABRT_WANTED))) &&
!req->analysers)
channel_shutr_now(req);
/* shutdown(read) pending */
if (unlikely((scf->flags & (SC_FL_SHUTR|SC_FL_ABRT_WANTED)) == SC_FL_ABRT_WANTED)) {
if (scf->flags & SC_FL_NOHALF)
scf->flags |= SC_FL_NOLINGER;
sc_shutr(scf);
}
/* Benchmarks have shown that it's optimal to do a full resync now */
if (scf->state == SC_ST_DIS ||
sc_state_in(scb->state, SC_SB_RDY|SC_SB_DIS) ||
(sc_ep_test(scf, SE_FL_ERROR) && scf->state != SC_ST_CLO) ||
(sc_ep_test(scb, SE_FL_ERROR) && scb->state != SC_ST_CLO))
goto resync_stconns;
/* otherwise we want to check if we need to resync the req buffer or not */
if (((scf->flags ^ scf_flags) & SC_FL_SHUTR) || ((scb->flags ^ scb_flags) & SC_FL_SHUTW))
goto resync_request;
/* perform output updates to the response buffer */
/* If no one is interested in analysing data, it's time to forward
* everything. We configure the buffer to forward indefinitely.
* Note that we're checking SC_FL_ABRT_WANTED as an indication of a possible
* recent call to channel_abort().
*/
if (unlikely((!res->analysers || (res->analysers == AN_RES_FLT_END && !(res->flags & CF_FLT_ANALYZE))) &&
!(scf->flags & SC_FL_ABRT_WANTED) && !(scb->flags & SC_FL_SHUTW_NOW) &&
sc_state_in(scb->state, SC_SB_EST|SC_SB_DIS|SC_SB_CLO) &&
(res->to_forward != CHN_INFINITE_FORWARD))) {
/* This buffer is freewheeling, there's no analyser
* attached to it. If any data are left in, we'll permit them to
* move.
*/
channel_auto_read(res);
channel_auto_close(res);
if (IS_HTX_STRM(s)) {
struct htx *htx = htxbuf(&res->buf);
/* We'll let data flow between the producer (if still connected)
* to the consumer.
*/
co_set_data(res, htx->data);
if ((global.tune.options & GTUNE_USE_FAST_FWD) &&
!(scf->flags & SC_FL_SHUTR) && !(scb->flags & SC_FL_SHUTW_NOW))
channel_htx_forward_forever(res, htx);
}
else {
/* We'll let data flow between the producer (if still connected)
* to the consumer.
*/
c_adv(res, ci_data(res));
if ((global.tune.options & GTUNE_USE_FAST_FWD) &&
!(scf->flags & SC_FL_SHUTR) && !(scb->flags & SC_FL_SHUTW_NOW))
channel_forward_forever(res);
}
/* if we have no analyser anymore in any direction and have a
* tunnel timeout set, use it now. Note that we must respect
* the half-closed timeouts as well.
*/
if (!req->analysers && s->tunnel_timeout) {
scf->ioto = scb->ioto = s->tunnel_timeout;
if ((scf->flags & (SC_FL_SHUTR|SC_FL_SHUTW)) && tick_isset(sess->fe->timeout.clientfin))
scf->ioto = sess->fe->timeout.clientfin;
if ((scb->flags & (SC_FL_SHUTR|SC_FL_SHUTW)) && tick_isset(s->be->timeout.serverfin))
scb->ioto = s->be->timeout.serverfin;
}
}
/* check if it is wise to enable kernel splicing to forward response data */
if (!(res->flags & CF_KERN_SPLICING) &&
!(scb->flags & SC_FL_SHUTR) &&
res->to_forward &&
(global.tune.options & GTUNE_USE_SPLICE) &&
(sc_conn(scf) && __sc_conn(scf)->xprt && __sc_conn(scf)->xprt->snd_pipe &&
__sc_conn(scf)->mux && __sc_conn(scf)->mux->snd_pipe) &&
(sc_conn(scb) && __sc_conn(scb)->xprt && __sc_conn(scb)->xprt->rcv_pipe &&
__sc_conn(scb)->mux && __sc_conn(scb)->mux->rcv_pipe) &&
(pipes_used < global.maxpipes) &&
(((sess->fe->options2|s->be->options2) & PR_O2_SPLIC_RTR) ||
(((sess->fe->options2|s->be->options2) & PR_O2_SPLIC_AUT) &&
(res->flags & CF_STREAMER_FAST)))) {
res->flags |= CF_KERN_SPLICING;
}
/* reflect what the L7 analysers have seen last */
rpf_last = res->flags;
scb_flags = (scb_flags & ~(SC_FL_SHUTR|SC_FL_ABRT_WANTED)) | (scb->flags & (SC_FL_SHUTR|SC_FL_ABRT_WANTED));
scf_flags = (scf_flags & ~(SC_FL_SHUTW|SC_FL_SHUTW_NOW)) | (scf->flags & (SC_FL_SHUTW|SC_FL_SHUTW_NOW));
/* Let's see if we can send the pending response now */
sc_conn_sync_send(scf);
/*
* Now forward all shutdown requests between both sides of the buffer
*/
/*
* FIXME: this is probably where we should produce error responses.
*/
/* first, let's check if the response buffer needs to shutdown(write) */
if (unlikely((res->flags & CF_AUTO_CLOSE) && (scb->flags & SC_FL_SHUTR) &&
!(scf->flags & (SC_FL_SHUTW|SC_FL_SHUTW_NOW)))) {
channel_shutw_now(res);
}
/* shutdown(write) pending */
if (unlikely((scf->flags & (SC_FL_SHUTW|SC_FL_SHUTW_NOW)) == SC_FL_SHUTW_NOW &&
channel_is_empty(res))) {
sc_shutw(scf);
}
/* shutdown(write) done on the client side, we must stop the server too */
if (unlikely((scf->flags & SC_FL_SHUTW) && !(scb->flags & (SC_FL_SHUTR|SC_FL_ABRT_WANTED))) &&
!res->analysers)
channel_shutr_now(res);
/* shutdown(read) pending */
if (unlikely((scb->flags & (SC_FL_SHUTR|SC_FL_ABRT_WANTED)) == SC_FL_ABRT_WANTED)) {
if (scb->flags & SC_FL_NOHALF)
scb->flags |= SC_FL_NOLINGER;
sc_shutr(scb);
}
if (scf->state == SC_ST_DIS ||
sc_state_in(scb->state, SC_SB_RDY|SC_SB_DIS) ||
(sc_ep_test(scf, SE_FL_ERROR) && scf->state != SC_ST_CLO) ||
(sc_ep_test(scb, SE_FL_ERROR) && scb->state != SC_ST_CLO))
goto resync_stconns;
if ((req->flags & ~rqf_last) & CF_MASK_ANALYSER)
goto resync_request;
if (((scb->flags ^ scb_flags) & (SC_FL_SHUTR|SC_FL_ABRT_WANTED)) ||
((scf->flags ^ scf_flags) & (SC_FL_SHUTW|SC_FL_SHUTW_NOW)))
goto resync_response;
if (((req->flags ^ rqf_last) | (res->flags ^ rpf_last)) & CF_MASK_ANALYSER)
goto resync_request;
/* we're interested in getting wakeups again */
scf->flags &= ~SC_FL_DONT_WAKE;
scb->flags &= ~SC_FL_DONT_WAKE;
if (likely((scf->state != SC_ST_CLO) || !sc_state_in(scb->state, SC_SB_INI|SC_SB_CLO) ||
(req->analysers & AN_REQ_FLT_END) || (res->analysers & AN_RES_FLT_END))) {
if ((sess->fe->options & PR_O_CONTSTATS) && (s->flags & SF_BE_ASSIGNED) && !(s->flags & SF_IGNORE))
stream_process_counters(s);
stream_update_both_sc(s);
/* Reset pending events now */
s->pending_events = 0;
update_exp_and_leave:
/* Note: please ensure that if you branch here you disable SC_FL_DONT_WAKE */
t->expire = (tick_is_expired(t->expire, now_ms) ? 0 : t->expire);
if (likely(sc_rcv_may_expire(scf)))
t->expire = tick_first(t->expire, sc_ep_rcv_ex(scf));
if (likely(sc_snd_may_expire(scf)))
t->expire = tick_first(t->expire, sc_ep_snd_ex(scf));
if (likely(sc_rcv_may_expire(scb)))
t->expire = tick_first(t->expire, sc_ep_rcv_ex(scb));
if (likely(sc_snd_may_expire(scb)))
t->expire = tick_first(t->expire, sc_ep_snd_ex(scb));
if (!req->analysers)
req->analyse_exp = TICK_ETERNITY;
if ((sess->fe->options & PR_O_CONTSTATS) && (s->flags & SF_BE_ASSIGNED) &&
(!tick_isset(req->analyse_exp) || tick_is_expired(req->analyse_exp, now_ms)))
req->analyse_exp = tick_add(now_ms, 5000);
t->expire = tick_first(t->expire, req->analyse_exp);
t->expire = tick_first(t->expire, res->analyse_exp);
t->expire = tick_first(t->expire, s->conn_exp);
if (unlikely(tick_is_expired(t->expire, now_ms))) {
/* Some events prevented the timeouts to be handled but nothing evolved.
So do it now and resyunc the stconns
*/
stream_handle_timeouts(s);
goto resync_stconns;
}
s->pending_events &= ~(TASK_WOKEN_TIMER | TASK_WOKEN_RES);
stream_release_buffers(s);
DBG_TRACE_DEVEL("queuing", STRM_EV_STRM_PROC, s);
return t; /* nothing more to do */
}
DBG_TRACE_DEVEL("releasing", STRM_EV_STRM_PROC, s);
if (s->flags & SF_BE_ASSIGNED)
_HA_ATOMIC_DEC(&s->be->beconn);
if (unlikely((global.mode & MODE_DEBUG) &&
(!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE)))) {
chunk_printf(&trash, "%08x:%s.closed[%04x:%04x]\n",
s->uniq_id, s->be->id,
(unsigned short)conn_fd(sc_conn(scf)),
(unsigned short)conn_fd(sc_conn(scb)));
DISGUISE(write(1, trash.area, trash.data));
}
if (!(s->flags & SF_IGNORE)) {
s->logs.t_close = tv_ms_elapsed(&s->logs.tv_accept, &now);
stream_process_counters(s);
if (s->txn && s->txn->status) {
int n;
n = s->txn->status / 100;
if (n < 1 || n > 5)
n = 0;
if (sess->fe->mode == PR_MODE_HTTP) {
_HA_ATOMIC_INC(&sess->fe->fe_counters.p.http.rsp[n]);
}
if ((s->flags & SF_BE_ASSIGNED) &&
(s->be->mode == PR_MODE_HTTP)) {
_HA_ATOMIC_INC(&s->be->be_counters.p.http.rsp[n]);
_HA_ATOMIC_INC(&s->be->be_counters.p.http.cum_req);
}
}
/* let's do a final log if we need it */
if (!LIST_ISEMPTY(&sess->fe->logformat) && s->logs.logwait &&
!(s->flags & SF_MONITOR) &&
(!(sess->fe->options & PR_O_NULLNOLOG) || req->total)) {
/* we may need to know the position in the queue */
pendconn_free(s);
stream_cond_update_cpu_usage(s);
s->do_log(s);
}
/* update time stats for this stream */
stream_update_time_stats(s);
}
/* the task MUST not be in the run queue anymore */
stream_free(s);
task_destroy(t);
return NULL;
}
/* Update the stream's backend and server time stats */
void stream_update_time_stats(struct stream *s)
{
int t_request;
int t_queue;
int t_connect;
int t_data;
int t_close;
struct server *srv;
unsigned int samples_window;
t_request = 0;
t_queue = s->logs.t_queue;
t_connect = s->logs.t_connect;
t_close = s->logs.t_close;
t_data = s->logs.t_data;
if (s->be->mode != PR_MODE_HTTP)
t_data = t_connect;
if (t_connect < 0 || t_data < 0)
return;
if (tv_isge(&s->logs.tv_request, &s->logs.tv_accept))
t_request = tv_ms_elapsed(&s->logs.tv_accept, &s->logs.tv_request);
t_data -= t_connect;
t_connect -= t_queue;
t_queue -= t_request;
srv = objt_server(s->target);
if (srv) {
samples_window = (((s->be->mode == PR_MODE_HTTP) ?
srv->counters.p.http.cum_req : srv->counters.cum_lbconn) > TIME_STATS_SAMPLES) ? TIME_STATS_SAMPLES : 0;
swrate_add_dynamic(&srv->counters.q_time, samples_window, t_queue);
swrate_add_dynamic(&srv->counters.c_time, samples_window, t_connect);
swrate_add_dynamic(&srv->counters.d_time, samples_window, t_data);
swrate_add_dynamic(&srv->counters.t_time, samples_window, t_close);
HA_ATOMIC_UPDATE_MAX(&srv->counters.qtime_max, t_queue);
HA_ATOMIC_UPDATE_MAX(&srv->counters.ctime_max, t_connect);
HA_ATOMIC_UPDATE_MAX(&srv->counters.dtime_max, t_data);
HA_ATOMIC_UPDATE_MAX(&srv->counters.ttime_max, t_close);
}
samples_window = (((s->be->mode == PR_MODE_HTTP) ?
s->be->be_counters.p.http.cum_req : s->be->be_counters.cum_lbconn) > TIME_STATS_SAMPLES) ? TIME_STATS_SAMPLES : 0;
swrate_add_dynamic(&s->be->be_counters.q_time, samples_window, t_queue);
swrate_add_dynamic(&s->be->be_counters.c_time, samples_window, t_connect);
swrate_add_dynamic(&s->be->be_counters.d_time, samples_window, t_data);
swrate_add_dynamic(&s->be->be_counters.t_time, samples_window, t_close);
HA_ATOMIC_UPDATE_MAX(&s->be->be_counters.qtime_max, t_queue);
HA_ATOMIC_UPDATE_MAX(&s->be->be_counters.ctime_max, t_connect);
HA_ATOMIC_UPDATE_MAX(&s->be->be_counters.dtime_max, t_data);
HA_ATOMIC_UPDATE_MAX(&s->be->be_counters.ttime_max, t_close);
}
/*
* This function adjusts sess->srv_conn and maintains the previous and new
* server's served stream counts. Setting newsrv to NULL is enough to release
* current connection slot. This function also notifies any LB algo which might
* expect to be informed about any change in the number of active streams on a
* server.
*/
void sess_change_server(struct stream *strm, struct server *newsrv)
{
struct server *oldsrv = strm->srv_conn;
if (oldsrv == newsrv)
return;
if (oldsrv) {
_HA_ATOMIC_DEC(&oldsrv->served);
_HA_ATOMIC_DEC(&oldsrv->proxy->served);
__ha_barrier_atomic_store();
if (oldsrv->proxy->lbprm.server_drop_conn)
oldsrv->proxy->lbprm.server_drop_conn(oldsrv);
stream_del_srv_conn(strm);
}
if (newsrv) {
_HA_ATOMIC_INC(&newsrv->served);
_HA_ATOMIC_INC(&newsrv->proxy->served);
__ha_barrier_atomic_store();
if (newsrv->proxy->lbprm.server_take_conn)
newsrv->proxy->lbprm.server_take_conn(newsrv);
stream_add_srv_conn(strm, newsrv);
}
}
/* Handle server-side errors for default protocols. It is called whenever a a
* connection setup is aborted or a request is aborted in queue. It sets the
* stream termination flags so that the caller does not have to worry about
* them. It's installed as ->srv_error for the server-side stream connector.
*/
void default_srv_error(struct stream *s, struct stconn *sc)
{
int err_type = s->conn_err_type;
int err = 0, fin = 0;
if (err_type & STRM_ET_QUEUE_ABRT) {
err = SF_ERR_CLICL;
fin = SF_FINST_Q;
}
else if (err_type & STRM_ET_CONN_ABRT) {
err = SF_ERR_CLICL;
fin = SF_FINST_C;
}
else if (err_type & STRM_ET_QUEUE_TO) {
err = SF_ERR_SRVTO;
fin = SF_FINST_Q;
}
else if (err_type & STRM_ET_QUEUE_ERR) {
err = SF_ERR_SRVCL;
fin = SF_FINST_Q;
}
else if (err_type & STRM_ET_CONN_TO) {
err = SF_ERR_SRVTO;
fin = SF_FINST_C;
}
else if (err_type & STRM_ET_CONN_ERR) {
err = SF_ERR_SRVCL;
fin = SF_FINST_C;
}
else if (err_type & STRM_ET_CONN_RES) {
err = SF_ERR_RESOURCE;
fin = SF_FINST_C;
}
else /* STRM_ET_CONN_OTHER and others */ {
err = SF_ERR_INTERNAL;
fin = SF_FINST_C;
}
if (!(s->flags & SF_ERR_MASK))
s->flags |= err;
if (!(s->flags & SF_FINST_MASK))
s->flags |= fin;
}
/* kill a stream and set the termination flags to <why> (one of SF_ERR_*) */
void stream_shutdown(struct stream *stream, int why)
{
if (stream->scb->flags & (SC_FL_SHUTW|SC_FL_SHUTW_NOW))
return;
channel_shutw_now(&stream->req);
channel_shutr_now(&stream->res);
stream->task->nice = 1024;
if (!(stream->flags & SF_ERR_MASK))
stream->flags |= why;
task_wakeup(stream->task, TASK_WOKEN_OTHER);
}
/* Appends a dump of the state of stream <s> into buffer <buf> which must have
* preliminary be prepared by its caller, with each line prepended by prefix
* <pfx>, and each line terminated by character <eol>.
*/
void stream_dump(struct buffer *buf, const struct stream *s, const char *pfx, char eol)
{
const struct stconn *scf, *scb;
const struct connection *cof, *cob;
const struct appctx *acf, *acb;
const struct server *srv;
const char *src = "unknown";
const char *dst = "unknown";
char pn[INET6_ADDRSTRLEN];
const struct channel *req, *res;
if (!s) {
chunk_appendf(buf, "%sstrm=%p%c", pfx, s, eol);
return;
}
if (s->obj_type != OBJ_TYPE_STREAM) {
chunk_appendf(buf, "%sstrm=%p [invalid type=%d(%s)]%c",
pfx, s, s->obj_type, obj_type_name(&s->obj_type), eol);
return;
}
req = &s->req;
res = &s->res;
scf = s->scf;
cof = sc_conn(scf);
acf = sc_appctx(scf);
if (cof && cof->src && addr_to_str(cof->src, pn, sizeof(pn)) >= 0)
src = pn;
else if (acf)
src = acf->applet->name;
scb = s->scb;
cob = sc_conn(scb);
acb = sc_appctx(scb);
srv = objt_server(s->target);
if (srv)
dst = srv->id;
else if (acb)
dst = acb->applet->name;
chunk_appendf(buf,
"%sstrm=%p,%x src=%s fe=%s be=%s dst=%s%c"
"%stxn=%p,%x txn.req=%s,%x txn.rsp=%s,%x%c"
"%srqf=%x rqa=%x rpf=%x rpa=%x%c"
"%sscf=%p,%s,%x scb=%p,%s,%x%c"
"%saf=%p,%u sab=%p,%u%c"
"%scof=%p,%x:%s(%p)/%s(%p)/%s(%d)%c"
"%scob=%p,%x:%s(%p)/%s(%p)/%s(%d)%c"
"",
pfx, s, s->flags, src, s->sess->fe->id, s->be->id, dst, eol,
pfx, s->txn, (s->txn ? s->txn->flags : 0),
(s->txn ? h1_msg_state_str(s->txn->req.msg_state): "-"), (s->txn ? s->txn->req.flags : 0),
(s->txn ? h1_msg_state_str(s->txn->rsp.msg_state): "-"), (s->txn ? s->txn->rsp.flags : 0), eol,
pfx, req->flags, req->analysers, res->flags, res->analysers, eol,
pfx, scf, sc_state_str(scf->state), scf->flags, scb, sc_state_str(scb->state), scb->flags, eol,
pfx, acf, acf ? acf->st0 : 0, acb, acb ? acb->st0 : 0, eol,
pfx, cof, cof ? cof->flags : 0, conn_get_mux_name(cof), cof?cof->ctx:0, conn_get_xprt_name(cof),
cof ? cof->xprt_ctx : 0, conn_get_ctrl_name(cof), conn_fd(cof), eol,
pfx, cob, cob ? cob->flags : 0, conn_get_mux_name(cob), cob?cob->ctx:0, conn_get_xprt_name(cob),
cob ? cob->xprt_ctx : 0, conn_get_ctrl_name(cob), conn_fd(cob), eol);
}
/* dumps an error message for type <type> at ptr <ptr> related to stream <s>,
* having reached loop rate <rate>, then aborts hoping to retrieve a core.
*/
void stream_dump_and_crash(enum obj_type *obj, int rate)
{
const struct stream *s;
char *msg = NULL;
const void *ptr;
ptr = s = objt_stream(obj);
if (!s) {
const struct appctx *appctx = objt_appctx(obj);
if (!appctx)
return;
ptr = appctx;
s = appctx_strm(appctx);
if (!s)
return;
}
chunk_reset(&trash);
stream_dump(&trash, s, "", ' ');
chunk_appendf(&trash, "filters={");
if (HAS_FILTERS(s)) {
struct filter *filter;
list_for_each_entry(filter, &s->strm_flt.filters, list) {
if (filter->list.p != &s->strm_flt.filters)
chunk_appendf(&trash, ", ");
chunk_appendf(&trash, "%p=\"%s\"", filter, FLT_ID(filter));
}
}
chunk_appendf(&trash, "}");
if (ptr != s) { // that's an appctx
const struct appctx *appctx = ptr;
chunk_appendf(&trash, " applet=%p(", appctx->applet);
resolve_sym_name(&trash, NULL, appctx->applet);
chunk_appendf(&trash, ")");
chunk_appendf(&trash, " handler=%p(", appctx->applet->fct);
resolve_sym_name(&trash, NULL, appctx->applet->fct);
chunk_appendf(&trash, ")");
}
memprintf(&msg,
"A bogus %s [%p] is spinning at %d calls per second and refuses to die, "
"aborting now! Please report this error to developers "
"[%s]\n",
obj_type_name(obj), ptr, rate, trash.area);
ha_alert("%s", msg);
send_log(NULL, LOG_EMERG, "%s", msg);
ABORT_NOW();
}
/* initialize the require structures */
static void init_stream()
{
int thr;
for (thr = 0; thr < MAX_THREADS; thr++)
LIST_INIT(&ha_thread_ctx[thr].streams);
}
INITCALL0(STG_INIT, init_stream);
/* Generates a unique ID based on the given <format>, stores it in the given <strm> and
* returns the unique ID.
*
* If this function fails to allocate memory IST_NULL is returned.
*
* If an ID is already stored within the stream nothing happens existing unique ID is
* returned.
*/
struct ist stream_generate_unique_id(struct stream *strm, struct list *format)
{
if (isttest(strm->unique_id)) {
return strm->unique_id;
}
else {
char *unique_id;
int length;
if ((unique_id = pool_alloc(pool_head_uniqueid)) == NULL)
return IST_NULL;
length = build_logline(strm, unique_id, UNIQUEID_LEN, format);
strm->unique_id = ist2(unique_id, length);
return strm->unique_id;
}
}
/************************************************************************/
/* All supported ACL keywords must be declared here. */
/************************************************************************/
static enum act_return stream_action_set_log_level(struct act_rule *rule, struct proxy *px,
struct session *sess, struct stream *s, int flags)
{
s->logs.level = (uintptr_t)rule->arg.act.p[0];
return ACT_RET_CONT;
}
/* Parse a "set-log-level" action. It takes the level value as argument. It
* returns ACT_RET_PRS_OK on success, ACT_RET_PRS_ERR on error.
*/
static enum act_parse_ret stream_parse_set_log_level(const char **args, int *cur_arg, struct proxy *px,
struct act_rule *rule, char **err)
{
int level;
if (!*args[*cur_arg]) {
bad_log_level:
memprintf(err, "expects exactly 1 argument (log level name or 'silent')");
return ACT_RET_PRS_ERR;
}
if (strcmp(args[*cur_arg], "silent") == 0)
level = -1;
else if ((level = get_log_level(args[*cur_arg]) + 1) == 0)
goto bad_log_level;
(*cur_arg)++;
/* Register processing function. */
rule->action_ptr = stream_action_set_log_level;
rule->action = ACT_CUSTOM;
rule->arg.act.p[0] = (void *)(uintptr_t)level;
return ACT_RET_PRS_OK;
}
static enum act_return stream_action_set_nice(struct act_rule *rule, struct proxy *px,
struct session *sess, struct stream *s, int flags)
{
s->task->nice = (uintptr_t)rule->arg.act.p[0];
return ACT_RET_CONT;
}
/* Parse a "set-nice" action. It takes the nice value as argument. It returns
* ACT_RET_PRS_OK on success, ACT_RET_PRS_ERR on error.
*/
static enum act_parse_ret stream_parse_set_nice(const char **args, int *cur_arg, struct proxy *px,
struct act_rule *rule, char **err)
{
int nice;
if (!*args[*cur_arg]) {
bad_log_level:
memprintf(err, "expects exactly 1 argument (integer value)");
return ACT_RET_PRS_ERR;
}
nice = atoi(args[*cur_arg]);
if (nice < -1024)
nice = -1024;
else if (nice > 1024)
nice = 1024;
(*cur_arg)++;
/* Register processing function. */
rule->action_ptr = stream_action_set_nice;
rule->action = ACT_CUSTOM;
rule->arg.act.p[0] = (void *)(uintptr_t)nice;
return ACT_RET_PRS_OK;
}
static enum act_return tcp_action_switch_stream_mode(struct act_rule *rule, struct proxy *px,
struct session *sess, struct stream *s, int flags)
{
enum pr_mode mode = (uintptr_t)rule->arg.act.p[0];
const struct mux_proto_list *mux_proto = rule->arg.act.p[1];
if (!IS_HTX_STRM(s) && mode == PR_MODE_HTTP) {
if (!stream_set_http_mode(s, mux_proto)) {
stream_abort(s);
return ACT_RET_ABRT;
}
}
return ACT_RET_STOP;
}
static int check_tcp_switch_stream_mode(struct act_rule *rule, struct proxy *px, char **err)
{
const struct mux_proto_list *mux_ent;
const struct mux_proto_list *mux_proto = rule->arg.act.p[1];
enum pr_mode pr_mode = (uintptr_t)rule->arg.act.p[0];
enum proto_proxy_mode mode = (1 << (pr_mode == PR_MODE_HTTP));
if (pr_mode == PR_MODE_HTTP)
px->options |= PR_O_HTTP_UPG;
if (mux_proto) {
mux_ent = conn_get_best_mux_entry(mux_proto->token, PROTO_SIDE_FE, mode);
if (!mux_ent || !isteq(mux_ent->token, mux_proto->token)) {
memprintf(err, "MUX protocol '%.*s' is not compatible with the selected mode",
(int)mux_proto->token.len, mux_proto->token.ptr);
return 0;
}
}
else {
mux_ent = conn_get_best_mux_entry(IST_NULL, PROTO_SIDE_FE, mode);
if (!mux_ent) {
memprintf(err, "Unable to find compatible MUX protocol with the selected mode");
return 0;
}
}
/* Update the mux */
rule->arg.act.p[1] = (void *)mux_ent;
return 1;
}
static enum act_parse_ret stream_parse_switch_mode(const char **args, int *cur_arg,
struct proxy *px, struct act_rule *rule,
char **err)
{
const struct mux_proto_list *mux_proto = NULL;
struct ist proto;
enum pr_mode mode;
/* must have at least the mode */
if (*(args[*cur_arg]) == 0) {
memprintf(err, "'%s %s' expects a mode as argument.", args[0], args[*cur_arg-1]);
return ACT_RET_PRS_ERR;
}
if (!(px->cap & PR_CAP_FE)) {
memprintf(err, "'%s %s' not allowed because %s '%s' has no frontend capability",
args[0], args[*cur_arg-1], proxy_type_str(px), px->id);
return ACT_RET_PRS_ERR;
}
/* Check if the mode. For now "tcp" is disabled because downgrade is not
* supported and PT is the only TCP mux.
*/
if (strcmp(args[*cur_arg], "http") == 0)
mode = PR_MODE_HTTP;
else {
memprintf(err, "'%s %s' expects a valid mode (got '%s').", args[0], args[*cur_arg-1], args[*cur_arg]);
return ACT_RET_PRS_ERR;
}
/* check the proto, if specified */
if (*(args[*cur_arg+1]) && strcmp(args[*cur_arg+1], "proto") == 0) {
if (*(args[*cur_arg+2]) == 0) {
memprintf(err, "'%s %s': '%s' expects a protocol as argument.",
args[0], args[*cur_arg-1], args[*cur_arg+1]);
return ACT_RET_PRS_ERR;
}
proto = ist(args[*cur_arg + 2]);
mux_proto = get_mux_proto(proto);
if (!mux_proto) {
memprintf(err, "'%s %s': '%s' expects a valid MUX protocol, if specified (got '%s')",
args[0], args[*cur_arg-1], args[*cur_arg+1], args[*cur_arg+2]);
return ACT_RET_PRS_ERR;
}
*cur_arg += 2;
}
(*cur_arg)++;
/* Register processing function. */
rule->action_ptr = tcp_action_switch_stream_mode;
rule->check_ptr = check_tcp_switch_stream_mode;
rule->action = ACT_CUSTOM;
rule->arg.act.p[0] = (void *)(uintptr_t)mode;
rule->arg.act.p[1] = (void *)mux_proto;
return ACT_RET_PRS_OK;
}
/* 0=OK, <0=Alert, >0=Warning */
static enum act_parse_ret stream_parse_use_service(const char **args, int *cur_arg,
struct proxy *px, struct act_rule *rule,
char **err)
{
struct action_kw *kw;
/* Check if the service name exists. */
if (*(args[*cur_arg]) == 0) {
memprintf(err, "'%s' expects a service name.", args[0]);
return ACT_RET_PRS_ERR;
}
/* lookup for keyword corresponding to a service. */
kw = action_lookup(&service_keywords, args[*cur_arg]);
if (!kw) {
memprintf(err, "'%s' unknown service name.", args[1]);
return ACT_RET_PRS_ERR;
}
(*cur_arg)++;
/* executes specific rule parser. */
rule->kw = kw;
if (kw->parse((const char **)args, cur_arg, px, rule, err) == ACT_RET_PRS_ERR)
return ACT_RET_PRS_ERR;
/* Register processing function. */
rule->action_ptr = process_use_service;
rule->action = ACT_CUSTOM;
return ACT_RET_PRS_OK;
}
void service_keywords_register(struct action_kw_list *kw_list)
{
LIST_APPEND(&service_keywords, &kw_list->list);
}
struct action_kw *service_find(const char *kw)
{
return action_lookup(&service_keywords, kw);
}
/* Lists the known services on <out>. If <out> is null, emit them on stdout one
* per line.
*/
void list_services(FILE *out)
{
const struct action_kw *akwp, *akwn;
struct action_kw_list *kw_list;
int found = 0;
int i;
if (out)
fprintf(out, "Available services :");
for (akwn = akwp = NULL;; akwp = akwn) {
list_for_each_entry(kw_list, &service_keywords, list) {
for (i = 0; kw_list->kw[i].kw != NULL; i++) {
if (strordered(akwp ? akwp->kw : NULL,
kw_list->kw[i].kw,
akwn != akwp ? akwn->kw : NULL))
akwn = &kw_list->kw[i];
found = 1;
}
}
if (akwn == akwp)
break;
if (out)
fprintf(out, " %s", akwn->kw);
else
printf("%s\n", akwn->kw);
}
if (!found && out)
fprintf(out, " none\n");
}
/* appctx context used by the "show sess" command */
struct show_sess_ctx {
struct bref bref; /* back-reference from the session being dumped */
void *target; /* session we want to dump, or NULL for all */
unsigned int thr; /* the thread number being explored (0..MAX_THREADS-1) */
unsigned int uid; /* if non-null, the uniq_id of the session being dumped */
int section; /* section of the session being dumped */
int pos; /* last position of the current session's buffer */
};
/* This function dumps a complete stream state onto the stream connector's
* read buffer. The stream has to be set in strm. It returns 0 if the output
* buffer is full and it needs to be called again, otherwise non-zero. It is
* designed to be called from stats_dump_strm_to_buffer() below.
*/
static int stats_dump_full_strm_to_buffer(struct stconn *sc, struct stream *strm)
{
struct appctx *appctx = __sc_appctx(sc);
struct show_sess_ctx *ctx = appctx->svcctx;
struct stconn *scf, *scb;
struct tm tm;
extern const char *monthname[12];
char pn[INET6_ADDRSTRLEN];
struct connection *conn;
struct appctx *tmpctx;
chunk_reset(&trash);
if (ctx->section > 0 && ctx->uid != strm->uniq_id) {
/* stream changed, no need to go any further */
chunk_appendf(&trash, " *** session terminated while we were watching it ***\n");
if (applet_putchk(appctx, &trash) == -1)
goto full;
goto done;
}
switch (ctx->section) {
case 0: /* main status of the stream */
ctx->uid = strm->uniq_id;
ctx->section = 1;
__fallthrough;
case 1:
get_localtime(strm->logs.accept_date.tv_sec, &tm);
chunk_appendf(&trash,
"%p: [%02d/%s/%04d:%02d:%02d:%02d.%06d] id=%u proto=%s",
strm,
tm.tm_mday, monthname[tm.tm_mon], tm.tm_year+1900,
tm.tm_hour, tm.tm_min, tm.tm_sec, (int)(strm->logs.accept_date.tv_usec),
strm->uniq_id,
strm_li(strm) ? strm_li(strm)->rx.proto->name : "?");
conn = objt_conn(strm_orig(strm));
switch (conn && conn_get_src(conn) ? addr_to_str(conn->src, pn, sizeof(pn)) : AF_UNSPEC) {
case AF_INET:
case AF_INET6:
chunk_appendf(&trash, " source=%s:%d\n",
HA_ANON_CLI(pn), get_host_port(conn->src));
break;
case AF_UNIX:
chunk_appendf(&trash, " source=unix:%d\n", strm_li(strm)->luid);
break;
default:
/* no more information to print right now */
chunk_appendf(&trash, "\n");
break;
}
chunk_appendf(&trash,
" flags=0x%x, conn_retries=%d, conn_exp=%s conn_et=0x%03x srv_conn=%p, pend_pos=%p waiting=%d epoch=%#x\n",
strm->flags, strm->conn_retries,
strm->conn_exp ?
tick_is_expired(strm->conn_exp, now_ms) ? "<PAST>" :
human_time(TICKS_TO_MS(strm->conn_exp - now_ms),
TICKS_TO_MS(1000)) : "<NEVER>",
strm->conn_err_type, strm->srv_conn, strm->pend_pos,
LIST_INLIST(&strm->buffer_wait.list), strm->stream_epoch);
chunk_appendf(&trash,
" frontend=%s (id=%u mode=%s), listener=%s (id=%u)",
HA_ANON_CLI(strm_fe(strm)->id), strm_fe(strm)->uuid, proxy_mode_str(strm_fe(strm)->mode),
strm_li(strm) ? strm_li(strm)->name ? strm_li(strm)->name : "?" : "?",
strm_li(strm) ? strm_li(strm)->luid : 0);
switch (conn && conn_get_dst(conn) ? addr_to_str(conn->dst, pn, sizeof(pn)) : AF_UNSPEC) {
case AF_INET:
case AF_INET6:
chunk_appendf(&trash, " addr=%s:%d\n",
HA_ANON_CLI(pn), get_host_port(conn->dst));
break;
case AF_UNIX:
chunk_appendf(&trash, " addr=unix:%d\n", strm_li(strm)->luid);
break;
default:
/* no more information to print right now */
chunk_appendf(&trash, "\n");
break;
}
if (strm->be->cap & PR_CAP_BE)
chunk_appendf(&trash,
" backend=%s (id=%u mode=%s)",
HA_ANON_CLI(strm->be->id),
strm->be->uuid, proxy_mode_str(strm->be->mode));
else
chunk_appendf(&trash, " backend=<NONE> (id=-1 mode=-)");
conn = sc_conn(strm->scb);
switch (conn && conn_get_src(conn) ? addr_to_str(conn->src, pn, sizeof(pn)) : AF_UNSPEC) {
case AF_INET:
case AF_INET6:
chunk_appendf(&trash, " addr=%s:%d\n",
HA_ANON_CLI(pn), get_host_port(conn->src));
break;
case AF_UNIX:
chunk_appendf(&trash, " addr=unix\n");
break;
default:
/* no more information to print right now */
chunk_appendf(&trash, "\n");
break;
}
if (strm->be->cap & PR_CAP_BE)
chunk_appendf(&trash,
" server=%s (id=%u)",
objt_server(strm->target) ? HA_ANON_CLI(__objt_server(strm->target)->id) : "<none>",
objt_server(strm->target) ? __objt_server(strm->target)->puid : 0);
else
chunk_appendf(&trash, " server=<NONE> (id=-1)");
switch (conn && conn_get_dst(conn) ? addr_to_str(conn->dst, pn, sizeof(pn)) : AF_UNSPEC) {
case AF_INET:
case AF_INET6:
chunk_appendf(&trash, " addr=%s:%d\n",
HA_ANON_CLI(pn), get_host_port(conn->dst));
break;
case AF_UNIX:
chunk_appendf(&trash, " addr=unix\n");
break;
default:
/* no more information to print right now */
chunk_appendf(&trash, "\n");
break;
}
chunk_appendf(&trash,
" task=%p (state=0x%02x nice=%d calls=%u rate=%u exp=%s tid=%d(%d/%d)%s",
strm->task,
strm->task->state,
strm->task->nice, strm->task->calls, read_freq_ctr(&strm->call_rate),
strm->task->expire ?
tick_is_expired(strm->task->expire, now_ms) ? "<PAST>" :
human_time(TICKS_TO_MS(strm->task->expire - now_ms),
TICKS_TO_MS(1000)) : "<NEVER>",
strm->task->tid,
ha_thread_info[strm->task->tid].tgid,
ha_thread_info[strm->task->tid].ltid,
task_in_rq(strm->task) ? ", running" : "");
chunk_appendf(&trash,
" age=%s)\n",
human_time(now.tv_sec - strm->logs.accept_date.tv_sec, 1));
if (strm->txn)
chunk_appendf(&trash,
" txn=%p flags=0x%x meth=%d status=%d req.st=%s rsp.st=%s req.f=0x%02x rsp.f=0x%02x\n",
strm->txn, strm->txn->flags, strm->txn->meth, strm->txn->status,
h1_msg_state_str(strm->txn->req.msg_state), h1_msg_state_str(strm->txn->rsp.msg_state),
strm->txn->req.flags, strm->txn->rsp.flags);
scf = strm->scf;
chunk_appendf(&trash, " scf=%p flags=0x%08x state=%s endp=%s,%p,0x%08x sub=%d",
scf, scf->flags, sc_state_str(scf->state),
(sc_ep_test(scf, SE_FL_T_MUX) ? "CONN" : (sc_ep_test(scf, SE_FL_T_APPLET) ? "APPCTX" : "NONE")),
scf->sedesc->se, sc_ep_get(scf), scf->wait_event.events);
chunk_appendf(&trash, " rex=%s",
sc_ep_rcv_ex(scf) ? human_time(TICKS_TO_MS(sc_ep_rcv_ex(scf) - now_ms), TICKS_TO_MS(1000)) : "<NEVER>");
chunk_appendf(&trash, " wex=%s\n",
sc_ep_snd_ex(scf) ? human_time(TICKS_TO_MS(sc_ep_snd_ex(scf) - now_ms), TICKS_TO_MS(1000)) : "<NEVER>");
if ((conn = sc_conn(scf)) != NULL) {
if (conn->mux && conn->mux->show_sd) {
chunk_appendf(&trash, " ");
conn->mux->show_sd(&trash, scf->sedesc, " ");
chunk_appendf(&trash, "\n");
}
chunk_appendf(&trash,
" co0=%p ctrl=%s xprt=%s mux=%s data=%s target=%s:%p\n",
conn,
conn_get_ctrl_name(conn),
conn_get_xprt_name(conn),
conn_get_mux_name(conn),
sc_get_data_name(scf),
obj_type_name(conn->target),
obj_base_ptr(conn->target));
chunk_appendf(&trash,
" flags=0x%08x fd=%d fd.state=%02x updt=%d fd.tmask=0x%lx\n",
conn->flags,
conn_fd(conn),
conn_fd(conn) >= 0 ? fdtab[conn->handle.fd].state : 0,
conn_fd(conn) >= 0 ? !!(fdtab[conn->handle.fd].update_mask & ti->ltid_bit) : 0,
conn_fd(conn) >= 0 ? fdtab[conn->handle.fd].thread_mask: 0);
}
else if ((tmpctx = sc_appctx(scf)) != NULL) {
chunk_appendf(&trash,
" app0=%p st0=%d st1=%d applet=%s tid=%d nice=%d calls=%u rate=%u\n",
tmpctx,
tmpctx->st0,
tmpctx->st1,
tmpctx->applet->name,
tmpctx->t->tid,
tmpctx->t->nice, tmpctx->t->calls, read_freq_ctr(&tmpctx->call_rate));
}
scb = strm->scb;
chunk_appendf(&trash, " scb=%p flags=0x%08x state=%s endp=%s,%p,0x%08x sub=%d",
scb, scb->flags, sc_state_str(scb->state),
(sc_ep_test(scb, SE_FL_T_MUX) ? "CONN" : (sc_ep_test(scb, SE_FL_T_APPLET) ? "APPCTX" : "NONE")),
scb->sedesc->se, sc_ep_get(scb), scb->wait_event.events);
chunk_appendf(&trash, " rex=%s",
sc_ep_rcv_ex(scb) ? human_time(TICKS_TO_MS(sc_ep_rcv_ex(scb) - now_ms), TICKS_TO_MS(1000)) : "<NEVER>");
chunk_appendf(&trash, " wex=%s\n",
sc_ep_snd_ex(scb) ? human_time(TICKS_TO_MS(sc_ep_snd_ex(scb) - now_ms), TICKS_TO_MS(1000)) : "<NEVER>");
if ((conn = sc_conn(scb)) != NULL) {
if (conn->mux && conn->mux->show_sd) {
chunk_appendf(&trash, " ");
conn->mux->show_sd(&trash, scb->sedesc, " ");
chunk_appendf(&trash, "\n");
}
chunk_appendf(&trash,
" co1=%p ctrl=%s xprt=%s mux=%s data=%s target=%s:%p\n",
conn,
conn_get_ctrl_name(conn),
conn_get_xprt_name(conn),
conn_get_mux_name(conn),
sc_get_data_name(scb),
obj_type_name(conn->target),
obj_base_ptr(conn->target));
chunk_appendf(&trash,
" flags=0x%08x fd=%d fd.state=%02x updt=%d fd.tmask=0x%lx\n",
conn->flags,
conn_fd(conn),
conn_fd(conn) >= 0 ? fdtab[conn->handle.fd].state : 0,
conn_fd(conn) >= 0 ? !!(fdtab[conn->handle.fd].update_mask & ti->ltid_bit) : 0,
conn_fd(conn) >= 0 ? fdtab[conn->handle.fd].thread_mask: 0);
}
else if ((tmpctx = sc_appctx(scb)) != NULL) {
chunk_appendf(&trash,
" app1=%p st0=%d st1=%d applet=%s tid=%d nice=%d calls=%u rate=%u\n",
tmpctx,
tmpctx->st0,
tmpctx->st1,
tmpctx->applet->name,
tmpctx->t->tid,
tmpctx->t->nice, tmpctx->t->calls, read_freq_ctr(&tmpctx->call_rate));
}
chunk_appendf(&trash,
" req=%p (f=0x%06x an=0x%x pipe=%d tofwd=%d total=%lld)\n"
" an_exp=%s buf=%p data=%p o=%u p=%u i=%u size=%u\n",
&strm->req,
strm->req.flags, strm->req.analysers,
strm->req.pipe ? strm->req.pipe->data : 0,
strm->req.to_forward, strm->req.total,
strm->req.analyse_exp ?
human_time(TICKS_TO_MS(strm->req.analyse_exp - now_ms),
TICKS_TO_MS(1000)) : "<NEVER>",
&strm->req.buf,
b_orig(&strm->req.buf), (unsigned int)co_data(&strm->req),
(unsigned int)ci_head_ofs(&strm->req), (unsigned int)ci_data(&strm->req),
(unsigned int)strm->req.buf.size);
if (IS_HTX_STRM(strm)) {
struct htx *htx = htxbuf(&strm->req.buf);
chunk_appendf(&trash,
" htx=%p flags=0x%x size=%u data=%u used=%u wrap=%s extra=%llu\n",
htx, htx->flags, htx->size, htx->data, htx_nbblks(htx),
(htx->tail >= htx->head) ? "NO" : "YES",
(unsigned long long)htx->extra);
}
if (HAS_FILTERS(strm) && strm_flt(strm)->current[0]) {
struct filter *flt = strm_flt(strm)->current[0];
chunk_appendf(&trash, " current_filter=%p (id=\"%s\" flags=0x%x pre=0x%x post=0x%x) \n",
flt, flt->config->id, flt->flags, flt->pre_analyzers, flt->post_analyzers);
}
chunk_appendf(&trash,
" res=%p (f=0x%06x an=0x%x pipe=%d tofwd=%d total=%lld)\n"
" an_exp=%s buf=%p data=%p o=%u p=%u i=%u size=%u\n",
&strm->res,
strm->res.flags, strm->res.analysers,
strm->res.pipe ? strm->res.pipe->data : 0,
strm->res.to_forward, strm->res.total,
strm->res.analyse_exp ?
human_time(TICKS_TO_MS(strm->res.analyse_exp - now_ms),
TICKS_TO_MS(1000)) : "<NEVER>",
&strm->res.buf,
b_orig(&strm->res.buf), (unsigned int)co_data(&strm->res),
(unsigned int)ci_head_ofs(&strm->res), (unsigned int)ci_data(&strm->res),
(unsigned int)strm->res.buf.size);
if (IS_HTX_STRM(strm)) {
struct htx *htx = htxbuf(&strm->res.buf);
chunk_appendf(&trash,
" htx=%p flags=0x%x size=%u data=%u used=%u wrap=%s extra=%llu\n",
htx, htx->flags, htx->size, htx->data, htx_nbblks(htx),
(htx->tail >= htx->head) ? "NO" : "YES",
(unsigned long long)htx->extra);
}
if (HAS_FILTERS(strm) && strm_flt(strm)->current[1]) {
struct filter *flt = strm_flt(strm)->current[1];
chunk_appendf(&trash, " current_filter=%p (id=\"%s\" flags=0x%x pre=0x%x post=0x%x) \n",
flt, flt->config->id, flt->flags, flt->pre_analyzers, flt->post_analyzers);
}
if (strm->current_rule_list && strm->current_rule) {
const struct act_rule *rule = strm->current_rule;
chunk_appendf(&trash, " current_rule=\"%s\" [%s:%d]\n", rule->kw->kw, rule->conf.file, rule->conf.line);
}
if (applet_putchk(appctx, &trash) == -1)
goto full;
/* use other states to dump the contents */
}
/* end of dump */
done:
ctx->uid = 0;
ctx->section = 0;
return 1;
full:
return 0;
}
static int cli_parse_show_sess(char **args, char *payload, struct appctx *appctx, void *private)
{
struct show_sess_ctx *ctx = applet_reserve_svcctx(appctx, sizeof(*ctx));
if (!cli_has_level(appctx, ACCESS_LVL_OPER))
return 1;
if (*args[2] && strcmp(args[2], "all") == 0)
ctx->target = (void *)-1;
else if (*args[2])
ctx->target = (void *)strtoul(args[2], NULL, 0);
else
ctx->target = NULL;
ctx->section = 0; /* start with stream status */
ctx->pos = 0;
ctx->thr = 0;
/* The back-ref must be reset, it will be detected and set by
* the dump code upon first invocation.
*/
LIST_INIT(&ctx->bref.users);
/* let's set our own stream's epoch to the current one and increment
* it so that we know which streams were already there before us.
*/
appctx_strm(appctx)->stream_epoch = _HA_ATOMIC_FETCH_ADD(&stream_epoch, 1);
return 0;
}
/* This function dumps all streams' states onto the stream connector's
* read buffer. It returns 0 if the output buffer is full and it needs
* to be called again, otherwise non-zero. It proceeds in an isolated
* thread so there is no thread safety issue here.
*/
static int cli_io_handler_dump_sess(struct appctx *appctx)
{
struct show_sess_ctx *ctx = appctx->svcctx;
struct stconn *sc = appctx_sc(appctx);
struct connection *conn;
thread_isolate();
if (ctx->thr >= global.nbthread) {
/* already terminated */
goto done;
}
/* FIXME: Don't watch the other side !*/
if (unlikely(sc_opposite(sc)->flags & SC_FL_SHUTW)) {
/* If we're forced to shut down, we might have to remove our
* reference to the last stream being dumped.
*/
if (!LIST_ISEMPTY(&ctx->bref.users)) {
LIST_DELETE(&ctx->bref.users);
LIST_INIT(&ctx->bref.users);
}
goto done;
}
chunk_reset(&trash);
/* first, let's detach the back-ref from a possible previous stream */
if (!LIST_ISEMPTY(&ctx->bref.users)) {
LIST_DELETE(&ctx->bref.users);
LIST_INIT(&ctx->bref.users);
} else if (!ctx->bref.ref) {
/* first call, start with first stream */
ctx->bref.ref = ha_thread_ctx[ctx->thr].streams.n;
}
/* and start from where we stopped */
while (1) {
char pn[INET6_ADDRSTRLEN];
struct stream *curr_strm;
int done= 0;
if (ctx->bref.ref == &ha_thread_ctx[ctx->thr].streams)
done = 1;
else {
/* check if we've found a stream created after issuing the "show sess" */
curr_strm = LIST_ELEM(ctx->bref.ref, struct stream *, list);
if ((int)(curr_strm->stream_epoch - appctx_strm(appctx)->stream_epoch) > 0)
done = 1;
}
if (done) {
ctx->thr++;
if (ctx->thr >= global.nbthread)
break;
ctx->bref.ref = ha_thread_ctx[ctx->thr].streams.n;
continue;
}
if (ctx->target) {
if (ctx->target != (void *)-1 && ctx->target != curr_strm)
goto next_sess;
LIST_APPEND(&curr_strm->back_refs, &ctx->bref.users);
/* call the proper dump() function and return if we're missing space */
if (!stats_dump_full_strm_to_buffer(sc, curr_strm))
goto full;
/* stream dump complete */
LIST_DELETE(&ctx->bref.users);
LIST_INIT(&ctx->bref.users);
if (ctx->target != (void *)-1) {
ctx->target = NULL;
break;
}
else
goto next_sess;
}
chunk_appendf(&trash,
"%p: proto=%s",
curr_strm,
strm_li(curr_strm) ? strm_li(curr_strm)->rx.proto->name : "?");
conn = objt_conn(strm_orig(curr_strm));
switch (conn && conn_get_src(conn) ? addr_to_str(conn->src, pn, sizeof(pn)) : AF_UNSPEC) {
case AF_INET:
case AF_INET6:
chunk_appendf(&trash,
" src=%s:%d fe=%s be=%s srv=%s",
HA_ANON_CLI(pn),
get_host_port(conn->src),
HA_ANON_CLI(strm_fe(curr_strm)->id),
(curr_strm->be->cap & PR_CAP_BE) ? HA_ANON_CLI(curr_strm->be->id) : "<NONE>",
objt_server(curr_strm->target) ? HA_ANON_CLI(__objt_server(curr_strm->target)->id) : "<none>"
);
break;
case AF_UNIX:
chunk_appendf(&trash,
" src=unix:%d fe=%s be=%s srv=%s",
strm_li(curr_strm)->luid,
HA_ANON_CLI(strm_fe(curr_strm)->id),
(curr_strm->be->cap & PR_CAP_BE) ? HA_ANON_CLI(curr_strm->be->id) : "<NONE>",
objt_server(curr_strm->target) ? HA_ANON_CLI(__objt_server(curr_strm->target)->id) : "<none>"
);
break;
}
chunk_appendf(&trash,
" ts=%02x epoch=%#x age=%s calls=%u rate=%u cpu=%llu lat=%llu",
curr_strm->task->state, curr_strm->stream_epoch,
human_time(now.tv_sec - curr_strm->logs.tv_accept.tv_sec, 1),
curr_strm->task->calls, read_freq_ctr(&curr_strm->call_rate),
(unsigned long long)curr_strm->cpu_time, (unsigned long long)curr_strm->lat_time);
chunk_appendf(&trash,
" rq[f=%06xh,i=%u,an=%02xh",
curr_strm->req.flags,
(unsigned int)ci_data(&curr_strm->req),
curr_strm->req.analysers);
chunk_appendf(&trash,
",ax=%s]",
curr_strm->req.analyse_exp ?
human_time(TICKS_TO_MS(curr_strm->req.analyse_exp - now_ms),
TICKS_TO_MS(1000)) : "");
chunk_appendf(&trash,
" rp[f=%06xh,i=%u,an=%02xh",
curr_strm->res.flags,
(unsigned int)ci_data(&curr_strm->res),
curr_strm->res.analysers);
chunk_appendf(&trash,
",ax=%s]",
curr_strm->res.analyse_exp ?
human_time(TICKS_TO_MS(curr_strm->res.analyse_exp - now_ms),
TICKS_TO_MS(1000)) : "");
conn = sc_conn(curr_strm->scf);
chunk_appendf(&trash," scf=[%d,%1xh,fd=%d",
curr_strm->scf->state, curr_strm->scf->flags, conn_fd(conn));
chunk_appendf(&trash, ",rex=%s",
sc_ep_rcv_ex(curr_strm->scf) ?
human_time(TICKS_TO_MS(sc_ep_rcv_ex(curr_strm->scf) - now_ms),
TICKS_TO_MS(1000)) : "");
chunk_appendf(&trash,",wex=%s]",
sc_ep_snd_ex(curr_strm->scf) ?
human_time(TICKS_TO_MS(sc_ep_snd_ex(curr_strm->scf) - now_ms),
TICKS_TO_MS(1000)) : "");
conn = sc_conn(curr_strm->scb);
chunk_appendf(&trash, " scb=[%d,%1xh,fd=%d",
curr_strm->scb->state, curr_strm->scb->flags, conn_fd(conn));
chunk_appendf(&trash, ",rex=%s",
sc_ep_rcv_ex(curr_strm->scb) ?
human_time(TICKS_TO_MS(sc_ep_rcv_ex(curr_strm->scb) - now_ms),
TICKS_TO_MS(1000)) : "");
chunk_appendf(&trash, ",wex=%s]",
sc_ep_snd_ex(curr_strm->scb) ?
human_time(TICKS_TO_MS(sc_ep_snd_ex(curr_strm->scb) - now_ms),
TICKS_TO_MS(1000)) : "");
chunk_appendf(&trash,
" exp=%s rc=%d c_exp=%s",
curr_strm->task->expire ?
human_time(TICKS_TO_MS(curr_strm->task->expire - now_ms),
TICKS_TO_MS(1000)) : "",
curr_strm->conn_retries,
curr_strm->conn_exp ?
human_time(TICKS_TO_MS(curr_strm->conn_exp - now_ms),
TICKS_TO_MS(1000)) : "");
if (task_in_rq(curr_strm->task))
chunk_appendf(&trash, " run(nice=%d)", curr_strm->task->nice);
chunk_appendf(&trash, "\n");
if (applet_putchk(appctx, &trash) == -1) {
/* let's try again later from this stream. We add ourselves into
* this stream's users so that it can remove us upon termination.
*/
LIST_APPEND(&curr_strm->back_refs, &ctx->bref.users);
goto full;
}
next_sess:
ctx->bref.ref = curr_strm->list.n;
}
if (ctx->target && ctx->target != (void *)-1) {
/* specified stream not found */
if (ctx->section > 0)
chunk_appendf(&trash, " *** session terminated while we were watching it ***\n");
else
chunk_appendf(&trash, "Session not found.\n");
if (applet_putchk(appctx, &trash) == -1)
goto full;
ctx->target = NULL;
ctx->uid = 0;
goto done;
}
done:
thread_release();
return 1;
full:
thread_release();
return 0;
}
static void cli_release_show_sess(struct appctx *appctx)
{
struct show_sess_ctx *ctx = appctx->svcctx;
if (ctx->thr < global.nbthread) {
/* a dump was aborted, either in error or timeout. We need to
* safely detach from the target stream's list. It's mandatory
* to lock because a stream on the target thread could be moving
* our node.
*/
thread_isolate();
if (!LIST_ISEMPTY(&ctx->bref.users))
LIST_DELETE(&ctx->bref.users);
thread_release();
}
}
/* Parses the "shutdown session" directive, it always returns 1 */
static int cli_parse_shutdown_session(char **args, char *payload, struct appctx *appctx, void *private)
{
struct stream *strm, *ptr;
int thr;
if (!cli_has_level(appctx, ACCESS_LVL_ADMIN))
return 1;
ptr = (void *)strtoul(args[2], NULL, 0);
if (!ptr)
return cli_err(appctx, "Session pointer expected (use 'show sess').\n");
strm = NULL;
thread_isolate();
/* first, look for the requested stream in the stream table */
for (thr = 0; strm != ptr && thr < global.nbthread; thr++) {
list_for_each_entry(strm, &ha_thread_ctx[thr].streams, list) {
if (strm == ptr) {
stream_shutdown(strm, SF_ERR_KILLED);
break;
}
}
}
thread_release();
/* do we have the stream ? */
if (strm != ptr)
return cli_err(appctx, "No such session (use 'show sess').\n");
return 1;
}
/* Parses the "shutdown session server" directive, it always returns 1 */
static int cli_parse_shutdown_sessions_server(char **args, char *payload, struct appctx *appctx, void *private)
{
struct server *sv;
if (!cli_has_level(appctx, ACCESS_LVL_ADMIN))
return 1;
sv = cli_find_server(appctx, args[3]);
if (!sv)
return 1;
/* kill all the stream that are on this server */
HA_SPIN_LOCK(SERVER_LOCK, &sv->lock);
srv_shutdown_streams(sv, SF_ERR_KILLED);
HA_SPIN_UNLOCK(SERVER_LOCK, &sv->lock);
return 1;
}
/* register cli keywords */
static struct cli_kw_list cli_kws = {{ },{
{ { "show", "sess", NULL }, "show sess [id] : report the list of current sessions or dump this exact session", cli_parse_show_sess, cli_io_handler_dump_sess, cli_release_show_sess },
{ { "shutdown", "session", NULL }, "shutdown session [id] : kill a specific session", cli_parse_shutdown_session, NULL, NULL },
{ { "shutdown", "sessions", "server" }, "shutdown sessions server <bk>/<srv> : kill sessions on a server", cli_parse_shutdown_sessions_server, NULL, NULL },
{{},}
}};
INITCALL1(STG_REGISTER, cli_register_kw, &cli_kws);
/* main configuration keyword registration. */
static struct action_kw_list stream_tcp_req_keywords = { ILH, {
{ "set-log-level", stream_parse_set_log_level },
{ "set-nice", stream_parse_set_nice },
{ "switch-mode", stream_parse_switch_mode },
{ "use-service", stream_parse_use_service },
{ /* END */ }
}};
INITCALL1(STG_REGISTER, tcp_req_cont_keywords_register, &stream_tcp_req_keywords);
/* main configuration keyword registration. */
static struct action_kw_list stream_tcp_res_keywords = { ILH, {
{ "set-log-level", stream_parse_set_log_level },
{ "set-nice", stream_parse_set_nice },
{ /* END */ }
}};
INITCALL1(STG_REGISTER, tcp_res_cont_keywords_register, &stream_tcp_res_keywords);
static struct action_kw_list stream_http_req_keywords = { ILH, {
{ "set-log-level", stream_parse_set_log_level },
{ "set-nice", stream_parse_set_nice },
{ "use-service", stream_parse_use_service },
{ /* END */ }
}};
INITCALL1(STG_REGISTER, http_req_keywords_register, &stream_http_req_keywords);
static struct action_kw_list stream_http_res_keywords = { ILH, {
{ "set-log-level", stream_parse_set_log_level },
{ "set-nice", stream_parse_set_nice },
{ /* END */ }
}};
INITCALL1(STG_REGISTER, http_res_keywords_register, &stream_http_res_keywords);
static struct action_kw_list stream_http_after_res_actions = { ILH, {
{ "set-log-level", stream_parse_set_log_level },
{ /* END */ }
}};
INITCALL1(STG_REGISTER, http_after_res_keywords_register, &stream_http_after_res_actions);
static int smp_fetch_cur_server_timeout(const struct arg *args, struct sample *smp, const char *km, void *private)
{
smp->flags = SMP_F_VOL_TXN;
smp->data.type = SMP_T_SINT;
if (!smp->strm)
return 0;
smp->data.u.sint = TICKS_TO_MS(smp->strm->scb->ioto);
return 1;
}
static int smp_fetch_cur_tunnel_timeout(const struct arg *args, struct sample *smp, const char *km, void *private)
{
smp->flags = SMP_F_VOL_TXN;
smp->data.type = SMP_T_SINT;
if (!smp->strm)
return 0;
smp->data.u.sint = TICKS_TO_MS(smp->strm->tunnel_timeout);
return 1;
}
static int smp_fetch_last_rule_file(const struct arg *args, struct sample *smp, const char *km, void *private)
{
smp->flags = SMP_F_VOL_TXN;
smp->data.type = SMP_T_STR;
if (!smp->strm || !smp->strm->last_rule_file)
return 0;
smp->flags |= SMP_F_CONST;
smp->data.u.str.area = (char *)smp->strm->last_rule_file;
smp->data.u.str.data = strlen(smp->strm->last_rule_file);
return 1;
}
static int smp_fetch_last_rule_line(const struct arg *args, struct sample *smp, const char *km, void *private)
{
smp->flags = SMP_F_VOL_TXN;
smp->data.type = SMP_T_SINT;
if (!smp->strm || !smp->strm->last_rule_line)
return 0;
smp->data.u.sint = smp->strm->last_rule_line;
return 1;
}
/* Note: must not be declared <const> as its list will be overwritten.
* Please take care of keeping this list alphabetically sorted.
*/
static struct sample_fetch_kw_list smp_kws = {ILH, {
{ "cur_server_timeout", smp_fetch_cur_server_timeout, 0, NULL, SMP_T_SINT, SMP_USE_BKEND, },
{ "cur_tunnel_timeout", smp_fetch_cur_tunnel_timeout, 0, NULL, SMP_T_SINT, SMP_USE_BKEND, },
{ "last_rule_file", smp_fetch_last_rule_file, 0, NULL, SMP_T_STR, SMP_USE_INTRN, },
{ "last_rule_line", smp_fetch_last_rule_line, 0, NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ NULL, NULL, 0, 0, 0 },
}};
INITCALL1(STG_REGISTER, sample_register_fetches, &smp_kws);
/*
* Local variables:
* c-indent-level: 8
* c-basic-offset: 8
* End:
*/