blob: 20a1d9b0b2c60bca9ab62fbfc6cd13ce98815548 [file] [log] [blame]
/*
* stream connector management functions
*
* Copyright 2021 Christopher Faulet <cfaulet@haproxy.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*/
#include <haproxy/api.h>
#include <haproxy/applet.h>
#include <haproxy/connection.h>
#include <haproxy/check.h>
#include <haproxy/filters.h>
#include <haproxy/http_ana.h>
#include <haproxy/pipe.h>
#include <haproxy/pool.h>
#include <haproxy/sc_strm.h>
#include <haproxy/stconn.h>
#include <haproxy/xref.h>
DECLARE_POOL(pool_head_connstream, "stconn", sizeof(struct stconn));
DECLARE_POOL(pool_head_sedesc, "sedesc", sizeof(struct sedesc));
/* functions used by default on a detached stream connector */
static void sc_app_abort(struct stconn *sc);
static void sc_app_shut(struct stconn *sc);
static void sc_app_chk_rcv(struct stconn *sc);
static void sc_app_chk_snd(struct stconn *sc);
/* functions used on a mux-based stream connector */
static void sc_app_abort_conn(struct stconn *sc);
static void sc_app_shut_conn(struct stconn *sc);
static void sc_app_chk_rcv_conn(struct stconn *sc);
static void sc_app_chk_snd_conn(struct stconn *sc);
/* functions used on an applet-based stream connector */
static void sc_app_abort_applet(struct stconn *sc);
static void sc_app_shut_applet(struct stconn *sc);
static void sc_app_chk_rcv_applet(struct stconn *sc);
static void sc_app_chk_snd_applet(struct stconn *sc);
static int sc_conn_process(struct stconn *sc);
static int sc_conn_recv(struct stconn *sc);
static int sc_conn_send(struct stconn *sc);
static int sc_applet_process(struct stconn *sc);
/* stream connector operations for connections */
struct sc_app_ops sc_app_conn_ops = {
.chk_rcv = sc_app_chk_rcv_conn,
.chk_snd = sc_app_chk_snd_conn,
.abort = sc_app_abort_conn,
.shutdown= sc_app_shut_conn,
.wake = sc_conn_process,
.name = "STRM",
};
/* stream connector operations for embedded tasks */
struct sc_app_ops sc_app_embedded_ops = {
.chk_rcv = sc_app_chk_rcv,
.chk_snd = sc_app_chk_snd,
.abort = sc_app_abort,
.shutdown= sc_app_shut,
.wake = NULL, /* may never be used */
.name = "NONE", /* may never be used */
};
/* stream connector operations for applets */
struct sc_app_ops sc_app_applet_ops = {
.chk_rcv = sc_app_chk_rcv_applet,
.chk_snd = sc_app_chk_snd_applet,
.abort = sc_app_abort_applet,
.shutdown= sc_app_shut_applet,
.wake = sc_applet_process,
.name = "STRM",
};
/* stream connector for health checks on connections */
struct sc_app_ops sc_app_check_ops = {
.chk_rcv = NULL,
.chk_snd = NULL,
.abort = NULL,
.shutdown= NULL,
.wake = wake_srv_chk,
.name = "CHCK",
};
/* Initializes an endpoint */
void sedesc_init(struct sedesc *sedesc)
{
sedesc->se = NULL;
sedesc->conn = NULL;
sedesc->sc = NULL;
sedesc->lra = TICK_ETERNITY;
sedesc->fsb = TICK_ETERNITY;
sedesc->xref.peer = NULL;
se_fl_setall(sedesc, SE_FL_NONE);
}
/* Tries to alloc an endpoint and initialize it. Returns NULL on failure. */
struct sedesc *sedesc_new()
{
struct sedesc *sedesc;
sedesc = pool_alloc(pool_head_sedesc);
if (unlikely(!sedesc))
return NULL;
sedesc_init(sedesc);
return sedesc;
}
/* Releases an endpoint. It is the caller responsibility to be sure it is safe
* and it is not shared with another entity
*/
void sedesc_free(struct sedesc *sedesc)
{
pool_free(pool_head_sedesc, sedesc);
}
/* Tries to allocate a new stconn and initialize its main fields. On
* failure, nothing is allocated and NULL is returned. It is an internal
* function. The caller must, at least, set the SE_FL_ORPHAN or SE_FL_DETACHED
* flag.
*/
static struct stconn *sc_new(struct sedesc *sedesc)
{
struct stconn *sc;
sc = pool_alloc(pool_head_connstream);
if (unlikely(!sc))
goto alloc_error;
sc->obj_type = OBJ_TYPE_SC;
sc->flags = SC_FL_NONE;
sc->state = SC_ST_INI;
sc->ioto = TICK_ETERNITY;
sc->room_needed = 0;
sc->app = NULL;
sc->app_ops = NULL;
sc->src = NULL;
sc->dst = NULL;
sc->wait_event.tasklet = NULL;
sc->wait_event.events = 0;
/* If there is no endpoint, allocate a new one now */
if (!sedesc) {
sedesc = sedesc_new();
if (unlikely(!sedesc))
goto alloc_error;
}
sc->sedesc = sedesc;
sedesc->sc = sc;
return sc;
alloc_error:
pool_free(pool_head_connstream, sc);
return NULL;
}
/* Creates a new stream connector and its associated stream from a mux. <sd> must
* be defined. It returns NULL on error. On success, the new stream connector is
* returned. In this case, SE_FL_ORPHAN flag is removed.
*/
struct stconn *sc_new_from_endp(struct sedesc *sd, struct session *sess, struct buffer *input)
{
struct stconn *sc;
sc = sc_new(sd);
if (unlikely(!sc))
return NULL;
if (unlikely(!stream_new(sess, sc, input))) {
sd->sc = NULL;
if (sc->sedesc != sd) {
/* none was provided so sc_new() allocated one */
sedesc_free(sc->sedesc);
}
pool_free(pool_head_connstream, sc);
se_fl_set(sd, SE_FL_ORPHAN);
return NULL;
}
se_fl_clr(sd, SE_FL_ORPHAN);
return sc;
}
/* Creates a new stream connector from an stream. There is no endpoint here, thus it
* will be created by sc_new(). So the SE_FL_DETACHED flag is set. It returns
* NULL on error. On success, the new stream connector is returned.
*/
struct stconn *sc_new_from_strm(struct stream *strm, unsigned int flags)
{
struct stconn *sc;
sc = sc_new(NULL);
if (unlikely(!sc))
return NULL;
sc->flags |= flags;
sc_ep_set(sc, SE_FL_DETACHED);
sc->app = &strm->obj_type;
sc->app_ops = &sc_app_embedded_ops;
return sc;
}
/* Creates a new stream connector from an health-check. There is no endpoint here,
* thus it will be created by sc_new(). So the SE_FL_DETACHED flag is set. It
* returns NULL on error. On success, the new stream connector is returned.
*/
struct stconn *sc_new_from_check(struct check *check, unsigned int flags)
{
struct stconn *sc;
sc = sc_new(NULL);
if (unlikely(!sc))
return NULL;
sc->flags |= flags;
sc_ep_set(sc, SE_FL_DETACHED);
sc->app = &check->obj_type;
sc->app_ops = &sc_app_check_ops;
return sc;
}
/* Releases a stconn previously allocated by sc_new(), as well as its
* endpoint, if it exists. This function is called internally or on error path.
*/
void sc_free(struct stconn *sc)
{
sockaddr_free(&sc->src);
sockaddr_free(&sc->dst);
if (sc->sedesc) {
BUG_ON(!sc_ep_test(sc, SE_FL_DETACHED));
sedesc_free(sc->sedesc);
}
tasklet_free(sc->wait_event.tasklet);
pool_free(pool_head_connstream, sc);
}
/* Conditionally removes a stream connector if it is detached and if there is no app
* layer defined. Except on error path, this one must be used. if release, the
* pointer on the SC is set to NULL.
*/
static void sc_free_cond(struct stconn **scp)
{
struct stconn *sc = *scp;
if (!sc->app && (!sc->sedesc || sc_ep_test(sc, SE_FL_DETACHED))) {
sc_free(sc);
*scp = NULL;
}
}
/* Attaches a stconn to a mux endpoint and sets the endpoint ctx. Returns
* -1 on error and 0 on success. SE_FL_DETACHED flag is removed. This function is
* called from a mux when it is attached to a stream or a health-check.
*/
int sc_attach_mux(struct stconn *sc, void *sd, void *ctx)
{
struct connection *conn = ctx;
struct sedesc *sedesc = sc->sedesc;
if (sc_strm(sc)) {
if (!sc->wait_event.tasklet) {
sc->wait_event.tasklet = tasklet_new();
if (!sc->wait_event.tasklet)
return -1;
sc->wait_event.tasklet->process = sc_conn_io_cb;
sc->wait_event.tasklet->context = sc;
sc->wait_event.events = 0;
}
sc->app_ops = &sc_app_conn_ops;
xref_create(&sc->sedesc->xref, &sc_opposite(sc)->sedesc->xref);
}
else if (sc_check(sc)) {
if (!sc->wait_event.tasklet) {
sc->wait_event.tasklet = tasklet_new();
if (!sc->wait_event.tasklet)
return -1;
sc->wait_event.tasklet->process = srv_chk_io_cb;
sc->wait_event.tasklet->context = sc;
sc->wait_event.events = 0;
}
sc->app_ops = &sc_app_check_ops;
}
sedesc->se = sd;
sedesc->conn = ctx;
se_fl_set(sedesc, SE_FL_T_MUX);
se_fl_clr(sedesc, SE_FL_DETACHED);
if (!conn->ctx)
conn->ctx = sc;
return 0;
}
/* Attaches a stconn to an applet endpoint and sets the endpoint
* ctx. Returns -1 on error and 0 on success. SE_FL_DETACHED flag is
* removed. This function is called by a stream when a backend applet is
* registered.
*/
static void sc_attach_applet(struct stconn *sc, void *sd)
{
sc->sedesc->se = sd;
sc_ep_set(sc, SE_FL_T_APPLET);
sc_ep_clr(sc, SE_FL_DETACHED);
if (sc_strm(sc)) {
sc->app_ops = &sc_app_applet_ops;
xref_create(&sc->sedesc->xref, &sc_opposite(sc)->sedesc->xref);
}
}
/* Attaches a stconn to a app layer and sets the relevant
* callbacks. Returns -1 on error and 0 on success. SE_FL_ORPHAN flag is
* removed. This function is called by a stream when it is created to attach it
* on the stream connector on the client side.
*/
int sc_attach_strm(struct stconn *sc, struct stream *strm)
{
sc->app = &strm->obj_type;
sc_ep_clr(sc, SE_FL_ORPHAN);
sc_ep_report_read_activity(sc);
if (sc_ep_test(sc, SE_FL_T_MUX)) {
sc->wait_event.tasklet = tasklet_new();
if (!sc->wait_event.tasklet)
return -1;
sc->wait_event.tasklet->process = sc_conn_io_cb;
sc->wait_event.tasklet->context = sc;
sc->wait_event.events = 0;
sc->app_ops = &sc_app_conn_ops;
}
else if (sc_ep_test(sc, SE_FL_T_APPLET)) {
sc->app_ops = &sc_app_applet_ops;
}
else {
sc->app_ops = &sc_app_embedded_ops;
}
return 0;
}
/* Detaches the stconn from the endpoint, if any. For a connecrion, if a
* mux owns the connection ->detach() callback is called. Otherwise, it means
* the stream connector owns the connection. In this case the connection is closed
* and released. For an applet, the appctx is released. If still allocated, the
* endpoint is reset and flag as detached. If the app layer is also detached,
* the stream connector is released.
*/
static void sc_detach_endp(struct stconn **scp)
{
struct stconn *sc = *scp;
struct xref *peer;
if (!sc)
return;
/* Remove my link in the original objects. */
peer = xref_get_peer_and_lock(&sc->sedesc->xref);
if (peer)
xref_disconnect(&sc->sedesc->xref, peer);
if (sc_ep_test(sc, SE_FL_T_MUX)) {
struct connection *conn = __sc_conn(sc);
struct sedesc *sedesc = sc->sedesc;
if (conn->mux) {
if (sc->wait_event.events != 0)
conn->mux->unsubscribe(sc, sc->wait_event.events, &sc->wait_event);
se_fl_set(sedesc, SE_FL_ORPHAN);
sedesc->sc = NULL;
sc->sedesc = NULL;
conn->mux->detach(sedesc);
}
else {
/* It's too early to have a mux, let's just destroy
* the connection
*/
conn_stop_tracking(conn);
conn_full_close(conn);
if (conn->destroy_cb)
conn->destroy_cb(conn);
conn_free(conn);
}
}
else if (sc_ep_test(sc, SE_FL_T_APPLET)) {
struct appctx *appctx = __sc_appctx(sc);
sc_ep_set(sc, SE_FL_ORPHAN);
sc->sedesc->sc = NULL;
sc->sedesc = NULL;
appctx_shut(appctx);
appctx_free(appctx);
}
if (sc->sedesc) {
/* the SD wasn't used and can be recycled */
sc->sedesc->se = NULL;
sc->sedesc->conn = NULL;
sc->sedesc->flags = 0;
sc_ep_set(sc, SE_FL_DETACHED);
}
/* FIXME: Rest SC for now but must be reviewed. SC flags are only
* connection related for now but this will evolved
*/
sc->flags &= SC_FL_ISBACK;
if (sc_strm(sc))
sc->app_ops = &sc_app_embedded_ops;
else
sc->app_ops = NULL;
sc_free_cond(scp);
}
/* Detaches the stconn from the app layer. If there is no endpoint attached
* to the stconn
*/
static void sc_detach_app(struct stconn **scp)
{
struct stconn *sc = *scp;
if (!sc)
return;
sc->app = NULL;
sc->app_ops = NULL;
sockaddr_free(&sc->src);
sockaddr_free(&sc->dst);
tasklet_free(sc->wait_event.tasklet);
sc->wait_event.tasklet = NULL;
sc->wait_event.events = 0;
sc_free_cond(scp);
}
/* Destroy the stconn. It is detached from its endpoint and its
* application. After this call, the stconn must be considered as released.
*/
void sc_destroy(struct stconn *sc)
{
sc_detach_endp(&sc);
sc_detach_app(&sc);
BUG_ON_HOT(sc);
}
/* Resets the stream connector endpoint. It happens when the app layer want to renew
* its endpoint. For a connection retry for instance. If a mux or an applet is
* attached, a new endpoint is created. Returns -1 on error and 0 on success.
*/
int sc_reset_endp(struct stconn *sc)
{
struct sedesc *new_sd;
BUG_ON(!sc->app);
if (!__sc_endp(sc)) {
/* endpoint not attached or attached to a mux with no
* target. Thus the endpoint will not be release but just
* reset. The app is still attached, the sc will not be
* released.
*/
sc_detach_endp(&sc);
return 0;
}
/* allocate the new endpoint first to be able to set error if it
* fails */
new_sd = sedesc_new();
if (!unlikely(new_sd))
return -1;
/* The app is still attached, the sc will not be released */
sc_detach_endp(&sc);
BUG_ON(!sc);
BUG_ON(sc->sedesc);
sc->sedesc = new_sd;
sc->sedesc->sc = sc;
sc_ep_set(sc, SE_FL_DETACHED);
return 0;
}
/* Create an applet to handle a stream connector as a new appctx. The SC will
* wake it up every time it is solicited. The appctx must be deleted by the task
* handler using sc_detach_endp(), possibly from within the function itself.
* It also pre-initializes the applet's context and returns it (or NULL in case
* it could not be allocated).
*/
struct appctx *sc_applet_create(struct stconn *sc, struct applet *app)
{
struct appctx *appctx;
appctx = appctx_new_here(app, sc->sedesc);
if (!appctx)
return NULL;
sc_attach_applet(sc, appctx);
appctx->t->nice = __sc_strm(sc)->task->nice;
applet_need_more_data(appctx);
appctx_wakeup(appctx);
sc->state = SC_ST_RDY;
return appctx;
}
/* Conditionally forward the close to the write side. It return 1 if it can be
* forwarded. It is the caller responsibility to forward the close to the write
* side. Otherwise, 0 is returned. In this case, SC_FL_SHUT_WANTED flag may be set on
* the consumer SC if we are only waiting for the outgoing data to be flushed.
*/
static inline int sc_cond_forward_shut(struct stconn *sc)
{
/* The close must not be forwarded */
if (!(sc->flags & (SC_FL_EOS|SC_FL_ABRT_DONE)) || !(sc->flags & SC_FL_NOHALF))
return 0;
if (!channel_is_empty(sc_ic(sc)) && !(sc_ic(sc)->flags & CF_WRITE_TIMEOUT)) {
/* the shutdown cannot be forwarded now because
* we should flush outgoing data first. But instruct the output
* channel it should be done ASAP.
*/
sc_schedule_shutdown(sc);
return 0;
}
/* the close can be immediately forwarded to the write side */
return 1;
}
/*
* This function performs a shutdown-read on a detached stream connector in a
* connected or init state (it does nothing for other states). It either shuts
* the read side or marks itself as closed. The buffer flags are updated to
* reflect the new state. If the stream connector has SC_FL_NOHALF, we also
* forward the close to the write side. The owner task is woken up if it exists.
*/
static void sc_app_abort(struct stconn *sc)
{
struct channel *ic = sc_ic(sc);
if (sc->flags & (SC_FL_EOS|SC_FL_ABRT_DONE))
return;
sc->flags |= SC_FL_ABRT_DONE;
ic->flags |= CF_READ_EVENT;
if (!sc_state_in(sc->state, SC_SB_CON|SC_SB_RDY|SC_SB_EST))
return;
if (sc->flags & SC_FL_SHUT_DONE) {
sc->state = SC_ST_DIS;
if (sc->flags & SC_FL_ISBACK)
__sc_strm(sc)->conn_exp = TICK_ETERNITY;
}
else if (sc_cond_forward_shut(sc))
return sc_app_shut(sc);
/* note that if the task exists, it must unregister itself once it runs */
if (!(sc->flags & SC_FL_DONT_WAKE))
task_wakeup(sc_strm_task(sc), TASK_WOKEN_IO);
}
/*
* This function performs a shutdown-write on a detached stream connector in a
* connected or init state (it does nothing for other states). It either shuts
* the write side or marks itself as closed. The buffer flags are updated to
* reflect the new state. It does also close everything if the SC was marked as
* being in error state. The owner task is woken up if it exists.
*/
static void sc_app_shut(struct stconn *sc)
{
struct channel *ic = sc_ic(sc);
struct channel *oc = sc_oc(sc);
sc->flags &= ~SC_FL_SHUT_WANTED;
if (sc->flags & SC_FL_SHUT_DONE)
return;
sc->flags |= SC_FL_SHUT_DONE;
oc->flags |= CF_WRITE_EVENT;
sc_set_hcto(sc);
switch (sc->state) {
case SC_ST_RDY:
case SC_ST_EST:
/* we have to shut before closing, otherwise some short messages
* may never leave the system, especially when there are remaining
* unread data in the socket input buffer, or when nolinger is set.
* However, if SC_FL_NOLINGER is explicitly set, we know there is
* no risk so we close both sides immediately.
*/
if (!(sc->flags & (SC_FL_ERROR|SC_FL_NOLINGER|SC_FL_EOS|SC_FL_ABRT_DONE)) &&
!(ic->flags & CF_DONT_READ))
return;
__fallthrough;
case SC_ST_CON:
case SC_ST_CER:
case SC_ST_QUE:
case SC_ST_TAR:
/* Note that none of these states may happen with applets */
sc->state = SC_ST_DIS;
__fallthrough;
default:
sc->flags &= ~SC_FL_NOLINGER;
sc->flags |= SC_FL_ABRT_DONE;
if (sc->flags & SC_FL_ISBACK)
__sc_strm(sc)->conn_exp = TICK_ETERNITY;
}
/* note that if the task exists, it must unregister itself once it runs */
if (!(sc->flags & SC_FL_DONT_WAKE))
task_wakeup(sc_strm_task(sc), TASK_WOKEN_IO);
}
/* default chk_rcv function for scheduled tasks */
static void sc_app_chk_rcv(struct stconn *sc)
{
struct channel *ic = sc_ic(sc);
if (ic->pipe) {
/* stop reading */
sc_need_room(sc, -1);
}
else {
/* (re)start reading */
if (!(sc->flags & SC_FL_DONT_WAKE))
task_wakeup(sc_strm_task(sc), TASK_WOKEN_IO);
}
}
/* default chk_snd function for scheduled tasks */
static void sc_app_chk_snd(struct stconn *sc)
{
struct channel *oc = sc_oc(sc);
if (unlikely(sc->state != SC_ST_EST || (sc->flags & SC_FL_SHUT_DONE)))
return;
if (!sc_ep_test(sc, SE_FL_WAIT_DATA) || /* not waiting for data */
channel_is_empty(oc)) /* called with nothing to send ! */
return;
/* Otherwise there are remaining data to be sent in the buffer,
* so we tell the handler.
*/
sc_ep_clr(sc, SE_FL_WAIT_DATA);
if (!(sc->flags & SC_FL_DONT_WAKE))
task_wakeup(sc_strm_task(sc), TASK_WOKEN_IO);
}
/*
* This function performs a shutdown-read on a stream connector attached to
* a connection in a connected or init state (it does nothing for other
* states). It either shuts the read side or marks itself as closed. The buffer
* flags are updated to reflect the new state. If the stream connector has
* SC_FL_NOHALF, we also forward the close to the write side. If a control
* layer is defined, then it is supposed to be a socket layer and file
* descriptors are then shutdown or closed accordingly. The function
* automatically disables polling if needed.
*/
static void sc_app_abort_conn(struct stconn *sc)
{
struct channel *ic = sc_ic(sc);
BUG_ON(!sc_conn(sc));
if (sc->flags & (SC_FL_EOS|SC_FL_ABRT_DONE))
return;
sc->flags |= SC_FL_ABRT_DONE;
ic->flags |= CF_READ_EVENT;
if (!sc_state_in(sc->state, SC_SB_CON|SC_SB_RDY|SC_SB_EST))
return;
if (sc->flags & SC_FL_SHUT_DONE) {
sc_conn_shut(sc);
sc->state = SC_ST_DIS;
if (sc->flags & SC_FL_ISBACK)
__sc_strm(sc)->conn_exp = TICK_ETERNITY;
}
else if (sc_cond_forward_shut(sc))
return sc_app_shut_conn(sc);
}
/*
* This function performs a shutdown-write on a stream connector attached to
* a connection in a connected or init state (it does nothing for other
* states). It either shuts the write side or marks itself as closed. The
* buffer flags are updated to reflect the new state. It does also close
* everything if the SC was marked as being in error state. If there is a
* data-layer shutdown, it is called.
*/
static void sc_app_shut_conn(struct stconn *sc)
{
struct channel *ic = sc_ic(sc);
struct channel *oc = sc_oc(sc);
BUG_ON(!sc_conn(sc));
sc->flags &= ~SC_FL_SHUT_WANTED;
if (sc->flags & SC_FL_SHUT_DONE)
return;
sc->flags |= SC_FL_SHUT_DONE;
oc->flags |= CF_WRITE_EVENT;
sc_set_hcto(sc);
switch (sc->state) {
case SC_ST_RDY:
case SC_ST_EST:
/* we have to shut before closing, otherwise some short messages
* may never leave the system, especially when there are remaining
* unread data in the socket input buffer, or when nolinger is set.
* However, if SC_FL_NOLINGER is explicitly set, we know there is
* no risk so we close both sides immediately.
*/
if (sc->flags & SC_FL_ERROR) {
/* quick close, the socket is already shut anyway */
}
else if (sc->flags & SC_FL_NOLINGER) {
/* unclean data-layer shutdown, typically an aborted request
* or a forwarded shutdown from a client to a server due to
* option abortonclose. No need for the TLS layer to try to
* emit a shutdown message.
*/
sc_conn_shutw(sc, CO_SHW_SILENT);
}
else {
/* clean data-layer shutdown. This only happens on the
* frontend side, or on the backend side when forwarding
* a client close in TCP mode or in HTTP TUNNEL mode
* while option abortonclose is set. We want the TLS
* layer to try to signal it to the peer before we close.
*/
sc_conn_shutw(sc, CO_SHW_NORMAL);
if (!(sc->flags & (SC_FL_EOS|SC_FL_ABRT_DONE)) && !(ic->flags & CF_DONT_READ))
return;
}
__fallthrough;
case SC_ST_CON:
/* we may have to close a pending connection, and mark the
* response buffer as abort
*/
sc_conn_shut(sc);
__fallthrough;
case SC_ST_CER:
case SC_ST_QUE:
case SC_ST_TAR:
sc->state = SC_ST_DIS;
__fallthrough;
default:
sc->flags &= ~SC_FL_NOLINGER;
sc->flags |= SC_FL_ABRT_DONE;
if (sc->flags & SC_FL_ISBACK)
__sc_strm(sc)->conn_exp = TICK_ETERNITY;
}
}
/* This function is used for inter-stream connector calls. It is called by the
* consumer to inform the producer side that it may be interested in checking
* for free space in the buffer. Note that it intentionally does not update
* timeouts, so that we can still check them later at wake-up. This function is
* dedicated to connection-based stream connectors.
*/
static void sc_app_chk_rcv_conn(struct stconn *sc)
{
BUG_ON(!sc_conn(sc));
/* (re)start reading */
if (sc_state_in(sc->state, SC_SB_CON|SC_SB_RDY|SC_SB_EST))
tasklet_wakeup(sc->wait_event.tasklet);
}
/* This function is used for inter-stream connector calls. It is called by the
* producer to inform the consumer side that it may be interested in checking
* for data in the buffer. Note that it intentionally does not update timeouts,
* so that we can still check them later at wake-up.
*/
static void sc_app_chk_snd_conn(struct stconn *sc)
{
struct channel *oc = sc_oc(sc);
BUG_ON(!sc_conn(sc));
if (unlikely(!sc_state_in(sc->state, SC_SB_RDY|SC_SB_EST) ||
(sc->flags & SC_FL_SHUT_DONE)))
return;
if (unlikely(channel_is_empty(oc))) /* called with nothing to send ! */
return;
if (!oc->pipe && /* spliced data wants to be forwarded ASAP */
!sc_ep_test(sc, SE_FL_WAIT_DATA)) /* not waiting for data */
return;
if (!(sc->wait_event.events & SUB_RETRY_SEND) && !channel_is_empty(sc_oc(sc)))
sc_conn_send(sc);
if (sc_ep_test(sc, SE_FL_ERROR | SE_FL_ERR_PENDING) || sc_is_conn_error(sc)) {
/* Write error on the file descriptor */
BUG_ON(sc_ep_test(sc, SE_FL_EOS|SE_FL_ERROR|SE_FL_ERR_PENDING) == (SE_FL_EOS|SE_FL_ERR_PENDING));
goto out_wakeup;
}
/* OK, so now we know that some data might have been sent, and that we may
* have to poll first. We have to do that too if the buffer is not empty.
*/
if (channel_is_empty(oc)) {
/* the connection is established but we can't write. Either the
* buffer is empty, or we just refrain from sending because the
* ->o limit was reached. Maybe we just wrote the last
* chunk and need to close.
*/
if ((oc->flags & CF_AUTO_CLOSE) &&
((sc->flags & (SC_FL_SHUT_DONE|SC_FL_SHUT_WANTED)) == SC_FL_SHUT_WANTED) &&
sc_state_in(sc->state, SC_SB_RDY|SC_SB_EST)) {
sc_shutdown(sc);
goto out_wakeup;
}
if ((sc->flags & (SC_FL_SHUT_DONE|SC_FL_SHUT_WANTED)) == 0)
sc_ep_set(sc, SE_FL_WAIT_DATA);
}
else {
/* Otherwise there are remaining data to be sent in the buffer,
* which means we have to poll before doing so.
*/
sc_ep_clr(sc, SE_FL_WAIT_DATA);
}
/* in case of special condition (error, shutdown, end of write...), we
* have to notify the task.
*/
if (likely((sc->flags & SC_FL_SHUT_DONE) ||
((oc->flags & CF_WRITE_EVENT) && sc->state < SC_ST_EST) ||
((oc->flags & CF_WAKE_WRITE) &&
((channel_is_empty(oc) && !oc->to_forward) ||
!sc_state_in(sc->state, SC_SB_EST))))) {
out_wakeup:
if (!(sc->flags & SC_FL_DONT_WAKE))
task_wakeup(sc_strm_task(sc), TASK_WOKEN_IO);
}
}
/*
* This function performs a shutdown-read on a stream connector attached to an
* applet in a connected or init state (it does nothing for other states). It
* either shuts the read side or marks itself as closed. The buffer flags are
* updated to reflect the new state. If the stream connector has SC_FL_NOHALF,
* we also forward the close to the write side. The owner task is woken up if
* it exists.
*/
static void sc_app_abort_applet(struct stconn *sc)
{
struct channel *ic = sc_ic(sc);
BUG_ON(!sc_appctx(sc));
if (sc->flags & (SC_FL_EOS|SC_FL_ABRT_DONE))
return;
sc->flags |= SC_FL_ABRT_DONE;
ic->flags |= CF_READ_EVENT;
/* Note: on abort, we don't call the applet */
if (!sc_state_in(sc->state, SC_SB_CON|SC_SB_RDY|SC_SB_EST))
return;
if (sc->flags & SC_FL_SHUT_DONE) {
appctx_shut(__sc_appctx(sc));
sc->state = SC_ST_DIS;
if (sc->flags & SC_FL_ISBACK)
__sc_strm(sc)->conn_exp = TICK_ETERNITY;
}
else if (sc_cond_forward_shut(sc))
return sc_app_shut_applet(sc);
}
/*
* This function performs a shutdown-write on a stream connector attached to an
* applet in a connected or init state (it does nothing for other states). It
* either shuts the write side or marks itself as closed. The buffer flags are
* updated to reflect the new state. It does also close everything if the SI
* was marked as being in error state. The owner task is woken up if it exists.
*/
static void sc_app_shut_applet(struct stconn *sc)
{
struct channel *ic = sc_ic(sc);
struct channel *oc = sc_oc(sc);
BUG_ON(!sc_appctx(sc));
sc->flags &= ~SC_FL_SHUT_WANTED;
if (sc->flags & SC_FL_SHUT_DONE)
return;
sc->flags |= SC_FL_SHUT_DONE;
oc->flags |= CF_WRITE_EVENT;
sc_set_hcto(sc);
/* on shutw we always wake the applet up */
appctx_wakeup(__sc_appctx(sc));
switch (sc->state) {
case SC_ST_RDY:
case SC_ST_EST:
/* we have to shut before closing, otherwise some short messages
* may never leave the system, especially when there are remaining
* unread data in the socket input buffer, or when nolinger is set.
* However, if SC_FL_NOLINGER is explicitly set, we know there is
* no risk so we close both sides immediately.
*/
if (!(sc->flags & (SC_FL_ERROR|SC_FL_NOLINGER|SC_FL_EOS|SC_FL_ABRT_DONE)) &&
!(ic->flags & CF_DONT_READ))
return;
__fallthrough;
case SC_ST_CON:
case SC_ST_CER:
case SC_ST_QUE:
case SC_ST_TAR:
/* Note that none of these states may happen with applets */
appctx_shut(__sc_appctx(sc));
sc->state = SC_ST_DIS;
__fallthrough;
default:
sc->flags &= ~SC_FL_NOLINGER;
sc->flags |= SC_FL_ABRT_DONE;
if (sc->flags & SC_FL_ISBACK)
__sc_strm(sc)->conn_exp = TICK_ETERNITY;
}
}
/* chk_rcv function for applets */
static void sc_app_chk_rcv_applet(struct stconn *sc)
{
struct channel *ic = sc_ic(sc);
BUG_ON(!sc_appctx(sc));
if (!ic->pipe) {
/* (re)start reading */
appctx_wakeup(__sc_appctx(sc));
}
}
/* chk_snd function for applets */
static void sc_app_chk_snd_applet(struct stconn *sc)
{
struct channel *oc = sc_oc(sc);
BUG_ON(!sc_appctx(sc));
if (unlikely(sc->state != SC_ST_EST || (sc->flags & SC_FL_SHUT_DONE)))
return;
/* we only wake the applet up if it was waiting for some data and is ready to consume it */
if (!sc_ep_test(sc, SE_FL_WAIT_DATA|SE_FL_WONT_CONSUME))
return;
if (!channel_is_empty(oc)) {
/* (re)start sending */
appctx_wakeup(__sc_appctx(sc));
}
}
/* This function is designed to be called from within the stream handler to
* update the input channel's expiration timer and the stream connector's
* Rx flags based on the channel's flags. It needs to be called only once
* after the channel's flags have settled down, and before they are cleared,
* though it doesn't harm to call it as often as desired (it just slightly
* hurts performance). It must not be called from outside of the stream
* handler, as what it does will be used to compute the stream task's
* expiration.
*/
void sc_update_rx(struct stconn *sc)
{
struct channel *ic = sc_ic(sc);
if (sc->flags & (SC_FL_EOS|SC_FL_ABRT_DONE))
return;
/* Unblock the SC if it needs room and the free space is large enough (0
* means it can always be unblocked). Do not unblock it if -1 was
* specified.
*/
if (!sc->room_needed || (sc->room_needed > 0 && channel_recv_max(ic) >= sc->room_needed))
sc_have_room(sc);
/* Read not closed, update FD status and timeout for reads */
if (ic->flags & CF_DONT_READ)
sc_wont_read(sc);
else
sc_will_read(sc);
sc_chk_rcv(sc);
}
/* This function is designed to be called from within the stream handler to
* update the output channel's expiration timer and the stream connector's
* Tx flags based on the channel's flags. It needs to be called only once
* after the channel's flags have settled down, and before they are cleared,
* though it doesn't harm to call it as often as desired (it just slightly
* hurts performance). It must not be called from outside of the stream
* handler, as what it does will be used to compute the stream task's
* expiration.
*/
void sc_update_tx(struct stconn *sc)
{
struct channel *oc = sc_oc(sc);
if (sc->flags & SC_FL_SHUT_DONE)
return;
/* Write not closed, update FD status and timeout for writes */
if (channel_is_empty(oc)) {
/* stop writing */
if (!sc_ep_test(sc, SE_FL_WAIT_DATA)) {
if ((sc->flags & SC_FL_SHUT_WANTED) == 0)
sc_ep_set(sc, SE_FL_WAIT_DATA);
}
return;
}
/* (re)start writing */
sc_ep_clr(sc, SE_FL_WAIT_DATA);
}
/* This function is the equivalent to sc_update() except that it's
* designed to be called from outside the stream handlers, typically the lower
* layers (applets, connections) after I/O completion. After updating the stream
* interface and timeouts, it will try to forward what can be forwarded, then to
* wake the associated task up if an important event requires special handling.
* It may update SE_FL_WAIT_DATA and/or SC_FL_NEED_ROOM, that the callers are
* encouraged to watch to take appropriate action.
* It should not be called from within the stream itself, sc_update()
* is designed for this.
*/
static void sc_notify(struct stconn *sc)
{
struct channel *ic = sc_ic(sc);
struct channel *oc = sc_oc(sc);
struct stconn *sco = sc_opposite(sc);
struct task *task = sc_strm_task(sc);
/* process consumer side */
if (channel_is_empty(oc)) {
struct connection *conn = sc_conn(sc);
if (((sc->flags & (SC_FL_SHUT_DONE|SC_FL_SHUT_WANTED)) == SC_FL_SHUT_WANTED) &&
(sc->state == SC_ST_EST) && (!conn || !(conn->flags & (CO_FL_WAIT_XPRT | CO_FL_EARLY_SSL_HS))))
sc_shutdown(sc);
}
/* indicate that we may be waiting for data from the output channel or
* we're about to close and can't expect more data if SC_FL_SHUT_WANTED is there.
*/
if (!(sc->flags & (SC_FL_SHUT_DONE|SC_FL_SHUT_WANTED)))
sc_ep_set(sc, SE_FL_WAIT_DATA);
else if ((sc->flags & (SC_FL_SHUT_DONE|SC_FL_SHUT_WANTED)) == SC_FL_SHUT_WANTED)
sc_ep_clr(sc, SE_FL_WAIT_DATA);
if (oc->flags & CF_DONT_READ)
sc_wont_read(sco);
else
sc_will_read(sco);
/* Notify the other side when we've injected data into the IC that
* needs to be forwarded. We can do fast-forwarding as soon as there
* are output data, but we avoid doing this if some of the data are
* not yet scheduled for being forwarded, because it is very likely
* that it will be done again immediately afterwards once the following
* data are parsed (eg: HTTP chunking). We only clear SC_FL_NEED_ROOM
* once we've emptied *some* of the output buffer, and not just when
* there is available room, because applets are often forced to stop
* before the buffer is full. We must not stop based on input data
* alone because an HTTP parser might need more data to complete the
* parsing.
*/
if (!channel_is_empty(ic) &&
sc_ep_test(sco, SE_FL_WAIT_DATA) &&
(!HAS_DATA_FILTERS(__sc_strm(sc), ic) || channel_input_data(ic) == 0) &&
(!(sc->flags & SC_FL_SND_EXP_MORE) || channel_full(ic, co_data(ic)) || channel_input_data(ic) == 0)) {
int new_len, last_len;
last_len = co_data(ic);
if (ic->pipe)
last_len += ic->pipe->data;
sc_chk_snd(sco);
new_len = co_data(ic);
if (ic->pipe)
new_len += ic->pipe->data;
/* check if the consumer has freed some space either in the
* buffer or in the pipe.
*/
if (!sc->room_needed || (new_len < last_len && (sc->room_needed < 0 || channel_recv_max(ic) >= sc->room_needed)))
sc_have_room(sc);
}
if (!(ic->flags & CF_DONT_READ))
sc_will_read(sc);
sc_chk_rcv(sc);
sc_chk_rcv(sco);
/* wake the task up only when needed */
if (/* changes on the production side that must be handled:
* - An error on receipt: SC_FL_ERROR
* - A read event: shutdown for reads (CF_READ_EVENT + EOS/ABRT_DONE)
* end of input (CF_READ_EVENT + SC_FL_EOI)
* data received and no fast-forwarding (CF_READ_EVENT + !to_forward)
* read event while consumer side is not established (CF_READ_EVENT + sco->state != SC_ST_EST)
*/
((ic->flags & CF_READ_EVENT) && ((sc->flags & SC_FL_EOI) || (sc->flags & (SC_FL_EOS|SC_FL_ABRT_DONE)) || !ic->to_forward || sco->state != SC_ST_EST)) ||
(sc->flags & SC_FL_ERROR) ||
/* changes on the consumption side */
sc_ep_test(sc, SE_FL_ERR_PENDING) ||
((oc->flags & CF_WRITE_EVENT) &&
((sc->state < SC_ST_EST) ||
(sc->flags & SC_FL_SHUT_DONE) ||
(((oc->flags & CF_WAKE_WRITE) ||
(!(oc->flags & CF_AUTO_CLOSE) &&
!(sc->flags & (SC_FL_SHUT_WANTED|SC_FL_SHUT_DONE)))) &&
(sco->state != SC_ST_EST ||
(channel_is_empty(oc) && !oc->to_forward)))))) {
task_wakeup(task, TASK_WOKEN_IO);
}
else {
/* Update expiration date for the task and requeue it if not already expired */
if (!tick_is_expired(task->expire, now_ms)) {
task->expire = tick_first(task->expire, sc_ep_rcv_ex(sc));
task->expire = tick_first(task->expire, sc_ep_snd_ex(sc));
task->expire = tick_first(task->expire, sc_ep_rcv_ex(sco));
task->expire = tick_first(task->expire, sc_ep_snd_ex(sco));
task->expire = tick_first(task->expire, ic->analyse_exp);
task->expire = tick_first(task->expire, oc->analyse_exp);
task->expire = tick_first(task->expire, __sc_strm(sc)->conn_exp);
task_queue(task);
}
}
if (ic->flags & CF_READ_EVENT)
sc->flags &= ~SC_FL_RCV_ONCE;
}
/*
* This function propagates an end-of-stream received on a socket-based connection.
* It updates the stream connector. If the stream connector has SC_FL_NOHALF,
* the close is also forwarded to the write side as an abort.
*/
static void sc_conn_eos(struct stconn *sc)
{
struct channel *ic = sc_ic(sc);
BUG_ON(!sc_conn(sc));
if (sc->flags & (SC_FL_EOS|SC_FL_ABRT_DONE))
return;
sc->flags |= SC_FL_EOS;
ic->flags |= CF_READ_EVENT;
sc_ep_report_read_activity(sc);
if (!sc_state_in(sc->state, SC_SB_CON|SC_SB_RDY|SC_SB_EST))
return;
if (sc->flags & SC_FL_SHUT_DONE)
goto do_close;
if (sc_cond_forward_shut(sc)) {
/* we want to immediately forward this close to the write side */
/* force flag on ssl to keep stream in cache */
sc_conn_shutw(sc, CO_SHW_SILENT);
goto do_close;
}
/* otherwise that's just a normal read shutdown */
return;
do_close:
/* OK we completely close the socket here just as if we went through sc_shut[rw]() */
sc_conn_shut(sc);
sc->flags &= ~SC_FL_SHUT_WANTED;
sc->flags |= SC_FL_SHUT_DONE;
sc->state = SC_ST_DIS;
if (sc->flags & SC_FL_ISBACK)
__sc_strm(sc)->conn_exp = TICK_ETERNITY;
return;
}
/*
* This is the callback which is called by the connection layer to receive data
* into the buffer from the connection. It iterates over the mux layer's
* rcv_buf function.
*/
static int sc_conn_recv(struct stconn *sc)
{
struct connection *conn = __sc_conn(sc);
struct channel *ic = sc_ic(sc);
int ret, max, cur_read = 0;
int read_poll = MAX_READ_POLL_LOOPS;
int flags = 0;
/* If not established yet, do nothing. */
if (sc->state != SC_ST_EST)
return 0;
/* If another call to sc_conn_recv() failed, and we subscribed to
* recv events already, give up now.
*/
if ((sc->wait_event.events & SUB_RETRY_RECV) || sc_waiting_room(sc))
return 0;
/* maybe we were called immediately after an asynchronous abort */
if (sc->flags & (SC_FL_EOS|SC_FL_ABRT_DONE))
return 1;
/* we must wait because the mux is not installed yet */
if (!conn->mux)
return 0;
/* stop immediately on errors. Note that we DON'T want to stop on
* POLL_ERR, as the poller might report a write error while there
* are still data available in the recv buffer. This typically
* happens when we send too large a request to a backend server
* which rejects it before reading it all.
*/
if (!sc_ep_test(sc, SE_FL_RCV_MORE)) {
if (!conn_xprt_ready(conn))
return 0;
if (sc_ep_test(sc, SE_FL_ERROR))
goto end_recv;
}
/* prepare to detect if the mux needs more room */
sc_ep_clr(sc, SE_FL_WANT_ROOM);
if ((ic->flags & (CF_STREAMER | CF_STREAMER_FAST)) && !co_data(ic) &&
global.tune.idle_timer &&
(unsigned short)(now_ms - ic->last_read) >= global.tune.idle_timer) {
/* The buffer was empty and nothing was transferred for more
* than one second. This was caused by a pause and not by
* congestion. Reset any streaming mode to reduce latency.
*/
ic->xfer_small = 0;
ic->xfer_large = 0;
ic->flags &= ~(CF_STREAMER | CF_STREAMER_FAST);
}
/* First, let's see if we may splice data across the channel without
* using a buffer.
*/
if (sc_ep_test(sc, SE_FL_MAY_SPLICE) &&
(ic->pipe || ic->to_forward >= MIN_SPLICE_FORWARD) &&
ic->flags & CF_KERN_SPLICING) {
if (channel_data(ic)) {
/* We're embarrassed, there are already data pending in
* the buffer and we don't want to have them at two
* locations at a time. Let's indicate we need some
* place and ask the consumer to hurry.
*/
flags |= CO_RFL_BUF_FLUSH;
goto abort_splice;
}
if (unlikely(ic->pipe == NULL)) {
if (pipes_used >= global.maxpipes || !(ic->pipe = get_pipe())) {
ic->flags &= ~CF_KERN_SPLICING;
goto abort_splice;
}
}
ret = conn->mux->rcv_pipe(sc, ic->pipe, ic->to_forward);
if (ret < 0) {
/* splice not supported on this end, let's disable it */
ic->flags &= ~CF_KERN_SPLICING;
goto abort_splice;
}
if (ret > 0) {
if (ic->to_forward != CHN_INFINITE_FORWARD)
ic->to_forward -= ret;
ic->total += ret;
cur_read += ret;
ic->flags |= CF_READ_EVENT;
}
if (sc_ep_test(sc, SE_FL_EOS | SE_FL_ERROR))
goto end_recv;
if (conn->flags & CO_FL_WAIT_ROOM) {
/* the pipe is full or we have read enough data that it
* could soon be full. Let's stop before needing to poll.
*/
sc_need_room(sc, 0);
goto done_recv;
}
/* splice not possible (anymore), let's go on on standard copy */
}
abort_splice:
if (ic->pipe && unlikely(!ic->pipe->data)) {
put_pipe(ic->pipe);
ic->pipe = NULL;
}
if (ic->pipe && ic->to_forward && !(flags & CO_RFL_BUF_FLUSH) && sc_ep_test(sc, SE_FL_MAY_SPLICE)) {
/* don't break splicing by reading, but still call rcv_buf()
* to pass the flag.
*/
goto done_recv;
}
/* now we'll need a input buffer for the stream */
if (!sc_alloc_ibuf(sc, &(__sc_strm(sc)->buffer_wait)))
goto end_recv;
/* For an HTX stream, if the buffer is stuck (no output data with some
* input data) and if the HTX message is fragmented or if its free space
* wraps, we force an HTX deframentation. It is a way to have a
* contiguous free space nad to let the mux to copy as much data as
* possible.
*
* NOTE: A possible optim may be to let the mux decides if defrag is
* required or not, depending on amount of data to be xferred.
*/
if (IS_HTX_STRM(__sc_strm(sc)) && !co_data(ic)) {
struct htx *htx = htxbuf(&ic->buf);
if (htx_is_not_empty(htx) && ((htx->flags & HTX_FL_FRAGMENTED) || htx_space_wraps(htx)))
htx_defrag(htx, NULL, 0);
}
/* Instruct the mux it must subscribed for read events */
if (!conn_is_back(conn) && /* for frontend conns only */
(sc_opposite(sc)->state != SC_ST_INI) && /* before backend connection setup */
(__sc_strm(sc)->be->options & PR_O_ABRT_CLOSE)) /* if abortonclose option is set for the current backend */
flags |= CO_RFL_KEEP_RECV;
/* Important note : if we're called with POLL_IN|POLL_HUP, it means the read polling
* was enabled, which implies that the recv buffer was not full. So we have a guarantee
* that if such an event is not handled above in splice, it will be handled here by
* recv().
*/
while (sc_ep_test(sc, SE_FL_RCV_MORE) ||
(!(conn->flags & CO_FL_HANDSHAKE) &&
(!sc_ep_test(sc, SE_FL_ERROR | SE_FL_EOS)) && !(sc->flags & (SC_FL_EOS|SC_FL_ABRT_DONE)))) {
int cur_flags = flags;
/* Compute transient CO_RFL_* flags */
if (co_data(ic)) {
cur_flags |= (CO_RFL_BUF_WET | CO_RFL_BUF_NOT_STUCK);
}
/* <max> may be null. This is the mux responsibility to set
* SE_FL_RCV_MORE on the SC if more space is needed.
*/
max = channel_recv_max(ic);
ret = conn->mux->rcv_buf(sc, &ic->buf, max, cur_flags);
if (sc_ep_test(sc, SE_FL_WANT_ROOM)) {
/* SE_FL_WANT_ROOM must not be reported if the channel's
* buffer is empty.
*/
BUG_ON(c_empty(ic));
sc_need_room(sc, channel_recv_max(ic) + 1);
/* Add READ_PARTIAL because some data are pending but
* cannot be xferred to the channel
*/
ic->flags |= CF_READ_EVENT;
sc_ep_report_read_activity(sc);
}
if (ret <= 0) {
/* if we refrained from reading because we asked for a
* flush to satisfy rcv_pipe(), we must not subscribe
* and instead report that there's not enough room
* here to proceed.
*/
if (flags & CO_RFL_BUF_FLUSH)
sc_need_room(sc, -1);
break;
}
cur_read += ret;
/* if we're allowed to directly forward data, we must update ->o */
if (ic->to_forward && !(sc_opposite(sc)->flags & (SC_FL_SHUT_DONE|SC_FL_SHUT_WANTED))) {
unsigned long fwd = ret;
if (ic->to_forward != CHN_INFINITE_FORWARD) {
if (fwd > ic->to_forward)
fwd = ic->to_forward;
ic->to_forward -= fwd;
}
c_adv(ic, fwd);
}
ic->flags |= CF_READ_EVENT;
ic->total += ret;
/* End-of-input reached, we can leave. In this case, it is
* important to break the loop to not block the SC because of
* the channel's policies.This way, we are still able to receive
* shutdowns.
*/
if (sc_ep_test(sc, SE_FL_EOI))
break;
if ((sc->flags & SC_FL_RCV_ONCE) || --read_poll <= 0) {
/* we don't expect to read more data */
sc_wont_read(sc);
break;
}
/* if too many bytes were missing from last read, it means that
* it's pointless trying to read again because the system does
* not have them in buffers.
*/
if (ret < max) {
/* if a streamer has read few data, it may be because we
* have exhausted system buffers. It's not worth trying
* again.
*/
if (ic->flags & CF_STREAMER) {
/* we're stopped by the channel's policy */
sc_wont_read(sc);
break;
}
/* if we read a large block smaller than what we requested,
* it's almost certain we'll never get anything more.
*/
if (ret >= global.tune.recv_enough) {
/* we're stopped by the channel's policy */
sc_wont_read(sc);
break;
}
}
/* if we are waiting for more space, don't try to read more data
* right now.
*/
if (sc->flags & (SC_FL_WONT_READ|SC_FL_NEED_BUFF|SC_FL_NEED_ROOM))
break;
} /* while !flags */
done_recv:
if (cur_read) {
if ((ic->flags & (CF_STREAMER | CF_STREAMER_FAST)) &&
(cur_read <= ic->buf.size / 2)) {
ic->xfer_large = 0;
ic->xfer_small++;
if (ic->xfer_small >= 3) {
/* we have read less than half of the buffer in
* one pass, and this happened at least 3 times.
* This is definitely not a streamer.
*/
ic->flags &= ~(CF_STREAMER | CF_STREAMER_FAST);
}
else if (ic->xfer_small >= 2) {
/* if the buffer has been at least half full twice,
* we receive faster than we send, so at least it
* is not a "fast streamer".
*/
ic->flags &= ~CF_STREAMER_FAST;
}
}
else if (!(ic->flags & CF_STREAMER_FAST) && (cur_read >= channel_data_limit(ic))) {
/* we read a full buffer at once */
ic->xfer_small = 0;
ic->xfer_large++;
if (ic->xfer_large >= 3) {
/* we call this buffer a fast streamer if it manages
* to be filled in one call 3 consecutive times.
*/
ic->flags |= (CF_STREAMER | CF_STREAMER_FAST);
}
}
else {
ic->xfer_small = 0;
ic->xfer_large = 0;
}
ic->last_read = now_ms;
sc_ep_report_read_activity(sc);
}
end_recv:
ret = (cur_read != 0);
/* Report EOI on the channel if it was reached from the mux point of
* view. */
if (sc_ep_test(sc, SE_FL_EOI) && !(sc->flags & SC_FL_EOI)) {
sc_ep_report_read_activity(sc);
sc->flags |= SC_FL_EOI;
ic->flags |= CF_READ_EVENT;
ret = 1;
}
if (sc_ep_test(sc, SE_FL_EOS)) {
/* we received a shutdown */
if (ic->flags & CF_AUTO_CLOSE)
sc_schedule_shutdown(sc_opposite(sc));
sc_conn_eos(sc);
ret = 1;
}
if (sc_ep_test(sc, SE_FL_ERROR)) {
sc->flags |= SC_FL_ERROR;
ret = 1;
}
else if (!(sc->flags & (SC_FL_WONT_READ|SC_FL_NEED_BUFF|SC_FL_NEED_ROOM)) &&
!(sc->flags & (SC_FL_EOS|SC_FL_ABRT_DONE))) {
/* Subscribe to receive events if we're blocking on I/O */
conn->mux->subscribe(sc, SUB_RETRY_RECV, &sc->wait_event);
se_have_no_more_data(sc->sedesc);
}
else {
se_have_more_data(sc->sedesc);
ret = 1;
}
return ret;
}
/* This tries to perform a synchronous receive on the stream connector to
* try to collect last arrived data. In practice it's only implemented on
* stconns. Returns 0 if nothing was done, non-zero if new data or a
* shutdown were collected. This may result on some delayed receive calls
* to be programmed and performed later, though it doesn't provide any
* such guarantee.
*/
int sc_conn_sync_recv(struct stconn *sc)
{
if (!sc_state_in(sc->state, SC_SB_RDY|SC_SB_EST))
return 0;
if (!sc_mux_ops(sc))
return 0; // only stconns are supported
if (sc->wait_event.events & SUB_RETRY_RECV)
return 0; // already subscribed
if (!sc_is_recv_allowed(sc))
return 0; // already failed
return sc_conn_recv(sc);
}
/*
* This function is called to send buffer data to a stream socket.
* It calls the mux layer's snd_buf function. It relies on the
* caller to commit polling changes. The caller should check conn->flags
* for errors.
*/
static int sc_conn_send(struct stconn *sc)
{
struct connection *conn = __sc_conn(sc);
struct stconn *sco = sc_opposite(sc);
struct stream *s = __sc_strm(sc);
struct channel *oc = sc_oc(sc);
int ret;
int did_send = 0;
if (sc_ep_test(sc, SE_FL_ERROR | SE_FL_ERR_PENDING) || sc_is_conn_error(sc)) {
/* We're probably there because the tasklet was woken up,
* but process_stream() ran before, detected there were an
* error and put the SC back to SC_ST_TAR. There's still
* CO_FL_ERROR on the connection but we don't want to add
* SE_FL_ERROR back, so give up
*/
if (sc->state < SC_ST_CON)
return 0;
BUG_ON(sc_ep_test(sc, SE_FL_EOS|SE_FL_ERROR|SE_FL_ERR_PENDING) == (SE_FL_EOS|SE_FL_ERR_PENDING));
return 1;
}
/* We're already waiting to be able to send, give up */
if (sc->wait_event.events & SUB_RETRY_SEND)
return 0;
/* we might have been called just after an asynchronous shutw */
if (sc->flags & SC_FL_SHUT_DONE)
return 1;
/* we must wait because the mux is not installed yet */
if (!conn->mux)
return 0;
if (oc->pipe && conn->xprt->snd_pipe && conn->mux->snd_pipe) {
ret = conn->mux->snd_pipe(sc, oc->pipe);
if (ret > 0)
did_send = 1;
if (!oc->pipe->data) {
put_pipe(oc->pipe);
oc->pipe = NULL;
}
if (oc->pipe)
goto end;
}
/* At this point, the pipe is empty, but we may still have data pending
* in the normal buffer.
*/
if (co_data(oc)) {
/* when we're here, we already know that there is no spliced
* data left, and that there are sendable buffered data.
*/
/* check if we want to inform the kernel that we're interested in
* sending more data after this call. We want this if :
* - we're about to close after this last send and want to merge
* the ongoing FIN with the last segment.
* - we know we can't send everything at once and must get back
* here because of unaligned data
* - there is still a finite amount of data to forward
* The test is arranged so that the most common case does only 2
* tests.
*/
unsigned int send_flag = 0;
if ((!(sc->flags & (SC_FL_SND_ASAP|SC_FL_SND_NEVERWAIT)) &&
((oc->to_forward && oc->to_forward != CHN_INFINITE_FORWARD) ||
(sc->flags & SC_FL_SND_EXP_MORE) ||
(IS_HTX_STRM(s) &&
(!(sco->flags & (SC_FL_EOI|SC_FL_EOS|SC_FL_ABRT_DONE)) && htx_expect_more(htxbuf(&oc->buf)))))) ||
((oc->flags & CF_ISRESP) &&
(oc->flags & CF_AUTO_CLOSE) &&
(sc->flags & SC_FL_SHUT_WANTED)))
send_flag |= CO_SFL_MSG_MORE;
if (oc->flags & CF_STREAMER)
send_flag |= CO_SFL_STREAMER;
if (s->txn && s->txn->flags & TX_L7_RETRY && !b_data(&s->txn->l7_buffer)) {
/* If we want to be able to do L7 retries, copy
* the data we're about to send, so that we are able
* to resend them if needed
*/
/* Try to allocate a buffer if we had none.
* If it fails, the next test will just
* disable the l7 retries by setting
* l7_conn_retries to 0.
*/
if (s->txn->req.msg_state != HTTP_MSG_DONE)
s->txn->flags &= ~TX_L7_RETRY;
else {
if (b_alloc(&s->txn->l7_buffer) == NULL)
s->txn->flags &= ~TX_L7_RETRY;
else {
memcpy(b_orig(&s->txn->l7_buffer),
b_orig(&oc->buf),
b_size(&oc->buf));
s->txn->l7_buffer.head = co_data(oc);
b_add(&s->txn->l7_buffer, co_data(oc));
}
}
}
ret = conn->mux->snd_buf(sc, &oc->buf, co_data(oc), send_flag);
if (ret > 0) {
did_send = 1;
c_rew(oc, ret);
c_realign_if_empty(oc);
if (!co_data(oc)) {
/* Always clear both flags once everything has been sent, they're one-shot */
sc->flags &= ~(SC_FL_SND_ASAP|SC_FL_SND_EXP_MORE);
}
/* if some data remain in the buffer, it's only because the
* system buffers are full, we will try next time.
*/
}
}
end:
if (did_send) {
oc->flags |= CF_WRITE_EVENT | CF_WROTE_DATA;
if (sc->state == SC_ST_CON)
sc->state = SC_ST_RDY;
}
if (!sco->room_needed || (did_send && (sco->room_needed < 0 || channel_recv_max(sc_oc(sc)) >= sco->room_needed)))
sc_have_room(sco);
if (sc_ep_test(sc, SE_FL_ERROR | SE_FL_ERR_PENDING)) {
oc->flags |= CF_WRITE_EVENT;
BUG_ON(sc_ep_test(sc, SE_FL_EOS|SE_FL_ERROR|SE_FL_ERR_PENDING) == (SE_FL_EOS|SE_FL_ERR_PENDING));
if (sc_ep_test(sc, SE_FL_ERROR))
sc->flags |= SC_FL_ERROR;
return 1;
}
if (channel_is_empty(oc)) {
if (did_send)
sc_ep_report_send_activity(sc);
}
else {
/* We couldn't send all of our data, let the mux know we'd like to send more */
conn->mux->subscribe(sc, SUB_RETRY_SEND, &sc->wait_event);
if (sc_state_in(sc->state, SC_SB_EST|SC_SB_DIS|SC_SB_CLO))
sc_ep_report_blocked_send(sc, did_send);
}
return did_send;
}
/* perform a synchronous send() for the stream connector. The CF_WRITE_EVENT
* flag are cleared prior to the attempt, and will possibly be updated in case
* of success.
*/
void sc_conn_sync_send(struct stconn *sc)
{
struct channel *oc = sc_oc(sc);
oc->flags &= ~CF_WRITE_EVENT;
if (sc->flags & SC_FL_SHUT_DONE)
return;
if (channel_is_empty(oc))
return;
if (!sc_state_in(sc->state, SC_SB_CON|SC_SB_RDY|SC_SB_EST))
return;
if (!sc_mux_ops(sc))
return;
sc_conn_send(sc);
}
/* Called by I/O handlers after completion.. It propagates
* connection flags to the stream connector, updates the stream (which may or
* may not take this opportunity to try to forward data), then update the
* connection's polling based on the channels and stream connector's final
* states. The function always returns 0.
*/
static int sc_conn_process(struct stconn *sc)
{
struct connection *conn = __sc_conn(sc);
struct channel *ic = sc_ic(sc);
struct channel *oc = sc_oc(sc);
BUG_ON(!conn);
/* If we have data to send, try it now */
if (!channel_is_empty(oc) && !(sc->wait_event.events & SUB_RETRY_SEND))
sc_conn_send(sc);
/* First step, report to the stream connector what was detected at the
* connection layer : errors and connection establishment.
* Only add SC_FL_ERROR if we're connected, or we're attempting to
* connect, we may get there because we got woken up, but only run
* after process_stream() noticed there were an error, and decided
* to retry to connect, the connection may still have CO_FL_ERROR,
* and we don't want to add SC_FL_ERROR back
*
* Note: This test is only required because sc_conn_process is also the SI
* wake callback. Otherwise sc_conn_recv()/sc_conn_send() already take
* care of it.
*/
if (sc->state >= SC_ST_CON) {
if (sc_is_conn_error(sc))
sc->flags |= SC_FL_ERROR;
}
/* If we had early data, and the handshake ended, then
* we can remove the flag, and attempt to wake the task up,
* in the event there's an analyser waiting for the end of
* the handshake.
*/
if (!(conn->flags & (CO_FL_WAIT_XPRT | CO_FL_EARLY_SSL_HS)) &&
sc_ep_test(sc, SE_FL_WAIT_FOR_HS)) {
sc_ep_clr(sc, SE_FL_WAIT_FOR_HS);
task_wakeup(sc_strm_task(sc), TASK_WOKEN_MSG);
}
if (!sc_state_in(sc->state, SC_SB_EST|SC_SB_DIS|SC_SB_CLO) &&
(conn->flags & CO_FL_WAIT_XPRT) == 0) {
if (sc->flags & SC_FL_ISBACK)
__sc_strm(sc)->conn_exp = TICK_ETERNITY;
oc->flags |= CF_WRITE_EVENT;
if (sc->state == SC_ST_CON)
sc->state = SC_ST_RDY;
}
/* Report EOS on the channel if it was reached from the mux point of
* view.
*
* Note: This test is only required because sc_conn_process is also the SI
* wake callback. Otherwise sc_conn_recv()/sc_conn_send() already take
* care of it.
*/
if (sc_ep_test(sc, SE_FL_EOS) && !(sc->flags & SC_FL_EOS)) {
/* we received a shutdown */
if (ic->flags & CF_AUTO_CLOSE)
sc_schedule_shutdown(sc_opposite(sc));
sc_conn_eos(sc);
}
/* Report EOI on the channel if it was reached from the mux point of
* view.
*
* Note: This test is only required because sc_conn_process is also the SI
* wake callback. Otherwise sc_conn_recv()/sc_conn_send() already take
* care of it.
*/
if (sc_ep_test(sc, SE_FL_EOI) && !(sc->flags & SC_FL_EOI)) {
sc->flags |= SC_FL_EOI;
ic->flags |= CF_READ_EVENT;
sc_ep_report_read_activity(sc);
}
if (sc_ep_test(sc, SE_FL_ERROR))
sc->flags |= SC_FL_ERROR;
/* Second step : update the stream connector and channels, try to forward any
* pending data, then possibly wake the stream up based on the new
* stream connector status.
*/
sc_notify(sc);
stream_release_buffers(__sc_strm(sc));
return 0;
}
/* This is the ->process() function for any stream connector's wait_event task.
* It's assigned during the stream connector's initialization, for any type of
* stream connector. Thus it is always safe to perform a tasklet_wakeup() on a
* stream connector, as the presence of the SC is checked there.
*/
struct task *sc_conn_io_cb(struct task *t, void *ctx, unsigned int state)
{
struct stconn *sc = ctx;
int ret = 0;
if (!sc_conn(sc))
return t;
if (!(sc->wait_event.events & SUB_RETRY_SEND) && !channel_is_empty(sc_oc(sc)))
ret = sc_conn_send(sc);
if (!(sc->wait_event.events & SUB_RETRY_RECV))
ret |= sc_conn_recv(sc);
if (ret != 0)
sc_conn_process(sc);
stream_release_buffers(__sc_strm(sc));
return t;
}
/*
* This function propagates an end-of-stream received from an applet. It
* updates the stream connector. If it is is already shut, the applet is
* released. Otherwise, we try to forward the shutdown, immediately or ASAP.
*/
static void sc_applet_eos(struct stconn *sc)
{
struct channel *ic = sc_ic(sc);
BUG_ON(!sc_appctx(sc));
if (sc->flags & (SC_FL_EOS|SC_FL_ABRT_DONE))
return;
sc->flags |= SC_FL_EOS;
ic->flags |= CF_READ_EVENT;
sc_ep_report_read_activity(sc);
/* Note: on abort, we don't call the applet */
if (!sc_state_in(sc->state, SC_SB_CON|SC_SB_RDY|SC_SB_EST))
return;
if (sc->flags & SC_FL_SHUT_DONE) {
appctx_shut(__sc_appctx(sc));
sc->state = SC_ST_DIS;
if (sc->flags & SC_FL_ISBACK)
__sc_strm(sc)->conn_exp = TICK_ETERNITY;
}
else if (sc_cond_forward_shut(sc))
return sc_app_shut_applet(sc);
}
/* Callback to be used by applet handlers upon completion. It updates the stream
* (which may or may not take this opportunity to try to forward data), then
* may re-enable the applet's based on the channels and stream connector's final
* states.
*/
static int sc_applet_process(struct stconn *sc)
{
struct channel *ic = sc_ic(sc);
BUG_ON(!sc_appctx(sc));
/* Report EOI on the channel if it was reached from the applet point of
* view. */
if (sc_ep_test(sc, SE_FL_EOI) && !(sc->flags & SC_FL_EOI)) {
sc_ep_report_read_activity(sc);
sc->flags |= SC_FL_EOI;
ic->flags |= CF_READ_EVENT;
}
if (sc_ep_test(sc, SE_FL_ERROR))
sc->flags |= SC_FL_ERROR;
if (sc_ep_test(sc, SE_FL_EOS)) {
/* we received a shutdown */
sc_applet_eos(sc);
}
BUG_ON(sc_ep_test(sc, SE_FL_HAVE_NO_DATA|SE_FL_EOI) == SE_FL_EOI);
/* If the applet wants to write and the channel is closed, it's a
* broken pipe and it must be reported.
*/
if (!sc_ep_test(sc, SE_FL_HAVE_NO_DATA) && (sc->flags & (SC_FL_EOS|SC_FL_ABRT_DONE)))
sc_ep_set(sc, SE_FL_ERROR);
/* automatically mark the applet having data available if it reported
* begin blocked by the channel.
*/
if ((sc->flags & (SC_FL_WONT_READ|SC_FL_NEED_BUFF|SC_FL_NEED_ROOM)) ||
sc_ep_test(sc, SE_FL_APPLET_NEED_CONN))
applet_have_more_data(__sc_appctx(sc));
/* update the stream connector, channels, and possibly wake the stream up */
sc_notify(sc);
stream_release_buffers(__sc_strm(sc));
/* sc_notify may have passed through chk_snd and released some blocking
* flags. Process_stream will consider those flags to wake up the
* appctx but in the case the task is not in runqueue we may have to
* wakeup the appctx immediately.
*/
if (sc_is_recv_allowed(sc) || sc_is_send_allowed(sc))
appctx_wakeup(__sc_appctx(sc));
return 0;
}
/* Prepares an endpoint upgrade. We don't now at this stage if the upgrade will
* succeed or not and if the stconn will be reused by the new endpoint. Thus,
* for now, only pretend the stconn is detached.
*/
void sc_conn_prepare_endp_upgrade(struct stconn *sc)
{
BUG_ON(!sc_conn(sc) || !sc->app);
sc_ep_clr(sc, SE_FL_T_MUX);
sc_ep_set(sc, SE_FL_DETACHED);
}
/* Endpoint upgrade failed. Restore the stconn state. */
void sc_conn_abort_endp_upgrade(struct stconn *sc)
{
sc_ep_set(sc, SE_FL_T_MUX);
sc_ep_clr(sc, SE_FL_DETACHED);
}
/* Commit the endpoint upgrade. If stconn is attached, it means the new endpoint
* use it. So we do nothing. Otherwise, the stconn will be destroy with the
* overlying stream. So, it means we must commit the detach.
*/
void sc_conn_commit_endp_upgrade(struct stconn *sc)
{
if (!sc_ep_test(sc, SE_FL_DETACHED))
return;
sc_detach_endp(&sc);
/* Because it was already set as detached, the sedesc must be preserved */
BUG_ON(!sc);
BUG_ON(!sc->sedesc);
}