blob: cbbb7eb937f735b6a01d187d18016fface7b1213 [file] [log] [blame]
/*
* SSL/TLS transport layer over SOCK_STREAM sockets
*
* Copyright (C) 2012 EXCELIANCE, Emeric Brun <ebrun@exceliance.fr>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* Acknowledgement:
* We'd like to specially thank the Stud project authors for a very clean
* and well documented code which helped us understand how the OpenSSL API
* ought to be used in non-blocking mode. This is one difficult part which
* is not easy to get from the OpenSSL doc, and reading the Stud code made
* it much more obvious than the examples in the OpenSSL package. Keep up
* the good works, guys !
*
* Stud is an extremely efficient and scalable SSL/TLS proxy which combines
* particularly well with haproxy. For more info about this project, visit :
* https://github.com/bumptech/stud
*
*/
/* Note: do NOT include openssl/xxx.h here, do it in openssl-compat.h */
#define _GNU_SOURCE
#include <ctype.h>
#include <dirent.h>
#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <netdb.h>
#include <netinet/tcp.h>
#include <import/lru.h>
#include <import/xxhash.h>
#include <common/buffer.h>
#include <common/chunk.h>
#include <common/compat.h>
#include <common/config.h>
#include <common/debug.h>
#include <common/errors.h>
#include <common/initcall.h>
#include <common/openssl-compat.h>
#include <common/standard.h>
#include <common/ticks.h>
#include <common/time.h>
#include <common/cfgparse.h>
#include <common/base64.h>
#include <ebsttree.h>
#include <types/applet.h>
#include <types/cli.h>
#include <types/global.h>
#include <types/ssl_sock.h>
#include <types/stats.h>
#include <proto/acl.h>
#include <proto/arg.h>
#include <proto/channel.h>
#include <proto/connection.h>
#include <proto/cli.h>
#include <proto/fd.h>
#include <proto/freq_ctr.h>
#include <proto/frontend.h>
#include <proto/http_rules.h>
#include <proto/listener.h>
#include <proto/pattern.h>
#include <proto/proto_tcp.h>
#include <proto/http_ana.h>
#include <proto/server.h>
#include <proto/stream_interface.h>
#include <proto/log.h>
#include <proto/proxy.h>
#include <proto/shctx.h>
#include <proto/ssl_sock.h>
#include <proto/stream.h>
#include <proto/task.h>
#include <proto/vars.h>
/* ***** READ THIS before adding code here! *****
*
* Due to API incompatibilities between multiple OpenSSL versions and their
* derivatives, it's often tempting to add macros to (re-)define certain
* symbols. Please do not do this here, and do it in common/openssl-compat.h
* exclusively so that the whole code consistently uses the same macros.
*
* Whenever possible if a macro is missing in certain versions, it's better
* to conditionally define it in openssl-compat.h than using lots of ifdefs.
*/
/* Warning, these are bits, not integers! */
#define SSL_SOCK_ST_FL_VERIFY_DONE 0x00000001
#define SSL_SOCK_ST_FL_16K_WBFSIZE 0x00000002
#define SSL_SOCK_SEND_UNLIMITED 0x00000004
#define SSL_SOCK_RECV_HEARTBEAT 0x00000008
/* bits 0xFFFF0000 are reserved to store verify errors */
/* Verify errors macros */
#define SSL_SOCK_CA_ERROR_TO_ST(e) (((e > 63) ? 63 : e) << (16))
#define SSL_SOCK_CAEDEPTH_TO_ST(d) (((d > 15) ? 15 : d) << (6+16))
#define SSL_SOCK_CRTERROR_TO_ST(e) (((e > 63) ? 63 : e) << (4+6+16))
#define SSL_SOCK_ST_TO_CA_ERROR(s) ((s >> (16)) & 63)
#define SSL_SOCK_ST_TO_CAEDEPTH(s) ((s >> (6+16)) & 15)
#define SSL_SOCK_ST_TO_CRTERROR(s) ((s >> (4+6+16)) & 63)
/* ssl_methods flags for ssl options */
#define MC_SSL_O_ALL 0x0000
#define MC_SSL_O_NO_SSLV3 0x0001 /* disable SSLv3 */
#define MC_SSL_O_NO_TLSV10 0x0002 /* disable TLSv10 */
#define MC_SSL_O_NO_TLSV11 0x0004 /* disable TLSv11 */
#define MC_SSL_O_NO_TLSV12 0x0008 /* disable TLSv12 */
#define MC_SSL_O_NO_TLSV13 0x0010 /* disable TLSv13 */
/* ssl_methods versions */
enum {
CONF_TLSV_NONE = 0,
CONF_TLSV_MIN = 1,
CONF_SSLV3 = 1,
CONF_TLSV10 = 2,
CONF_TLSV11 = 3,
CONF_TLSV12 = 4,
CONF_TLSV13 = 5,
CONF_TLSV_MAX = 5,
};
/* server and bind verify method, it uses a global value as default */
enum {
SSL_SOCK_VERIFY_DEFAULT = 0,
SSL_SOCK_VERIFY_REQUIRED = 1,
SSL_SOCK_VERIFY_OPTIONAL = 2,
SSL_SOCK_VERIFY_NONE = 3,
};
int sslconns = 0;
int totalsslconns = 0;
static struct xprt_ops ssl_sock;
int nb_engines = 0;
static struct {
char *crt_base; /* base directory path for certificates */
char *ca_base; /* base directory path for CAs and CRLs */
int async; /* whether we use ssl async mode */
char *listen_default_ciphers;
char *connect_default_ciphers;
#if (HA_OPENSSL_VERSION_NUMBER >= 0x10101000L)
char *listen_default_ciphersuites;
char *connect_default_ciphersuites;
#endif
int listen_default_ssloptions;
int connect_default_ssloptions;
struct tls_version_filter listen_default_sslmethods;
struct tls_version_filter connect_default_sslmethods;
int private_cache; /* Force to use a private session cache even if nbproc > 1 */
unsigned int life_time; /* SSL session lifetime in seconds */
unsigned int max_record; /* SSL max record size */
unsigned int default_dh_param; /* SSL maximum DH parameter size */
int ctx_cache; /* max number of entries in the ssl_ctx cache. */
int capture_cipherlist; /* Size of the cipherlist buffer. */
} global_ssl = {
#ifdef LISTEN_DEFAULT_CIPHERS
.listen_default_ciphers = LISTEN_DEFAULT_CIPHERS,
#endif
#ifdef CONNECT_DEFAULT_CIPHERS
.connect_default_ciphers = CONNECT_DEFAULT_CIPHERS,
#endif
#if (HA_OPENSSL_VERSION_NUMBER >= 0x10101000L)
#ifdef LISTEN_DEFAULT_CIPHERSUITES
.listen_default_ciphersuites = LISTEN_DEFAULT_CIPHERSUITES,
#endif
#ifdef CONNECT_DEFAULT_CIPHERSUITES
.connect_default_ciphersuites = CONNECT_DEFAULT_CIPHERSUITES,
#endif
#endif
.listen_default_ssloptions = BC_SSL_O_NONE,
.connect_default_ssloptions = SRV_SSL_O_NONE,
.listen_default_sslmethods.flags = MC_SSL_O_ALL,
.listen_default_sslmethods.min = CONF_TLSV_NONE,
.listen_default_sslmethods.max = CONF_TLSV_NONE,
.connect_default_sslmethods.flags = MC_SSL_O_ALL,
.connect_default_sslmethods.min = CONF_TLSV_NONE,
.connect_default_sslmethods.max = CONF_TLSV_NONE,
#ifdef DEFAULT_SSL_MAX_RECORD
.max_record = DEFAULT_SSL_MAX_RECORD,
#endif
.default_dh_param = SSL_DEFAULT_DH_PARAM,
.ctx_cache = DEFAULT_SSL_CTX_CACHE,
.capture_cipherlist = 0,
};
static BIO_METHOD *ha_meth;
struct ssl_sock_ctx {
struct connection *conn;
SSL *ssl;
BIO *bio;
const struct xprt_ops *xprt;
void *xprt_ctx;
struct wait_event wait_event;
struct wait_event *recv_wait;
struct wait_event *send_wait;
int xprt_st; /* transport layer state, initialized to zero */
int tmp_early_data; /* 1st byte of early data, if any */
int sent_early_data; /* Amount of early data we sent so far */
};
DECLARE_STATIC_POOL(ssl_sock_ctx_pool, "ssl_sock_ctx_pool", sizeof(struct ssl_sock_ctx));
static struct task *ssl_sock_io_cb(struct task *, void *, unsigned short);
static int ssl_sock_handshake(struct connection *conn, unsigned int flag);
/* Methods to implement OpenSSL BIO */
static int ha_ssl_write(BIO *h, const char *buf, int num)
{
struct buffer tmpbuf;
struct ssl_sock_ctx *ctx;
int ret;
ctx = BIO_get_data(h);
tmpbuf.size = num;
tmpbuf.area = (void *)(uintptr_t)buf;
tmpbuf.data = num;
tmpbuf.head = 0;
ret = ctx->xprt->snd_buf(ctx->conn, ctx->xprt_ctx, &tmpbuf, num, 0);
if (ret == 0 && !(ctx->conn->flags & (CO_FL_ERROR | CO_FL_SOCK_WR_SH))) {
BIO_set_retry_write(h);
ret = -1;
} else if (ret == 0)
BIO_clear_retry_flags(h);
return ret;
}
static int ha_ssl_gets(BIO *h, char *buf, int size)
{
return 0;
}
static int ha_ssl_puts(BIO *h, const char *str)
{
return ha_ssl_write(h, str, strlen(str));
}
static int ha_ssl_read(BIO *h, char *buf, int size)
{
struct buffer tmpbuf;
struct ssl_sock_ctx *ctx;
int ret;
ctx = BIO_get_data(h);
tmpbuf.size = size;
tmpbuf.area = buf;
tmpbuf.data = 0;
tmpbuf.head = 0;
ret = ctx->xprt->rcv_buf(ctx->conn, ctx->xprt_ctx, &tmpbuf, size, 0);
if (ret == 0 && !(ctx->conn->flags & (CO_FL_ERROR | CO_FL_SOCK_RD_SH))) {
BIO_set_retry_read(h);
ret = -1;
} else if (ret == 0)
BIO_clear_retry_flags(h);
return ret;
}
static long ha_ssl_ctrl(BIO *h, int cmd, long arg1, void *arg2)
{
int ret = 0;
switch (cmd) {
case BIO_CTRL_DUP:
case BIO_CTRL_FLUSH:
ret = 1;
break;
}
return ret;
}
static int ha_ssl_new(BIO *h)
{
BIO_set_init(h, 1);
BIO_set_data(h, NULL);
BIO_clear_flags(h, ~0);
return 1;
}
static int ha_ssl_free(BIO *data)
{
return 1;
}
#if defined(USE_THREAD) && (HA_OPENSSL_VERSION_NUMBER < 0x10100000L)
static HA_RWLOCK_T *ssl_rwlocks;
unsigned long ssl_id_function(void)
{
return (unsigned long)tid;
}
void ssl_locking_function(int mode, int n, const char * file, int line)
{
if (mode & CRYPTO_LOCK) {
if (mode & CRYPTO_READ)
HA_RWLOCK_RDLOCK(SSL_LOCK, &ssl_rwlocks[n]);
else
HA_RWLOCK_WRLOCK(SSL_LOCK, &ssl_rwlocks[n]);
}
else {
if (mode & CRYPTO_READ)
HA_RWLOCK_RDUNLOCK(SSL_LOCK, &ssl_rwlocks[n]);
else
HA_RWLOCK_WRUNLOCK(SSL_LOCK, &ssl_rwlocks[n]);
}
}
static int ssl_locking_init(void)
{
int i;
ssl_rwlocks = malloc(sizeof(HA_RWLOCK_T)*CRYPTO_num_locks());
if (!ssl_rwlocks)
return -1;
for (i = 0 ; i < CRYPTO_num_locks() ; i++)
HA_RWLOCK_INIT(&ssl_rwlocks[i]);
CRYPTO_set_id_callback(ssl_id_function);
CRYPTO_set_locking_callback(ssl_locking_function);
return 0;
}
#endif
__decl_hathreads(HA_SPINLOCK_T ckch_lock);
/* This memory pool is used for capturing clienthello parameters. */
struct ssl_capture {
unsigned long long int xxh64;
unsigned char ciphersuite_len;
char ciphersuite[0];
};
struct pool_head *pool_head_ssl_capture = NULL;
static int ssl_capture_ptr_index = -1;
static int ssl_app_data_index = -1;
static int ssl_pkey_info_index = -1;
#if (defined SSL_CTRL_SET_TLSEXT_TICKET_KEY_CB && TLS_TICKETS_NO > 0)
struct list tlskeys_reference = LIST_HEAD_INIT(tlskeys_reference);
#endif
#ifndef OPENSSL_NO_ENGINE
static unsigned int openssl_engines_initialized;
struct list openssl_engines = LIST_HEAD_INIT(openssl_engines);
struct ssl_engine_list {
struct list list;
ENGINE *e;
};
#endif
#ifndef OPENSSL_NO_DH
static int ssl_dh_ptr_index = -1;
static DH *global_dh = NULL;
static DH *local_dh_1024 = NULL;
static DH *local_dh_2048 = NULL;
static DH *local_dh_4096 = NULL;
static DH *ssl_get_tmp_dh(SSL *ssl, int export, int keylen);
#endif /* OPENSSL_NO_DH */
#if (defined SSL_CTRL_SET_TLSEXT_HOSTNAME && !defined SSL_NO_GENERATE_CERTIFICATES)
/* X509V3 Extensions that will be added on generated certificates */
#define X509V3_EXT_SIZE 5
static char *x509v3_ext_names[X509V3_EXT_SIZE] = {
"basicConstraints",
"nsComment",
"subjectKeyIdentifier",
"authorityKeyIdentifier",
"keyUsage",
};
static char *x509v3_ext_values[X509V3_EXT_SIZE] = {
"CA:FALSE",
"\"OpenSSL Generated Certificate\"",
"hash",
"keyid,issuer:always",
"nonRepudiation,digitalSignature,keyEncipherment"
};
/* LRU cache to store generated certificate */
static struct lru64_head *ssl_ctx_lru_tree = NULL;
static unsigned int ssl_ctx_lru_seed = 0;
static unsigned int ssl_ctx_serial;
__decl_rwlock(ssl_ctx_lru_rwlock);
#endif // SSL_CTRL_SET_TLSEXT_HOSTNAME
static struct ssl_bind_kw ssl_bind_kws[];
#if HA_OPENSSL_VERSION_NUMBER >= 0x1000200fL
/* The order here matters for picking a default context,
* keep the most common keytype at the bottom of the list
*/
const char *SSL_SOCK_KEYTYPE_NAMES[] = {
"dsa",
"ecdsa",
"rsa"
};
#define SSL_SOCK_NUM_KEYTYPES 3
#else
#define SSL_SOCK_NUM_KEYTYPES 1
#endif
static struct shared_context *ssl_shctx = NULL; /* ssl shared session cache */
static struct eb_root *sh_ssl_sess_tree; /* ssl shared session tree */
#define sh_ssl_sess_tree_delete(s) ebmb_delete(&(s)->key);
#define sh_ssl_sess_tree_insert(s) (struct sh_ssl_sess_hdr *)ebmb_insert(sh_ssl_sess_tree, \
&(s)->key, SSL_MAX_SSL_SESSION_ID_LENGTH);
#define sh_ssl_sess_tree_lookup(k) (struct sh_ssl_sess_hdr *)ebmb_lookup(sh_ssl_sess_tree, \
(k), SSL_MAX_SSL_SESSION_ID_LENGTH);
/*
* This function gives the detail of the SSL error. It is used only
* if the debug mode and the verbose mode are activated. It dump all
* the SSL error until the stack was empty.
*/
static forceinline void ssl_sock_dump_errors(struct connection *conn)
{
unsigned long ret;
if (unlikely(global.mode & MODE_DEBUG)) {
while(1) {
ret = ERR_get_error();
if (ret == 0)
return;
fprintf(stderr, "fd[%04x] OpenSSL error[0x%lx] %s: %s\n",
(unsigned short)conn->handle.fd, ret,
ERR_func_error_string(ret), ERR_reason_error_string(ret));
}
}
}
#ifndef OPENSSL_NO_ENGINE
static int ssl_init_single_engine(const char *engine_id, const char *def_algorithms)
{
int err_code = ERR_ABORT;
ENGINE *engine;
struct ssl_engine_list *el;
/* grab the structural reference to the engine */
engine = ENGINE_by_id(engine_id);
if (engine == NULL) {
ha_alert("ssl-engine %s: failed to get structural reference\n", engine_id);
goto fail_get;
}
if (!ENGINE_init(engine)) {
/* the engine couldn't initialise, release it */
ha_alert("ssl-engine %s: failed to initialize\n", engine_id);
goto fail_init;
}
if (ENGINE_set_default_string(engine, def_algorithms) == 0) {
ha_alert("ssl-engine %s: failed on ENGINE_set_default_string\n", engine_id);
goto fail_set_method;
}
el = calloc(1, sizeof(*el));
el->e = engine;
LIST_ADD(&openssl_engines, &el->list);
nb_engines++;
if (global_ssl.async)
global.ssl_used_async_engines = nb_engines;
return 0;
fail_set_method:
/* release the functional reference from ENGINE_init() */
ENGINE_finish(engine);
fail_init:
/* release the structural reference from ENGINE_by_id() */
ENGINE_free(engine);
fail_get:
return err_code;
}
#endif
#if (HA_OPENSSL_VERSION_NUMBER >= 0x1010000fL) && !defined(OPENSSL_NO_ASYNC)
/*
* openssl async fd handler
*/
void ssl_async_fd_handler(int fd)
{
struct ssl_sock_ctx *ctx = fdtab[fd].owner;
/* fd is an async enfine fd, we must stop
* to poll this fd until it is requested
*/
fd_stop_recv(fd);
fd_cant_recv(fd);
/* crypto engine is available, let's notify the associated
* connection that it can pursue its processing.
*/
ssl_sock_io_cb(NULL, ctx, 0);
}
/*
* openssl async delayed SSL_free handler
*/
void ssl_async_fd_free(int fd)
{
SSL *ssl = fdtab[fd].owner;
OSSL_ASYNC_FD all_fd[32];
size_t num_all_fds = 0;
int i;
/* We suppose that the async job for a same SSL *
* are serialized. So if we are awake it is
* because the running job has just finished
* and we can remove all async fds safely
*/
SSL_get_all_async_fds(ssl, NULL, &num_all_fds);
if (num_all_fds > 32) {
send_log(NULL, LOG_EMERG, "haproxy: openssl returns too many async fds. It seems a bug. Process may crash\n");
return;
}
SSL_get_all_async_fds(ssl, all_fd, &num_all_fds);
for (i=0 ; i < num_all_fds ; i++)
fd_remove(all_fd[i]);
/* Now we can safely call SSL_free, no more pending job in engines */
SSL_free(ssl);
_HA_ATOMIC_SUB(&sslconns, 1);
_HA_ATOMIC_SUB(&jobs, 1);
}
/*
* function used to manage a returned SSL_ERROR_WANT_ASYNC
* and enable/disable polling for async fds
*/
static inline void ssl_async_process_fds(struct ssl_sock_ctx *ctx)
{
OSSL_ASYNC_FD add_fd[32];
OSSL_ASYNC_FD del_fd[32];
SSL *ssl = ctx->ssl;
size_t num_add_fds = 0;
size_t num_del_fds = 0;
int i;
SSL_get_changed_async_fds(ssl, NULL, &num_add_fds, NULL,
&num_del_fds);
if (num_add_fds > 32 || num_del_fds > 32) {
send_log(NULL, LOG_EMERG, "haproxy: openssl returns too many async fds. It seems a bug. Process may crash\n");
return;
}
SSL_get_changed_async_fds(ssl, add_fd, &num_add_fds, del_fd, &num_del_fds);
/* We remove unused fds from the fdtab */
for (i=0 ; i < num_del_fds ; i++)
fd_remove(del_fd[i]);
/* We add new fds to the fdtab */
for (i=0 ; i < num_add_fds ; i++) {
fd_insert(add_fd[i], ctx, ssl_async_fd_handler, tid_bit);
}
num_add_fds = 0;
SSL_get_all_async_fds(ssl, NULL, &num_add_fds);
if (num_add_fds > 32) {
send_log(NULL, LOG_EMERG, "haproxy: openssl returns too many async fds. It seems a bug. Process may crash\n");
return;
}
/* We activate the polling for all known async fds */
SSL_get_all_async_fds(ssl, add_fd, &num_add_fds);
for (i=0 ; i < num_add_fds ; i++) {
fd_want_recv(add_fd[i]);
/* To ensure that the fd cache won't be used
* We'll prefer to catch a real RD event
* because handling an EAGAIN on this fd will
* result in a context switch and also
* some engines uses a fd in blocking mode.
*/
fd_cant_recv(add_fd[i]);
}
}
#endif
#if (defined SSL_CTRL_SET_TLSEXT_STATUS_REQ_CB && !defined OPENSSL_NO_OCSP)
/*
* This function returns the number of seconds elapsed
* since the Epoch, 1970-01-01 00:00:00 +0000 (UTC) and the
* date presented un ASN1_GENERALIZEDTIME.
*
* In parsing error case, it returns -1.
*/
static long asn1_generalizedtime_to_epoch(ASN1_GENERALIZEDTIME *d)
{
long epoch;
char *p, *end;
const unsigned short month_offset[12] = {
0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334
};
int year, month;
if (!d || (d->type != V_ASN1_GENERALIZEDTIME)) return -1;
p = (char *)d->data;
end = p + d->length;
if (end - p < 4) return -1;
year = 1000 * (p[0] - '0') + 100 * (p[1] - '0') + 10 * (p[2] - '0') + p[3] - '0';
p += 4;
if (end - p < 2) return -1;
month = 10 * (p[0] - '0') + p[1] - '0';
if (month < 1 || month > 12) return -1;
/* Compute the number of seconds since 1 jan 1970 and the beginning of current month
We consider leap years and the current month (<marsh or not) */
epoch = ( ((year - 1970) * 365)
+ ((year - (month < 3)) / 4 - (year - (month < 3)) / 100 + (year - (month < 3)) / 400)
- ((1970 - 1) / 4 - (1970 - 1) / 100 + (1970 - 1) / 400)
+ month_offset[month-1]
) * 24 * 60 * 60;
p += 2;
if (end - p < 2) return -1;
/* Add the number of seconds of completed days of current month */
epoch += (10 * (p[0] - '0') + p[1] - '0' - 1) * 24 * 60 * 60;
p += 2;
if (end - p < 2) return -1;
/* Add the completed hours of the current day */
epoch += (10 * (p[0] - '0') + p[1] - '0') * 60 * 60;
p += 2;
if (end - p < 2) return -1;
/* Add the completed minutes of the current hour */
epoch += (10 * (p[0] - '0') + p[1] - '0') * 60;
p += 2;
if (p == end) return -1;
/* Test if there is available seconds */
if (p[0] < '0' || p[0] > '9')
goto nosec;
if (end - p < 2) return -1;
/* Add the seconds of the current minute */
epoch += 10 * (p[0] - '0') + p[1] - '0';
p += 2;
if (p == end) return -1;
/* Ignore seconds float part if present */
if (p[0] == '.') {
do {
if (++p == end) return -1;
} while (p[0] >= '0' && p[0] <= '9');
}
nosec:
if (p[0] == 'Z') {
if (end - p != 1) return -1;
return epoch;
}
else if (p[0] == '+') {
if (end - p != 5) return -1;
/* Apply timezone offset */
return epoch - ((10 * (p[1] - '0') + p[2] - '0') * 60 * 60 + (10 * (p[3] - '0') + p[4] - '0')) * 60;
}
else if (p[0] == '-') {
if (end - p != 5) return -1;
/* Apply timezone offset */
return epoch + ((10 * (p[1] - '0') + p[2] - '0') * 60 * 60 + (10 * (p[3] - '0') + p[4] - '0')) * 60;
}
return -1;
}
/*
* struct alignment works here such that the key.key is the same as key_data
* Do not change the placement of key_data
*/
struct certificate_ocsp {
struct ebmb_node key;
unsigned char key_data[OCSP_MAX_CERTID_ASN1_LENGTH];
struct buffer response;
long expire;
};
struct ocsp_cbk_arg {
int is_single;
int single_kt;
union {
struct certificate_ocsp *s_ocsp;
/*
* m_ocsp will have multiple entries dependent on key type
* Entry 0 - DSA
* Entry 1 - ECDSA
* Entry 2 - RSA
*/
struct certificate_ocsp *m_ocsp[SSL_SOCK_NUM_KEYTYPES];
};
};
static struct eb_root cert_ocsp_tree = EB_ROOT_UNIQUE;
/* This function starts to check if the OCSP response (in DER format) contained
* in chunk 'ocsp_response' is valid (else exits on error).
* If 'cid' is not NULL, it will be compared to the OCSP certificate ID
* contained in the OCSP Response and exits on error if no match.
* If it's a valid OCSP Response:
* If 'ocsp' is not NULL, the chunk is copied in the OCSP response's container
* pointed by 'ocsp'.
* If 'ocsp' is NULL, the function looks up into the OCSP response's
* containers tree (using as index the ASN1 form of the OCSP Certificate ID extracted
* from the response) and exits on error if not found. Finally, If an OCSP response is
* already present in the container, it will be overwritten.
*
* Note: OCSP response containing more than one OCSP Single response is not
* considered valid.
*
* Returns 0 on success, 1 in error case.
*/
static int ssl_sock_load_ocsp_response(struct buffer *ocsp_response,
struct certificate_ocsp *ocsp,
OCSP_CERTID *cid, char **err)
{
OCSP_RESPONSE *resp;
OCSP_BASICRESP *bs = NULL;
OCSP_SINGLERESP *sr;
OCSP_CERTID *id;
unsigned char *p = (unsigned char *) ocsp_response->area;
int rc , count_sr;
ASN1_GENERALIZEDTIME *revtime, *thisupd, *nextupd = NULL;
int reason;
int ret = 1;
resp = d2i_OCSP_RESPONSE(NULL, (const unsigned char **)&p,
ocsp_response->data);
if (!resp) {
memprintf(err, "Unable to parse OCSP response");
goto out;
}
rc = OCSP_response_status(resp);
if (rc != OCSP_RESPONSE_STATUS_SUCCESSFUL) {
memprintf(err, "OCSP response status not successful");
goto out;
}
bs = OCSP_response_get1_basic(resp);
if (!bs) {
memprintf(err, "Failed to get basic response from OCSP Response");
goto out;
}
count_sr = OCSP_resp_count(bs);
if (count_sr > 1) {
memprintf(err, "OCSP response ignored because contains multiple single responses (%d)", count_sr);
goto out;
}
sr = OCSP_resp_get0(bs, 0);
if (!sr) {
memprintf(err, "Failed to get OCSP single response");
goto out;
}
id = (OCSP_CERTID*)OCSP_SINGLERESP_get0_id(sr);
rc = OCSP_single_get0_status(sr, &reason, &revtime, &thisupd, &nextupd);
if (rc != V_OCSP_CERTSTATUS_GOOD && rc != V_OCSP_CERTSTATUS_REVOKED) {
memprintf(err, "OCSP single response: certificate status is unknown");
goto out;
}
if (!nextupd) {
memprintf(err, "OCSP single response: missing nextupdate");
goto out;
}
rc = OCSP_check_validity(thisupd, nextupd, OCSP_MAX_RESPONSE_TIME_SKEW, -1);
if (!rc) {
memprintf(err, "OCSP single response: no longer valid.");
goto out;
}
if (cid) {
if (OCSP_id_cmp(id, cid)) {
memprintf(err, "OCSP single response: Certificate ID does not match certificate and issuer");
goto out;
}
}
if (!ocsp) {
unsigned char key[OCSP_MAX_CERTID_ASN1_LENGTH];
unsigned char *p;
rc = i2d_OCSP_CERTID(id, NULL);
if (!rc) {
memprintf(err, "OCSP single response: Unable to encode Certificate ID");
goto out;
}
if (rc > OCSP_MAX_CERTID_ASN1_LENGTH) {
memprintf(err, "OCSP single response: Certificate ID too long");
goto out;
}
p = key;
memset(key, 0, OCSP_MAX_CERTID_ASN1_LENGTH);
i2d_OCSP_CERTID(id, &p);
ocsp = (struct certificate_ocsp *)ebmb_lookup(&cert_ocsp_tree, key, OCSP_MAX_CERTID_ASN1_LENGTH);
if (!ocsp) {
memprintf(err, "OCSP single response: Certificate ID does not match any certificate or issuer");
goto out;
}
}
/* According to comments on "chunk_dup", the
previous chunk buffer will be freed */
if (!chunk_dup(&ocsp->response, ocsp_response)) {
memprintf(err, "OCSP response: Memory allocation error");
goto out;
}
ocsp->expire = asn1_generalizedtime_to_epoch(nextupd) - OCSP_MAX_RESPONSE_TIME_SKEW;
ret = 0;
out:
ERR_clear_error();
if (bs)
OCSP_BASICRESP_free(bs);
if (resp)
OCSP_RESPONSE_free(resp);
return ret;
}
/*
* External function use to update the OCSP response in the OCSP response's
* containers tree. The chunk 'ocsp_response' must contain the OCSP response
* to update in DER format.
*
* Returns 0 on success, 1 in error case.
*/
int ssl_sock_update_ocsp_response(struct buffer *ocsp_response, char **err)
{
return ssl_sock_load_ocsp_response(ocsp_response, NULL, NULL, err);
}
#endif
#if ((defined SSL_CTRL_SET_TLSEXT_STATUS_REQ_CB && !defined OPENSSL_NO_OCSP) || defined OPENSSL_IS_BORINGSSL)
/*
* This function load the OCSP Resonse in DER format contained in file at
* path 'ocsp_path' or base64 in a buffer <buf>
*
* Returns 0 on success, 1 in error case.
*/
static int ssl_sock_load_ocsp_response_from_file(const char *ocsp_path, char *buf, struct cert_key_and_chain *ckch, char **err)
{
int fd = -1;
int r = 0;
int ret = 1;
struct buffer *ocsp_response;
struct buffer *src = NULL;
if (buf) {
int i, j;
/* if it's from a buffer it will be base64 */
/* remove \r and \n from the payload */
for (i = 0, j = 0; buf[i]; i++) {
if (buf[i] == '\r' || buf[i] == '\n')
continue;
buf[j++] = buf[i];
}
buf[j] = 0;
ret = base64dec(buf, j, trash.area, trash.size);
if (ret < 0) {
memprintf(err, "Error reading OCSP response in base64 format");
goto end;
}
trash.data = ret;
src = &trash;
} else {
fd = open(ocsp_path, O_RDONLY);
if (fd == -1) {
memprintf(err, "Error opening OCSP response file");
goto end;
}
trash.data = 0;
while (trash.data < trash.size) {
r = read(fd, trash.area + trash.data, trash.size - trash.data);
if (r < 0) {
if (errno == EINTR)
continue;
memprintf(err, "Error reading OCSP response from file");
goto end;
}
else if (r == 0) {
break;
}
trash.data += r;
}
close(fd);
fd = -1;
src = &trash;
}
ocsp_response = calloc(1, sizeof(*ocsp_response));
if (!chunk_dup(ocsp_response, src)) {
free(ocsp_response);
ocsp_response = NULL;
goto end;
}
ckch->ocsp_response = ocsp_response;
ret = 0;
end:
if (fd != -1)
close(fd);
return ret;
}
#endif
#if (defined SSL_CTRL_SET_TLSEXT_TICKET_KEY_CB && TLS_TICKETS_NO > 0)
static int ssl_tlsext_ticket_key_cb(SSL *s, unsigned char key_name[16], unsigned char *iv, EVP_CIPHER_CTX *ectx, HMAC_CTX *hctx, int enc)
{
struct tls_keys_ref *ref;
union tls_sess_key *keys;
struct connection *conn;
int head;
int i;
int ret = -1; /* error by default */
conn = SSL_get_ex_data(s, ssl_app_data_index);
ref = __objt_listener(conn->target)->bind_conf->keys_ref;
HA_RWLOCK_RDLOCK(TLSKEYS_REF_LOCK, &ref->lock);
keys = ref->tlskeys;
head = ref->tls_ticket_enc_index;
if (enc) {
memcpy(key_name, keys[head].name, 16);
if(!RAND_pseudo_bytes(iv, EVP_MAX_IV_LENGTH))
goto end;
if (ref->key_size_bits == 128) {
if(!EVP_EncryptInit_ex(ectx, EVP_aes_128_cbc(), NULL, keys[head].key_128.aes_key, iv))
goto end;
HMAC_Init_ex(hctx, keys[head].key_128.hmac_key, 16, TLS_TICKET_HASH_FUNCT(), NULL);
ret = 1;
}
else if (ref->key_size_bits == 256 ) {
if(!EVP_EncryptInit_ex(ectx, EVP_aes_256_cbc(), NULL, keys[head].key_256.aes_key, iv))
goto end;
HMAC_Init_ex(hctx, keys[head].key_256.hmac_key, 32, TLS_TICKET_HASH_FUNCT(), NULL);
ret = 1;
}
} else {
for (i = 0; i < TLS_TICKETS_NO; i++) {
if (!memcmp(key_name, keys[(head + i) % TLS_TICKETS_NO].name, 16))
goto found;
}
ret = 0;
goto end;
found:
if (ref->key_size_bits == 128) {
HMAC_Init_ex(hctx, keys[(head + i) % TLS_TICKETS_NO].key_128.hmac_key, 16, TLS_TICKET_HASH_FUNCT(), NULL);
if(!EVP_DecryptInit_ex(ectx, EVP_aes_128_cbc(), NULL, keys[(head + i) % TLS_TICKETS_NO].key_128.aes_key, iv))
goto end;
/* 2 for key renewal, 1 if current key is still valid */
ret = i ? 2 : 1;
}
else if (ref->key_size_bits == 256) {
HMAC_Init_ex(hctx, keys[(head + i) % TLS_TICKETS_NO].key_256.hmac_key, 32, TLS_TICKET_HASH_FUNCT(), NULL);
if(!EVP_DecryptInit_ex(ectx, EVP_aes_256_cbc(), NULL, keys[(head + i) % TLS_TICKETS_NO].key_256.aes_key, iv))
goto end;
/* 2 for key renewal, 1 if current key is still valid */
ret = i ? 2 : 1;
}
}
end:
HA_RWLOCK_RDUNLOCK(TLSKEYS_REF_LOCK, &ref->lock);
return ret;
}
struct tls_keys_ref *tlskeys_ref_lookup(const char *filename)
{
struct tls_keys_ref *ref;
list_for_each_entry(ref, &tlskeys_reference, list)
if (ref->filename && strcmp(filename, ref->filename) == 0)
return ref;
return NULL;
}
struct tls_keys_ref *tlskeys_ref_lookupid(int unique_id)
{
struct tls_keys_ref *ref;
list_for_each_entry(ref, &tlskeys_reference, list)
if (ref->unique_id == unique_id)
return ref;
return NULL;
}
/* Update the key into ref: if keysize doesnt
* match existing ones, this function returns -1
* else it returns 0 on success.
*/
int ssl_sock_update_tlskey_ref(struct tls_keys_ref *ref,
struct buffer *tlskey)
{
if (ref->key_size_bits == 128) {
if (tlskey->data != sizeof(struct tls_sess_key_128))
return -1;
}
else if (ref->key_size_bits == 256) {
if (tlskey->data != sizeof(struct tls_sess_key_256))
return -1;
}
else
return -1;
HA_RWLOCK_WRLOCK(TLSKEYS_REF_LOCK, &ref->lock);
memcpy((char *) (ref->tlskeys + ((ref->tls_ticket_enc_index + 2) % TLS_TICKETS_NO)),
tlskey->area, tlskey->data);
ref->tls_ticket_enc_index = (ref->tls_ticket_enc_index + 1) % TLS_TICKETS_NO;
HA_RWLOCK_WRUNLOCK(TLSKEYS_REF_LOCK, &ref->lock);
return 0;
}
int ssl_sock_update_tlskey(char *filename, struct buffer *tlskey, char **err)
{
struct tls_keys_ref *ref = tlskeys_ref_lookup(filename);
if(!ref) {
memprintf(err, "Unable to locate the referenced filename: %s", filename);
return 1;
}
if (ssl_sock_update_tlskey_ref(ref, tlskey) < 0) {
memprintf(err, "Invalid key size");
return 1;
}
return 0;
}
/* This function finalize the configuration parsing. Its set all the
* automatic ids. It's called just after the basic checks. It returns
* 0 on success otherwise ERR_*.
*/
static int tlskeys_finalize_config(void)
{
int i = 0;
struct tls_keys_ref *ref, *ref2, *ref3;
struct list tkr = LIST_HEAD_INIT(tkr);
list_for_each_entry(ref, &tlskeys_reference, list) {
if (ref->unique_id == -1) {
/* Look for the first free id. */
while (1) {
list_for_each_entry(ref2, &tlskeys_reference, list) {
if (ref2->unique_id == i) {
i++;
break;
}
}
if (&ref2->list == &tlskeys_reference)
break;
}
/* Uses the unique id and increment it for the next entry. */
ref->unique_id = i;
i++;
}
}
/* This sort the reference list by id. */
list_for_each_entry_safe(ref, ref2, &tlskeys_reference, list) {
LIST_DEL(&ref->list);
list_for_each_entry(ref3, &tkr, list) {
if (ref->unique_id < ref3->unique_id) {
LIST_ADDQ(&ref3->list, &ref->list);
break;
}
}
if (&ref3->list == &tkr)
LIST_ADDQ(&tkr, &ref->list);
}
/* swap root */
LIST_ADD(&tkr, &tlskeys_reference);
LIST_DEL(&tkr);
return 0;
}
#endif /* SSL_CTRL_SET_TLSEXT_TICKET_KEY_CB */
#ifndef OPENSSL_NO_OCSP
int ssl_sock_get_ocsp_arg_kt_index(int evp_keytype)
{
switch (evp_keytype) {
case EVP_PKEY_RSA:
return 2;
case EVP_PKEY_DSA:
return 0;
case EVP_PKEY_EC:
return 1;
}
return -1;
}
/*
* Callback used to set OCSP status extension content in server hello.
*/
int ssl_sock_ocsp_stapling_cbk(SSL *ssl, void *arg)
{
struct certificate_ocsp *ocsp;
struct ocsp_cbk_arg *ocsp_arg;
char *ssl_buf;
EVP_PKEY *ssl_pkey;
int key_type;
int index;
ocsp_arg = arg;
ssl_pkey = SSL_get_privatekey(ssl);
if (!ssl_pkey)
return SSL_TLSEXT_ERR_NOACK;
key_type = EVP_PKEY_base_id(ssl_pkey);
if (ocsp_arg->is_single && ocsp_arg->single_kt == key_type)
ocsp = ocsp_arg->s_ocsp;
else {
/* For multiple certs per context, we have to find the correct OCSP response based on
* the certificate type
*/
index = ssl_sock_get_ocsp_arg_kt_index(key_type);
if (index < 0)
return SSL_TLSEXT_ERR_NOACK;
ocsp = ocsp_arg->m_ocsp[index];
}
if (!ocsp ||
!ocsp->response.area ||
!ocsp->response.data ||
(ocsp->expire < now.tv_sec))
return SSL_TLSEXT_ERR_NOACK;
ssl_buf = OPENSSL_malloc(ocsp->response.data);
if (!ssl_buf)
return SSL_TLSEXT_ERR_NOACK;
memcpy(ssl_buf, ocsp->response.area, ocsp->response.data);
SSL_set_tlsext_status_ocsp_resp(ssl, ssl_buf, ocsp->response.data);
return SSL_TLSEXT_ERR_OK;
}
#endif
#if ((defined SSL_CTRL_SET_TLSEXT_STATUS_REQ_CB && !defined OPENSSL_NO_OCSP) || defined OPENSSL_IS_BORINGSSL)
/*
* This function enables the handling of OCSP status extension on 'ctx' if a
* ocsp_response buffer was found in the cert_key_and_chain. To enable OCSP
* status extension, the issuer's certificate is mandatory. It should be
* present in ckch->ocsp_issuer.
*
* In addition, the ckch->ocsp_reponse buffer is loaded as a DER format of an
* OCSP response. If file is empty or content is not a valid OCSP response,
* OCSP status extension is enabled but OCSP response is ignored (a warning is
* displayed).
*
* Returns 1 if no ".ocsp" file found, 0 if OCSP status extension is
* successfully enabled, or -1 in other error case.
*/
#ifndef OPENSSL_IS_BORINGSSL
static int ssl_sock_load_ocsp(SSL_CTX *ctx, const struct cert_key_and_chain *ckch)
{
X509 *x = NULL, *issuer = NULL;
OCSP_CERTID *cid = NULL;
int i, ret = -1;
struct certificate_ocsp *ocsp = NULL, *iocsp;
char *warn = NULL;
unsigned char *p;
void (*callback) (void);
x = ckch->cert;
if (!x)
goto out;
issuer = ckch->ocsp_issuer;
if (!issuer)
goto out;
cid = OCSP_cert_to_id(0, x, issuer);
if (!cid)
goto out;
i = i2d_OCSP_CERTID(cid, NULL);
if (!i || (i > OCSP_MAX_CERTID_ASN1_LENGTH))
goto out;
ocsp = calloc(1, sizeof(*ocsp));
if (!ocsp)
goto out;
p = ocsp->key_data;
i2d_OCSP_CERTID(cid, &p);
iocsp = (struct certificate_ocsp *)ebmb_insert(&cert_ocsp_tree, &ocsp->key, OCSP_MAX_CERTID_ASN1_LENGTH);
if (iocsp == ocsp)
ocsp = NULL;
#ifndef SSL_CTX_get_tlsext_status_cb
# define SSL_CTX_get_tlsext_status_cb(ctx, cb) \
*cb = (void (*) (void))ctx->tlsext_status_cb;
#endif
SSL_CTX_get_tlsext_status_cb(ctx, &callback);
if (!callback) {
struct ocsp_cbk_arg *cb_arg = calloc(1, sizeof(*cb_arg));
EVP_PKEY *pkey;
cb_arg->is_single = 1;
cb_arg->s_ocsp = iocsp;
pkey = X509_get_pubkey(x);
cb_arg->single_kt = EVP_PKEY_base_id(pkey);
EVP_PKEY_free(pkey);
SSL_CTX_set_tlsext_status_cb(ctx, ssl_sock_ocsp_stapling_cbk);
SSL_CTX_set_tlsext_status_arg(ctx, cb_arg);
} else {
/*
* If the ctx has a status CB, then we have previously set an OCSP staple for this ctx
* Update that cb_arg with the new cert's staple
*/
struct ocsp_cbk_arg *cb_arg;
struct certificate_ocsp *tmp_ocsp;
int index;
int key_type;
EVP_PKEY *pkey;
#ifdef SSL_CTX_get_tlsext_status_arg
SSL_CTX_ctrl(ctx, SSL_CTRL_GET_TLSEXT_STATUS_REQ_CB_ARG, 0, &cb_arg);
#else
cb_arg = ctx->tlsext_status_arg;
#endif
/*
* The following few lines will convert cb_arg from a single ocsp to multi ocsp
* the order of operations below matter, take care when changing it
*/
tmp_ocsp = cb_arg->s_ocsp;
index = ssl_sock_get_ocsp_arg_kt_index(cb_arg->single_kt);
cb_arg->s_ocsp = NULL;
cb_arg->m_ocsp[index] = tmp_ocsp;
cb_arg->is_single = 0;
cb_arg->single_kt = 0;
pkey = X509_get_pubkey(x);
key_type = EVP_PKEY_base_id(pkey);
EVP_PKEY_free(pkey);
index = ssl_sock_get_ocsp_arg_kt_index(key_type);
if (index >= 0 && !cb_arg->m_ocsp[index])
cb_arg->m_ocsp[index] = iocsp;
}
ret = 0;
warn = NULL;
if (ssl_sock_load_ocsp_response(ckch->ocsp_response, ocsp, cid, &warn)) {
memprintf(&warn, "Loading: %s. Content will be ignored", warn ? warn : "failure");
ha_warning("%s.\n", warn);
}
out:
if (cid)
OCSP_CERTID_free(cid);
if (ocsp)
free(ocsp);
if (warn)
free(warn);
return ret;
}
#else /* OPENSSL_IS_BORINGSSL */
static int ssl_sock_load_ocsp(SSL_CTX *ctx, const struct cert_key_and_chain *ckch)
{
return SSL_CTX_set_ocsp_response(ctx, (const uint8_t *)ckch->ocsp_response->area, ckch->ocsp_response->data);
}
#endif
#endif
#if (HA_OPENSSL_VERSION_NUMBER >= 0x1000200fL && !defined OPENSSL_NO_TLSEXT && !defined OPENSSL_IS_BORINGSSL)
#define CT_EXTENSION_TYPE 18
static int sctl_ex_index = -1;
/*
* Try to parse Signed Certificate Timestamp List structure. This function
* makes only basic test if the data seems like SCTL. No signature validation
* is performed.
*/
static int ssl_sock_parse_sctl(struct buffer *sctl)
{
int ret = 1;
int len, pos, sct_len;
unsigned char *data;
if (sctl->data < 2)
goto out;
data = (unsigned char *) sctl->area;
len = (data[0] << 8) | data[1];
if (len + 2 != sctl->data)
goto out;
data = data + 2;
pos = 0;
while (pos < len) {
if (len - pos < 2)
goto out;
sct_len = (data[pos] << 8) | data[pos + 1];
if (pos + sct_len + 2 > len)
goto out;
pos += sct_len + 2;
}
ret = 0;
out:
return ret;
}
/* Try to load a sctl from a buffer <buf> if not NULL, or read the file <sctl_path>
* It fills the ckch->sctl buffer
* return 0 on success or != 0 on failure */
static int ssl_sock_load_sctl_from_file(const char *sctl_path, char *buf, struct cert_key_and_chain *ckch, char **err)
{
int fd = -1;
int r = 0;
int ret = 1;
struct buffer tmp;
struct buffer *src;
struct buffer *sctl;
if (buf) {
tmp.area = buf;
tmp.data = strlen(buf);
tmp.size = tmp.data + 1;
src = &tmp;
} else {
fd = open(sctl_path, O_RDONLY);
if (fd == -1)
goto end;
trash.data = 0;
while (trash.data < trash.size) {
r = read(fd, trash.area + trash.data, trash.size - trash.data);
if (r < 0) {
if (errno == EINTR)
continue;
goto end;
}
else if (r == 0) {
break;
}
trash.data += r;
}
src = &trash;
}
ret = ssl_sock_parse_sctl(src);
if (ret)
goto end;
sctl = calloc(1, sizeof(*sctl));
if (!chunk_dup(sctl, src)) {
free(sctl);
sctl = NULL;
goto end;
}
ret = 0;
/* TODO: free the previous SCTL in the ckch */
ckch->sctl = sctl;
end:
if (fd != -1)
close(fd);
return ret;
}
int ssl_sock_sctl_add_cbk(SSL *ssl, unsigned ext_type, const unsigned char **out, size_t *outlen, int *al, void *add_arg)
{
struct buffer *sctl = add_arg;
*out = (unsigned char *) sctl->area;
*outlen = sctl->data;
return 1;
}
int ssl_sock_sctl_parse_cbk(SSL *s, unsigned int ext_type, const unsigned char *in, size_t inlen, int *al, void *parse_arg)
{
return 1;
}
static int ssl_sock_load_sctl(SSL_CTX *ctx, struct buffer *sctl)
{
int ret = -1;
if (!SSL_CTX_add_server_custom_ext(ctx, CT_EXTENSION_TYPE, ssl_sock_sctl_add_cbk, NULL, sctl, ssl_sock_sctl_parse_cbk, NULL))
goto out;
SSL_CTX_set_ex_data(ctx, sctl_ex_index, sctl);
ret = 0;
out:
return ret;
}
#endif
void ssl_sock_infocbk(const SSL *ssl, int where, int ret)
{
struct connection *conn = SSL_get_ex_data(ssl, ssl_app_data_index);
struct ssl_sock_ctx *ctx = conn->xprt_ctx;
BIO *write_bio;
(void)ret; /* shut gcc stupid warning */
#ifndef SSL_OP_NO_RENEGOTIATION
/* Please note that BoringSSL defines this macro to zero so don't
* change this to #if and do not assign a default value to this macro!
*/
if (where & SSL_CB_HANDSHAKE_START) {
/* Disable renegotiation (CVE-2009-3555) */
if ((conn->flags & (CO_FL_CONNECTED | CO_FL_EARLY_SSL_HS | CO_FL_EARLY_DATA)) == CO_FL_CONNECTED) {
conn->flags |= CO_FL_ERROR;
conn->err_code = CO_ER_SSL_RENEG;
}
}
#endif
if ((where & SSL_CB_ACCEPT_LOOP) == SSL_CB_ACCEPT_LOOP) {
if (!(ctx->xprt_st & SSL_SOCK_ST_FL_16K_WBFSIZE)) {
/* Long certificate chains optimz
If write and read bios are differents, we
consider that the buffering was activated,
so we rise the output buffer size from 4k
to 16k */
write_bio = SSL_get_wbio(ssl);
if (write_bio != SSL_get_rbio(ssl)) {
BIO_set_write_buffer_size(write_bio, 16384);
ctx->xprt_st |= SSL_SOCK_ST_FL_16K_WBFSIZE;
}
}
}
}
/* Callback is called for each certificate of the chain during a verify
ok is set to 1 if preverify detect no error on current certificate.
Returns 0 to break the handshake, 1 otherwise. */
int ssl_sock_bind_verifycbk(int ok, X509_STORE_CTX *x_store)
{
SSL *ssl;
struct connection *conn;
struct ssl_sock_ctx *ctx;
int err, depth;
ssl = X509_STORE_CTX_get_ex_data(x_store, SSL_get_ex_data_X509_STORE_CTX_idx());
conn = SSL_get_ex_data(ssl, ssl_app_data_index);
ctx = conn->xprt_ctx;
ctx->xprt_st |= SSL_SOCK_ST_FL_VERIFY_DONE;
if (ok) /* no errors */
return ok;
depth = X509_STORE_CTX_get_error_depth(x_store);
err = X509_STORE_CTX_get_error(x_store);
/* check if CA error needs to be ignored */
if (depth > 0) {
if (!SSL_SOCK_ST_TO_CA_ERROR(ctx->xprt_st)) {
ctx->xprt_st |= SSL_SOCK_CA_ERROR_TO_ST(err);
ctx->xprt_st |= SSL_SOCK_CAEDEPTH_TO_ST(depth);
}
if (__objt_listener(conn->target)->bind_conf->ca_ignerr & (1ULL << err)) {
ssl_sock_dump_errors(conn);
ERR_clear_error();
return 1;
}
conn->err_code = CO_ER_SSL_CA_FAIL;
return 0;
}
if (!SSL_SOCK_ST_TO_CRTERROR(ctx->xprt_st))
ctx->xprt_st |= SSL_SOCK_CRTERROR_TO_ST(err);
/* check if certificate error needs to be ignored */
if (__objt_listener(conn->target)->bind_conf->crt_ignerr & (1ULL << err)) {
ssl_sock_dump_errors(conn);
ERR_clear_error();
return 1;
}
conn->err_code = CO_ER_SSL_CRT_FAIL;
return 0;
}
static inline
void ssl_sock_parse_clienthello(int write_p, int version, int content_type,
const void *buf, size_t len, SSL *ssl)
{
struct ssl_capture *capture;
unsigned char *msg;
unsigned char *end;
size_t rec_len;
/* This function is called for "from client" and "to server"
* connections. The combination of write_p == 0 and content_type == 22
* is only available during "from client" connection.
*/
/* "write_p" is set to 0 is the bytes are received messages,
* otherwise it is set to 1.
*/
if (write_p != 0)
return;
/* content_type contains the type of message received or sent
* according with the SSL/TLS protocol spec. This message is
* encoded with one byte. The value 256 (two bytes) is used
* for designing the SSL/TLS record layer. According with the
* rfc6101, the expected message (other than 256) are:
* - change_cipher_spec(20)
* - alert(21)
* - handshake(22)
* - application_data(23)
* - (255)
* We are interessed by the handshake and specially the client
* hello.
*/
if (content_type != 22)
return;
/* The message length is at least 4 bytes, containing the
* message type and the message length.
*/
if (len < 4)
return;
/* First byte of the handshake message id the type of
* message. The konwn types are:
* - hello_request(0)
* - client_hello(1)
* - server_hello(2)
* - certificate(11)
* - server_key_exchange (12)
* - certificate_request(13)
* - server_hello_done(14)
* We are interested by the client hello.
*/
msg = (unsigned char *)buf;
if (msg[0] != 1)
return;
/* Next three bytes are the length of the message. The total length
* must be this decoded length + 4. If the length given as argument
* is not the same, we abort the protocol dissector.
*/
rec_len = (msg[1] << 16) + (msg[2] << 8) + msg[3];
if (len < rec_len + 4)
return;
msg += 4;
end = msg + rec_len;
if (end < msg)
return;
/* Expect 2 bytes for protocol version (1 byte for major and 1 byte
* for minor, the random, composed by 4 bytes for the unix time and
* 28 bytes for unix payload. So we jump 1 + 1 + 4 + 28.
*/
msg += 1 + 1 + 4 + 28;
if (msg > end)
return;
/* Next, is session id:
* if present, we have to jump by length + 1 for the size information
* if not present, we have to jump by 1 only
*/
if (msg[0] > 0)
msg += msg[0];
msg += 1;
if (msg > end)
return;
/* Next two bytes are the ciphersuite length. */
if (msg + 2 > end)
return;
rec_len = (msg[0] << 8) + msg[1];
msg += 2;
if (msg + rec_len > end || msg + rec_len < msg)
return;
capture = pool_alloc_dirty(pool_head_ssl_capture);
if (!capture)
return;
/* Compute the xxh64 of the ciphersuite. */
capture->xxh64 = XXH64(msg, rec_len, 0);
/* Capture the ciphersuite. */
capture->ciphersuite_len = (global_ssl.capture_cipherlist < rec_len) ?
global_ssl.capture_cipherlist : rec_len;
memcpy(capture->ciphersuite, msg, capture->ciphersuite_len);
SSL_set_ex_data(ssl, ssl_capture_ptr_index, capture);
}
/* Callback is called for ssl protocol analyse */
void ssl_sock_msgcbk(int write_p, int version, int content_type, const void *buf, size_t len, SSL *ssl, void *arg)
{
#ifdef TLS1_RT_HEARTBEAT
/* test heartbeat received (write_p is set to 0
for a received record) */
if ((content_type == TLS1_RT_HEARTBEAT) && (write_p == 0)) {
struct connection *conn = SSL_get_ex_data(ssl, ssl_app_data_index);
struct ssl_sock_ctx *ctx = conn->xprt_ctx;
const unsigned char *p = buf;
unsigned int payload;
ctx->xprt_st |= SSL_SOCK_RECV_HEARTBEAT;
/* Check if this is a CVE-2014-0160 exploitation attempt. */
if (*p != TLS1_HB_REQUEST)
return;
if (len < 1 + 2 + 16) /* 1 type + 2 size + 0 payload + 16 padding */
goto kill_it;
payload = (p[1] * 256) + p[2];
if (3 + payload + 16 <= len)
return; /* OK no problem */
kill_it:
/* We have a clear heartbleed attack (CVE-2014-0160), the
* advertised payload is larger than the advertised packet
* length, so we have garbage in the buffer between the
* payload and the end of the buffer (p+len). We can't know
* if the SSL stack is patched, and we don't know if we can
* safely wipe out the area between p+3+len and payload.
* So instead, we prevent the response from being sent by
* setting the max_send_fragment to 0 and we report an SSL
* error, which will kill this connection. It will be reported
* above as SSL_ERROR_SSL while an other handshake failure with
* a heartbeat message will be reported as SSL_ERROR_SYSCALL.
*/
ssl->max_send_fragment = 0;
SSLerr(SSL_F_TLS1_HEARTBEAT, SSL_R_SSL_HANDSHAKE_FAILURE);
return;
}
#endif
if (global_ssl.capture_cipherlist > 0)
ssl_sock_parse_clienthello(write_p, version, content_type, buf, len, ssl);
}
#if defined(OPENSSL_NPN_NEGOTIATED) && !defined(OPENSSL_NO_NEXTPROTONEG)
static int ssl_sock_srv_select_protos(SSL *s, unsigned char **out, unsigned char *outlen,
const unsigned char *in, unsigned int inlen,
void *arg)
{
struct server *srv = arg;
if (SSL_select_next_proto(out, outlen, in, inlen, (unsigned char *)srv->ssl_ctx.npn_str,
srv->ssl_ctx.npn_len) == OPENSSL_NPN_NEGOTIATED)
return SSL_TLSEXT_ERR_OK;
return SSL_TLSEXT_ERR_NOACK;
}
#endif
#if defined(OPENSSL_NPN_NEGOTIATED) && !defined(OPENSSL_NO_NEXTPROTONEG)
/* This callback is used so that the server advertises the list of
* negociable protocols for NPN.
*/
static int ssl_sock_advertise_npn_protos(SSL *s, const unsigned char **data,
unsigned int *len, void *arg)
{
struct ssl_bind_conf *conf = arg;
*data = (const unsigned char *)conf->npn_str;
*len = conf->npn_len;
return SSL_TLSEXT_ERR_OK;
}
#endif
#ifdef TLSEXT_TYPE_application_layer_protocol_negotiation
/* This callback is used so that the server advertises the list of
* negociable protocols for ALPN.
*/
static int ssl_sock_advertise_alpn_protos(SSL *s, const unsigned char **out,
unsigned char *outlen,
const unsigned char *server,
unsigned int server_len, void *arg)
{
struct ssl_bind_conf *conf = arg;
if (SSL_select_next_proto((unsigned char**) out, outlen, (const unsigned char *)conf->alpn_str,
conf->alpn_len, server, server_len) != OPENSSL_NPN_NEGOTIATED) {
return SSL_TLSEXT_ERR_NOACK;
}
return SSL_TLSEXT_ERR_OK;
}
#endif
#ifdef SSL_CTRL_SET_TLSEXT_HOSTNAME
#ifndef SSL_NO_GENERATE_CERTIFICATES
/* Create a X509 certificate with the specified servername and serial. This
* function returns a SSL_CTX object or NULL if an error occurs. */
static SSL_CTX *
ssl_sock_do_create_cert(const char *servername, struct bind_conf *bind_conf, SSL *ssl)
{
X509 *cacert = bind_conf->ca_sign_cert;
EVP_PKEY *capkey = bind_conf->ca_sign_pkey;
SSL_CTX *ssl_ctx = NULL;
X509 *newcrt = NULL;
EVP_PKEY *pkey = NULL;
SSL *tmp_ssl = NULL;
CONF *ctmp = NULL;
X509_NAME *name;
const EVP_MD *digest;
X509V3_CTX ctx;
unsigned int i;
int key_type;
/* Get the private key of the default certificate and use it */
#if (HA_OPENSSL_VERSION_NUMBER >= 0x10002000L)
pkey = SSL_CTX_get0_privatekey(bind_conf->default_ctx);
#else
tmp_ssl = SSL_new(bind_conf->default_ctx);
if (tmp_ssl)
pkey = SSL_get_privatekey(tmp_ssl);
#endif
if (!pkey)
goto mkcert_error;
/* Create the certificate */
if (!(newcrt = X509_new()))
goto mkcert_error;
/* Set version number for the certificate (X509v3) and the serial
* number */
if (X509_set_version(newcrt, 2L) != 1)
goto mkcert_error;
ASN1_INTEGER_set(X509_get_serialNumber(newcrt), _HA_ATOMIC_ADD(&ssl_ctx_serial, 1));
/* Set duration for the certificate */
if (!X509_gmtime_adj(X509_getm_notBefore(newcrt), (long)-60*60*24) ||
!X509_gmtime_adj(X509_getm_notAfter(newcrt),(long)60*60*24*365))
goto mkcert_error;
/* set public key in the certificate */
if (X509_set_pubkey(newcrt, pkey) != 1)
goto mkcert_error;
/* Set issuer name from the CA */
if (!(name = X509_get_subject_name(cacert)))
goto mkcert_error;
if (X509_set_issuer_name(newcrt, name) != 1)
goto mkcert_error;
/* Set the subject name using the same, but the CN */
name = X509_NAME_dup(name);
if (X509_NAME_add_entry_by_txt(name, "CN", MBSTRING_ASC,
(const unsigned char *)servername,
-1, -1, 0) != 1) {
X509_NAME_free(name);
goto mkcert_error;
}
if (X509_set_subject_name(newcrt, name) != 1) {
X509_NAME_free(name);
goto mkcert_error;
}
X509_NAME_free(name);
/* Add x509v3 extensions as specified */
ctmp = NCONF_new(NULL);
X509V3_set_ctx(&ctx, cacert, newcrt, NULL, NULL, 0);
for (i = 0; i < X509V3_EXT_SIZE; i++) {
X509_EXTENSION *ext;
if (!(ext = X509V3_EXT_nconf(ctmp, &ctx, x509v3_ext_names[i], x509v3_ext_values[i])))
goto mkcert_error;
if (!X509_add_ext(newcrt, ext, -1)) {
X509_EXTENSION_free(ext);
goto mkcert_error;
}
X509_EXTENSION_free(ext);
}
/* Sign the certificate with the CA private key */
key_type = EVP_PKEY_base_id(capkey);
if (key_type == EVP_PKEY_DSA)
digest = EVP_sha1();
else if (key_type == EVP_PKEY_RSA)
digest = EVP_sha256();
else if (key_type == EVP_PKEY_EC)
digest = EVP_sha256();
else {
#if (HA_OPENSSL_VERSION_NUMBER >= 0x1000000fL) && !defined(OPENSSL_IS_BORINGSSL)
int nid;
if (EVP_PKEY_get_default_digest_nid(capkey, &nid) <= 0)
goto mkcert_error;
if (!(digest = EVP_get_digestbynid(nid)))
goto mkcert_error;
#else
goto mkcert_error;
#endif
}
if (!(X509_sign(newcrt, capkey, digest)))
goto mkcert_error;
/* Create and set the new SSL_CTX */
if (!(ssl_ctx = SSL_CTX_new(SSLv23_server_method())))
goto mkcert_error;
if (!SSL_CTX_use_PrivateKey(ssl_ctx, pkey))
goto mkcert_error;
if (!SSL_CTX_use_certificate(ssl_ctx, newcrt))
goto mkcert_error;
if (!SSL_CTX_check_private_key(ssl_ctx))
goto mkcert_error;
if (newcrt) X509_free(newcrt);
#ifndef OPENSSL_NO_DH
SSL_CTX_set_tmp_dh_callback(ssl_ctx, ssl_get_tmp_dh);
#endif
#if defined(SSL_CTX_set_tmp_ecdh) && !defined(OPENSSL_NO_ECDH)
{
const char *ecdhe = (bind_conf->ssl_conf.ecdhe ? bind_conf->ssl_conf.ecdhe : ECDHE_DEFAULT_CURVE);
EC_KEY *ecc;
int nid;
if ((nid = OBJ_sn2nid(ecdhe)) == NID_undef)
goto end;
if (!(ecc = EC_KEY_new_by_curve_name(nid)))
goto end;
SSL_CTX_set_tmp_ecdh(ssl_ctx, ecc);
EC_KEY_free(ecc);
}
#endif
end:
return ssl_ctx;
mkcert_error:
if (ctmp) NCONF_free(ctmp);
if (tmp_ssl) SSL_free(tmp_ssl);
if (ssl_ctx) SSL_CTX_free(ssl_ctx);
if (newcrt) X509_free(newcrt);
return NULL;
}
SSL_CTX *
ssl_sock_create_cert(struct connection *conn, const char *servername, unsigned int key)
{
struct bind_conf *bind_conf = __objt_listener(conn->target)->bind_conf;
struct ssl_sock_ctx *ctx = conn->xprt_ctx;
return ssl_sock_do_create_cert(servername, bind_conf, ctx->ssl);
}
/* Do a lookup for a certificate in the LRU cache used to store generated
* certificates and immediately assign it to the SSL session if not null. */
SSL_CTX *
ssl_sock_assign_generated_cert(unsigned int key, struct bind_conf *bind_conf, SSL *ssl)
{
struct lru64 *lru = NULL;
if (ssl_ctx_lru_tree) {
HA_RWLOCK_WRLOCK(SSL_GEN_CERTS_LOCK, &ssl_ctx_lru_rwlock);
lru = lru64_lookup(key, ssl_ctx_lru_tree, bind_conf->ca_sign_cert, 0);
if (lru && lru->domain) {
if (ssl)
SSL_set_SSL_CTX(ssl, (SSL_CTX *)lru->data);
HA_RWLOCK_WRUNLOCK(SSL_GEN_CERTS_LOCK, &ssl_ctx_lru_rwlock);
return (SSL_CTX *)lru->data;
}
HA_RWLOCK_WRUNLOCK(SSL_GEN_CERTS_LOCK, &ssl_ctx_lru_rwlock);
}
return NULL;
}
/* Same as <ssl_sock_assign_generated_cert> but without SSL session. This
* function is not thread-safe, it should only be used to check if a certificate
* exists in the lru cache (with no warranty it will not be removed by another
* thread). It is kept for backward compatibility. */
SSL_CTX *
ssl_sock_get_generated_cert(unsigned int key, struct bind_conf *bind_conf)
{
return ssl_sock_assign_generated_cert(key, bind_conf, NULL);
}
/* Set a certificate int the LRU cache used to store generated
* certificate. Return 0 on success, otherwise -1 */
int
ssl_sock_set_generated_cert(SSL_CTX *ssl_ctx, unsigned int key, struct bind_conf *bind_conf)
{
struct lru64 *lru = NULL;
if (ssl_ctx_lru_tree) {
HA_RWLOCK_WRLOCK(SSL_GEN_CERTS_LOCK, &ssl_ctx_lru_rwlock);
lru = lru64_get(key, ssl_ctx_lru_tree, bind_conf->ca_sign_cert, 0);
if (!lru) {
HA_RWLOCK_WRUNLOCK(SSL_GEN_CERTS_LOCK, &ssl_ctx_lru_rwlock);
return -1;
}
if (lru->domain && lru->data)
lru->free((SSL_CTX *)lru->data);
lru64_commit(lru, ssl_ctx, bind_conf->ca_sign_cert, 0, (void (*)(void *))SSL_CTX_free);
HA_RWLOCK_WRUNLOCK(SSL_GEN_CERTS_LOCK, &ssl_ctx_lru_rwlock);
return 0;
}
return -1;
}
/* Compute the key of the certificate. */
unsigned int
ssl_sock_generated_cert_key(const void *data, size_t len)
{
return XXH32(data, len, ssl_ctx_lru_seed);
}
/* Generate a cert and immediately assign it to the SSL session so that the cert's
* refcount is maintained regardless of the cert's presence in the LRU cache.
*/
static int
ssl_sock_generate_certificate(const char *servername, struct bind_conf *bind_conf, SSL *ssl)
{
X509 *cacert = bind_conf->ca_sign_cert;
SSL_CTX *ssl_ctx = NULL;
struct lru64 *lru = NULL;
unsigned int key;
key = ssl_sock_generated_cert_key(servername, strlen(servername));
if (ssl_ctx_lru_tree) {
HA_RWLOCK_WRLOCK(SSL_GEN_CERTS_LOCK, &ssl_ctx_lru_rwlock);
lru = lru64_get(key, ssl_ctx_lru_tree, cacert, 0);
if (lru && lru->domain)
ssl_ctx = (SSL_CTX *)lru->data;
if (!ssl_ctx && lru) {
ssl_ctx = ssl_sock_do_create_cert(servername, bind_conf, ssl);
lru64_commit(lru, ssl_ctx, cacert, 0, (void (*)(void *))SSL_CTX_free);
}
SSL_set_SSL_CTX(ssl, ssl_ctx);
HA_RWLOCK_WRUNLOCK(SSL_GEN_CERTS_LOCK, &ssl_ctx_lru_rwlock);
return 1;
}
else {
ssl_ctx = ssl_sock_do_create_cert(servername, bind_conf, ssl);
SSL_set_SSL_CTX(ssl, ssl_ctx);
/* No LRU cache, this CTX will be released as soon as the session dies */
SSL_CTX_free(ssl_ctx);
return 1;
}
return 0;
}
static int
ssl_sock_generate_certificate_from_conn(struct bind_conf *bind_conf, SSL *ssl)
{
unsigned int key;
struct connection *conn = SSL_get_ex_data(ssl, ssl_app_data_index);
if (conn_get_dst(conn)) {
key = ssl_sock_generated_cert_key(conn->dst, get_addr_len(conn->dst));
if (ssl_sock_assign_generated_cert(key, bind_conf, ssl))
return 1;
}
return 0;
}
#endif /* !defined SSL_NO_GENERATE_CERTIFICATES */
#if (HA_OPENSSL_VERSION_NUMBER < 0x1010000fL)
typedef enum { SET_CLIENT, SET_SERVER } set_context_func;
static void ctx_set_SSLv3_func(SSL_CTX *ctx, set_context_func c)
{
#if SSL_OP_NO_SSLv3
c == SET_SERVER ? SSL_CTX_set_ssl_version(ctx, SSLv3_server_method())
: SSL_CTX_set_ssl_version(ctx, SSLv3_client_method());
#endif
}
static void ctx_set_TLSv10_func(SSL_CTX *ctx, set_context_func c) {
c == SET_SERVER ? SSL_CTX_set_ssl_version(ctx, TLSv1_server_method())
: SSL_CTX_set_ssl_version(ctx, TLSv1_client_method());
}
static void ctx_set_TLSv11_func(SSL_CTX *ctx, set_context_func c) {
#if SSL_OP_NO_TLSv1_1
c == SET_SERVER ? SSL_CTX_set_ssl_version(ctx, TLSv1_1_server_method())
: SSL_CTX_set_ssl_version(ctx, TLSv1_1_client_method());
#endif
}
static void ctx_set_TLSv12_func(SSL_CTX *ctx, set_context_func c) {
#if SSL_OP_NO_TLSv1_2
c == SET_SERVER ? SSL_CTX_set_ssl_version(ctx, TLSv1_2_server_method())
: SSL_CTX_set_ssl_version(ctx, TLSv1_2_client_method());
#endif
}
/* TLSv1.2 is the last supported version in this context. */
static void ctx_set_TLSv13_func(SSL_CTX *ctx, set_context_func c) {}
/* Unusable in this context. */
static void ssl_set_SSLv3_func(SSL *ssl, set_context_func c) {}
static void ssl_set_TLSv10_func(SSL *ssl, set_context_func c) {}
static void ssl_set_TLSv11_func(SSL *ssl, set_context_func c) {}
static void ssl_set_TLSv12_func(SSL *ssl, set_context_func c) {}
static void ssl_set_TLSv13_func(SSL *ssl, set_context_func c) {}
#else /* openssl >= 1.1.0 */
typedef enum { SET_MIN, SET_MAX } set_context_func;
static void ctx_set_SSLv3_func(SSL_CTX *ctx, set_context_func c) {
c == SET_MAX ? SSL_CTX_set_max_proto_version(ctx, SSL3_VERSION)
: SSL_CTX_set_min_proto_version(ctx, SSL3_VERSION);
}
static void ssl_set_SSLv3_func(SSL *ssl, set_context_func c) {
c == SET_MAX ? SSL_set_max_proto_version(ssl, SSL3_VERSION)
: SSL_set_min_proto_version(ssl, SSL3_VERSION);
}
static void ctx_set_TLSv10_func(SSL_CTX *ctx, set_context_func c) {
c == SET_MAX ? SSL_CTX_set_max_proto_version(ctx, TLS1_VERSION)
: SSL_CTX_set_min_proto_version(ctx, TLS1_VERSION);
}
static void ssl_set_TLSv10_func(SSL *ssl, set_context_func c) {
c == SET_MAX ? SSL_set_max_proto_version(ssl, TLS1_VERSION)
: SSL_set_min_proto_version(ssl, TLS1_VERSION);
}
static void ctx_set_TLSv11_func(SSL_CTX *ctx, set_context_func c) {
c == SET_MAX ? SSL_CTX_set_max_proto_version(ctx, TLS1_1_VERSION)
: SSL_CTX_set_min_proto_version(ctx, TLS1_1_VERSION);
}
static void ssl_set_TLSv11_func(SSL *ssl, set_context_func c) {
c == SET_MAX ? SSL_set_max_proto_version(ssl, TLS1_1_VERSION)
: SSL_set_min_proto_version(ssl, TLS1_1_VERSION);
}
static void ctx_set_TLSv12_func(SSL_CTX *ctx, set_context_func c) {
c == SET_MAX ? SSL_CTX_set_max_proto_version(ctx, TLS1_2_VERSION)
: SSL_CTX_set_min_proto_version(ctx, TLS1_2_VERSION);
}
static void ssl_set_TLSv12_func(SSL *ssl, set_context_func c) {
c == SET_MAX ? SSL_set_max_proto_version(ssl, TLS1_2_VERSION)
: SSL_set_min_proto_version(ssl, TLS1_2_VERSION);
}
static void ctx_set_TLSv13_func(SSL_CTX *ctx, set_context_func c) {
#if SSL_OP_NO_TLSv1_3
c == SET_MAX ? SSL_CTX_set_max_proto_version(ctx, TLS1_3_VERSION)
: SSL_CTX_set_min_proto_version(ctx, TLS1_3_VERSION);
#endif
}
static void ssl_set_TLSv13_func(SSL *ssl, set_context_func c) {
#if SSL_OP_NO_TLSv1_3
c == SET_MAX ? SSL_set_max_proto_version(ssl, TLS1_3_VERSION)
: SSL_set_min_proto_version(ssl, TLS1_3_VERSION);
#endif
}
#endif
static void ctx_set_None_func(SSL_CTX *ctx, set_context_func c) { }
static void ssl_set_None_func(SSL *ssl, set_context_func c) { }
static struct {
int option;
uint16_t flag;
void (*ctx_set_version)(SSL_CTX *, set_context_func);
void (*ssl_set_version)(SSL *, set_context_func);
const char *name;
} methodVersions[] = {
{0, 0, ctx_set_None_func, ssl_set_None_func, "NONE"}, /* CONF_TLSV_NONE */
{SSL_OP_NO_SSLv3, MC_SSL_O_NO_SSLV3, ctx_set_SSLv3_func, ssl_set_SSLv3_func, "SSLv3"}, /* CONF_SSLV3 */
{SSL_OP_NO_TLSv1, MC_SSL_O_NO_TLSV10, ctx_set_TLSv10_func, ssl_set_TLSv10_func, "TLSv1.0"}, /* CONF_TLSV10 */
{SSL_OP_NO_TLSv1_1, MC_SSL_O_NO_TLSV11, ctx_set_TLSv11_func, ssl_set_TLSv11_func, "TLSv1.1"}, /* CONF_TLSV11 */
{SSL_OP_NO_TLSv1_2, MC_SSL_O_NO_TLSV12, ctx_set_TLSv12_func, ssl_set_TLSv12_func, "TLSv1.2"}, /* CONF_TLSV12 */
{SSL_OP_NO_TLSv1_3, MC_SSL_O_NO_TLSV13, ctx_set_TLSv13_func, ssl_set_TLSv13_func, "TLSv1.3"}, /* CONF_TLSV13 */
};
static void ssl_sock_switchctx_set(SSL *ssl, SSL_CTX *ctx)
{
SSL_set_verify(ssl, SSL_CTX_get_verify_mode(ctx), ssl_sock_bind_verifycbk);
SSL_set_client_CA_list(ssl, SSL_dup_CA_list(SSL_CTX_get_client_CA_list(ctx)));
SSL_set_SSL_CTX(ssl, ctx);
}
#if ((HA_OPENSSL_VERSION_NUMBER >= 0x10101000L) || defined(OPENSSL_IS_BORINGSSL))
static int ssl_sock_switchctx_err_cbk(SSL *ssl, int *al, void *priv)
{
struct bind_conf *s = priv;
(void)al; /* shut gcc stupid warning */
if (SSL_get_servername(ssl, TLSEXT_NAMETYPE_host_name) || s->generate_certs)
return SSL_TLSEXT_ERR_OK;
return SSL_TLSEXT_ERR_NOACK;
}
#ifdef OPENSSL_IS_BORINGSSL
static int ssl_sock_switchctx_cbk(const struct ssl_early_callback_ctx *ctx)
{
SSL *ssl = ctx->ssl;
#else
static int ssl_sock_switchctx_cbk(SSL *ssl, int *al, void *arg)
{
#endif
struct connection *conn;
struct bind_conf *s;
const uint8_t *extension_data;
size_t extension_len;
int has_rsa_sig = 0, has_ecdsa_sig = 0;
char *wildp = NULL;
const uint8_t *servername;
size_t servername_len;
struct ebmb_node *node, *n, *node_ecdsa = NULL, *node_rsa = NULL, *node_anonymous = NULL;
int allow_early = 0;
int i;
conn = SSL_get_ex_data(ssl, ssl_app_data_index);
s = __objt_listener(conn->target)->bind_conf;
if (s->ssl_conf.early_data)
allow_early = 1;
#ifdef OPENSSL_IS_BORINGSSL
if (SSL_early_callback_ctx_extension_get(ctx, TLSEXT_TYPE_server_name,
&extension_data, &extension_len)) {
#else
if (SSL_client_hello_get0_ext(ssl, TLSEXT_TYPE_server_name, &extension_data, &extension_len)) {
#endif
/*
* The server_name extension was given too much extensibility when it
* was written, so parsing the normal case is a bit complex.
*/
size_t len;
if (extension_len <= 2)
goto abort;
/* Extract the length of the supplied list of names. */
len = (*extension_data++) << 8;
len |= *extension_data++;
if (len + 2 != extension_len)
goto abort;
/*
* The list in practice only has a single element, so we only consider
* the first one.
*/
if (len == 0 || *extension_data++ != TLSEXT_NAMETYPE_host_name)
goto abort;
extension_len = len - 1;
/* Now we can finally pull out the byte array with the actual hostname. */
if (extension_len <= 2)
goto abort;
len = (*extension_data++) << 8;
len |= *extension_data++;
if (len == 0 || len + 2 > extension_len || len > TLSEXT_MAXLEN_host_name
|| memchr(extension_data, 0, len) != NULL)
goto abort;
servername = extension_data;
servername_len = len;
} else {
#if (!defined SSL_NO_GENERATE_CERTIFICATES)
if (s->generate_certs && ssl_sock_generate_certificate_from_conn(s, ssl)) {
goto allow_early;
}
#endif
/* without SNI extension, is the default_ctx (need SSL_TLSEXT_ERR_NOACK) */
if (!s->strict_sni) {
ssl_sock_switchctx_set(ssl, s->default_ctx);
goto allow_early;
}
goto abort;
}
/* extract/check clientHello informations */
#ifdef OPENSSL_IS_BORINGSSL
if (SSL_early_callback_ctx_extension_get(ctx, TLSEXT_TYPE_signature_algorithms, &extension_data, &extension_len)) {
#else
if (SSL_client_hello_get0_ext(ssl, TLSEXT_TYPE_signature_algorithms, &extension_data, &extension_len)) {
#endif
uint8_t sign;
size_t len;
if (extension_len < 2)
goto abort;
len = (*extension_data++) << 8;
len |= *extension_data++;
if (len + 2 != extension_len)
goto abort;
if (len % 2 != 0)
goto abort;
for (; len > 0; len -= 2) {
extension_data++; /* hash */
sign = *extension_data++;
switch (sign) {
case TLSEXT_signature_rsa:
has_rsa_sig = 1;
break;
case TLSEXT_signature_ecdsa:
has_ecdsa_sig = 1;
break;
default:
continue;
}
if (has_ecdsa_sig && has_rsa_sig)
break;
}
} else {
/* without TLSEXT_TYPE_signature_algorithms extension (< TLSv1.2) */
has_rsa_sig = 1;
}
if (has_ecdsa_sig) { /* in very rare case: has ecdsa sign but not a ECDSA cipher */
const SSL_CIPHER *cipher;
size_t len;
const uint8_t *cipher_suites;
has_ecdsa_sig = 0;
#ifdef OPENSSL_IS_BORINGSSL
len = ctx->cipher_suites_len;
cipher_suites = ctx->cipher_suites;
#else
len = SSL_client_hello_get0_ciphers(ssl, &cipher_suites);
#endif
if (len % 2 != 0)
goto abort;
for (; len != 0; len -= 2, cipher_suites += 2) {
#ifdef OPENSSL_IS_BORINGSSL
uint16_t cipher_suite = (cipher_suites[0] << 8) | cipher_suites[1];
cipher = SSL_get_cipher_by_value(cipher_suite);
#else
cipher = SSL_CIPHER_find(ssl, cipher_suites);
#endif
if (cipher && SSL_CIPHER_get_auth_nid(cipher) == NID_auth_ecdsa) {
has_ecdsa_sig = 1;
break;
}
}
}
for (i = 0; i < trash.size && i < servername_len; i++) {
trash.area[i] = tolower(servername[i]);
if (!wildp && (trash.area[i] == '.'))
wildp = &trash.area[i];
}
trash.area[i] = 0;
HA_RWLOCK_RDLOCK(SNI_LOCK, &s->sni_lock);
/* lookup in full qualified names */
node = ebst_lookup(&s->sni_ctx, trash.area);
/* lookup a not neg filter */
for (n = node; n; n = ebmb_next_dup(n)) {
if (!container_of(n, struct sni_ctx, name)->neg) {
switch(container_of(n, struct sni_ctx, name)->kinfo.sig) {
case TLSEXT_signature_ecdsa:
if (!node_ecdsa)
node_ecdsa = n;
break;
case TLSEXT_signature_rsa:
if (!node_rsa)
node_rsa = n;
break;
default: /* TLSEXT_signature_anonymous|dsa */
if (!node_anonymous)
node_anonymous = n;
break;
}
}
}
if (wildp) {
/* lookup in wildcards names */
node = ebst_lookup(&s->sni_w_ctx, wildp);
for (n = node; n; n = ebmb_next_dup(n)) {
if (!container_of(n, struct sni_ctx, name)->neg) {
switch(container_of(n, struct sni_ctx, name)->kinfo.sig) {
case TLSEXT_signature_ecdsa:
if (!node_ecdsa)
node_ecdsa = n;
break;
case TLSEXT_signature_rsa:
if (!node_rsa)
node_rsa = n;
break;
default: /* TLSEXT_signature_anonymous|dsa */
if (!node_anonymous)
node_anonymous = n;
break;
}
}
}
}
/* select by key_signature priority order */
node = (has_ecdsa_sig && node_ecdsa) ? node_ecdsa
: ((has_rsa_sig && node_rsa) ? node_rsa
: (node_anonymous ? node_anonymous
: (node_ecdsa ? node_ecdsa /* no ecdsa signature case (< TLSv1.2) */
: node_rsa /* no rsa signature case (far far away) */
)));
if (node) {
/* switch ctx */
struct ssl_bind_conf *conf = container_of(node, struct sni_ctx, name)->conf;
ssl_sock_switchctx_set(ssl, container_of(node, struct sni_ctx, name)->ctx);
if (conf) {
methodVersions[conf->ssl_methods.min].ssl_set_version(ssl, SET_MIN);
methodVersions[conf->ssl_methods.max].ssl_set_version(ssl, SET_MAX);
if (conf->early_data)
allow_early = 1;
}
HA_RWLOCK_RDUNLOCK(SNI_LOCK, &s->sni_lock);
goto allow_early;
}
HA_RWLOCK_RDUNLOCK(SNI_LOCK, &s->sni_lock);
#if (!defined SSL_NO_GENERATE_CERTIFICATES)
if (s->generate_certs && ssl_sock_generate_certificate(trash.area, s, ssl)) {
/* switch ctx done in ssl_sock_generate_certificate */
goto allow_early;
}
#endif
if (!s->strict_sni) {
/* no certificate match, is the default_ctx */
ssl_sock_switchctx_set(ssl, s->default_ctx);
}
allow_early:
#ifdef OPENSSL_IS_BORINGSSL
if (allow_early)
SSL_set_early_data_enabled(ssl, 1);
#else
if (!allow_early)
SSL_set_max_early_data(ssl, 0);
#endif
return 1;
abort:
/* abort handshake (was SSL_TLSEXT_ERR_ALERT_FATAL) */
conn->err_code = CO_ER_SSL_HANDSHAKE;
#ifdef OPENSSL_IS_BORINGSSL
return ssl_select_cert_error;
#else
*al = SSL_AD_UNRECOGNIZED_NAME;
return 0;
#endif
}
#else /* OPENSSL_IS_BORINGSSL */
/* Sets the SSL ctx of <ssl> to match the advertised server name. Returns a
* warning when no match is found, which implies the default (first) cert
* will keep being used.
*/
static int ssl_sock_switchctx_cbk(SSL *ssl, int *al, void *priv)
{
const char *servername;
const char *wildp = NULL;
struct ebmb_node *node, *n;
struct bind_conf *s = priv;
int i;
(void)al; /* shut gcc stupid warning */
servername = SSL_get_servername(ssl, TLSEXT_NAMETYPE_host_name);
if (!servername) {
#if (!defined SSL_NO_GENERATE_CERTIFICATES)
if (s->generate_certs && ssl_sock_generate_certificate_from_conn(s, ssl))
return SSL_TLSEXT_ERR_OK;
#endif
if (s->strict_sni)
return SSL_TLSEXT_ERR_ALERT_FATAL;
ssl_sock_switchctx_set(ssl, s->default_ctx);
return SSL_TLSEXT_ERR_NOACK;
}
for (i = 0; i < trash.size; i++) {
if (!servername[i])
break;
trash.area[i] = tolower(servername[i]);
if (!wildp && (trash.area[i] == '.'))
wildp = &trash.area[i];
}
trash.area[i] = 0;
HA_RWLOCK_RDLOCK(SNI_LOCK, &s->sni_lock);
/* lookup in full qualified names */
node = ebst_lookup(&s->sni_ctx, trash.area);
/* lookup a not neg filter */
for (n = node; n; n = ebmb_next_dup(n)) {
if (!container_of(n, struct sni_ctx, name)->neg) {
node = n;
break;
}
}
if (!node && wildp) {
/* lookup in wildcards names */
node = ebst_lookup(&s->sni_w_ctx, wildp);
}
if (!node || container_of(node, struct sni_ctx, name)->neg) {
#if (!defined SSL_NO_GENERATE_CERTIFICATES)
if (s->generate_certs && ssl_sock_generate_certificate(servername, s, ssl)) {
/* switch ctx done in ssl_sock_generate_certificate */
HA_RWLOCK_RDUNLOCK(SNI_LOCK, &s->sni_lock);
return SSL_TLSEXT_ERR_OK;
}
#endif
HA_RWLOCK_RDUNLOCK(SNI_LOCK, &s->sni_lock);
if (s->strict_sni)
return SSL_TLSEXT_ERR_ALERT_FATAL;
ssl_sock_switchctx_set(ssl, s->default_ctx);
return SSL_TLSEXT_ERR_OK;
}
/* switch ctx */
ssl_sock_switchctx_set(ssl, container_of(node, struct sni_ctx, name)->ctx);
HA_RWLOCK_RDUNLOCK(SNI_LOCK, &s->sni_lock);
return SSL_TLSEXT_ERR_OK;
}
#endif /* (!) OPENSSL_IS_BORINGSSL */
#endif /* SSL_CTRL_SET_TLSEXT_HOSTNAME */
#ifndef OPENSSL_NO_DH
static DH * ssl_get_dh_1024(void)
{
static unsigned char dh1024_p[]={
0xFA,0xF9,0x2A,0x22,0x2A,0xA7,0x7F,0xE1,0x67,0x4E,0x53,0xF7,
0x56,0x13,0xC3,0xB1,0xE3,0x29,0x6B,0x66,0x31,0x6A,0x7F,0xB3,
0xC2,0x68,0x6B,0xCB,0x1D,0x57,0x39,0x1D,0x1F,0xFF,0x1C,0xC9,
0xA6,0xA4,0x98,0x82,0x31,0x5D,0x25,0xFF,0x8A,0xE0,0x73,0x96,
0x81,0xC8,0x83,0x79,0xC1,0x5A,0x04,0xF8,0x37,0x0D,0xA8,0x3D,
0xAE,0x74,0xBC,0xDB,0xB6,0xA4,0x75,0xD9,0x71,0x8A,0xA0,0x17,
0x9E,0x2D,0xC8,0xA8,0xDF,0x2C,0x5F,0x82,0x95,0xF8,0x92,0x9B,
0xA7,0x33,0x5F,0x89,0x71,0xC8,0x2D,0x6B,0x18,0x86,0xC4,0x94,
0x22,0xA5,0x52,0x8D,0xF6,0xF6,0xD2,0x37,0x92,0x0F,0xA5,0xCC,
0xDB,0x7B,0x1D,0x3D,0xA1,0x31,0xB7,0x80,0x8F,0x0B,0x67,0x5E,
0x36,0xA5,0x60,0x0C,0xF1,0x95,0x33,0x8B,
};
static unsigned char dh1024_g[]={
0x02,
};
BIGNUM *p;
BIGNUM *g;
DH *dh = DH_new();
if (dh) {
p = BN_bin2bn(dh1024_p, sizeof dh1024_p, NULL);
g = BN_bin2bn(dh1024_g, sizeof dh1024_g, NULL);
if (!p || !g) {
DH_free(dh);
dh = NULL;
} else {
DH_set0_pqg(dh, p, NULL, g);
}
}
return dh;
}
static DH *ssl_get_dh_2048(void)
{
static unsigned char dh2048_p[]={
0xEC,0x86,0xF8,0x70,0xA0,0x33,0x16,0xEC,0x05,0x1A,0x73,0x59,
0xCD,0x1F,0x8B,0xF8,0x29,0xE4,0xD2,0xCF,0x52,0xDD,0xC2,0x24,
0x8D,0xB5,0x38,0x9A,0xFB,0x5C,0xA4,0xE4,0xB2,0xDA,0xCE,0x66,
0x50,0x74,0xA6,0x85,0x4D,0x4B,0x1D,0x30,0xB8,0x2B,0xF3,0x10,
0xE9,0xA7,0x2D,0x05,0x71,0xE7,0x81,0xDF,0x8B,0x59,0x52,0x3B,
0x5F,0x43,0x0B,0x68,0xF1,0xDB,0x07,0xBE,0x08,0x6B,0x1B,0x23,
0xEE,0x4D,0xCC,0x9E,0x0E,0x43,0xA0,0x1E,0xDF,0x43,0x8C,0xEC,
0xBE,0xBE,0x90,0xB4,0x51,0x54,0xB9,0x2F,0x7B,0x64,0x76,0x4E,
0x5D,0xD4,0x2E,0xAE,0xC2,0x9E,0xAE,0x51,0x43,0x59,0xC7,0x77,
0x9C,0x50,0x3C,0x0E,0xED,0x73,0x04,0x5F,0xF1,0x4C,0x76,0x2A,
0xD8,0xF8,0xCF,0xFC,0x34,0x40,0xD1,0xB4,0x42,0x61,0x84,0x66,
0x42,0x39,0x04,0xF8,0x68,0xB2,0x62,0xD7,0x55,0xED,0x1B,0x74,
0x75,0x91,0xE0,0xC5,0x69,0xC1,0x31,0x5C,0xDB,0x7B,0x44,0x2E,
0xCE,0x84,0x58,0x0D,0x1E,0x66,0x0C,0xC8,0x44,0x9E,0xFD,0x40,
0x08,0x67,0x5D,0xFB,0xA7,0x76,0x8F,0x00,0x11,0x87,0xE9,0x93,
0xF9,0x7D,0xC4,0xBC,0x74,0x55,0x20,0xD4,0x4A,0x41,0x2F,0x43,
0x42,0x1A,0xC1,0xF2,0x97,0x17,0x49,0x27,0x37,0x6B,0x2F,0x88,
0x7E,0x1C,0xA0,0xA1,0x89,0x92,0x27,0xD9,0x56,0x5A,0x71,0xC1,
0x56,0x37,0x7E,0x3A,0x9D,0x05,0xE7,0xEE,0x5D,0x8F,0x82,0x17,
0xBC,0xE9,0xC2,0x93,0x30,0x82,0xF9,0xF4,0xC9,0xAE,0x49,0xDB,
0xD0,0x54,0xB4,0xD9,0x75,0x4D,0xFA,0x06,0xB8,0xD6,0x38,0x41,
0xB7,0x1F,0x77,0xF3,
};
static unsigned char dh2048_g[]={
0x02,
};
BIGNUM *p;
BIGNUM *g;
DH *dh = DH_new();
if (dh) {
p = BN_bin2bn(dh2048_p, sizeof dh2048_p, NULL);
g = BN_bin2bn(dh2048_g, sizeof dh2048_g, NULL);
if (!p || !g) {
DH_free(dh);
dh = NULL;
} else {
DH_set0_pqg(dh, p, NULL, g);
}
}
return dh;
}
static DH *ssl_get_dh_4096(void)
{
static unsigned char dh4096_p[]={
0xDE,0x16,0x94,0xCD,0x99,0x58,0x07,0xF1,0xF7,0x32,0x96,0x11,
0x04,0x82,0xD4,0x84,0x72,0x80,0x99,0x06,0xCA,0xF0,0xA3,0x68,
0x07,0xCE,0x64,0x50,0xE7,0x74,0x45,0x20,0x80,0x5E,0x4D,0xAD,
0xA5,0xB6,0xED,0xFA,0x80,0x6C,0x3B,0x35,0xC4,0x9A,0x14,0x6B,
0x32,0xBB,0xFD,0x1F,0x17,0x8E,0xB7,0x1F,0xD6,0xFA,0x3F,0x7B,
0xEE,0x16,0xA5,0x62,0x33,0x0D,0xED,0xBC,0x4E,0x58,0xE5,0x47,
0x4D,0xE9,0xAB,0x8E,0x38,0xD3,0x6E,0x90,0x57,0xE3,0x22,0x15,
0x33,0xBD,0xF6,0x43,0x45,0xB5,0x10,0x0A,0xBE,0x2C,0xB4,0x35,
0xB8,0x53,0x8D,0xAD,0xFB,0xA7,0x1F,0x85,0x58,0x41,0x7A,0x79,
0x20,0x68,0xB3,0xE1,0x3D,0x08,0x76,0xBF,0x86,0x0D,0x49,0xE3,
0x82,0x71,0x8C,0xB4,0x8D,0x81,0x84,0xD4,0xE7,0xBE,0x91,0xDC,
0x26,0x39,0x48,0x0F,0x35,0xC4,0xCA,0x65,0xE3,0x40,0x93,0x52,
0x76,0x58,0x7D,0xDD,0x51,0x75,0xDC,0x69,0x61,0xBF,0x47,0x2C,
0x16,0x68,0x2D,0xC9,0x29,0xD3,0xE6,0xC0,0x99,0x48,0xA0,0x9A,
0xC8,0x78,0xC0,0x6D,0x81,0x67,0x12,0x61,0x3F,0x71,0xBA,0x41,
0x1F,0x6C,0x89,0x44,0x03,0xBA,0x3B,0x39,0x60,0xAA,0x28,0x55,
0x59,0xAE,0xB8,0xFA,0xCB,0x6F,0xA5,0x1A,0xF7,0x2B,0xDD,0x52,
0x8A,0x8B,0xE2,0x71,0xA6,0x5E,0x7E,0xD8,0x2E,0x18,0xE0,0x66,
0xDF,0xDD,0x22,0x21,0x99,0x52,0x73,0xA6,0x33,0x20,0x65,0x0E,
0x53,0xE7,0x6B,0x9B,0xC5,0xA3,0x2F,0x97,0x65,0x76,0xD3,0x47,
0x23,0x77,0x12,0xB6,0x11,0x7B,0x24,0xED,0xF1,0xEF,0xC0,0xE2,
0xA3,0x7E,0x67,0x05,0x3E,0x96,0x4D,0x45,0xC2,0x18,0xD1,0x73,
0x9E,0x07,0xF3,0x81,0x6E,0x52,0x63,0xF6,0x20,0x76,0xB9,0x13,
0xD2,0x65,0x30,0x18,0x16,0x09,0x16,0x9E,0x8F,0xF1,0xD2,0x10,
0x5A,0xD3,0xD4,0xAF,0x16,0x61,0xDA,0x55,0x2E,0x18,0x5E,0x14,
0x08,0x54,0x2E,0x2A,0x25,0xA2,0x1A,0x9B,0x8B,0x32,0xA9,0xFD,
0xC2,0x48,0x96,0xE1,0x80,0xCA,0xE9,0x22,0x17,0xBB,0xCE,0x3E,
0x9E,0xED,0xC7,0xF1,0x1F,0xEC,0x17,0x21,0xDC,0x7B,0x82,0x48,
0x8E,0xBB,0x4B,0x9D,0x5B,0x04,0x04,0xDA,0xDB,0x39,0xDF,0x01,
0x40,0xC3,0xAA,0x26,0x23,0x89,0x75,0xC6,0x0B,0xD0,0xA2,0x60,
0x6A,0xF1,0xCC,0x65,0x18,0x98,0x1B,0x52,0xD2,0x74,0x61,0xCC,
0xBD,0x60,0xAE,0xA3,0xA0,0x66,0x6A,0x16,0x34,0x92,0x3F,0x41,
0x40,0x31,0x29,0xC0,0x2C,0x63,0xB2,0x07,0x8D,0xEB,0x94,0xB8,
0xE8,0x47,0x92,0x52,0x93,0x6A,0x1B,0x7E,0x1A,0x61,0xB3,0x1B,
0xF0,0xD6,0x72,0x9B,0xF1,0xB0,0xAF,0xBF,0x3E,0x65,0xEF,0x23,
0x1D,0x6F,0xFF,0x70,0xCD,0x8A,0x4C,0x8A,0xA0,0x72,0x9D,0xBE,
0xD4,0xBB,0x24,0x47,0x4A,0x68,0xB5,0xF5,0xC6,0xD5,0x7A,0xCD,
0xCA,0x06,0x41,0x07,0xAD,0xC2,0x1E,0xE6,0x54,0xA7,0xAD,0x03,
0xD9,0x12,0xC1,0x9C,0x13,0xB1,0xC9,0x0A,0x43,0x8E,0x1E,0x08,
0xCE,0x50,0x82,0x73,0x5F,0xA7,0x55,0x1D,0xD9,0x59,0xAC,0xB5,
0xEA,0x02,0x7F,0x6C,0x5B,0x74,0x96,0x98,0x67,0x24,0xA3,0x0F,
0x15,0xFC,0xA9,0x7D,0x3E,0x67,0xD1,0x70,0xF8,0x97,0xF3,0x67,
0xC5,0x8C,0x88,0x44,0x08,0x02,0xC7,0x2B,
};
static unsigned char dh4096_g[]={
0x02,
};
BIGNUM *p;
BIGNUM *g;
DH *dh = DH_new();
if (dh) {
p = BN_bin2bn(dh4096_p, sizeof dh4096_p, NULL);
g = BN_bin2bn(dh4096_g, sizeof dh4096_g, NULL);
if (!p || !g) {
DH_free(dh);
dh = NULL;
} else {
DH_set0_pqg(dh, p, NULL, g);
}
}
return dh;
}
/* Returns Diffie-Hellman parameters matching the private key length
but not exceeding global_ssl.default_dh_param */
static DH *ssl_get_tmp_dh(SSL *ssl, int export, int keylen)
{
DH *dh = NULL;
EVP_PKEY *pkey = SSL_get_privatekey(ssl);
int type;
type = pkey ? EVP_PKEY_base_id(pkey) : EVP_PKEY_NONE;
/* The keylen supplied by OpenSSL can only be 512 or 1024.
See ssl3_send_server_key_exchange() in ssl/s3_srvr.c
*/
if (type == EVP_PKEY_RSA || type == EVP_PKEY_DSA) {
keylen = EVP_PKEY_bits(pkey);
}
if (keylen > global_ssl.default_dh_param) {
keylen = global_ssl.default_dh_param;
}
if (keylen >= 4096) {
dh = local_dh_4096;
}
else if (keylen >= 2048) {
dh = local_dh_2048;
}
else {
dh = local_dh_1024;
}
return dh;
}
static DH * ssl_sock_get_dh_from_file(const char *filename)
{
DH *dh = NULL;
BIO *in = BIO_new(BIO_s_file());
if (in == NULL)
goto end;
if (BIO_read_filename(in, filename) <= 0)
goto end;
dh = PEM_read_bio_DHparams(in, NULL, NULL, NULL);
end:
if (in)
BIO_free(in);
ERR_clear_error();
return dh;
}
int ssl_sock_load_global_dh_param_from_file(const char *filename)
{
global_dh = ssl_sock_get_dh_from_file(filename);
if (global_dh) {
return 0;
}
return -1;
}
#endif
/* Alloc and init a ckch_inst */
static struct ckch_inst *ckch_inst_new()
{
struct ckch_inst *ckch_inst;
ckch_inst = calloc(1, sizeof *ckch_inst);
if (ckch_inst)
LIST_INIT(&ckch_inst->sni_ctx);
return ckch_inst;
}
/* This function allocates a sni_ctx and adds it to the ckch_inst */
static int ckch_inst_add_cert_sni(SSL_CTX *ctx, struct ckch_inst *ckch_inst,
struct bind_conf *s, struct ssl_bind_conf *conf,
struct pkey_info kinfo, char *name, int order)
{
struct sni_ctx *sc;
int wild = 0, neg = 0;
if (*name == '!') {
neg = 1;
name++;
}
if (*name == '*') {
wild = 1;
name++;
}
/* !* filter is a nop */
if (neg && wild)
return order;
if (*name) {
int j, len;
len = strlen(name);
for (j = 0; j < len && j < trash.size; j++)
trash.area[j] = tolower(name[j]);
if (j >= trash.size)
return -1;
trash.area[j] = 0;
sc = malloc(sizeof(struct sni_ctx) + len + 1);
if (!sc)
return -1;
memcpy(sc->name.key, trash.area, len + 1);
sc->ctx = ctx;
sc->conf = conf;
sc->kinfo = kinfo;
sc->order = order++;
sc->neg = neg;
sc->wild = wild;
sc->name.node.leaf_p = NULL;
if (kinfo.sig != TLSEXT_signature_anonymous)
SSL_CTX_set_ex_data(ctx, ssl_pkey_info_index, &sc->kinfo);
LIST_ADDQ(&ckch_inst->sni_ctx, &sc->by_ckch_inst);
}
return order;
}
/*
* Insert the sni_ctxs that are listed in the ckch_inst, in the bind_conf's sni_ctx tree
* This function can't return an error.
*
* *CAUTION*: The caller must lock the sni tree if called in multithreading mode
*/
static void ssl_sock_load_cert_sni(struct ckch_inst *ckch_inst, struct bind_conf *bind_conf)
{
struct sni_ctx *sc0, *sc0b, *sc1;
struct ebmb_node *node;
list_for_each_entry_safe(sc0, sc0b, &ckch_inst->sni_ctx, by_ckch_inst) {
/* ignore if sc0 was already inserted in a tree */
if (sc0->name.node.leaf_p)
continue;
/* Check for duplicates. */
if (sc0->wild)
node = ebst_lookup(&bind_conf->sni_w_ctx, (char *)sc0->name.key);
else
node = ebst_lookup(&bind_conf->sni_ctx, (char *)sc0->name.key);
for (; node; node = ebmb_next_dup(node)) {
sc1 = ebmb_entry(node, struct sni_ctx, name);
if (sc1->ctx == sc0->ctx && sc1->conf == sc0->conf
&& sc1->neg == sc0->neg && sc1->wild == sc0->wild) {
/* it's a duplicate, we should remove and free it */
LIST_DEL(&sc0->by_ckch_inst);
free(sc0);
sc0 = NULL;
break;
}
}
/* if duplicate, ignore the insertion */
if (!sc0)
continue;
if (sc0->wild)
ebst_insert(&bind_conf->sni_w_ctx, &sc0->name);
else
ebst_insert(&bind_conf->sni_ctx, &sc0->name);
}
}
/*
* tree used to store the ckchs ordered by filename/bundle name
*/
struct eb_root ckchs_tree = EB_ROOT_UNIQUE;
/* Loads Diffie-Hellman parameter from a ckchs to an SSL_CTX.
* If there is no DH paramater availaible in the ckchs, the global
* DH parameter is loaded into the SSL_CTX and if there is no
* DH parameter available in ckchs nor in global, the default
* DH parameters are applied on the SSL_CTX.
* Returns a bitfield containing the flags:
* ERR_FATAL in any fatal error case
* ERR_ALERT if a reason of the error is availabine in err
* ERR_WARN if a warning is available into err
* The value 0 means there is no error nor warning and
* the operation succeed.
*/
#ifndef OPENSSL_NO_DH
static int ssl_sock_load_dh_params(SSL_CTX *ctx, const struct cert_key_and_chain *ckch,
const char *path, char **err)
{
int ret = 0;
DH *dh = NULL;
if (ckch && ckch->dh) {
dh = ckch->dh;
if (!SSL_CTX_set_tmp_dh(ctx, dh)) {
memprintf(err, "%sunable to load the DH parameter specified in '%s'",
err && *err ? *err : "", path);
#if defined(SSL_CTX_set_dh_auto)
SSL_CTX_set_dh_auto(ctx, 1);
memprintf(err, "%s, SSL library will use an automatically generated DH parameter.\n",
err && *err ? *err : "");
#else
memprintf(err, "%s, DH ciphers won't be available.\n",
err && *err ? *err : "");
#endif
ret |= ERR_WARN;
goto end;
}
if (ssl_dh_ptr_index >= 0) {
/* store a pointer to the DH params to avoid complaining about
ssl-default-dh-param not being set for this SSL_CTX */
SSL_CTX_set_ex_data(ctx, ssl_dh_ptr_index, dh);
}
}
else if (global_dh) {
if (!SSL_CTX_set_tmp_dh(ctx, global_dh)) {
memprintf(err, "%sunable to use the global DH parameter for certificate '%s'",
err && *err ? *err : "", path);
#if defined(SSL_CTX_set_dh_auto)
SSL_CTX_set_dh_auto(ctx, 1);
memprintf(err, "%s, SSL library will use an automatically generated DH parameter.\n",
err && *err ? *err : "");
#else
memprintf(err, "%s, DH ciphers won't be available.\n",
err && *err ? *err : "");
#endif
ret |= ERR_WARN;
goto end;
}
}
else {
/* Clear openssl global errors stack */
ERR_clear_error();
if (global_ssl.default_dh_param <= 1024) {
/* we are limited to DH parameter of 1024 bits anyway */
if (local_dh_1024 == NULL)
local_dh_1024 = ssl_get_dh_1024();
if (local_dh_1024 == NULL) {
memprintf(err, "%sunable to load default 1024 bits DH parameter for certificate '%s'.\n",
err && *err ? *err : "", path);
ret |= ERR_ALERT | ERR_FATAL;
goto end;
}
if (!SSL_CTX_set_tmp_dh(ctx, local_dh_1024)) {
memprintf(err, "%sunable to load default 1024 bits DH parameter for certificate '%s'.\n",
err && *err ? *err : "", path);
#if defined(SSL_CTX_set_dh_auto)
SSL_CTX_set_dh_auto(ctx, 1);
memprintf(err, "%s, SSL library will use an automatically generated DH parameter.\n",
err && *err ? *err : "");
#else
memprintf(err, "%s, DH ciphers won't be available.\n",
err && *err ? *err : "");
#endif
ret |= ERR_WARN;
goto end;
}
}
else {
SSL_CTX_set_tmp_dh_callback(ctx, ssl_get_tmp_dh);
}
}
end:
return ret;
}
#endif
/* Frees the contents of a cert_key_and_chain
*/
static void ssl_sock_free_cert_key_and_chain_contents(struct cert_key_and_chain *ckch)
{
if (!ckch)
return;
/* Free the certificate and set pointer to NULL */
if (ckch->cert)
X509_free(ckch->cert);
ckch->cert = NULL;
/* Free the key and set pointer to NULL */
if (ckch->key)
EVP_PKEY_free(ckch->key);
ckch->key = NULL;
/* Free each certificate in the chain */
if (ckch->chain)
sk_X509_pop_free(ckch->chain, X509_free);
ckch->chain = NULL;
if (ckch->dh)
DH_free(ckch->dh);
ckch->dh = NULL;
if (ckch->sctl) {
free(ckch->sctl->area);
ckch->sctl->area = NULL;
free(ckch->sctl);
ckch->sctl = NULL;
}
if (ckch->ocsp_response) {
free(ckch->ocsp_response->area);
ckch->ocsp_response->area = NULL;
free(ckch->ocsp_response);
ckch->ocsp_response = NULL;
}
}
/*
*
* This function copy a cert_key_and_chain in memory
*
* It's used to try to apply changes on a ckch before committing them, because
* most of the time it's not possible to revert those changes
*
* Return a the dst or NULL
*/
static struct cert_key_and_chain *ssl_sock_copy_cert_key_and_chain(struct cert_key_and_chain *src,
struct cert_key_and_chain *dst)
{
if (src->cert) {
dst->cert = src->cert;
X509_up_ref(src->cert);
}
if (src->key) {
dst->key = src->key;
EVP_PKEY_up_ref(src->key);
}
if (src->chain) {
dst->chain = X509_chain_up_ref(src->chain);
}
if (src->dh) {
DH_up_ref(src->dh);
dst->dh = src->dh;
}
if (src->sctl) {
struct buffer *sctl;
sctl = calloc(1, sizeof(*sctl));
if (!chunk_dup(sctl, src->sctl)) {
free(sctl);
sctl = NULL;
goto error;
}
dst->sctl = sctl;
}
if (src->ocsp_response) {
struct buffer *ocsp_response;
ocsp_response = calloc(1, sizeof(*ocsp_response));
if (!chunk_dup(ocsp_response, src->ocsp_response)) {
free(ocsp_response);
ocsp_response = NULL;
goto error;
}
dst->ocsp_response = ocsp_response;
}
if (src->ocsp_issuer) {
X509_up_ref(src->ocsp_issuer);
dst->ocsp_issuer = src->ocsp_issuer;
}
return dst;
error:
/* free everything */
ssl_sock_free_cert_key_and_chain_contents(dst);
return NULL;
}
/* checks if a key and cert exists in the ckch
*/
#if HA_OPENSSL_VERSION_NUMBER >= 0x1000200fL
static int ssl_sock_is_ckch_valid(struct cert_key_and_chain *ckch)
{
return (ckch->cert != NULL && ckch->key != NULL);
}
#endif
/*
* return 0 on success or != 0 on failure
*/
static int ssl_sock_load_issuer_file_into_ckch(const char *path, char *buf, struct cert_key_and_chain *ckch, char **err)
{
int ret = 1;
BIO *in = NULL;
X509 *issuer;
if (buf) {
/* reading from a buffer */
in = BIO_new_mem_buf(buf, -1);
if (in == NULL) {
memprintf(err, "%sCan't allocate memory\n", err && *err ? *err : "");
goto end;
}
} else {
/* reading from a file */
in = BIO_new(BIO_s_file());
if (in == NULL)
goto end;
if (BIO_read_filename(in, path) <= 0)
goto end;
}
issuer = PEM_read_bio_X509_AUX(in, NULL, NULL, NULL);
if (!issuer) {
memprintf(err, "%s'%s' cannot be read or parsed'.\n",
*err ? *err : "", path);
goto end;
}
ret = 0;
ckch->ocsp_issuer = issuer;
end:
ERR_clear_error();
if (in)
BIO_free(in);
return ret;
}
/*
* Try to load a PEM file from a <path> or a buffer <buf>
* The PEM must contain at least a Private Key and a Certificate,
* It could contain a DH and a certificate chain.
*
* If it failed you should not attempt to use the ckch but free it.
*
* Return 0 on success or != 0 on failure
*/
static int ssl_sock_load_pem_into_ckch(const char *path, char *buf, struct cert_key_and_chain *ckch , char **err)
{
BIO *in = NULL;
int ret = 1;
X509 *ca = NULL;
X509 *cert = NULL;
EVP_PKEY *key = NULL;
DH *dh;
if (buf) {
/* reading from a buffer */
in = BIO_new_mem_buf(buf, -1);
if (in == NULL) {
memprintf(err, "%sCan't allocate memory\n", err && *err ? *err : "");
goto end;
}
} else {
/* reading from a file */
in = BIO_new(BIO_s_file());
if (in == NULL)
goto end;
if (BIO_read_filename(in, path) <= 0)
goto end;
}
/* Read Private Key */
key = PEM_read_bio_PrivateKey(in, NULL, NULL, NULL);
if (key == NULL) {
memprintf(err, "%sunable to load private key from file '%s'.\n",
err && *err ? *err : "", path);
goto end;
}
#ifndef OPENSSL_NO_DH
/* Seek back to beginning of file */
if (BIO_reset(in) == -1) {
memprintf(err, "%san error occurred while reading the file '%s'.\n",
err && *err ? *err : "", path);
goto end;
}
dh = PEM_read_bio_DHparams(in, NULL, NULL, NULL);
/* no need to return an error there, dh is not mandatory */
if (dh) {
if (ckch->dh)
DH_free(ckch->dh);
ckch->dh = dh;
}
#endif
/* Seek back to beginning of file */
if (BIO_reset(in) == -1) {
memprintf(err, "%san error occurred while reading the file '%s'.\n",
err && *err ? *err : "", path);
goto end;
}
/* Read Certificate */
cert = PEM_read_bio_X509_AUX(in, NULL, NULL, NULL);
if (cert == NULL) {
memprintf(err, "%sunable to load certificate from file '%s'.\n",
err && *err ? *err : "", path);
goto end;
}
if (!X509_check_private_key(cert, key)) {
memprintf(err, "%sinconsistencies between private key and certificate loaded from PEM file '%s'.\n",
err && *err ? *err : "", path);
goto end;
}
/* Key and Cert are good, we can use them in the ckch */
if (ckch->key) /* free the previous key */
EVP_PKEY_free(ckch->key);
ckch->key = key;
if (ckch->cert) /* free the previous cert */
X509_free(ckch->cert);
ckch->cert = cert;
/* Look for a Certificate Chain */
ca = PEM_read_bio_X509(in, NULL, NULL, NULL);
if (ca) {
/* there is a chain a in the PEM, clean the previous one in the CKCH */
if (ckch->chain) /* free the previous chain */
sk_X509_pop_free(ckch->chain, X509_free);
ckch->chain = sk_X509_new_null();
if (!sk_X509_push(ckch->chain, ca)) {
X509_free(ca);
goto end;
}
}
/* look for other crt in the chain */
while ((ca = PEM_read_bio_X509(in, NULL, NULL, NULL)))
if (!sk_X509_push(ckch->chain, ca)) {
X509_free(ca);
goto end;
}
ret = ERR_get_error();
if (ret && (ERR_GET_LIB(ret) != ERR_LIB_PEM && ERR_GET_REASON(ret) != PEM_R_NO_START_LINE)) {
memprintf(err, "%sunable to load certificate chain from file '%s'.\n",
err && *err ? *err : "", path);
goto end;
}
ret = 0;
end:
ERR_clear_error();
if (in)
BIO_free(in);
if (ret != 0) {
if (key)
EVP_PKEY_free(key);
if (cert)
X509_free(cert);
}
return ret;
}
/*
* Try to load in a ckch every files related to a ckch.
* (PEM, sctl, ocsp, issuer etc.)
*
* This function is only used to load files during the configuration parsing,
* it is not used with the CLI.
*
* This allows us to carry the contents of the file without having to read the
* file multiple times. The caller must call
* ssl_sock_free_cert_key_and_chain_contents.
*
* returns:
* 0 on Success
* 1 on SSL Failure
*/
static int ssl_sock_load_files_into_ckch(const char *path, struct cert_key_and_chain *ckch, char **err)
{
int ret = 1;
/* try to load the PEM */
if (ssl_sock_load_pem_into_ckch(path, NULL, ckch , err) != 0) {
goto end;
}
#if (HA_OPENSSL_VERSION_NUMBER >= 0x1000200fL && !defined OPENSSL_NO_TLSEXT && !defined OPENSSL_IS_BORINGSSL)
/* try to load the sctl file */
{
char fp[MAXPATHLEN+1];
struct stat st;
snprintf(fp, MAXPATHLEN+1, "%s.sctl", path);
if (stat(fp, &st) == 0) {
if (ssl_sock_load_sctl_from_file(fp, NULL, ckch, err)) {
memprintf(err, "%s '%s.sctl' is present but cannot be read or parsed'.\n",
*err ? *err : "", fp);
ret = 1;
goto end;
}
}
}
#endif
/* try to load an ocsp response file */
{
char fp[MAXPATHLEN+1];
struct stat st;
snprintf(fp, MAXPATHLEN+1, "%s.ocsp", path);
if (stat(fp, &st) == 0) {
if (ssl_sock_load_ocsp_response_from_file(fp, NULL, ckch, err)) {
ret = 1;
goto end;
}
}
}
if (ckch->ocsp_response) {
X509 *issuer;
int i;
/* check if one of the certificate of the chain is the issuer */
for (i = 0; i < sk_X509_num(ckch->chain); i++) {
issuer = sk_X509_value(ckch->chain, i);
if (X509_check_issued(issuer, ckch->cert) == X509_V_OK) {
ckch->ocsp_issuer = issuer;
break;
} else
issuer = NULL;
}
/* if no issuer was found, try to load an issuer from the .issuer */
if (!issuer) {
struct stat st;
char fp[MAXPATHLEN+1];
snprintf(fp, MAXPATHLEN+1, "%s.issuer", path);
if (stat(fp, &st) == 0) {
if (ssl_sock_load_issuer_file_into_ckch(fp, NULL, ckch, err)) {
ret = 1;
goto end;
}
if (X509_check_issued(ckch->ocsp_issuer, ckch->cert) != X509_V_OK) {
memprintf(err, "%s '%s' is not an issuer'.\n",
*err ? *err : "", fp);
ret = 1;
goto end;
}
} else {
memprintf(err, "%sNo issuer found, cannot use the OCSP response'.\n",
*err ? *err : "");
ret = 1;
goto end;
}
}
}
ret = 0;
end:
ERR_clear_error();
/* Something went wrong in one of the reads */
if (ret != 0)
ssl_sock_free_cert_key_and_chain_contents(ckch);
return ret;
}
/* Loads the info in ckch into ctx
* Returns a bitfield containing the flags:
* ERR_FATAL in any fatal error case
* ERR_ALERT if the reason of the error is available in err
* ERR_WARN if a warning is available into err
* The value 0 means there is no error nor warning and
* the operation succeed.
*/
static int ssl_sock_put_ckch_into_ctx(const char *path, const struct cert_key_and_chain *ckch, SSL_CTX *ctx, char **err)
{
int errcode = 0;
if (SSL_CTX_use_PrivateKey(ctx, ckch->key) <= 0) {
memprintf(err, "%sunable to load SSL private key into SSL Context '%s'.\n",
err && *err ? *err : "", path);
errcode |= ERR_ALERT | ERR_FATAL;
return errcode;
}
if (!SSL_CTX_use_certificate(ctx, ckch->cert)) {
memprintf(err, "%sunable to load SSL certificate into SSL Context '%s'.\n",
err && *err ? *err : "", path);
errcode |= ERR_ALERT | ERR_FATAL;
goto end;
}
/* Load all certs in the ckch into the ctx_chain for the ssl_ctx */
#ifdef SSL_CTX_set1_chain
if (!SSL_CTX_set1_chain(ctx, ckch->chain)) {
memprintf(err, "%sunable to load chain certificate into SSL Context '%s'. Make sure you are linking against Openssl >= 1.0.2.\n",
err && *err ? *err : "", path);
errcode |= ERR_ALERT | ERR_FATAL;
goto end;
}
#else
{ /* legacy compat (< openssl 1.0.2) */
X509 *ca;
while ((ca = sk_X509_shift(ckch->chain)))
if (!SSL_CTX_add_extra_chain_cert(ctx, ca)) {
memprintf(err, "%sunable to load chain certificate into SSL Context '%s'.\n",
err && *err ? *err : "", path);
X509_free(ca);
errcode |= ERR_ALERT | ERR_FATAL;
goto end;
}
}
#endif
#ifndef OPENSSL_NO_DH
/* store a NULL pointer to indicate we have not yet loaded
a custom DH param file */
if (ssl_dh_ptr_index >= 0) {
SSL_CTX_set_ex_data(ctx, ssl_dh_ptr_index, NULL);
}
errcode |= ssl_sock_load_dh_params(ctx, ckch, path, err);
if (errcode & ERR_CODE) {
memprintf(err, "%sunable to load DH parameters from file '%s'.\n",
err && *err ? *err : "", path);
goto end;
}
#endif
#if (HA_OPENSSL_VERSION_NUMBER >= 0x1000200fL && !defined OPENSSL_NO_TLSEXT && !defined OPENSSL_IS_BORINGSSL)
if (sctl_ex_index >= 0 && ckch->sctl) {
if (ssl_sock_load_sctl(ctx, ckch->sctl) < 0) {
memprintf(err, "%s '%s.sctl' is present but cannot be read or parsed'.\n",
*err ? *err : "", path);
errcode |= ERR_ALERT | ERR_FATAL;
goto end;
}
}
#endif
#if ((defined SSL_CTRL_SET_TLSEXT_STATUS_REQ_CB && !defined OPENSSL_NO_OCSP) || defined OPENSSL_IS_BORINGSSL)
/* Load OCSP Info into context */
if (ckch->ocsp_response) {
if (ssl_sock_load_ocsp(ctx, ckch) < 0) {
if (err)
memprintf(err, "%s '%s.ocsp' is present and activates OCSP but it is impossible to compute the OCSP certificate ID (maybe the issuer could not be found)'.\n",
*err ? *err : "", path);
errcode |= ERR_ALERT | ERR_FATAL;
goto end;
}
}
#endif
end:
return errcode;
}
#if HA_OPENSSL_VERSION_NUMBER >= 0x1000200fL
static int ssl_sock_populate_sni_keytypes_hplr(const char *str, struct eb_root *sni_keytypes, int key_index)
{
struct sni_keytype *s_kt = NULL;
struct ebmb_node *node;
int i;
for (i = 0; i < trash.size; i++) {
if (!str[i])
break;
trash.area[i] = tolower(str[i]);
}
trash.area[i] = 0;
node = ebst_lookup(sni_keytypes, trash.area);
if (!node) {
/* CN not found in tree */
s_kt = malloc(sizeof(struct sni_keytype) + i + 1);
/* Using memcpy here instead of strncpy.
* strncpy will cause sig_abrt errors under certain versions of gcc with -O2
* See: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=60792
*/
if (!s_kt)
return -1;
memcpy(s_kt->name.key, trash.area, i+1);
s_kt->keytypes = 0;
ebst_insert(sni_keytypes, &s_kt->name);
} else {
/* CN found in tree */
s_kt = container_of(node, struct sni_keytype, name);
}
/* Mark that this CN has the keytype of key_index via keytypes mask */
s_kt->keytypes |= 1<<key_index;
return 0;
}
#endif
/*
* Free a ckch_store and its ckch(s)
* The linked ckch_inst are not free'd
*/
void ckchs_free(struct ckch_store *ckchs)
{
if (!ckchs)
return;
#if HA_OPENSSL_VERSION_NUMBER >= 0x1000200fL
if (ckchs->multi) {
int n;
for (n = 0; n < SSL_SOCK_NUM_KEYTYPES; n++)
ssl_sock_free_cert_key_and_chain_contents(&ckchs->ckch[n]);
} else
#endif
{
ssl_sock_free_cert_key_and_chain_contents(ckchs->ckch);
ckchs->ckch = NULL;
}
free(ckchs);
}
/* allocate and duplicate a ckch_store
* Return a new ckch_store or NULL */
static struct ckch_store *ckchs_dup(const struct ckch_store *src)
{
struct ckch_store *dst;
int pathlen;
pathlen = strlen(src->path);
dst = calloc(1, sizeof(*dst) + pathlen + 1);
if (!dst)
return NULL;
/* copy previous key */
memcpy(dst->path, src->path, pathlen + 1);
dst->multi = src->multi;
LIST_INIT(&dst->ckch_inst);
dst->ckch = calloc((src->multi ? SSL_SOCK_NUM_KEYTYPES : 1), sizeof(*dst->ckch));
if (!dst->ckch)
goto error;
#if HA_OPENSSL_VERSION_NUMBER >= 0x1000200fL
if (src->multi) {
int n;
for (n = 0; n < SSL_SOCK_NUM_KEYTYPES; n++) {
if (&src->ckch[n]) {
if (!ssl_sock_copy_cert_key_and_chain(&src->ckch[n], &dst->ckch[n]))
goto error;
}
}
} else
#endif
{
if (!ssl_sock_copy_cert_key_and_chain(src->ckch, dst->ckch))
goto error;
}
return dst;
error:
ckchs_free(dst);
return NULL;
}
/*
* lookup a path into the ckchs tree.
*/
static inline struct ckch_store *ckchs_lookup(char *path)
{
struct ebmb_node *eb;
eb = ebst_lookup(&ckchs_tree, path);
if (!eb)
return NULL;
return ebmb_entry(eb, struct ckch_store, node);
}
/*
* This function allocate a ckch_store and populate it with certificates from files.
*/
static struct ckch_store *ckchs_load_cert_file(char *path, int multi, char **err)
{
struct ckch_store *ckchs;
ckchs = calloc(1, sizeof(*ckchs) + strlen(path) + 1);
if (!ckchs) {
memprintf(err, "%sunable to allocate memory.\n", err && *err ? *err : "");
goto end;
}
ckchs->ckch = calloc(1, sizeof(*ckchs->ckch) * (multi ? SSL_SOCK_NUM_KEYTYPES : 1));
if (!ckchs->ckch) {
memprintf(err, "%sunable to allocate memory.\n", err && *err ? *err : "");
goto end;
}
LIST_INIT(&ckchs->ckch_inst);
if (!multi) {
if (ssl_sock_load_files_into_ckch(path, ckchs->ckch, err) == 1)
goto end;
/* insert into the ckchs tree */
memcpy(ckchs->path, path, strlen(path) + 1);
ebst_insert(&ckchs_tree, &ckchs->node);
} else {
int found = 0;
#if HA_OPENSSL_VERSION_NUMBER >= 0x1000200fL
char fp[MAXPATHLEN+1] = {0};
int n = 0;
/* Load all possible certs and keys */
for (n = 0; n < SSL_SOCK_NUM_KEYTYPES; n++) {
struct stat buf;
snprintf(fp, sizeof(fp), "%s.%s", path, SSL_SOCK_KEYTYPE_NAMES[n]);
if (stat(fp, &buf) == 0) {
if (ssl_sock_load_files_into_ckch(fp, &ckchs->ckch[n], err) == 1)
goto end;
found = 1;
ckchs->multi = 1;
}
}
#endif
if (!found) {
memprintf(err, "%sDidn't find any certificate for bundle '%s'.\n", err && *err ? *err : "", path);
goto end;
}
/* insert into the ckchs tree */
memcpy(ckchs->path, path, strlen(path) + 1);
ebst_insert(&ckchs_tree, &ckchs->node);
}
return ckchs;
end:
if (ckchs) {
free(ckchs->ckch);
ebmb_delete(&ckchs->node);
}
free(ckchs);
return NULL;
}
#if HA_OPENSSL_VERSION_NUMBER >= 0x1000200fL
/*
* Take a ckch_store which contains a multi-certificate bundle.
* Group these certificates into a set of SSL_CTX*
* based on shared and unique CN and SAN entries. Add these SSL_CTX* to the SNI tree.
*
* This will allow the user to explicitly group multiple cert/keys for a single purpose
*
* Returns a bitfield containing the flags:
* ERR_FATAL in any fatal error case
* ERR_ALERT if the reason of the error is available in err
* ERR_WARN if a warning is available into err
*
*/
static int ckch_inst_new_load_multi_store(const char *path, struct ckch_store *ckchs,
struct bind_conf *bind_conf, struct ssl_bind_conf *ssl_conf,
char **sni_filter, int fcount, struct ckch_inst **ckchi, char **err)
{
int i = 0, n = 0;
struct cert_key_and_chain *certs_and_keys;
struct eb_root sni_keytypes_map = EB_ROOT;
struct ebmb_node *node;
struct ebmb_node *next;
/* Array of SSL_CTX pointers corresponding to each possible combo
* of keytypes
*/
struct key_combo_ctx key_combos[SSL_SOCK_POSSIBLE_KT_COMBOS] = { {0} };
int errcode = 0;
X509_NAME *xname = NULL;
char *str = NULL;
#ifdef SSL_CTRL_SET_TLSEXT_HOSTNAME
STACK_OF(GENERAL_NAME) *names = NULL;
#endif
struct ckch_inst *ckch_inst;
*ckchi = NULL;
if (!ckchs || !ckchs->ckch || !ckchs->multi) {
memprintf(err, "%sunable to load SSL certificate file '%s' file does not exist.\n",
err && *err ? *err : "", path);
return ERR_ALERT | ERR_FATAL;
}
ckch_inst = ckch_inst_new();
if (!ckch_inst) {
memprintf(err, "%sunable to allocate SSL context for cert '%s'.\n",
err && *err ? *err : "", path);
errcode |= ERR_ALERT | ERR_FATAL;
goto end;
}
certs_and_keys = ckchs->ckch;
/* at least one of the instances is using filters during the config
* parsing, that's ok to inherit this during loading on CLI */
ckchs->filters = !!fcount;
/* Process each ckch and update keytypes for each CN/SAN
* for example, if CN/SAN www.a.com is associated with
* certs with keytype 0 and 2, then at the end of the loop,
* www.a.com will have:
* keyindex = 0 | 1 | 4 = 5
*/
for (n = 0; n < SSL_SOCK_NUM_KEYTYPES; n++) {
int ret;
if (!ssl_sock_is_ckch_valid(&certs_and_keys[n]))
continue;
if (fcount) {
for (i = 0; i < fcount; i++) {
ret = ssl_sock_populate_sni_keytypes_hplr(sni_filter[i], &sni_keytypes_map, n);
if (ret < 0) {
memprintf(err, "%sunable to allocate SSL context.\n",
err && *err ? *err : "");
errcode |= ERR_ALERT | ERR_FATAL;
goto end;
}
}
} else {
/* A lot of the following code is OpenSSL boilerplate for processing CN's and SAN's,
* so the line that contains logic is marked via comments
*/
xname = X509_get_subject_name(certs_and_keys[n].cert);
i = -1;
while ((i = X509_NAME_get_index_by_NID(xname, NID_commonName, i)) != -1) {
X509_NAME_ENTRY *entry = X509_NAME_get_entry(xname, i);
ASN1_STRING *value;
value = X509_NAME_ENTRY_get_data(entry);
if (ASN1_STRING_to_UTF8((unsigned char **)&str, value) >= 0) {
/* Important line is here */
ret = ssl_sock_populate_sni_keytypes_hplr(str, &sni_keytypes_map, n);
OPENSSL_free(str);
str = NULL;
if (ret < 0) {
memprintf(err, "%sunable to allocate SSL context.\n",
err && *err ? *err : "");
errcode |= ERR_ALERT | ERR_FATAL;
goto end;
}
}
}
/* Do the above logic for each SAN */
#ifdef SSL_CTRL_SET_TLSEXT_HOSTNAME
names = X509_get_ext_d2i(certs_and_keys[n].cert, NID_subject_alt_name, NULL, NULL);
if (names) {
for (i = 0; i < sk_GENERAL_NAME_num(names); i++) {
GENERAL_NAME *name = sk_GENERAL_NAME_value(names, i);
if (name->type == GEN_DNS) {
if (ASN1_STRING_to_UTF8((unsigned char **)&str, name->d.dNSName) >= 0) {
/* Important line is here */
ret = ssl_sock_populate_sni_keytypes_hplr(str, &sni_keytypes_map, n);
OPENSSL_free(str);
str = NULL;
if (ret < 0) {
memprintf(err, "%sunable to allocate SSL context.\n",
err && *err ? *err : "");
errcode |= ERR_ALERT | ERR_FATAL;
goto end;
}
}
}
}
}
}
#endif /* SSL_CTRL_SET_TLSEXT_HOSTNAME */
}
/* If no files found, return error */
if (eb_is_empty(&sni_keytypes_map)) {
memprintf(err, "%sunable to load SSL certificate file '%s' file does not exist.\n",
err && *err ? *err : "", path);
errcode |= ERR_ALERT | ERR_FATAL;
goto end;
}
/* We now have a map of CN/SAN to keytypes that are loaded in
* Iterate through the map to create the SSL_CTX's (if needed)
* and add each CTX to the SNI tree
*
* Some math here:
* There are 2^n - 1 possible combinations, each unique
* combination is denoted by the key in the map. Each key
* has a value between 1 and 2^n - 1. Conveniently, the array
* of SSL_CTX* is sized 2^n. So, we can simply use the i'th
* entry in the array to correspond to the unique combo (key)
* associated with i. This unique key combo (i) will be associated
* with combos[i-1]
*/
node = ebmb_first(&sni_keytypes_map);
while (node) {
SSL_CTX *cur_ctx;
char cur_file[MAXPATHLEN+1];
const struct pkey_info kinfo = { .sig = TLSEXT_signature_anonymous, .bits = 0 };
str = (char *)container_of(node, struct sni_keytype, name)->name.key;
i = container_of(node, struct sni_keytype, name)->keytypes;
cur_ctx = key_combos[i-1].ctx;
if (cur_ctx == NULL) {
/* need to create SSL_CTX */
cur_ctx = SSL_CTX_new(SSLv23_server_method());
if (cur_ctx == NULL) {
memprintf(err, "%sunable to allocate SSL context.\n",
err && *err ? *err : "");
errcode |= ERR_ALERT | ERR_FATAL;
goto end;
}
/* Load all required certs/keys/chains/OCSPs info into SSL_CTX */
for (n = 0; n < SSL_SOCK_NUM_KEYTYPES; n++) {
if (i & (1<<n)) {
/* Key combo contains ckch[n] */
snprintf(cur_file, MAXPATHLEN+1, "%s.%s", path, SSL_SOCK_KEYTYPE_NAMES[n]);
errcode |= ssl_sock_put_ckch_into_ctx(cur_file, &certs_and_keys[n], cur_ctx, err);
if (errcode & ERR_CODE)
goto end;
}
}
/* Update key_combos */
key_combos[i-1].ctx = cur_ctx;
}
/* Update SNI Tree */
key_combos[i-1].order = ckch_inst_add_cert_sni(cur_ctx, ckch_inst, bind_conf, ssl_conf,
kinfo, str, key_combos[i-1].order);
if (key_combos[i-1].order < 0) {
memprintf(err, "%sunable to create a sni context.\n", err && *err ? *err : "");
errcode |= ERR_ALERT | ERR_FATAL;
goto end;
}
node = ebmb_next(node);
}
/* Mark a default context if none exists, using the ctx that has the most shared keys */
if (!bind_conf->default_ctx) {
for (i = SSL_SOCK_POSSIBLE_KT_COMBOS - 1; i >= 0; i--) {
if (key_combos[i].ctx) {
bind_conf->default_ctx = key_combos[i].ctx;
bind_conf->default_ssl_conf = ssl_conf;
break;
}
}
}
ckch_inst->bind_conf = bind_conf;
ckch_inst->ssl_conf = ssl_conf;
end:
if (names)
sk_GENERAL_NAME_pop_free(names, GENERAL_NAME_free);
node = ebmb_first(&sni_keytypes_map);
while (node) {
next = ebmb_next(node);
ebmb_delete(node);
free(ebmb_entry(node, struct sni_keytype, name));
node = next;
}
if (errcode & ERR_CODE && ckch_inst) {
struct sni_ctx *sc0, *sc0b;
/* free the SSL_CTX in case of error */
for (i = 0; i < SSL_SOCK_POSSIBLE_KT_COMBOS; i++) {
if (key_combos[i].ctx)
SSL_CTX_free(key_combos[i].ctx);
}
/* free the sni_ctx in case of error */
list_for_each_entry_safe(sc0, sc0b, &ckch_inst->sni_ctx, by_ckch_inst) {
ebmb_delete(&sc0->name);
LIST_DEL(&sc0->by_ckch_inst);
free(sc0);
}
free(ckch_inst);
ckch_inst = NULL;
}
*ckchi = ckch_inst;
return errcode;
}
#else
/* This is a dummy, that just logs an error and returns error */
static int ckch_inst_new_load_multi_store(const char *path, struct ckch_store *ckchs,
struct bind_conf *bind_conf, struct ssl_bind_conf *ssl_conf,
char **sni_filter, int fcount, struct ckch_inst **ckchi, char **err)
{
memprintf(err, "%sunable to stat SSL certificate from file '%s' : %s.\n",
err && *err ? *err : "", path, strerror(errno));
return ERR_ALERT | ERR_FATAL;
}
#endif /* #if HA_OPENSSL_VERSION_NUMBER >= 0x1000200fL: Support for loading multiple certs into a single SSL_CTX */
/*
* This function allocate a ckch_inst and create its snis
*
* Returns a bitfield containing the flags:
* ERR_FATAL in any fatal error case
* ERR_ALERT if the reason of the error is available in err
* ERR_WARN if a warning is available into err
*/
static int ckch_inst_new_load_store(const char *path, struct ckch_store *ckchs, struct bind_conf *bind_conf,
struct ssl_bind_conf *ssl_conf, char **sni_filter, int fcount, struct ckch_inst **ckchi, char **err)
{
SSL_CTX *ctx;
int i;
int order = 0;
X509_NAME *xname;
char *str;
EVP_PKEY *pkey;
struct pkey_info kinfo = { .sig = TLSEXT_signature_anonymous, .bits = 0 };
#ifdef SSL_CTRL_SET_TLSEXT_HOSTNAME
STACK_OF(GENERAL_NAME) *names;
#endif
struct cert_key_and_chain *ckch;
struct ckch_inst *ckch_inst = NULL;
int errcode = 0;
*ckchi = NULL;
if (!ckchs || !ckchs->ckch)
return ERR_FATAL;
ckch = ckchs->ckch;
/* at least one of the instances is using filters during the config
* parsing, that's ok to inherit this during loading on CLI */
ckchs->filters = !!fcount;
ctx = SSL_CTX_new(SSLv23_server_method());
if (!ctx) {
memprintf(err, "%sunable to allocate SSL context for cert '%s'.\n",
err && *err ? *err : "", path);
errcode |= ERR_ALERT | ERR_FATAL;
goto error;
}
errcode |= ssl_sock_put_ckch_into_ctx(path, ckch, ctx, err);
if (errcode & ERR_CODE)
goto error;
ckch_inst = ckch_inst_new();
if (!ckch_inst) {
memprintf(err, "%sunable to allocate SSL context for cert '%s'.\n",
err && *err ? *err : "", path);
errcode |= ERR_ALERT | ERR_FATAL;
goto error;
}
pkey = X509_get_pubkey(ckch->cert);
if (pkey) {
kinfo.bits = EVP_PKEY_bits(pkey);
switch(EVP_PKEY_base_id(pkey)) {
case EVP_PKEY_RSA:
kinfo.sig = TLSEXT_signature_rsa;
break;
case EVP_PKEY_EC:
kinfo.sig = TLSEXT_signature_ecdsa;
break;
case EVP_PKEY_DSA:
kinfo.sig = TLSEXT_signature_dsa;
break;
}
EVP_PKEY_free(pkey);
}
if (fcount) {
while (fcount--) {
order = ckch_inst_add_cert_sni(ctx, ckch_inst, bind_conf, ssl_conf, kinfo, sni_filter[fcount], order);
if (order < 0) {
memprintf(err, "%sunable to create a sni context.\n", err && *err ? *err : "");
errcode |= ERR_ALERT | ERR_FATAL;
goto error;
}
}
}
else {
#ifdef SSL_CTRL_SET_TLSEXT_HOSTNAME
names = X509_get_ext_d2i(ckch->cert, NID_subject_alt_name, NULL, NULL);
if (names) {
for (i = 0; i < sk_GENERAL_NAME_num(names); i++) {
GENERAL_NAME *name = sk_GENERAL_NAME_value(names, i);
if (name->type == GEN_DNS) {
if (ASN1_STRING_to_UTF8((unsigned char **)&str, name->d.dNSName) >= 0) {
order = ckch_inst_add_cert_sni(ctx, ckch_inst, bind_conf, ssl_conf, kinfo, str, order);
OPENSSL_free(str);
if (order < 0) {
memprintf(err, "%sunable to create a sni context.\n", err && *err ? *err : "");
errcode |= ERR_ALERT | ERR_FATAL;
goto error;
}
}
}
}
sk_GENERAL_NAME_pop_free(names, GENERAL_NAME_free);
}
#endif /* SSL_CTRL_SET_TLSEXT_HOSTNAME */
xname = X509_get_subject_name(ckch->cert);
i = -1;
while ((i = X509_NAME_get_index_by_NID(xname, NID_commonName, i)) != -1) {
X509_NAME_ENTRY *entry = X509_NAME_get_entry(xname, i);
ASN1_STRING *value;
value = X509_NAME_ENTRY_get_data(entry);
if (ASN1_STRING_to_UTF8((unsigned char **)&str, value) >= 0) {
order = ckch_inst_add_cert_sni(ctx, ckch_inst, bind_conf, ssl_conf, kinfo, str, order);
OPENSSL_free(str);
if (order < 0) {
memprintf(err, "%sunable to create a sni context.\n", err && *err ? *err : "");
errcode |= ERR_ALERT | ERR_FATAL;
goto error;
}
}
}
}
/* we must not free the SSL_CTX anymore below, since it's already in
* the tree, so it will be discovered and cleaned in time.
*/
#ifndef SSL_CTRL_SET_TLSEXT_HOSTNAME
if (bind_conf->default_ctx) {
memprintf(err, "%sthis version of openssl cannot load multiple SSL certificates.\n",
err && *err ? *err : "");
errcode |= ERR_ALERT | ERR_FATAL;
goto error;
}
#endif
if (!bind_conf->default_ctx) {
bind_conf->default_ctx = ctx;
bind_conf->default_ssl_conf = ssl_conf;
}
/* everything succeed, the ckch instance can be used */
ckch_inst->bind_conf = bind_conf;
ckch_inst->ssl_conf = ssl_conf;
*ckchi = ckch_inst;
return errcode;
error:
/* free the allocated sni_ctxs */
if (ckch_inst) {
struct sni_ctx *sc0, *sc0b;
list_for_each_entry_safe(sc0, sc0b, &ckch_inst->sni_ctx, by_ckch_inst) {
ebmb_delete(&sc0->name);
LIST_DEL(&sc0->by_ckch_inst);
free(sc0);
}
free(ckch_inst);
ckch_inst = NULL;
}
/* We only created 1 SSL_CTX so we can free it there */
SSL_CTX_free(ctx);
return errcode;
}
/* Returns a set of ERR_* flags possibly with an error in <err>. */
static int ssl_sock_load_ckchs(const char *path, struct ckch_store *ckchs,
struct bind_conf *bind_conf, struct ssl_bind_conf *ssl_conf,
char **sni_filter, int fcount, char **err)
{
struct ckch_inst *ckch_inst = NULL;
int errcode = 0;
/* we found the ckchs in the tree, we can use it directly */
if (ckchs->multi)
errcode |= ckch_inst_new_load_multi_store(path, ckchs, bind_conf, ssl_conf, sni_filter, fcount, &ckch_inst, err);
else
errcode |= ckch_inst_new_load_store(path, ckchs, bind_conf, ssl_conf, sni_filter, fcount, &ckch_inst, err);
if (errcode & ERR_CODE)
return errcode;
ssl_sock_load_cert_sni(ckch_inst, bind_conf);
/* succeed, add the instance to the ckch_store's list of instance */
LIST_ADDQ(&ckchs->ckch_inst, &ckch_inst->by_ckchs);
return errcode;
}
/* Returns a set of ERR_* flags possibly with an error in <err>. */
int ssl_sock_load_cert(char *path, struct bind_conf *bind_conf, char **err)
{
struct dirent **de_list;
int i, n;
DIR *dir;
struct stat buf;
char *end;
char fp[MAXPATHLEN+1];
int cfgerr = 0;
struct ckch_store *ckchs;
#if HA_OPENSSL_VERSION_NUMBER >= 0x1000200fL
int is_bundle;
int j;
#endif
if ((ckchs = ckchs_lookup(path))) {
/* we found the ckchs in the tree, we can use it directly */
return ssl_sock_load_ckchs(path, ckchs, bind_conf, NULL, NULL, 0, err);
}
if (stat(path, &buf) == 0) {
dir = opendir(path);
if (!dir) {
ckchs = ckchs_load_cert_file(path, 0, err);
if (!ckchs)
return ERR_ALERT | ERR_FATAL;
return ssl_sock_load_ckchs(path, ckchs, bind_conf, NULL, NULL, 0, err);
}
/* strip trailing slashes, including first one */
for (end = path + strlen(path) - 1; end >= path && *end == '/'; end--)
*end = 0;
n = scandir(path, &de_list, 0, alphasort);
if (n < 0) {
memprintf(err, "%sunable to scan directory '%s' : %s.\n",
err && *err ? *err : "", path, strerror(errno));
cfgerr |= ERR_ALERT | ERR_FATAL;
}
else {
for (i = 0; i < n; i++) {
struct dirent *de = de_list[i];
end = strrchr(de->d_name, '.');
if (end && (!strcmp(end, ".issuer") || !strcmp(end, ".ocsp") || !strcmp(end, ".sctl")))
goto ignore_entry;
snprintf(fp, sizeof(fp), "%s/%s", path, de->d_name);
if (stat(fp, &buf) != 0) {
memprintf(err, "%sunable to stat SSL certificate from file '%s' : %s.\n",
err && *err ? *err : "", fp, strerror(errno));
cfgerr |= ERR_ALERT | ERR_FATAL;
goto ignore_entry;
}
if (!S_ISREG(buf.st_mode))
goto ignore_entry;
#if HA_OPENSSL_VERSION_NUMBER >= 0x1000200fL
is_bundle = 0;
/* Check if current entry in directory is part of a multi-cert bundle */
if (end) {
for (j = 0; j < SSL_SOCK_NUM_KEYTYPES; j++) {
if (!strcmp(end + 1, SSL_SOCK_KEYTYPE_NAMES[j])) {
is_bundle = 1;
break;
}
}
if (is_bundle) {
int dp_len;
dp_len = end - de->d_name;
/* increment i and free de until we get to a non-bundle cert
* Note here that we look at de_list[i + 1] before freeing de
* this is important since ignore_entry will free de. This also
* guarantees that de->d_name continues to hold the same prefix.
*/
while (i + 1 < n && !strncmp(de_list[i + 1]->d_name, de->d_name, dp_len)) {
free(de);
i++;
de = de_list[i];
}
snprintf(fp, sizeof(fp), "%s/%.*s", path, dp_len, de->d_name);
if ((ckchs = ckchs_lookup(fp)) == NULL)
ckchs = ckchs_load_cert_file(fp, 1, err);
if (!ckchs)
cfgerr |= ERR_ALERT | ERR_FATAL;
else
cfgerr |= ssl_sock_load_ckchs(path, ckchs, bind_conf, NULL, NULL, 0, err);
/* Successfully processed the bundle */
goto ignore_entry;
}
}
#endif
if ((ckchs = ckchs_lookup(fp)) == NULL)
ckchs = ckchs_load_cert_file(fp, 0, err);
if (!ckchs)
cfgerr |= ERR_ALERT | ERR_FATAL;
else
cfgerr |= ssl_sock_load_ckchs(path, ckchs, bind_conf, NULL, NULL, 0, err);
ignore_entry:
free(de);
}
free(de_list);
}
closedir(dir);
return cfgerr;
}
ckchs = ckchs_load_cert_file(path, 1, err);
if (!ckchs)
return ERR_ALERT | ERR_FATAL;
cfgerr |= ssl_sock_load_ckchs(path, ckchs, bind_conf, NULL, NULL, 0, err);
return cfgerr;
}
/* Make sure openssl opens /dev/urandom before the chroot. The work is only
* done once. Zero is returned if the operation fails. No error is returned
* if the random is said as not implemented, because we expect that openssl
* will use another method once needed.
*/
static int ssl_initialize_random()
{
unsigned char random;
static int random_initialized = 0;
if (!random_initialized && RAND_bytes(&random, 1) != 0)
random_initialized = 1;
return random_initialized;
}
/* release ssl bind conf */
void ssl_sock_free_ssl_conf(struct ssl_bind_conf *conf)
{
if (conf) {
#if defined(OPENSSL_NPN_NEGOTIATED) && !defined(OPENSSL_NO_NEXTPROTONEG)
free(conf->npn_str);
conf->npn_str = NULL;
#endif
#ifdef TLSEXT_TYPE_application_layer_protocol_negotiation
free(conf->alpn_str);
conf->alpn_str = NULL;
#endif
free(conf->ca_file);
conf->ca_file = NULL;
free(conf->crl_file);
conf->crl_file = NULL;
free(conf->ciphers);
conf->ciphers = NULL;
#if (HA_OPENSSL_VERSION_NUMBER >= 0x10101000L)
free(conf->ciphersuites);
conf->ciphersuites = NULL;
#endif
free(conf->curves);
conf->curves = NULL;
free(conf->ecdhe);
conf->ecdhe = NULL;
}
}
/* Returns a set of ERR_* flags possibly with an error in <err>. */
int ssl_sock_load_cert_list_file(char *file, struct bind_conf *bind_conf, struct proxy *curproxy, char **err)
{
char thisline[CRT_LINESIZE];
char path[MAXPATHLEN+1];
FILE *f;
struct stat buf;
int linenum = 0;
int cfgerr = 0;
struct ckch_store *ckchs;
if ((f = fopen(file, "r")) == NULL) {
memprintf(err, "cannot open file '%s' : %s", file, strerror(errno));
return ERR_ALERT | ERR_FATAL;
}
while (fgets(thisline, sizeof(thisline), f) != NULL) {
int arg, newarg, cur_arg, i, ssl_b = 0, ssl_e = 0;
char *end;
char *args[MAX_CRT_ARGS + 1];
char *line = thisline;
char *crt_path;
struct ssl_bind_conf *ssl_conf = NULL;
linenum++;
end = line + strlen(line);
if (end-line == sizeof(thisline)-1 && *(end-1) != '\n') {
/* Check if we reached the limit and the last char is not \n.
* Watch out for the last line without the terminating '\n'!
*/
memprintf(err, "line %d too long in file '%s', limit is %d characters",
linenum, file, (int)sizeof(thisline)-1);
cfgerr |= ERR_ALERT | ERR_FATAL;
break;
}
arg = 0;
newarg = 1;
while (*line) {
if (*line == '#' || *line == '\n' || *line == '\r') {
/* end of string, end of loop */
*line = 0;
break;
} else if (isspace(*line)) {
newarg = 1;
*line = 0;
} else if (*line == '[') {
if (ssl_b) {
memprintf(err, "too many '[' on line %d in file '%s'.", linenum, file);
cfgerr |= ERR_ALERT | ERR_FATAL;
break;
}
if (!arg) {
memprintf(err, "file must start with a cert on line %d in file '%s'", linenum, file);
cfgerr |= ERR_ALERT | ERR_FATAL;
break;
}
ssl_b = arg;
newarg = 1;
*line = 0;
} else if (*line == ']') {
if (ssl_e) {
memprintf(err, "too many ']' on line %d in file '%s'.", linenum, file);
cfgerr |= ERR_ALERT | ERR_FATAL;
break;
}
if (!ssl_b) {
memprintf(err, "missing '[' in line %d in file '%s'.", linenum, file);
cfgerr |= ERR_ALERT | ERR_FATAL;
break;
}
ssl_e = arg;
newarg = 1;
*line = 0;
} else if (newarg) {
if (arg == MAX_CRT_ARGS) {
memprintf(err, "too many args on line %d in file '%s'.", linenum, file);
cfgerr |= ERR_ALERT | ERR_FATAL;
break;
}
newarg = 0;
args[arg++] = line;
}
line++;
}
if (cfgerr)
break;
args[arg++] = line;
/* empty line */
if (!*args[0])
continue;
crt_path = args[0];
if (*crt_path != '/' && global_ssl.crt_base) {
if ((strlen(global_ssl.crt_base) + 1 + strlen(crt_path)) > MAXPATHLEN) {
memprintf(err, "'%s' : path too long on line %d in file '%s'",
crt_path, linenum, file);
cfgerr |= ERR_ALERT | ERR_FATAL;
break;
}
snprintf(path, sizeof(path), "%s/%s", global_ssl.crt_base, crt_path);
crt_path = path;
}
ssl_conf = calloc(1, sizeof *ssl_conf);
cur_arg = ssl_b ? ssl_b : 1;
while (cur_arg < ssl_e) {
newarg = 0;
for (i = 0; ssl_bind_kws[i].kw != NULL; i++) {
if (strcmp(ssl_bind_kws[i].kw, args[cur_arg]) == 0) {
newarg = 1;
cfgerr |= ssl_bind_kws[i].parse(args, cur_arg, curproxy, ssl_conf, err);
if (cur_arg + 1 + ssl_bind_kws[i].skip > ssl_e) {
memprintf(err, "ssl args out of '[]' for %s on line %d in file '%s'",
args[cur_arg], linenum, file);
cfgerr |= ERR_ALERT | ERR_FATAL;
}
cur_arg += 1 + ssl_bind_kws[i].skip;
break;
}
}
if (!cfgerr && !newarg) {
memprintf(err, "unknown ssl keyword %s on line %d in file '%s'.",
args[cur_arg], linenum, file);
cfgerr |= ERR_ALERT | ERR_FATAL;
break;
}
}
if (cfgerr) {
ssl_sock_free_ssl_conf(ssl_conf);
free(ssl_conf);
ssl_conf = NULL;
break;
}
if ((ckchs = ckchs_lookup(crt_path)) == NULL) {
if (stat(crt_path, &buf) == 0)
ckchs = ckchs_load_cert_file(crt_path, 0, err);
else
ckchs = ckchs_load_cert_file(crt_path, 1, err);
}
if (!ckchs)
cfgerr |= ERR_ALERT | ERR_FATAL;
else
cfgerr |= ssl_sock_load_ckchs(crt_path, ckchs, bind_conf, ssl_conf, &args[cur_arg], arg - cur_arg - 1, err);
if (cfgerr) {
memprintf(err, "error processing line %d in file '%s' : %s", linenum, file, *err);
break;
}
}
fclose(f);
return cfgerr;
}
/* Create an initial CTX used to start the SSL connection before switchctx */
static int
ssl_sock_initial_ctx(struct bind_conf *bind_conf)
{
SSL_CTX *ctx = NULL;
long options =
SSL_OP_ALL | /* all known workarounds for bugs */
SSL_OP_NO_SSLv2 |
SSL_OP_NO_COMPRESSION |
SSL_OP_SINGLE_DH_USE |
SSL_OP_SINGLE_ECDH_USE |
SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION |
SSL_OP_PRIORITIZE_CHACHA |
SSL_OP_CIPHER_SERVER_PREFERENCE;
long mode =
SSL_MODE_ENABLE_PARTIAL_WRITE |
SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER |
SSL_MODE_RELEASE_BUFFERS |
SSL_MODE_SMALL_BUFFERS;
struct tls_version_filter *conf_ssl_methods = &bind_conf->ssl_conf.ssl_methods;
int i, min, max, hole;
int flags = MC_SSL_O_ALL;
int cfgerr = 0;
ctx = SSL_CTX_new(SSLv23_server_method());
bind_conf->initial_ctx = ctx;
if (conf_ssl_methods->flags && (conf_ssl_methods->min || conf_ssl_methods->max))
ha_warning("Proxy '%s': no-sslv3/no-tlsv1x are ignored for bind '%s' at [%s:%d]. "
"Use only 'ssl-min-ver' and 'ssl-max-ver' to fix.\n",
bind_conf->frontend->id, bind_conf->arg, bind_conf->file, bind_conf->line);
else
flags = conf_ssl_methods->flags;
min = conf_ssl_methods->min;
max = conf_ssl_methods->max;
/* start with TLSv10 to remove SSLv3 per default */
if (!min && (!max || max >= CONF_TLSV10))
min = CONF_TLSV10;
/* Real min and max should be determinate with configuration and openssl's capabilities */
if (min)
flags |= (methodVersions[min].flag - 1);
if (max)
flags |= ~((methodVersions[max].flag << 1) - 1);
/* find min, max and holes */
min = max = CONF_TLSV_NONE;
hole = 0;
for (i = CONF_TLSV_MIN; i <= CONF_TLSV_MAX; i++)
/* version is in openssl && version not disable in configuration */
if (methodVersions[i].option && !(flags & methodVersions[i].flag)) {
if (min) {
if (hole) {
ha_warning("Proxy '%s': SSL/TLS versions range not contiguous for bind '%s' at [%s:%d]. "
"Hole find for %s. Use only 'ssl-min-ver' and 'ssl-max-ver' to fix.\n",
bind_conf->frontend->id, bind_conf->arg, bind_conf->file, bind_conf->line,
methodVersions[hole].name);
hole = 0;
}
max = i;
}
else {
min = max = i;
}
}
else {
if (min)
hole = i;
}
if (!min) {
ha_alert("Proxy '%s': all SSL/TLS versions are disabled for bind '%s' at [%s:%d].\n",
bind_conf->frontend->id, bind_conf->arg, bind_conf->file, bind_conf->line);
cfgerr += 1;
}
/* save real min/max in bind_conf */
conf_ssl_methods->min = min;
conf_ssl_methods->max = max;
#if (HA_OPENSSL_VERSION_NUMBER < 0x1010000fL)
/* Keep force-xxx implementation as it is in older haproxy. It's a
precautionary measure to avoid any surprise with older openssl version. */
if (min == max)
methodVersions[min].ctx_set_version(ctx, SET_SERVER);
else
for (i = CONF_TLSV_MIN; i <= CONF_TLSV_MAX; i++)
if (flags & methodVersions[i].flag)
options |= methodVersions[i].option;
#else /* openssl >= 1.1.0 */
/* set the max_version is required to cap TLS version or activate new TLS (v1.3) */
methodVersions[min].ctx_set_version(ctx, SET_MIN);
methodVersions[max].ctx_set_version(ctx, SET_MAX);
#endif
if (bind_conf->ssl_options & BC_SSL_O_NO_TLS_TICKETS)
options |= SSL_OP_NO_TICKET;
if (bind_conf->ssl_options & BC_SSL_O_PREF_CLIE_CIPH)
options &= ~SSL_OP_CIPHER_SERVER_PREFERENCE;
#ifdef SSL_OP_NO_RENEGOTIATION
options |= SSL_OP_NO_RENEGOTIATION;
#endif
SSL_CTX_set_options(ctx, options);
#if (HA_OPENSSL_VERSION_NUMBER >= 0x1010000fL) && !defined(OPENSSL_NO_ASYNC)
if (global_ssl.async)
mode |= SSL_MODE_ASYNC;
#endif
SSL_CTX_set_mode(ctx, mode);
if (global_ssl.life_time)
SSL_CTX_set_timeout(ctx, global_ssl.life_time);
#ifdef SSL_CTRL_SET_TLSEXT_HOSTNAME
#ifdef OPENSSL_IS_BORINGSSL
SSL_CTX_set_select_certificate_cb(ctx, ssl_sock_switchctx_cbk);
SSL_CTX_set_tlsext_servername_callback(ctx, ssl_sock_switchctx_err_cbk);
#elif (HA_OPENSSL_VERSION_NUMBER >= 0x10101000L)
if (bind_conf->ssl_conf.early_data) {
SSL_CTX_set_options(ctx, SSL_OP_NO_ANTI_REPLAY);
SSL_CTX_set_max_early_data(ctx, global.tune.bufsize - global.tune.maxrewrite);
}
SSL_CTX_set_client_hello_cb(ctx, ssl_sock_switchctx_cbk, NULL);
SSL_CTX_set_tlsext_servername_callback(ctx, ssl_sock_switchctx_err_cbk);
#else
SSL_CTX_set_tlsext_servername_callback(ctx, ssl_sock_switchctx_cbk);
#endif
SSL_CTX_set_tlsext_servername_arg(ctx, bind_conf);
#endif
return cfgerr;
}
static inline void sh_ssl_sess_free_blocks(struct shared_block *first, struct shared_block *block)
{
if (first == block) {
struct sh_ssl_sess_hdr *sh_ssl_sess = (struct sh_ssl_sess_hdr *)first->data;
if (first->len > 0)
sh_ssl_sess_tree_delete(sh_ssl_sess);
}
}
/* return first block from sh_ssl_sess */
static inline struct shared_block *sh_ssl_sess_first_block(struct sh_ssl_sess_hdr *sh_ssl_sess)
{
return (struct shared_block *)((unsigned char *)sh_ssl_sess - ((struct shared_block *)NULL)->data);
}
/* store a session into the cache
* s_id : session id padded with zero to SSL_MAX_SSL_SESSION_ID_LENGTH
* data: asn1 encoded session
* data_len: asn1 encoded session length
* Returns 1 id session was stored (else 0)
*/
static int sh_ssl_sess_store(unsigned char *s_id, unsigned char *data, int data_len)
{
struct shared_block *first;
struct sh_ssl_sess_hdr *sh_ssl_sess, *oldsh_ssl_sess;
first = shctx_row_reserve_hot(ssl_shctx, NULL, data_len + sizeof(struct sh_ssl_sess_hdr));
if (!first) {
/* Could not retrieve enough free blocks to store that session */
return 0;
}
/* STORE the key in the first elem */
sh_ssl_sess = (struct sh_ssl_sess_hdr *)first->data;
memcpy(sh_ssl_sess->key_data, s_id, SSL_MAX_SSL_SESSION_ID_LENGTH);
first->len = sizeof(struct sh_ssl_sess_hdr);
/* it returns the already existing node
or current node if none, never returns null */
oldsh_ssl_sess = sh_ssl_sess_tree_insert(sh_ssl_sess);
if (oldsh_ssl_sess != sh_ssl_sess) {
/* NOTE: Row couldn't be in use because we lock read & write function */
/* release the reserved row */
shctx_row_dec_hot(ssl_shctx, first);
/* replace the previous session already in the tree */
sh_ssl_sess = oldsh_ssl_sess;
/* ignore the previous session data, only use the header */
first = sh_ssl_sess_first_block(sh_ssl_sess);
shctx_row_inc_hot(ssl_shctx, first);
first->len = sizeof(struct sh_ssl_sess_hdr);
}
if (shctx_row_data_append(ssl_shctx, first, NULL, data, data_len) < 0) {
shctx_row_dec_hot(ssl_shctx, first);
return 0;
}
shctx_row_dec_hot(ssl_shctx, first);
return 1;
}
/* SSL callback used when a new session is created while connecting to a server */
static int ssl_sess_new_srv_cb(SSL *ssl, SSL_SESSION *sess)
{
struct connection *conn = SSL_get_ex_data(ssl, ssl_app_data_index);
struct server *s;
s = __objt_server(conn->target);
if (!(s->ssl_ctx.options & SRV_SSL_O_NO_REUSE)) {
int len;
unsigned char *ptr;
len = i2d_SSL_SESSION(sess, NULL);
if (s->ssl_ctx.reused_sess[tid].ptr && s->ssl_ctx.reused_sess[tid].allocated_size >= len) {
ptr = s->ssl_ctx.reused_sess[tid].ptr;
} else {
free(s->ssl_ctx.reused_sess[tid].ptr);
ptr = s->ssl_ctx.reused_sess[tid].ptr = malloc(len);
s->ssl_ctx.reused_sess[tid].allocated_size = len;
}
if (s->ssl_ctx.reused_sess[tid].ptr) {
s->ssl_ctx.reused_sess[tid].size = i2d_SSL_SESSION(sess,
&ptr);
}
} else {
free(s->ssl_ctx.reused_sess[tid].ptr);
s->ssl_ctx.reused_sess[tid].ptr = NULL;
}
return 0;
}
/* SSL callback used on new session creation */
int sh_ssl_sess_new_cb(SSL *ssl, SSL_SESSION *sess)
{
unsigned char encsess[SHSESS_MAX_DATA_LEN]; /* encoded session */
unsigned char encid[SSL_MAX_SSL_SESSION_ID_LENGTH]; /* encoded id */
unsigned char *p;
int data_len;
unsigned int sid_length;
const unsigned char *sid_data;
/* Session id is already stored in to key and session id is known
* so we dont store it to keep size.
* note: SSL_SESSION_set1_id is using
* a memcpy so we need to use a different pointer
* than sid_data or sid_ctx_data to avoid valgrind
* complaining.
*/
sid_data = SSL_SESSION_get_id(sess, &sid_length);
/* copy value in an other buffer */
memcpy(encid, sid_data, sid_length);
/* pad with 0 */
if (sid_length < SSL_MAX_SSL_SESSION_ID_LENGTH)
memset(encid + sid_length, 0, SSL_MAX_SSL_SESSION_ID_LENGTH-sid_length);
/* force length to zero to avoid ASN1 encoding */
SSL_SESSION_set1_id(sess, encid, 0);
/* force length to zero to avoid ASN1 encoding */
SSL_SESSION_set1_id_context(sess, (const unsigned char *)SHCTX_APPNAME, 0);
/* check if buffer is large enough for the ASN1 encoded session */
data_len = i2d_SSL_SESSION(sess, NULL);
if (data_len > SHSESS_MAX_DATA_LEN)
goto err;
p = encsess;
/* process ASN1 session encoding before the lock */
i2d_SSL_SESSION(sess, &p);
shctx_lock(ssl_shctx);
/* store to cache */
sh_ssl_sess_store(encid, encsess, data_len);
shctx_unlock(ssl_shctx);
err:
/* reset original length values */
SSL_SESSION_set1_id(sess, encid, sid_length);
SSL_SESSION_set1_id_context(sess, (const unsigned char *)SHCTX_APPNAME, strlen(SHCTX_APPNAME));
return 0; /* do not increment session reference count */
}
/* SSL callback used on lookup an existing session cause none found in internal cache */
SSL_SESSION *sh_ssl_sess_get_cb(SSL *ssl, __OPENSSL_110_CONST__ unsigned char *key, int key_len, int *do_copy)
{
struct sh_ssl_sess_hdr *sh_ssl_sess;
unsigned char data[SHSESS_MAX_DATA_LEN], *p;
unsigned char tmpkey[SSL_MAX_SSL_SESSION_ID_LENGTH];
SSL_SESSION *sess;
struct shared_block *first;
global.shctx_lookups++;
/* allow the session to be freed automatically by openssl */
*do_copy = 0;
/* tree key is zeros padded sessionid */
if (key_len < SSL_MAX_SSL_SESSION_ID_LENGTH) {
memcpy(tmpkey, key, key_len);
memset(tmpkey + key_len, 0, SSL_MAX_SSL_SESSION_ID_LENGTH - key_len);
key = tmpkey;
}
/* lock cache */
shctx_lock(ssl_shctx);
/* lookup for session */
sh_ssl_sess = sh_ssl_sess_tree_lookup(key);
if (!sh_ssl_sess) {
/* no session found: unlock cache and exit */
shctx_unlock(ssl_shctx);
global.shctx_misses++;
return NULL;
}
/* sh_ssl_sess (shared_block->data) is at the end of shared_block */
first = sh_ssl_sess_first_block(sh_ssl_sess);
shctx_row_data_get(ssl_shctx, first, data, sizeof(struct sh_ssl_sess_hdr), first->len-sizeof(struct sh_ssl_sess_hdr));
shctx_unlock(ssl_shctx);
/* decode ASN1 session */
p = data;
sess = d2i_SSL_SESSION(NULL, (const unsigned char **)&p, first->len-sizeof(struct sh_ssl_sess_hdr));
/* Reset session id and session id contenxt */
if (sess) {
SSL_SESSION_set1_id(sess, key, key_len);
SSL_SESSION_set1_id_context(sess, (const unsigned char *)SHCTX_APPNAME, strlen(SHCTX_APPNAME));
}
return sess;
}
/* SSL callback used to signal session is no more used in internal cache */
void sh_ssl_sess_remove_cb(SSL_CTX *ctx, SSL_SESSION *sess)
{
struct sh_ssl_sess_hdr *sh_ssl_sess;
unsigned char tmpkey[SSL_MAX_SSL_SESSION_ID_LENGTH];
unsigned int sid_length;
const unsigned char *sid_data;
(void)ctx;
sid_data = SSL_SESSION_get_id(sess, &sid_length);
/* tree key is zeros padded sessionid */
if (sid_length < SSL_MAX_SSL_SESSION_ID_LENGTH) {
memcpy(tmpkey, sid_data, sid_length);
memset(tmpkey+sid_length, 0, SSL_MAX_SSL_SESSION_ID_LENGTH - sid_length);
sid_data = tmpkey;
}
shctx_lock(ssl_shctx);
/* lookup for session */
sh_ssl_sess = sh_ssl_sess_tree_lookup(sid_data);
if (sh_ssl_sess) {
/* free session */
sh_ssl_sess_tree_delete(sh_ssl_sess);
}
/* unlock cache */
shctx_unlock(ssl_shctx);
}
/* Set session cache mode to server and disable openssl internal cache.
* Set shared cache callbacks on an ssl context.
* Shared context MUST be firstly initialized */
void ssl_set_shctx(SSL_CTX *ctx)
{
SSL_CTX_set_session_id_context(ctx, (const unsigned char *)SHCTX_APPNAME, strlen(SHCTX_APPNAME));
if (!ssl_shctx) {
SSL_CTX_set_session_cache_mode(ctx, SSL_SESS_CACHE_OFF);
return;
}
SSL_CTX_set_session_cache_mode(ctx, SSL_SESS_CACHE_SERVER |
SSL_SESS_CACHE_NO_INTERNAL |
SSL_SESS_CACHE_NO_AUTO_CLEAR);
/* Set callbacks */
SSL_CTX_sess_set_new_cb(ctx, sh_ssl_sess_new_cb);
SSL_CTX_sess_set_get_cb(ctx, sh_ssl_sess_get_cb);
SSL_CTX_sess_set_remove_cb(ctx, sh_ssl_sess_remove_cb);
}
int ssl_sock_prepare_ctx(struct bind_conf *bind_conf, struct ssl_bind_conf *ssl_conf, SSL_CTX *ctx)
{
struct proxy *curproxy = bind_conf->frontend;
int cfgerr = 0;
int verify = SSL_VERIFY_NONE;
struct ssl_bind_conf __maybe_unused *ssl_conf_cur;
const char *conf_ciphers;
#if (HA_OPENSSL_VERSION_NUMBER >= 0x10101000L)
const char *conf_ciphersuites;
#endif
const char *conf_curves = NULL;
if (ssl_conf) {
struct tls_version_filter *conf_ssl_methods = &ssl_conf->ssl_methods;
int i, min, max;
int flags = MC_SSL_O_ALL;
/* Real min and max should be determinate with configuration and openssl's capabilities */
min = conf_ssl_methods->min ? conf_ssl_methods->min : bind_conf->ssl_conf.ssl_methods.min;
max = conf_ssl_methods->max ? conf_ssl_methods->max : bind_conf->ssl_conf.ssl_methods.max;
if (min)
flags |= (methodVersions[min].flag - 1);
if (max)
flags |= ~((methodVersions[max].flag << 1) - 1);
min = max = CONF_TLSV_NONE;
for (i = CONF_TLSV_MIN; i <= CONF_TLSV_MAX; i++)
if (methodVersions[i].option && !(flags & methodVersions[i].flag)) {
if (min)
max = i;
else
min = max = i;
}
/* save real min/max */
conf_ssl_methods->min = min;
conf_ssl_methods->max = max;
if (!min) {
ha_alert("Proxy '%s': all SSL/TLS versions are disabled for bind '%s' at [%s:%d].\n",
bind_conf->frontend->id, bind_conf->arg, bind_conf->file, bind_conf->line);
cfgerr += 1;
}
}
switch ((ssl_conf && ssl_conf->verify) ? ssl_conf->verify : bind_conf->ssl_conf.verify) {
case SSL_SOCK_VERIFY_NONE:
verify = SSL_VERIFY_NONE;
break;
case SSL_SOCK_VERIFY_OPTIONAL:
verify = SSL_VERIFY_PEER;
break;
case SSL_SOCK_VERIFY_REQUIRED:
verify = SSL_VERIFY_PEER|SSL_VERIFY_FAIL_IF_NO_PEER_CERT;
break;
}
SSL_CTX_set_verify(ctx, verify, ssl_sock_bind_verifycbk);
if (verify & SSL_VERIFY_PEER) {
char *ca_file = (ssl_conf && ssl_conf->ca_file) ? ssl_conf->ca_file : bind_conf->ssl_conf.ca_file;
char *crl_file = (ssl_conf && ssl_conf->crl_file) ? ssl_conf->crl_file : bind_conf->ssl_conf.crl_file;
if (ca_file) {
/* load CAfile to verify */
if (!SSL_CTX_load_verify_locations(ctx, ca_file, NULL)) {
ha_alert("Proxy '%s': unable to load CA file '%s' for bind '%s' at [%s:%d].\n",
curproxy->id, ca_file, bind_conf->arg, bind_conf->file, bind_conf->line);
cfgerr++;
}
if (!((ssl_conf && ssl_conf->no_ca_names) || bind_conf->ssl_conf.no_ca_names)) {
/* set CA names for client cert request, function returns void */
SSL_CTX_set_client_CA_list(ctx, SSL_load_client_CA_file(ca_file));
}
}
else {
ha_alert("Proxy '%s': verify is enabled but no CA file specified for bind '%s' at [%s:%d].\n",
curproxy->id, bind_conf->arg, bind_conf->file, bind_conf->line);
cfgerr++;
}
#ifdef X509_V_FLAG_CRL_CHECK
if (crl_file) {
X509_STORE *store = SSL_CTX_get_cert_store(ctx);
if (!store || !X509_STORE_load_locations(store, crl_file, NULL)) {
ha_alert("Proxy '%s': unable to configure CRL file '%s' for bind '%s' at [%s:%d].\n",
curproxy->id, crl_file, bind_conf->arg, bind_conf->file, bind_conf->line);
cfgerr++;
}
else {
X509_STORE_set_flags(store, X509_V_FLAG_CRL_CHECK|X509_V_FLAG_CRL_CHECK_ALL);
}
}
#endif
ERR_clear_error();
}
#if (defined SSL_CTRL_SET_TLSEXT_TICKET_KEY_CB && TLS_TICKETS_NO > 0)
if(bind_conf->keys_ref) {
if (!SSL_CTX_set_tlsext_ticket_key_cb(ctx, ssl_tlsext_ticket_key_cb)) {
ha_alert("Proxy '%s': unable to set callback for TLS ticket validation for bind '%s' at [%s:%d].\n",
curproxy->id, bind_conf->arg, bind_conf->file, bind_conf->line);
cfgerr++;
}
}
#endif
ssl_set_shctx(ctx);
conf_ciphers = (ssl_conf && ssl_conf->ciphers) ? ssl_conf->ciphers : bind_conf->ssl_conf.ciphers;
if (conf_ciphers &&
!SSL_CTX_set_cipher_list(ctx, conf_ciphers)) {
ha_alert("Proxy '%s': unable to set SSL cipher list to '%s' for bind '%s' at [%s:%d].\n",
curproxy->id, conf_ciphers, bind_conf->arg, bind_conf->file, bind_conf->line);
cfgerr++;
}
#if (HA_OPENSSL_VERSION_NUMBER >= 0x10101000L)
conf_ciphersuites = (ssl_conf && ssl_conf->ciphersuites) ? ssl_conf->ciphersuites : bind_conf->ssl_conf.ciphersuites;
if (conf_ciphersuites &&
!SSL_CTX_set_ciphersuites(ctx, conf_ciphersuites)) {
ha_alert("Proxy '%s': unable to set TLS 1.3 cipher suites to '%s' for bind '%s' at [%s:%d].\n",
curproxy->id, conf_ciphersuites, bind_conf->arg, bind_conf->file, bind_conf->line);
cfgerr++;
}
#endif
#ifndef OPENSSL_NO_DH
/* If tune.ssl.default-dh-param has not been set,
neither has ssl-default-dh-file and no static DH
params were in the certificate file. */
if (global_ssl.default_dh_param == 0 &&
global_dh == NULL &&
(ssl_dh_ptr_index == -1 ||
SSL_CTX_get_ex_data(ctx, ssl_dh_ptr_index) == NULL)) {
STACK_OF(SSL_CIPHER) * ciphers = NULL;
const SSL_CIPHER * cipher = NULL;
char cipher_description[128];
/* The description of ciphers using an Ephemeral Diffie Hellman key exchange
contains " Kx=DH " or " Kx=DH(". Beware of " Kx=DH/",
which is not ephemeral DH. */
const char dhe_description[] = " Kx=DH ";
const char dhe_export_description[] = " Kx=DH(";
int idx = 0;
int dhe_found = 0;
SSL *ssl = NULL;
ssl = SSL_new(ctx);
if (ssl) {
ciphers = SSL_get_ciphers(ssl);
if (ciphers) {
for (idx = 0; idx < sk_SSL_CIPHER_num(ciphers); idx++) {
cipher = sk_SSL_CIPHER_value(ciphers, idx);
if (SSL_CIPHER_description(cipher, cipher_description, sizeof (cipher_description)) == cipher_description) {
if (strstr(cipher_description, dhe_description) != NULL ||
strstr(cipher_description, dhe_export_description) != NULL) {
dhe_found = 1;
break;
}
}
}
}
SSL_free(ssl);
ssl = NULL;
}
if (dhe_found) {
ha_warning("Setting tune.ssl.default-dh-param to 1024 by default, if your workload permits it you should set it to at least 2048. Please set a value >= 1024 to make this warning disappear.\n");
}
global_ssl.default_dh_param = 1024;
}
if (global_ssl.default_dh_param >= 1024) {
if (local_dh_1024 == NULL) {
local_dh_1024 = ssl_get_dh_1024();
}
if (global_ssl.default_dh_param >= 2048) {
if (local_dh_2048 == NULL) {
local_dh_2048 = ssl_get_dh_2048();
}
if (global_ssl.default_dh_param >= 4096) {
if (local_dh_4096 == NULL) {
local_dh_4096 = ssl_get_dh_4096();
}
}
}
}
#endif /* OPENSSL_NO_DH */
SSL_CTX_set_info_callback(ctx, ssl_sock_infocbk);
#if HA_OPENSSL_VERSION_NUMBER >= 0x00907000L
SSL_CTX_set_msg_callback(ctx, ssl_sock_msgcbk);
#endif
#if defined(OPENSSL_NPN_NEGOTIATED) && !defined(OPENSSL_NO_NEXTPROTONEG)
ssl_conf_cur = NULL;
if (ssl_conf && ssl_conf->npn_str)
ssl_conf_cur = ssl_conf;
else if (bind_conf->ssl_conf.npn_str)
ssl_conf_cur = &bind_conf->ssl_conf;
if (ssl_conf_cur)
SSL_CTX_set_next_protos_advertised_cb(ctx, ssl_sock_advertise_npn_protos, ssl_conf_cur);
#endif
#ifdef TLSEXT_TYPE_application_layer_protocol_negotiation
ssl_conf_cur = NULL;
if (ssl_conf && ssl_conf->alpn_str)
ssl_conf_cur = ssl_conf;
else if (bind_conf->ssl_conf.alpn_str)
ssl_conf_cur = &bind_conf->ssl_conf;
if (ssl_conf_cur)
SSL_CTX_set_alpn_select_cb(ctx, ssl_sock_advertise_alpn_protos, ssl_conf_cur);
#endif
#if HA_OPENSSL_VERSION_NUMBER >= 0x1000200fL
conf_curves = (ssl_conf && ssl_conf->curves) ? ssl_conf->curves : bind_conf->ssl_conf.curves;
if (conf_curves) {
if (!SSL_CTX_set1_curves_list(ctx, conf_curves)) {
ha_alert("Proxy '%s': unable to set SSL curves list to '%s' for bind '%s' at [%s:%d].\n",
curproxy->id, conf_curves, bind_conf->arg, bind_conf->file, bind_conf->line);
cfgerr++;
}
#if defined(SSL_CTX_set_ecdh_auto)
(void)SSL_CTX_set_ecdh_auto(ctx, 1);
#endif
}
#endif
#if defined(SSL_CTX_set_tmp_ecdh) && !defined(OPENSSL_NO_ECDH)
if (!conf_curves) {
int i;
EC_KEY *ecdh;
#if (HA_OPENSSL_VERSION_NUMBER >= 0x10101000L)
const char *ecdhe = (ssl_conf && ssl_conf->ecdhe) ? ssl_conf->ecdhe :
(bind_conf->ssl_conf.ecdhe ? bind_conf->ssl_conf.ecdhe :
NULL);
if (ecdhe == NULL) {
SSL_CTX_set_ecdh_auto(ctx, 1);
return cfgerr;
}
#else
const char *ecdhe = (ssl_conf && ssl_conf->ecdhe) ? ssl_conf->ecdhe :
(bind_conf->ssl_conf.ecdhe ? bind_conf->ssl_conf.ecdhe :
ECDHE_DEFAULT_CURVE);
#endif
i = OBJ_sn2nid(ecdhe);
if (!i || ((ecdh = EC_KEY_new_by_curve_name(i)) == NULL)) {
ha_alert("Proxy '%s': unable to set elliptic named curve to '%s' for bind '%s' at [%s:%d].\n",
curproxy->id, ecdhe, bind_conf->arg, bind_conf->file, bind_conf->line);
cfgerr++;
}
else {
SSL_CTX_set_tmp_ecdh(ctx, ecdh);
EC_KEY_free(ecdh);
}
}
#endif
return cfgerr;
}
static int ssl_sock_srv_hostcheck(const char *pattern, const char *hostname)
{
const char *pattern_wildcard, *pattern_left_label_end, *hostname_left_label_end;
size_t prefixlen, suffixlen;
/* Trivial case */
if (strcmp(pattern, hostname) == 0)
return 1;
/* The rest of this logic is based on RFC 6125, section 6.4.3
* (http://tools.ietf.org/html/rfc6125#section-6.4.3) */
pattern_wildcard = NULL;
pattern_left_label_end = pattern;
while (*pattern_left_label_end != '.') {
switch (*pattern_left_label_end) {
case 0:
/* End of label not found */
return 0;
case '*':
/* If there is more than one wildcards */
if (pattern_wildcard)
return 0;
pattern_wildcard = pattern_left_label_end;
break;
}
pattern_left_label_end++;
}
/* If it's not trivial and there is no wildcard, it can't
* match */
if (!pattern_wildcard)
return 0;
/* Make sure all labels match except the leftmost */
hostname_left_label_end = strchr(hostname, '.');
if (!hostname_left_label_end
|| strcmp(pattern_left_label_end, hostname_left_label_end) != 0)
return 0;
/* Make sure the leftmost label of the hostname is long enough
* that the wildcard can match */
if (hostname_left_label_end - hostname < (pattern_left_label_end - pattern) - 1)
return 0;
/* Finally compare the string on either side of the
* wildcard */
prefixlen = pattern_wildcard - pattern;
suffixlen = pattern_left_label_end - (pattern_wildcard + 1);
if ((prefixlen && (memcmp(pattern, hostname, prefixlen) != 0))
|| (suffixlen && (memcmp(pattern_wildcard + 1, hostname_left_label_end - suffixlen, suffixlen) != 0)))
return 0;
return 1;
}
static int ssl_sock_srv_verifycbk(int ok, X509_STORE_CTX *ctx)
{
SSL *ssl;
struct connection *conn;
struct ssl_sock_ctx *ssl_ctx;
const char *servername;
const char *sni;
int depth;
X509 *cert;
STACK_OF(GENERAL_NAME) *alt_names;
int i;
X509_NAME *cert_subject;
char *str;
if (ok == 0)
return ok;
ssl = X509_STORE_CTX_get_ex_data(ctx, SSL_get_ex_data_X509_STORE_CTX_idx());
conn = SSL_get_ex_data(ssl, ssl_app_data_index);
ssl_ctx = conn->xprt_ctx;
/* We're checking if the provided hostnames match the desired one. The
* desired hostname comes from the SNI we presented if any, or if not
* provided then it may have been explicitly stated using a "verifyhost"
* directive. If neither is set, we don't care about the name so the
* verification is OK.
*/
servername = SSL_get_servername(ssl_ctx->ssl, TLSEXT_NAMETYPE_host_name);
sni = servername;
if (!servername) {
servername = __objt_server(conn->target)->ssl_ctx.verify_host;
if (!servername)
return ok;
}
/* We only need to verify the CN on the actual server cert,
* not the indirect CAs */
depth = X509_STORE_CTX_get_error_depth(ctx);
if (depth != 0)
return ok;
/* At this point, the cert is *not* OK unless we can find a
* hostname match */
ok = 0;
cert = X509_STORE_CTX_get_current_cert(ctx);
/* It seems like this might happen if verify peer isn't set */
if (!cert)
return ok;
alt_names = X509_get_ext_d2i(cert, NID_subject_alt_name, NULL, NULL);
if (alt_names) {
for (i = 0; !ok && i < sk_GENERAL_NAME_num(alt_names); i++) {
GENERAL_NAME *name = sk_GENERAL_NAME_value(alt_names, i);
if (name->type == GEN_DNS) {
#if HA_OPENSSL_VERSION_NUMBER < 0x00907000L
if (ASN1_STRING_to_UTF8((unsigned char **)&str, name->d.ia5) >= 0) {
#else
if (ASN1_STRING_to_UTF8((unsigned char **)&str, name->d.dNSName) >= 0) {
#endif
ok = ssl_sock_srv_hostcheck(str, servername);
OPENSSL_free(str);
}
}
}
sk_GENERAL_NAME_pop_free(alt_names, GENERAL_NAME_free);
}
cert_subject = X509_get_subject_name(cert);
i = -1;
while (!ok && (i = X509_NAME_get_index_by_NID(cert_subject, NID_commonName, i)) != -1) {
X509_NAME_ENTRY *entry = X509_NAME_get_entry(cert_subject, i);
ASN1_STRING *value;
value = X509_NAME_ENTRY_get_data(entry);
if (ASN1_STRING_to_UTF8((unsigned char **)&str, value) >= 0) {
ok = ssl_sock_srv_hostcheck(str, servername);
OPENSSL_free(str);
}
}
/* report the mismatch and indicate if SNI was used or not */
if (!ok && !conn->err_code)
conn->err_code = sni ? CO_ER_SSL_MISMATCH_SNI : CO_ER_SSL_MISMATCH;
return ok;
}
/* prepare ssl context from servers options. Returns an error count */
int ssl_sock_prepare_srv_ctx(struct server *srv)
{
struct proxy *curproxy = srv->proxy;
int cfgerr = 0;
long options =
SSL_OP_ALL | /* all known workarounds for bugs */
SSL_OP_NO_SSLv2 |
SSL_OP_NO_COMPRESSION;
long mode =
SSL_MODE_ENABLE_PARTIAL_WRITE |
SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER |
SSL_MODE_RELEASE_BUFFERS |
SSL_MODE_SMALL_BUFFERS;
int verify = SSL_VERIFY_NONE;
SSL_CTX *ctx = NULL;
struct tls_version_filter *conf_ssl_methods = &srv->ssl_ctx.methods;
int i, min, max, hole;
int flags = MC_SSL_O_ALL;
/* Make sure openssl opens /dev/urandom before the chroot */
if (!ssl_initialize_random()) {
ha_alert("OpenSSL random data generator initialization failed.\n");
cfgerr++;
}
/* Automatic memory computations need to know we use SSL there */
global.ssl_used_backend = 1;
/* Initiate SSL context for current server */
if (!srv->ssl_ctx.reused_sess) {
if ((srv->ssl_ctx.reused_sess = calloc(1, global.nbthread*sizeof(*srv->ssl_ctx.reused_sess))) == NULL) {
ha_alert("Proxy '%s', server '%s' [%s:%d] out of memory.\n",
curproxy->id, srv->id,
srv->conf.file, srv->conf.line);
cfgerr++;
return cfgerr;
}
}
if (srv->use_ssl)
srv->xprt = &ssl_sock;
if (srv->check.use_ssl)
srv->check.xprt = &ssl_sock;
ctx = SSL_CTX_new(SSLv23_client_method());
if (!ctx) {
ha_alert("config : %s '%s', server '%s': unable to allocate ssl context.\n",
proxy_type_str(curproxy), curproxy->id,
srv->id);
cfgerr++;
return cfgerr;
}
if (conf_ssl_methods->flags && (conf_ssl_methods->min || conf_ssl_methods->max))
ha_warning("config : %s '%s': no-sslv3/no-tlsv1x are ignored for server '%s'. "
"Use only 'ssl-min-ver' and 'ssl-max-ver' to fix.\n",
proxy_type_str(curproxy), curproxy->id, srv->id);
else
flags = conf_ssl_methods->flags;
/* Real min and max should be determinate with configuration and openssl's capabilities */
if (conf_ssl_methods->min)
flags |= (methodVersions[conf_ssl_methods->min].flag - 1);
if (conf_ssl_methods->max)
flags |= ~((methodVersions[conf_ssl_methods->max].flag << 1) - 1);
/* find min, max and holes */
min = max = CONF_TLSV_NONE;
hole = 0;
for (i = CONF_TLSV_MIN; i <= CONF_TLSV_MAX; i++)
/* version is in openssl && version not disable in configuration */
if (methodVersions[i].option && !(flags & methodVersions[i].flag)) {
if (min) {
if (hole) {
ha_warning("config : %s '%s': SSL/TLS versions range not contiguous for server '%s'. "
"Hole find for %s. Use only 'ssl-min-ver' and 'ssl-max-ver' to fix.\n",
proxy_type_str(curproxy), curproxy->id, srv->id,
methodVersions[hole].name);
hole = 0;
}
max = i;
}
else {
min = max = i;
}
}
else {
if (min)
hole = i;
}
if (!min) {
ha_alert("config : %s '%s': all SSL/TLS versions are disabled for server '%s'.\n",
proxy_type_str(curproxy), curproxy->id, srv->id);
cfgerr += 1;
}
#if (HA_OPENSSL_VERSION_NUMBER < 0x1010000fL)
/* Keep force-xxx implementation as it is in older haproxy. It's a
precautionary measure to avoid any surprise with older openssl version. */
if (min == max)
methodVersions[min].ctx_set_version(ctx, SET_CLIENT);
else
for (i = CONF_TLSV_MIN; i <= CONF_TLSV_MAX; i++)
if (flags & methodVersions[i].flag)
options |= methodVersions[i].option;
#else /* openssl >= 1.1.0 */
/* set the max_version is required to cap TLS version or activate new TLS (v1.3) */
methodVersions[min].ctx_set_version(ctx, SET_MIN);
methodVersions[max].ctx_set_version(ctx, SET_MAX);
#endif
if (srv->ssl_ctx.options & SRV_SSL_O_NO_TLS_TICKETS)
options |= SSL_OP_NO_TICKET;
SSL_CTX_set_options(ctx, options);
#if (HA_OPENSSL_VERSION_NUMBER >= 0x1010000fL) && !defined(OPENSSL_NO_ASYNC)
if (global_ssl.async)
mode |= SSL_MODE_ASYNC;
#endif
SSL_CTX_set_mode(ctx, mode);
srv->ssl_ctx.ctx = ctx;
if (srv->ssl_ctx.client_crt) {
if (SSL_CTX_use_PrivateKey_file(srv->ssl_ctx.ctx, srv->ssl_ctx.client_crt, SSL_FILETYPE_PEM) <= 0) {
ha_alert("config : %s '%s', server '%s': unable to load SSL private key from PEM file '%s'.\n",
proxy_type_str(curproxy), curproxy->id,
srv->id, srv->ssl_ctx.client_crt);
cfgerr++;
}
else if (SSL_CTX_use_certificate_chain_file(srv->ssl_ctx.ctx, srv->ssl_ctx.client_crt) <= 0) {
ha_alert("config : %s '%s', server '%s': unable to load ssl certificate from PEM file '%s'.\n",
proxy_type_str(curproxy), curproxy->id,
srv->id, srv->ssl_ctx.client_crt);
cfgerr++;
}
else if (SSL_CTX_check_private_key(srv->ssl_ctx.ctx) <= 0) {
ha_alert("config : %s '%s', server '%s': inconsistencies between private key and certificate loaded from PEM file '%s'.\n",
proxy_type_str(curproxy), curproxy->id,
srv->id, srv->ssl_ctx.client_crt);
cfgerr++;
}
}
if (global.ssl_server_verify == SSL_SERVER_VERIFY_REQUIRED)
verify = SSL_VERIFY_PEER;
switch (srv->ssl_ctx.verify) {
case SSL_SOCK_VERIFY_NONE:
verify = SSL_VERIFY_NONE;
break;
case SSL_SOCK_VERIFY_REQUIRED:
verify = SSL_VERIFY_PEER;
break;
}
SSL_CTX_set_verify(srv->ssl_ctx.ctx,
verify,
(srv->ssl_ctx.verify_host || (verify & SSL_VERIFY_PEER)) ? ssl_sock_srv_verifycbk : NULL);
if (verify & SSL_VERIFY_PEER) {
if (srv->ssl_ctx.ca_file) {
/* load CAfile to verify */
if (!SSL_CTX_load_verify_locations(srv->ssl_ctx.ctx, srv->ssl_ctx.ca_file, NULL)) {
ha_alert("Proxy '%s', server '%s' [%s:%d] unable to load CA file '%s'.\n",
curproxy->id, srv->id,
srv->conf.file, srv->conf.line, srv->ssl_ctx.ca_file);
cfgerr++;
}
}
else {
if (global.ssl_server_verify == SSL_SERVER_VERIFY_REQUIRED)
ha_alert("Proxy '%s', server '%s' [%s:%d] verify is enabled by default but no CA file specified. If you're running on a LAN where you're certain to trust the server's certificate, please set an explicit 'verify none' statement on the 'server' line, or use 'ssl-server-verify none' in the global section to disable server-side verifications by default.\n",
curproxy->id, srv->id,
srv->conf.file, srv->conf.line);
else
ha_alert("Proxy '%s', server '%s' [%s:%d] verify is enabled but no CA file specified.\n",
curproxy->id, srv->id,
srv->conf.file, srv->conf.line);
cfgerr++;
}
#ifdef X509_V_FLAG_CRL_CHECK
if (srv->ssl_ctx.crl_file) {
X509_STORE *store = SSL_CTX_get_cert_store(srv->ssl_ctx.ctx);
if (!store || !X509_STORE_load_locations(store, srv->ssl_ctx.crl_file, NULL)) {
ha_alert("Proxy '%s', server '%s' [%s:%d] unable to configure CRL file '%s'.\n",
curproxy->id, srv->id,
srv->conf.file, srv->conf.line, srv->ssl_ctx.crl_file);
cfgerr++;
}
else {
X509_STORE_set_flags(store, X509_V_FLAG_CRL_CHECK|X509_V_FLAG_CRL_CHECK_ALL);
}
}
#endif
}
SSL_CTX_set_session_cache_mode(srv->ssl_ctx.ctx, SSL_SESS_CACHE_CLIENT |
SSL_SESS_CACHE_NO_INTERNAL_STORE);
SSL_CTX_sess_set_new_cb(srv->ssl_ctx.ctx, ssl_sess_new_srv_cb);
if (srv->ssl_ctx.ciphers &&
!SSL_CTX_set_cipher_list(srv->ssl_ctx.ctx, srv->ssl_ctx.ciphers)) {
ha_alert("Proxy '%s', server '%s' [%s:%d] : unable to set SSL cipher list to '%s'.\n",
curproxy->id, srv->id,
srv->conf.file, srv->conf.line, srv->ssl_ctx.ciphers);
cfgerr++;
}
#if (HA_OPENSSL_VERSION_NUMBER >= 0x10101000L)
if (srv->ssl_ctx.ciphersuites &&
!SSL_CTX_set_ciphersuites(srv->ssl_ctx.ctx, srv->ssl_ctx.ciphersuites)) {
ha_alert("Proxy '%s', server '%s' [%s:%d] : unable to set TLS 1.3 cipher suites to '%s'.\n",
curproxy->id, srv->id,
srv->conf.file, srv->conf.line, srv->ssl_ctx.ciphersuites);
cfgerr++;
}
#endif
#if defined(OPENSSL_NPN_NEGOTIATED) && !defined(OPENSSL_NO_NEXTPROTONEG)
if (srv->ssl_ctx.npn_str)
SSL_CTX_set_next_proto_select_cb(ctx, ssl_sock_srv_select_protos, srv);
#endif
#ifdef TLSEXT_TYPE_application_layer_protocol_negotiation
if (srv->ssl_ctx.alpn_str)
SSL_CTX_set_alpn_protos(ctx, (unsigned char *)srv->ssl_ctx.alpn_str, srv->ssl_ctx.alpn_len);
#endif
return cfgerr;
}
/* Walks down the two trees in bind_conf and prepares all certs. The pointer may
* be NULL, in which case nothing is done. Returns the number of errors
* encountered.
*/
int ssl_sock_prepare_all_ctx(struct bind_conf *bind_conf)
{
struct ebmb_node *node;
struct sni_ctx *sni;
int err = 0;
/* Automatic memory computations need to know we use SSL there */
global.ssl_used_frontend = 1;
/* Make sure openssl opens /dev/urandom before the chroot */
if (!ssl_initialize_random()) {
ha_alert("OpenSSL random data generator initialization failed.\n");
err++;
}
/* Create initial_ctx used to start the ssl connection before do switchctx */
if (!bind_conf->initial_ctx) {
err += ssl_sock_initial_ctx(bind_conf);
/* It should not be necessary to call this function, but it's
necessary first to check and move all initialisation related
to initial_ctx in ssl_sock_initial_ctx. */
err += ssl_sock_prepare_ctx(bind_conf, NULL, bind_conf->initial_ctx);
}
if (bind_conf->default_ctx)
err += ssl_sock_prepare_ctx(bind_conf, bind_conf->default_ssl_conf, bind_conf->default_ctx);
node = ebmb_first(&bind_conf->sni_ctx);
while (node) {
sni = ebmb_entry(node, struct sni_ctx, name);
if (!sni->order && sni->ctx != bind_conf->default_ctx)
/* only initialize the CTX on its first occurrence and
if it is not the default_ctx */
err += ssl_sock_prepare_ctx(bind_conf, sni->conf, sni->ctx);
node = ebmb_next(node);
}
node = ebmb_first(&bind_conf->sni_w_ctx);
while (node) {
sni = ebmb_entry(node, struct sni_ctx, name);
if (!sni->order && sni->ctx != bind_conf->default_ctx)
/* only initialize the CTX on its first occurrence and
if it is not the default_ctx */
err += ssl_sock_prepare_ctx(bind_conf, sni->conf, sni->ctx);
node = ebmb_next(node);
}
return err;
}
/* Prepares all the contexts for a bind_conf and allocates the shared SSL
* context if needed. Returns < 0 on error, 0 on success. The warnings and
* alerts are directly emitted since the rest of the stack does it below.
*/
int ssl_sock_prepare_bind_conf(struct bind_conf *bind_conf)
{
struct proxy *px = bind_conf->frontend;
int alloc_ctx;
int err;
if (!bind_conf->is_ssl) {
if (bind_conf->default_ctx) {
ha_warning("Proxy '%s': A certificate was specified but SSL was not enabled on bind '%s' at [%s:%d] (use 'ssl').\n",
px->id, bind_conf->arg, bind_conf->file, bind_conf->line);
}
return 0;
}
if (!bind_conf->default_ctx) {
if (bind_conf->strict_sni && !bind_conf->generate_certs) {
ha_warning("Proxy '%s': no SSL certificate specified for bind '%s' at [%s:%d], ssl connections will fail (use 'crt').\n",
px->id, bind_conf->arg, bind_conf->file, bind_conf->line);
}
else {
ha_alert("Proxy '%s': no SSL certificate specified for bind '%s' at [%s:%d] (use 'crt').\n",
px->id, bind_conf->arg, bind_conf->file, bind_conf->line);
return -1;
}
}
if (!ssl_shctx && global.tune.sslcachesize) {
alloc_ctx = shctx_init(&ssl_shctx, global.tune.sslcachesize,
sizeof(struct sh_ssl_sess_hdr) + SHSESS_BLOCK_MIN_SIZE, -1,
sizeof(*sh_ssl_sess_tree),
((global.nbthread > 1) || (!global_ssl.private_cache && (global.nbproc > 1))) ? 1 : 0);
if (alloc_ctx <= 0) {
if (alloc_ctx == SHCTX_E_INIT_LOCK)
ha_alert("Unable to initialize the lock for the shared SSL session cache. You can retry using the global statement 'tune.ssl.force-private-cache' but it could increase CPU usage due to renegotiations if nbproc > 1.\n");
else
ha_alert("Unable to allocate SSL session cache.\n");
return -1;
}
/* free block callback */
ssl_shctx->free_block = sh_ssl_sess_free_blocks;
/* init the root tree within the extra space */
sh_ssl_sess_tree = (void *)ssl_shctx + sizeof(struct shared_context);
*sh_ssl_sess_tree = EB_ROOT_UNIQUE;
}
err = 0;
/* initialize all certificate contexts */
err += ssl_sock_prepare_all_ctx(bind_conf);
/* initialize CA variables if the certificates generation is enabled */
err += ssl_sock_load_ca(bind_conf);
return -err;
}
/* release ssl context allocated for servers. */
void ssl_sock_free_srv_ctx(struct server *srv)
{
#ifdef TLSEXT_TYPE_application_layer_protocol_negotiation
if (srv->ssl_ctx.alpn_str)
free(srv->ssl_ctx.alpn_str);
#endif
#ifdef OPENSSL_NPN_NEGOTIATED
if (srv->ssl_ctx.npn_str)
free(srv->ssl_ctx.npn_str);
#endif
if (srv->ssl_ctx.ctx)
SSL_CTX_free(srv->ssl_ctx.ctx);
}
/* Walks down the two trees in bind_conf and frees all the certs. The pointer may
* be NULL, in which case nothing is done. The default_ctx is nullified too.
*/
void ssl_sock_free_all_ctx(struct bind_conf *bind_conf)
{
struct ebmb_node *node, *back;
struct sni_ctx *sni;
node = ebmb_first(&bind_conf->sni_ctx);
while (node) {
sni = ebmb_entry(node, struct sni_ctx, name);
back = ebmb_next(node);
ebmb_delete(node);
if (!sni->order) { /* only free the CTX on its first occurrence */
SSL_CTX_free(sni->ctx);
ssl_sock_free_ssl_conf(sni->conf);
free(sni->conf);
sni->conf = NULL;
}
free(sni);
node = back;
}
node = ebmb_first(&bind_conf->sni_w_ctx);
while (node) {
sni = ebmb_entry(node, struct sni_ctx, name);
back = ebmb_next(node);
ebmb_delete(node);
if (!sni->order) { /* only free the CTX on its first occurrence */
SSL_CTX_free(sni->ctx);
ssl_sock_free_ssl_conf(sni->conf);
free(sni->conf);
sni->conf = NULL;
}
free(sni);
node = back;
}
SSL_CTX_free(bind_conf->initial_ctx);
bind_conf->initial_ctx = NULL;
bind_conf->default_ctx = NULL;
bind_conf->default_ssl_conf = NULL;
}
/* Destroys all the contexts for a bind_conf. This is used during deinit(). */
void ssl_sock_destroy_bind_conf(struct bind_conf *bind_conf)
{
ssl_sock_free_ca(bind_conf);
ssl_sock_free_all_ctx(bind_conf);
ssl_sock_free_ssl_conf(&bind_conf->ssl_conf);
free(bind_conf->ca_sign_file);
free(bind_conf->ca_sign_pass);
if (bind_conf->keys_ref && !--bind_conf->keys_ref->refcount) {
free(bind_conf->keys_ref->filename);
free(bind_conf->keys_ref->tlskeys);
LIST_DEL(&bind_conf->keys_ref->list);
free(bind_conf->keys_ref);
}
bind_conf->keys_ref = NULL;
bind_conf->ca_sign_pass = NULL;
bind_conf->ca_sign_file = NULL;
}
/* Load CA cert file and private key used to generate certificates */
int
ssl_sock_load_ca(struct bind_conf *bind_conf)
{
struct proxy *px = bind_conf->frontend;
FILE *fp;
X509 *cacert = NULL;
EVP_PKEY *capkey = NULL;
int err = 0;
if (!bind_conf->generate_certs)
return err;
#if (defined SSL_CTRL_SET_TLSEXT_HOSTNAME && !defined SSL_NO_GENERATE_CERTIFICATES)
if (global_ssl.ctx_cache) {
ssl_ctx_lru_tree = lru64_new(global_ssl.ctx_cache);
}
ssl_ctx_lru_seed = (unsigned int)time(NULL);
ssl_ctx_serial = now_ms;
#endif
if (!bind_conf->ca_sign_file) {
ha_alert("Proxy '%s': cannot enable certificate generation, "
"no CA certificate File configured at [%s:%d].\n",
px->id, bind_conf->file, bind_conf->line);
goto load_error;
}
/* read in the CA certificate */
if (!(fp = fopen(bind_conf->ca_sign_file, "r"))) {
ha_alert("Proxy '%s': Failed to read CA certificate file '%s' at [%s:%d].\n",
px->id, bind_conf->ca_sign_file, bind_conf->file, bind_conf->line);
goto load_error;
}
if (!(cacert = PEM_read_X509(fp, NULL, NULL, NULL))) {
ha_alert("Proxy '%s': Failed to read CA certificate file '%s' at [%s:%d].\n",
px->id, bind_conf->ca_sign_file, bind_conf->file, bind_conf->line);
goto read_error;
}
rewind(fp);
if (!(capkey = PEM_read_PrivateKey(fp, NULL, NULL, bind_conf->ca_sign_pass))) {
ha_alert("Proxy '%s': Failed to read CA private key file '%s' at [%s:%d].\n",
px->id, bind_conf->ca_sign_file, bind_conf->file, bind_conf->line);
goto read_error;
}
fclose (fp);
bind_conf->ca_sign_cert = cacert;
bind_conf->ca_sign_pkey = capkey;
return err;
read_error:
fclose (fp);
if (capkey) EVP_PKEY_free(capkey);
if (cacert) X509_free(cacert);
load_error:
bind_conf->generate_certs = 0;
err++;
return err;
}
/* Release CA cert and private key used to generate certificated */
void
ssl_sock_free_ca(struct bind_conf *bind_conf)
{
if (bind_conf->ca_sign_pkey)
EVP_PKEY_free(bind_conf->ca_sign_pkey);
if (bind_conf->ca_sign_cert)
X509_free(bind_conf->ca_sign_cert);
bind_conf->ca_sign_pkey = NULL;
bind_conf->ca_sign_cert = NULL;
}
/*
* This function is called if SSL * context is not yet allocated. The function
* is designed to be called before any other data-layer operation and sets the
* handshake flag on the connection. It is safe to call it multiple times.
* It returns 0 on success and -1 in error case.
*/
static int ssl_sock_init(struct connection *conn, void **xprt_ctx)
{
struct ssl_sock_ctx *ctx;
/* already initialized */
if (*xprt_ctx)
return 0;
if (!conn_ctrl_ready(conn))
return 0;
ctx = pool_alloc(ssl_sock_ctx_pool);
if (!ctx) {
conn->err_code = CO_ER_SSL_NO_MEM;
return -1;
}
ctx->wait_event.tasklet = tasklet_new();
if (!ctx->wait_event.tasklet) {
conn->err_code = CO_ER_SSL_NO_MEM;
pool_free(ssl_sock_ctx_pool, ctx);
return -1;
}
ctx->wait_event.tasklet->process = ssl_sock_io_cb;
ctx->wait_event.tasklet->context = ctx;
ctx->wait_event.events = 0;
ctx->sent_early_data = 0;
ctx->tmp_early_data = -1;
ctx->conn = conn;
ctx->send_wait = NULL;
ctx->recv_wait = NULL;
ctx->xprt_st = 0;
ctx->xprt_ctx = NULL;
/* Only work with sockets for now, this should be adapted when we'll
* add QUIC support.
*/
ctx->xprt = xprt_get(XPRT_RAW);
if (ctx->xprt->init) {
if (ctx->xprt->init(conn, &ctx->xprt_ctx) != 0)
goto err;
}
if (global.maxsslconn && sslconns >= global.maxsslconn) {
conn->err_code = CO_ER_SSL_TOO_MANY;
goto err;
}
/* If it is in client mode initiate SSL session
in connect state otherwise accept state */
if (objt_server(conn->target)) {
int may_retry = 1;
retry_connect:
/* Alloc a new SSL session ctx */
ctx->ssl = SSL_new(__objt_server(conn->target)->ssl_ctx.ctx);
if (!ctx->ssl) {
if (may_retry--) {
pool_gc(NULL);
goto retry_connect;
}
conn->err_code = CO_ER_SSL_NO_MEM;
goto err;
}
ctx->bio = BIO_new(ha_meth);
if (!ctx->bio) {
if (may_retry--) {
pool_gc(NULL);
goto retry_connect;
}
conn->err_code = CO_ER_SSL_NO_MEM;
goto err;
}
BIO_set_data(ctx->bio, ctx);
SSL_set_bio(ctx->ssl, ctx->bio, ctx->bio);
/* set connection pointer */
if (!SSL_set_ex_data(ctx->ssl, ssl_app_data_index, conn)) {
SSL_free(ctx->ssl);
ctx->ssl = NULL;
conn->xprt_ctx = NULL;
if (may_retry--) {
pool_gc(NULL);
goto retry_connect;
}
conn->err_code = CO_ER_SSL_NO_MEM;
goto err;
}
SSL_set_connect_state(ctx->ssl);
if (__objt_server(conn->target)->ssl_ctx.reused_sess[tid].ptr) {
const unsigned char *ptr = __objt_server(conn->target)->ssl_ctx.reused_sess[tid].ptr;
SSL_SESSION *sess = d2i_SSL_SESSION(NULL, &ptr, __objt_server(conn->target)->ssl_ctx.reused_sess[tid].size);
if (sess && !SSL_set_session(ctx->ssl, sess)) {
SSL_SESSION_free(sess);
free(__objt_server(conn->target)->ssl_ctx.reused_sess[tid].ptr);
__objt_server(conn->target)->ssl_ctx.reused_sess[tid].ptr = NULL;
} else if (sess) {
SSL_SESSION_free(sess);
}
}
/* leave init state and start handshake */
conn->flags |= CO_FL_SSL_WAIT_HS | CO_FL_WAIT_L6_CONN;
_HA_ATOMIC_ADD(&sslconns, 1);
_HA_ATOMIC_ADD(&totalsslconns, 1);
*xprt_ctx = ctx;
/* Start the handshake */
tasklet_wakeup(ctx->wait_event.tasklet);
if (conn->flags & CO_FL_ERROR)
goto err;
return 0;
}
else if (objt_listener(conn->target)) {
int may_retry = 1;
retry_accept:
/* Alloc a new SSL session ctx */
ctx->ssl = SSL_new(__objt_listener(conn->target)->bind_conf->initial_ctx);
if (!ctx->ssl) {
if (may_retry--) {
pool_gc(NULL);
goto retry_accept;
}
conn->err_code = CO_ER_SSL_NO_MEM;
goto err;
}
ctx->bio = BIO_new(ha_meth);
if (!ctx->bio) {
if (may_retry--) {
pool_gc(NULL);
goto retry_accept;
}
conn->err_code = CO_ER_SSL_NO_MEM;
goto err;
}
BIO_set_data(ctx->bio, ctx);
SSL_set_bio(ctx->ssl, ctx->bio, ctx->bio);
/* set connection pointer */
if (!SSL_set_ex_data(ctx->ssl, ssl_app_data_index, conn)) {
SSL_free(ctx->ssl);
ctx->ssl = NULL;
if (may_retry--) {
pool_gc(NULL);
goto retry_accept;
}
conn->err_code = CO_ER_SSL_NO_MEM;
goto err;
}
SSL_set_accept_state(ctx->ssl);
/* leave init state and start handshake */
conn->flags |= CO_FL_SSL_WAIT_HS | CO_FL_WAIT_L6_CONN;
#if (HA_OPENSSL_VERSION_NUMBER >= 0x10101000L)
conn->flags |= CO_FL_EARLY_SSL_HS;
#endif
_HA_ATOMIC_ADD(&sslconns, 1);
_HA_ATOMIC_ADD(&totalsslconns, 1);
*xprt_ctx = ctx;
/* Start the handshake */
tasklet_wakeup(ctx->wait_event.tasklet);
if (conn->flags & CO_FL_ERROR)
goto err;
return 0;
}
/* don't know how to handle such a target */
conn->err_code = CO_ER_SSL_NO_TARGET;
err:
if (ctx && ctx->wait_event.tasklet)
tasklet_free(ctx->wait_event.tasklet);
pool_free(ssl_sock_ctx_pool, ctx);
return -1;
}
/* This is the callback which is used when an SSL handshake is pending. It
* updates the FD status if it wants some polling before being called again.
* It returns 0 if it fails in a fatal way or needs to poll to go further,
* otherwise it returns non-zero and removes itself from the connection's
* flags (the bit is provided in <flag> by the caller).
*/
static int ssl_sock_handshake(struct connection *conn, unsigned int flag)
{
struct ssl_sock_ctx *ctx = conn->xprt_ctx;
int ret;
if (!conn_ctrl_ready(conn))
return 0;
if (!conn->xprt_ctx)
goto out_error;
#if HA_OPENSSL_VERSION_NUMBER >= 0x10101000L
/*
* Check if we have early data. If we do, we have to read them
* before SSL_do_handshake() is called, And there's no way to
* detect early data, except to try to read them
*/
if (conn->flags & CO_FL_EARLY_SSL_HS) {
size_t read_data;
ret = SSL_read_early_data(ctx->ssl, &ctx->tmp_early_data,
1, &read_data);
if (ret == SSL_READ_EARLY_DATA_ERROR)
goto check_error;
if (ret == SSL_READ_EARLY_DATA_SUCCESS) {
conn->flags &= ~(CO_FL_SSL_WAIT_HS | CO_FL_WAIT_L6_CONN);
return 1;
} else
conn->flags &= ~CO_FL_EARLY_SSL_HS;
}
#endif
/* If we use SSL_do_handshake to process a reneg initiated by
* the remote peer, it sometimes returns SSL_ERROR_SSL.
* Usually SSL_write and SSL_read are used and process implicitly
* the reneg handshake.
* Here we use SSL_peek as a workaround for reneg.
*/
if ((conn->flags & CO_FL_CONNECTED) && SSL_renegotiate_pending(ctx->ssl)) {
char c;
ret = SSL_peek(ctx->ssl, &c, 1);
if (ret <= 0) {
/* handshake may have not been completed, let's find why */
ret = SSL_get_error(ctx->ssl, ret);
if (ret == SSL_ERROR_WANT_WRITE) {
/* SSL handshake needs to write, L4 connection may not be ready */
if (!(ctx->wait_event.events & SUB_RETRY_SEND))
ctx->xprt->subscribe(conn, ctx->xprt_ctx, SUB_RETRY_SEND, &ctx->wait_event);
return 0;
}
else if (ret == SSL_ERROR_WANT_READ) {
/* handshake may have been completed but we have
* no more data to read.
*/
if (!SSL_renegotiate_pending(ctx->ssl)) {
ret = 1;
goto reneg_ok;
}
/* SSL handshake needs to read, L4 connection is ready */
if (!(ctx->wait_event.events & SUB_RETRY_RECV))
ctx->xprt->subscribe(conn, ctx->xprt_ctx, SUB_RETRY_RECV, &ctx->wait_event);
return 0;
}
#if (HA_OPENSSL_VERSION_NUMBER >= 0x1010000fL) && !defined(OPENSSL_NO_ASYNC)
else if (ret == SSL_ERROR_WANT_ASYNC) {
ssl_async_process_fds(ctx);
return 0;
}
#endif
else if (ret == SSL_ERROR_SYSCALL) {
/* if errno is null, then connection was successfully established */
if (!errno && conn->flags & CO_FL_WAIT_L4_CONN)
conn->flags &= ~CO_FL_WAIT_L4_CONN;
if (!conn->err_code) {
#if defined(OPENSSL_IS_BORINGSSL) || defined(LIBRESSL_VERSION_NUMBER)
/* do not handle empty handshakes in BoringSSL or LibreSSL */
conn->err_code = CO_ER_SSL_HANDSHAKE;
#else
int empty_handshake;
#if (HA_OPENSSL_VERSION_NUMBER >= 0x1010000fL)
/* use SSL_get_state() in OpenSSL >= 1.1.0; SSL_state() is broken */
OSSL_HANDSHAKE_STATE state = SSL_get_state((SSL *)ctx->ssl);
empty_handshake = state == TLS_ST_BEFORE;
#else
/* access packet_length directly in OpenSSL <= 1.0.2; SSL_state() is broken */
empty_handshake = !ctx->ssl->packet_length;
#endif
if (empty_handshake) {
if (!errno) {
if (ctx->xprt_st & SSL_SOCK_RECV_HEARTBEAT)
conn->err_code = CO_ER_SSL_HANDSHAKE_HB;
else
conn->err_code = CO_ER_SSL_EMPTY;
}
else {
if (ctx->xprt_st & SSL_SOCK_RECV_HEARTBEAT)
conn->err_code = CO_ER_SSL_HANDSHAKE_HB;
else
conn->err_code = CO_ER_SSL_ABORT;
}
}
else {
if (ctx->xprt_st & SSL_SOCK_RECV_HEARTBEAT)
conn->err_code = CO_ER_SSL_HANDSHAKE_HB;
else
conn->err_code = CO_ER_SSL_HANDSHAKE;
}
#endif /* BoringSSL or LibreSSL */
}
goto out_error;
}
else {
/* Fail on all other handshake errors */
/* Note: OpenSSL may leave unread bytes in the socket's
* buffer, causing an RST to be emitted upon close() on
* TCP sockets. We first try to drain possibly pending
* data to avoid this as much as possible.
*/
conn_sock_drain(conn);
if (!conn->err_code)
conn->err_code = (ctx->xprt_st & SSL_SOCK_RECV_HEARTBEAT) ?
CO_ER_SSL_KILLED_HB : CO_ER_SSL_HANDSHAKE;
goto out_error;
}
}
/* read some data: consider handshake completed */
goto reneg_ok;
}
ret = SSL_do_handshake(ctx->ssl);
check_error:
if (ret != 1) {
/* handshake did not complete, let's find why */
ret = SSL_get_error(ctx->ssl, ret);
if (ret == SSL_ERROR_WANT_WRITE) {
/* SSL handshake needs to write, L4 connection may not be ready */
if (!(ctx->wait_event.events & SUB_RETRY_SEND))
ctx->xprt->subscribe(conn, ctx->xprt_ctx, SUB_RETRY_SEND, &ctx->wait_event);
return 0;
}
else if (ret == SSL_ERROR_WANT_READ) {
/* SSL handshake needs to read, L4 connection is ready */
if (!(ctx->wait_event.events & SUB_RETRY_RECV))
ctx->xprt->subscribe(conn, ctx->xprt_ctx,
SUB_RETRY_RECV, &ctx->wait_event);
return 0;
}
#if (HA_OPENSSL_VERSION_NUMBER >= 0x1010000fL) && !defined(OPENSSL_NO_ASYNC)
else if (ret == SSL_ERROR_WANT_ASYNC) {
ssl_async_process_fds(ctx);
return 0;
}
#endif
else if (ret == SSL_ERROR_SYSCALL) {
/* if errno is null, then connection was successfully established */
if (!errno && conn->flags & CO_FL_WAIT_L4_CONN)
conn->flags &= ~CO_FL_WAIT_L4_CONN;
if (!conn->err_code) {
#if defined(OPENSSL_IS_BORINGSSL) || defined(LIBRESSL_VERSION_NUMBER)
/* do not handle empty handshakes in BoringSSL or LibreSSL */
conn->err_code = CO_ER_SSL_HANDSHAKE;
#else
int empty_handshake;
#if (HA_OPENSSL_VERSION_NUMBER >= 0x1010000fL)
/* use SSL_get_state() in OpenSSL >= 1.1.0; SSL_state() is broken */
OSSL_HANDSHAKE_STATE state = SSL_get_state(ctx->ssl);
empty_handshake = state == TLS_ST_BEFORE;
#else
/* access packet_length directly in OpenSSL <= 1.0.2; SSL_state() is broken */
empty_handshake = !ctx->ssl->packet_length;
#endif
if (empty_handshake) {
if (!errno) {
if (ctx->xprt_st & SSL_SOCK_RECV_HEARTBEAT)
conn->err_code = CO_ER_SSL_HANDSHAKE_HB;
else
conn->err_code = CO_ER_SSL_EMPTY;
}
else {
if (ctx->xprt_st & SSL_SOCK_RECV_HEARTBEAT)
conn->err_code = CO_ER_SSL_HANDSHAKE_HB;
else
conn->err_code = CO_ER_SSL_ABORT;
}
}
else {
if (ctx->xprt_st & SSL_SOCK_RECV_HEARTBEAT)
conn->err_code = CO_ER_SSL_HANDSHAKE_HB;
else
conn->err_code = CO_ER_SSL_HANDSHAKE;
}
#endif /* BoringSSL or LibreSSL */
}
goto out_error;
}
else {
/* Fail on all other handshake errors */
/* Note: OpenSSL may leave unread bytes in the socket's
* buffer, causing an RST to be emitted upon close() on
* TCP sockets. We first try to drain possibly pending
* data to avoid this as much as possible.
*/
conn_sock_drain(conn);
if (!conn->err_code)
conn->err_code = (ctx->xprt_st & SSL_SOCK_RECV_HEARTBEAT) ?
CO_ER_SSL_KILLED_HB : CO_ER_SSL_HANDSHAKE;
goto out_error;
}
}
#if (HA_OPENSSL_VERSION_NUMBER >= 0x10101000L)
else {
/*
* If the server refused the early data, we have to send a
* 425 to the client, as we no longer have the data to sent
* them again.
*/
if ((conn->flags & CO_FL_EARLY_DATA) && (objt_server(conn->target))) {
if (SSL_get_early_data_status(ctx->ssl) == SSL_EARLY_DATA_REJECTED) {
conn->err_code = CO_ER_SSL_EARLY_FAILED;
goto out_error;
}
}
}
#endif
reneg_ok:
#if (HA_OPENSSL_VERSION_NUMBER >= 0x1010000fL) && !defined(OPENSSL_NO_ASYNC)
/* ASYNC engine API doesn't support moving read/write
* buffers. So we disable ASYNC mode right after
* the handshake to avoid buffer oveflows.
*/
if (global_ssl.async)
SSL_clear_mode(ctx->ssl, SSL_MODE_ASYNC);
#endif
/* Handshake succeeded */
if (!SSL_session_reused(ctx->ssl)) {
if (objt_server(conn->target)) {
update_freq_ctr(&global.ssl_be_keys_per_sec, 1);
if (global.ssl_be_keys_per_sec.curr_ctr > global.ssl_be_keys_max)
global.ssl_be_keys_max = global.ssl_be_keys_per_sec.curr_ctr;
}
else {
update_freq_ctr(&global.ssl_fe_keys_per_sec, 1);
if (global.ssl_fe_keys_per_sec.curr_ctr > global.ssl_fe_keys_max)
global.ssl_fe_keys_max = global.ssl_fe_keys_per_sec.curr_ctr;
}
}
/* The connection is now established at both layers, it's time to leave */
conn->flags &= ~(flag | CO_FL_WAIT_L4_CONN | CO_FL_WAIT_L6_CONN);
return 1;
out_error:
/* Clear openssl global errors stack */
ssl_sock_dump_errors(conn);
ERR_clear_error();
/* free resumed session if exists */
if (objt_server(conn->target) && __objt_server(conn->target)->ssl_ctx.reused_sess[tid].ptr) {
free(__objt_server(conn->target)->ssl_ctx.reused_sess[tid].ptr);
__objt_server(conn->target)->ssl_ctx.reused_sess[tid].ptr = NULL;
}
/* Fail on all other handshake errors */
conn->flags |= CO_FL_ERROR;
if (!conn->err_code)
conn->err_code = CO_ER_SSL_HANDSHAKE;
return 0;
}
static int ssl_subscribe(struct connection *conn, void *xprt_ctx, int event_type, void *param)
{
struct wait_event *sw;
struct ssl_sock_ctx *ctx = xprt_ctx;
if (!ctx)
return -1;
if (event_type & SUB_RETRY_RECV) {
sw = param;
BUG_ON(ctx->recv_wait != NULL || (sw->events & SUB_RETRY_RECV));
sw->events |= SUB_RETRY_RECV;
ctx->recv_wait = sw;
if (!(conn->flags & CO_FL_SSL_WAIT_HS) &&
!(ctx->wait_event.events & SUB_RETRY_RECV))
ctx->xprt->subscribe(conn, ctx->xprt_ctx, SUB_RETRY_RECV, &ctx->wait_event);
event_type &= ~SUB_RETRY_RECV;
}
if (event_type & SUB_RETRY_SEND) {
sw = param;
BUG_ON(ctx->send_wait != NULL || (sw->events & SUB_RETRY_SEND));
sw->events |= SUB_RETRY_SEND;
ctx->send_wait = sw;
if (!(conn->flags & CO_FL_SSL_WAIT_HS) &&
!(ctx->wait_event.events & SUB_RETRY_SEND))
ctx->xprt->subscribe(conn, ctx->xprt_ctx, SUB_RETRY_SEND, &ctx->wait_event);
event_type &= ~SUB_RETRY_SEND;
}
if (event_type != 0)
return -1;
return 0;
}
static int ssl_unsubscribe(struct connection *conn, void *xprt_ctx, int event_type, void *param)
{
struct wait_event *sw;
struct ssl_sock_ctx *ctx = xprt_ctx;
if (event_type & SUB_RETRY_RECV) {
sw = param;
BUG_ON(ctx->recv_wait != sw);
ctx->recv_wait = NULL;
sw->events &= ~SUB_RETRY_RECV;
/* If we subscribed, and we're not doing the handshake,
* then we subscribed because the upper layer asked for it,
* as the upper layer is no longer interested, we can
* unsubscribe too.
*/
if (!(ctx->conn->flags & CO_FL_SSL_WAIT_HS) &&
(ctx->wait_event.events & SUB_RETRY_RECV))
conn_unsubscribe(conn, ctx->xprt_ctx, SUB_RETRY_RECV,
&ctx->wait_event);
}
if (event_type & SUB_RETRY_SEND) {
sw = param;
BUG_ON(ctx->send_wait != sw);
ctx->send_wait = NULL;
sw->events &= ~SUB_RETRY_SEND;
if (!(ctx->conn->flags & CO_FL_SSL_WAIT_HS) &&
(ctx->wait_event.events & SUB_RETRY_SEND))
conn_unsubscribe(conn, ctx->xprt_ctx, SUB_RETRY_SEND,
&ctx->wait_event);
}
return 0;
}
/* Use the provided XPRT as an underlying XPRT, and provide the old one.
* Returns 0 on success, and non-zero on failure.
*/
static int ssl_add_xprt(struct connection *conn, void *xprt_ctx, void *toadd_ctx, const struct xprt_ops *toadd_ops, void **oldxprt_ctx, const struct xprt_ops **oldxprt_ops)
{
struct ssl_sock_ctx *ctx = xprt_ctx;
if (oldxprt_ops != NULL)
*oldxprt_ops = ctx->xprt;
if (oldxprt_ctx != NULL)
*oldxprt_ctx = ctx->xprt_ctx;
ctx->xprt = toadd_ops;
ctx->xprt_ctx = toadd_ctx;
return 0;
}
/* Remove the specified xprt. If if it our underlying XPRT, remove it and
* return 0, otherwise just call the remove_xprt method from the underlying
* XPRT.
*/
static int ssl_remove_xprt(struct connection *conn, void *xprt_ctx, void *toremove_ctx, const struct xprt_ops *newops, void *newctx)
{
struct ssl_sock_ctx *ctx = xprt_ctx;
if (ctx->xprt_ctx == toremove_ctx) {
ctx->xprt_ctx = newctx;
ctx->xprt = newops;
return 0;
}
return (ctx->xprt->remove_xprt(conn, ctx->xprt_ctx, toremove_ctx, newops, newctx));
}
static struct task *ssl_sock_io_cb(struct task *t, void *context, unsigned short state)
{
struct ssl_sock_ctx *ctx = context;
/* First if we're doing an handshake, try that */
if (ctx->conn->flags & CO_FL_SSL_WAIT_HS)
ssl_sock_handshake(ctx->conn, CO_FL_SSL_WAIT_HS);
/* If we had an error, or the handshake is done and I/O is available,
* let the upper layer know.
* If no mux was set up yet, and nobody subscribed, then call
* xprt_done_cb() ourself if it's set, or destroy the connection,
* we can't be sure conn_fd_handler() will be called again.
*/
if ((ctx->conn->flags & CO_FL_ERROR) ||
!(ctx->conn->flags & CO_FL_SSL_WAIT_HS)) {
int ret = 0;
int woke = 0;
/* On error, wake any waiter */
if (ctx->recv_wait) {
ctx->recv_wait->events &= ~SUB_RETRY_RECV;
tasklet_wakeup(ctx->recv_wait->tasklet);
ctx->recv_wait = NULL;
woke = 1;
}
if (ctx->send_wait) {
ctx->send_wait->events &= ~SUB_RETRY_SEND;
tasklet_wakeup(ctx->send_wait->tasklet);
ctx->send_wait = NULL;
woke = 1;
}
/* If we're the first xprt for the connection, let the
* upper layers know. If xprt_done_cb() is set, call it,
* otherwise, we should have a mux, so call its wake
* method if we didn't woke a tasklet already.
*/
if (ctx->conn->xprt_ctx == ctx) {
if (ctx->conn->xprt_done_cb)
ret = ctx->conn->xprt_done_cb(ctx->conn);
if (ret >= 0 && !woke && ctx->conn->mux && ctx->conn->mux->wake)
ctx->conn->mux->wake(ctx->conn);
return NULL;
}
}
return NULL;
}
/* Receive up to <count> bytes from connection <conn>'s socket and store them
* into buffer <buf>. Only one call to recv() is performed, unless the
* buffer wraps, in which case a second call may be performed. The connection's
* flags are updated with whatever special event is detected (error, read0,
* empty). The caller is responsible for taking care of those events and
* avoiding the call if inappropriate. The function does not call the
* connection's polling update function, so the caller is responsible for this.
*/
static size_t ssl_sock_to_buf(struct connection *conn, void *xprt_ctx, struct buffer *buf, size_t count, int flags)
{
struct ssl_sock_ctx *ctx = xprt_ctx;
ssize_t ret;
size_t try, done = 0;
conn_refresh_polling_flags(conn);
if (!ctx)
goto out_error;
if (conn->flags & CO_FL_HANDSHAKE)
/* a handshake was requested */
return 0;
/* read the largest possible block. For this, we perform only one call
* to recv() unless the buffer wraps and we exactly fill the first hunk,
* in which case we accept to do it once again. A new attempt is made on
* EINTR too.
*/
while (count > 0) {
int need_out = 0;
try = b_contig_space(buf);
if (!try)
break;
if (try > count)
try = count;
if (((conn->flags & (CO_FL_EARLY_SSL_HS | CO_FL_EARLY_DATA)) == CO_FL_EARLY_SSL_HS) &&
ctx->tmp_early_data != -1) {
*b_tail(buf) = ctx->tmp_early_data;
done++;
try--;
count--;
b_add(buf, 1);
ctx->tmp_early_data = -1;
continue;
}
#if (HA_OPENSSL_VERSION_NUMBER >= 0x10101000L)
if (conn->flags & CO_FL_EARLY_SSL_HS) {
size_t read_length;
ret = SSL_read_early_data(ctx->ssl,
b_tail(buf), try, &read_length);
if (ret == SSL_READ_EARLY_DATA_SUCCESS &&
read_length > 0)
conn->flags |= CO_FL_EARLY_DATA;
if (ret == SSL_READ_EARLY_DATA_SUCCESS ||
ret == SSL_READ_EARLY_DATA_FINISH) {
if (ret == SSL_READ_EARLY_DATA_FINISH) {
/*
* We're done reading the early data,
* let's make the handshake
*/
conn->flags &= ~CO_FL_EARLY_SSL_HS;
conn->flags |= CO_FL_SSL_WAIT_HS;
need_out = 1;
/* Now initiate the handshake */
tasklet_wakeup(ctx->wait_event.tasklet);
if (read_length == 0)
break;
}
ret = read_length;
}
} else
#endif
ret = SSL_read(ctx->ssl, b_tail(buf), try);
if (conn->flags & CO_FL_ERROR) {
/* CO_FL_ERROR may be set by ssl_sock_infocbk */
goto out_error;
}
if (ret > 0) {
b_add(buf, ret);
done += ret;
count -= ret;
}
else {
ret = SSL_get_error(ctx->ssl, ret);
if (ret == SSL_ERROR_WANT_WRITE) {
/* handshake is running, and it needs to enable write */
conn->flags |= CO_FL_SSL_WAIT_HS;
ctx->xprt->subscribe(conn, ctx->xprt_ctx, SUB_RETRY_SEND, &ctx->wait_event);
#if (HA_OPENSSL_VERSION_NUMBER >= 0x1010000fL) && !defined(OPENSSL_NO_ASYNC)
/* Async mode can be re-enabled, because we're leaving data state.*/
if (global_ssl.async)
SSL_set_mode(ctx->ssl, SSL_MODE_ASYNC);
#endif
break;
}
else if (ret == SSL_ERROR_WANT_READ) {
if (SSL_renegotiate_pending(ctx->ssl)) {
ctx->xprt->subscribe(conn, ctx->xprt_ctx,
SUB_RETRY_RECV,
&ctx->wait_event);
/* handshake is running, and it may need to re-enable read */
conn->flags |= CO_FL_SSL_WAIT_HS;
#if (HA_OPENSSL_VERSION_NUMBER >= 0x1010000fL) && !defined(OPENSSL_NO_ASYNC)
/* Async mode can be re-enabled, because we're leaving data state.*/
if (global_ssl.async)
SSL_set_mode(ctx->ssl, SSL_MODE_ASYNC);
#endif
break;
}
break;
} else if (ret == SSL_ERROR_ZERO_RETURN)
goto read0;
/* For SSL_ERROR_SYSCALL, make sure to clear the error
* stack before shutting down the connection for
* reading. */
if (ret == SSL_ERROR_SYSCALL && (!errno || errno == EAGAIN))
goto clear_ssl_error;
/* otherwise it's a real error */
goto out_error;
}
if (need_out)
break;
}
leave:
return done;
clear_ssl_error:
/* Clear openssl global errors stack */
ssl_sock_dump_errors(conn);
ERR_clear_error();
read0:
conn_sock_read0(conn);
goto leave;
out_error:
conn->flags |= CO_FL_ERROR;
/* Clear openssl global errors stack */
ssl_sock_dump_errors(conn);
ERR_clear_error();
goto leave;
}
/* Send up to <count> pending bytes from buffer <buf> to connection <conn>'s
* socket. <flags> may contain some CO_SFL_* flags to hint the system about
* other pending data for example, but this flag is ignored at the moment.
* Only one call to send() is performed, unless the buffer wraps, in which case
* a second call may be performed. The connection's flags are updated with
* whatever special event is detected (error, empty). The caller is responsible
* for taking care of those events and avoiding the call if inappropriate. The
* function does not call the connection's polling update function, so the caller
* is responsible for this. The buffer's output is not adjusted, it's up to the
* caller to take care of this. It's up to the caller to update the buffer's
* contents based on the return value.
*/
static size_t ssl_sock_from_buf(struct connection *conn, void *xprt_ctx, const struct buffer *buf, size_t count, int flags)
{
struct ssl_sock_ctx *ctx = xprt_ctx;
ssize_t ret;
size_t try, done;
done = 0;
conn_refresh_polling_flags(conn);
if (!ctx)
goto out_error;
if (conn->flags & (CO_FL_HANDSHAKE | CO_FL_EARLY_SSL_HS))
/* a handshake was requested */
return 0;
/* send the largest possible block. For this we perform only one call
* to send() unless the buffer wraps and we exactly fill the first hunk,
* in which case we accept to do it once again.
*/
while (count) {
#if (HA_OPENSSL_VERSION_NUMBER >= 0x10101000L)
size_t written_data;
#endif
try = b_contig_data(buf, done);
if (try > count)
try = count;
if (!(flags & CO_SFL_STREAMER) &&
!(ctx->xprt_st & SSL_SOCK_SEND_UNLIMITED) &&
global_ssl.max_record && try > global_ssl.max_record) {
try = global_ssl.max_record;
}
else {
/* we need to keep the information about the fact that
* we're not limiting the upcoming send(), because if it
* fails, we'll have to retry with at least as many data.
*/
ctx->xprt_st |= SSL_SOCK_SEND_UNLIMITED;
}
#if (HA_OPENSSL_VERSION_NUMBER >= 0x10101000L)
if (!SSL_is_init_finished(ctx->ssl) && conn_is_back(conn)) {
unsigned int max_early;
if (objt_listener(conn->target))
max_early = SSL_get_max_early_data(ctx->ssl);
else {
if (SSL_get0_session(ctx->ssl))
max_early = SSL_SESSION_get_max_early_data(SSL_get0_session(ctx->ssl));
else
max_early = 0;
}
if (try + ctx->sent_early_data > max_early) {
try -= (try + ctx->sent_early_data) - max_early;
if (try <= 0) {
conn->flags |= CO_FL_SSL_WAIT_HS | CO_FL_WAIT_L6_CONN;
tasklet_wakeup(ctx->wait_event.tasklet);
break;
}
}
ret = SSL_write_early_data(ctx->ssl, b_peek(buf, done), try, &written_data);
if (ret == 1) {
ret = written_data;
ctx->sent_early_data += ret;
if (objt_server(conn->target)) {
conn->flags |= CO_FL_SSL_WAIT_HS | CO_FL_WAIT_L6_CONN | CO_FL_EARLY_DATA;
/* Initiate the handshake, now */
tasklet_wakeup(ctx->wait_event.tasklet);
}
}
} else
#endif
ret = SSL_write(ctx->ssl, b_peek(buf, done), try);
if (conn->flags & CO_FL_ERROR) {
/* CO_FL_ERROR may be set by ssl_sock_infocbk */
goto out_error;
}
if (ret > 0) {
/* A send succeeded, so we can consier ourself connected */
conn->flags |= CO_FL_CONNECTED;
ctx->xprt_st &= ~SSL_SOCK_SEND_UNLIMITED;
count -= ret;
done += ret;
}
else {
ret = SSL_get_error(ctx->ssl, ret);
if (ret == SSL_ERROR_WANT_WRITE) {
if (SSL_renegotiate_pending(ctx->ssl)) {
/* handshake is running, and it may need to re-enable write */
conn->flags |= CO_FL_SSL_WAIT_HS;
ctx->xprt->subscribe(conn, ctx->xprt_ctx, SUB_RETRY_SEND, &ctx->wait_event);
#if (HA_OPENSSL_VERSION_NUMBER >= 0x1010000fL) && !defined(OPENSSL_NO_ASYNC)
/* Async mode can be re-enabled, because we're leaving data state.*/
if (global_ssl.async)
SSL_set_mode(ctx->ssl, SSL_MODE_ASYNC);
#endif
break;
}
break;
}
else if (ret == SSL_ERROR_WANT_READ) {
/* handshake is running, and it needs to enable read */
conn->flags |= CO_FL_SSL_WAIT_HS;
ctx->xprt->subscribe(conn, ctx->xprt_ctx,
SUB_RETRY_RECV,
&ctx->wait_event);
#if (HA_OPENSSL_VERSION_NUMBER >= 0x1010000fL) && !defined(OPENSSL_NO_ASYNC)
/* Async mode can be re-enabled, because we're leaving data state.*/
if (global_ssl.async)
SSL_set_mode(ctx->ssl, SSL_MODE_ASYNC);
#endif
break;
}
goto out_error;
}
}
leave:
return done;
out_error:
/* Clear openssl global errors stack */
ssl_sock_dump_errors(conn);
ERR_clear_error();
conn->flags |= CO_FL_ERROR;
goto leave;
}
static void ssl_sock_close(struct connection *conn, void *xprt_ctx) {
struct ssl_sock_ctx *ctx = xprt_ctx;
if (ctx) {
if (ctx->wait_event.events != 0)
ctx->xprt->unsubscribe(ctx->conn, ctx->xprt_ctx,
ctx->wait_event.events,
&ctx->wait_event);
if (ctx->send_wait) {
ctx->send_wait->events &= ~SUB_RETRY_SEND;
tasklet_wakeup(ctx->send_wait->tasklet);
}
if (ctx->recv_wait) {
ctx->recv_wait->events &= ~SUB_RETRY_RECV;
tasklet_wakeup(ctx->recv_wait->tasklet);
}
if (ctx->xprt->close)
ctx->xprt->close(conn, ctx->xprt_ctx);
#if (HA_OPENSSL_VERSION_NUMBER >= 0x1010000fL) && !defined(OPENSSL_NO_ASYNC)
if (global_ssl.async) {
OSSL_ASYNC_FD all_fd[32], afd;
size_t num_all_fds = 0;
int i;
SSL_get_all_async_fds(ctx->ssl, NULL, &num_all_fds);
if (num_all_fds > 32) {
send_log(NULL, LOG_EMERG, "haproxy: openssl returns too many async fds. It seems a bug. Process may crash\n");
return;
}
SSL_get_all_async_fds(ctx->ssl, all_fd, &num_all_fds);
/* If an async job is pending, we must try to
to catch the end using polling before calling
SSL_free */
if (num_all_fds && SSL_waiting_for_async(ctx->ssl)) {
for (i=0 ; i < num_all_fds ; i++) {
/* switch on an handler designed to
* handle the SSL_free
*/
afd = all_fd[i];
fdtab[afd].iocb = ssl_async_fd_free;
fdtab[afd].owner = ctx->ssl;
fd_want_recv(afd);
/* To ensure that the fd cache won't be used
* and we'll catch a real RD event.
*/
fd_cant_recv(afd);
}
tasklet_free(ctx->wait_event.tasklet);
pool_free(ssl_sock_ctx_pool, ctx);
_HA_ATOMIC_ADD(&jobs, 1);
return;
}
/* Else we can remove the fds from the fdtab
* and call SSL_free.
* note: we do a fd_remove and not a delete
* because the fd is owned by the engine.
* the engine is responsible to close
*/
for (i=0 ; i < num_all_fds ; i++)
fd_remove(all_fd[i]);
}
#endif
SSL_free(ctx->ssl);
tasklet_free(ctx->wait_event.tasklet);
pool_free(ssl_sock_ctx_pool, ctx);
_HA_ATOMIC_SUB(&sslconns, 1);
}
}
/* This function tries to perform a clean shutdown on an SSL connection, and in
* any case, flags the connection as reusable if no handshake was in progress.
*/
static void ssl_sock_shutw(struct connection *conn, void *xprt_ctx, int clean)
{
struct ssl_sock_ctx *ctx = xprt_ctx;
if (conn->flags & CO_FL_HANDSHAKE)
return;
if (!clean)
/* don't sent notify on SSL_shutdown */
SSL_set_quiet_shutdown(ctx->ssl, 1);
/* no handshake was in progress, try a clean ssl shutdown */
if (SSL_shutdown(ctx->ssl) <= 0) {
/* Clear openssl global errors stack */
ssl_sock_dump_errors(conn);
ERR_clear_error();
}
}
/* used for ppv2 pkey alog (can be used for logging) */
int ssl_sock_get_pkey_algo(struct connection *conn, struct buffer *out)
{
struct ssl_sock_ctx *ctx;
struct pkey_info *pkinfo;
int bits = 0;
int sig = TLSEXT_signature_anonymous;
int len = -1;
if (!ssl_sock_is_ssl(conn))
return 0;
ctx = conn->xprt_ctx;
pkinfo = SSL_CTX_get_ex_data(SSL_get_SSL_CTX(ctx->ssl), ssl_pkey_info_index);
if (pkinfo) {
sig = pkinfo->sig;
bits = pkinfo->bits;
} else {
/* multicert and generated cert have no pkey info */
X509 *crt;
EVP_PKEY *pkey;
crt = SSL_get_certificate(ctx->ssl);
if (!crt)
return 0;
pkey = X509_get_pubkey(crt);
if (pkey) {
bits = EVP_PKEY_bits(pkey);
switch(EVP_PKEY_base_id(pkey)) {
case EVP_PKEY_RSA:
sig = TLSEXT_signature_rsa;
break;
case EVP_PKEY_EC:
sig = TLSEXT_signature_ecdsa;
break;
case EVP_PKEY_DSA:
sig = TLSEXT_signature_dsa;
break;
}
EVP_PKEY_free(pkey);
}
}
switch(sig) {
case TLSEXT_signature_rsa:
len = chunk_printf(out, "RSA%d", bits);
break;
case TLSEXT_signature_ecdsa:
len = chunk_printf(out, "EC%d", bits);
break;
case TLSEXT_signature_dsa:
len = chunk_printf(out, "DSA%d", bits);
break;
default:
return 0;
}
if (len < 0)
return 0;
return 1;
}
/* used for ppv2 cert signature (can be used for logging) */
const char *ssl_sock_get_cert_sig(struct connection *conn)
{
struct ssl_sock_ctx *ctx;
__OPENSSL_110_CONST__ ASN1_OBJECT *algorithm;
X509 *crt;
if (!ssl_sock_is_ssl(conn))
return NULL;
ctx = conn->xprt_ctx;
crt = SSL_get_certificate(ctx->ssl);
if (!crt)
return NULL;
X509_ALGOR_get0(&algorithm, NULL, NULL, X509_get0_tbs_sigalg(crt));
return OBJ_nid2sn(OBJ_obj2nid(algorithm));
}
/* used for ppv2 authority */
const char *ssl_sock_get_sni(struct connection *conn)
{
#ifdef SSL_CTRL_SET_TLSEXT_HOSTNAME
struct ssl_sock_ctx *ctx;
if (!ssl_sock_is_ssl(conn))
return NULL;
ctx = conn->xprt_ctx;
return SSL_get_servername(ctx->ssl, TLSEXT_NAMETYPE_host_name);
#else
return NULL;
#endif
}
/* used for logging/ppv2, may be changed for a sample fetch later */
const char *ssl_sock_get_cipher_name(struct connection *conn)
{
struct ssl_sock_ctx *ctx;
if (!ssl_sock_is_ssl(conn))
return NULL;
ctx = conn->xprt_ctx;
return SSL_get_cipher_name(ctx->ssl);
}
/* used for logging/ppv2, may be changed for a sample fetch later */
const char *ssl_sock_get_proto_version(struct connection *conn)
{
struct ssl_sock_ctx *ctx;
if (!ssl_sock_is_ssl(conn))
return NULL;
ctx = conn->xprt_ctx;
return SSL_get_version(ctx->ssl);
}
/* Extract a serial from a cert, and copy it to a chunk.
* Returns 1 if serial is found and copied, 0 if no serial found and
* -1 if output is not large enough.
*/
static int
ssl_sock_get_serial(X509 *crt, struct buffer *out)
{
ASN1_INTEGER *serial;
serial = X509_get_serialNumber(crt);
if (!serial)
return 0;
if (out->size < serial->length)
return -1;
memcpy(out->area, serial->data, serial->length);
out->data = serial->length;
return 1;
}
/* Extract a cert to der, and copy it to a chunk.
* Returns 1 if the cert is found and copied, 0 on der conversion failure
* and -1 if the output is not large enough.
*/
static int
ssl_sock_crt2der(X509 *crt, struct buffer *out)
{
int len;
unsigned char *p = (unsigned char *) out->area;;
len =i2d_X509(crt, NULL);
if (len <= 0)
return 1;
if (out->size < len)
return -1;
i2d_X509(crt,&p);
out->data = len;
return 1;
}
/* Copy Date in ASN1_UTCTIME format in struct buffer out.
* Returns 1 if serial is found and copied, 0 if no valid time found
* and -1 if output is not large enough.
*/
static int
ssl_sock_get_time(ASN1_TIME *tm, struct buffer *out)
{
if (tm->type == V_ASN1_GENERALIZEDTIME) {
ASN1_GENERALIZEDTIME *gentm = (ASN1_GENERALIZEDTIME *)tm;
if (gentm->length < 12)
return 0;
if (gentm->data[0] != 0x32 || gentm->data[1] != 0x30)
return 0;
if (out->size < gentm->length-2)
return -1;
memcpy(out->area, gentm->data+2, gentm->length-2);
out->data = gentm->length-2;
return 1;
}
else if (tm->type == V_ASN1_UTCTIME) {
ASN1_UTCTIME *utctm = (ASN1_UTCTIME *)tm;
if (utctm->length < 10)
return 0;
if (utctm->data[0] >= 0x35)
return 0;
if (out->size < utctm->length)
return -1;
memcpy(out->area, utctm->data, utctm->length);
out->data = utctm->length;
return 1;
}
return 0;
}
/* Extract an entry from a X509_NAME and copy its value to an output chunk.
* Returns 1 if entry found, 0 if entry not found, or -1 if output not large enough.
*/
static int
ssl_sock_get_dn_entry(X509_NAME *a, const struct buffer *entry, int pos,
struct buffer *out)
{
X509_NAME_ENTRY *ne;
ASN1_OBJECT *obj;
ASN1_STRING *data;
const unsigned char *data_ptr;
int data_len;
int i, j, n;
int cur = 0;
const char *s;
char tmp[128];
int name_count;
name_count = X509_NAME_entry_count(a);
out->data = 0;
for (i = 0; i < name_count; i++) {
if (pos < 0)
j = (name_count-1) - i;
else
j = i;
ne = X509_NAME_get_entry(a, j);
obj = X509_NAME_ENTRY_get_object(ne);
data = X509_NAME_ENTRY_get_data(ne);
data_ptr = ASN1_STRING_get0_data(data);
data_len = ASN1_STRING_length(data);
n = OBJ_obj2nid(obj);
if ((n == NID_undef) || ((s = OBJ_nid2sn(n)) == NULL)) {
i2t_ASN1_OBJECT(tmp, sizeof(tmp), obj);
s = tmp;
}
if (chunk_strcasecmp(entry, s) != 0)
continue;
if (pos < 0)
cur--;
else
cur++;
if (cur != pos)
continue;
if (data_len > out->size)
return -1;
memcpy(out->area, data_ptr, data_len);
out->data = data_len;
return 1;
}
return 0;
}
/* Extract and format full DN from a X509_NAME and copy result into a chunk
* Returns 1 if dn entries exits, 0 if no dn entry found or -1 if output is not large enough.
*/
static int
ssl_sock_get_dn_oneline(X509_NAME *a, struct buffer *out)
{
X509_NAME_ENTRY *ne;
ASN1_OBJECT *obj;
ASN1_STRING *data;
const unsigned char *data_ptr;
int data_len;
int i, n, ln;
int l = 0;
const char *s;
char *p;
char tmp[128];
int name_count;
name_count = X509_NAME_entry_count(a);
out->data = 0;
p = out->area;
for (i = 0; i < name_count; i++) {
ne = X509_NAME_get_entry(a, i);
obj = X509_NAME_ENTRY_get_object(ne);
data = X509_NAME_ENTRY_get_data(ne);
data_ptr = ASN1_STRING_get0_data(data);
data_len = ASN1_STRING_length(data);
n = OBJ_obj2nid(obj);
if ((n == NID_undef) || ((s = OBJ_nid2sn(n)) == NULL)) {
i2t_ASN1_OBJECT(tmp, sizeof(tmp), obj);
s = tmp;
}
ln = strlen(s);
l += 1 + ln + 1 + data_len;
if (l > out->size)
return -1;
out->data = l;
*(p++)='/';
memcpy(p, s, ln);
p += ln;
*(p++)='=';
memcpy(p, data_ptr, data_len);
p += data_len;
}
if (!out->data)
return 0;
return 1;
}
void ssl_sock_set_alpn(struct connection *conn, const unsigned char *alpn, int len)
{
#ifdef TLSEXT_TYPE_application_layer_protocol_negotiation
struct ssl_sock_ctx *ctx;
if (!ssl_sock_is_ssl(conn))
return;
ctx = conn->xprt_ctx;
SSL_set_alpn_protos(ctx->ssl, alpn, len);
#endif
}
/* Sets advertised SNI for outgoing connections. Please set <hostname> to NULL
* to disable SNI.
*/
void ssl_sock_set_servername(struct connection *conn, const char *hostname)
{
#ifdef SSL_CTRL_SET_TLSEXT_HOSTNAME
struct ssl_sock_ctx *ctx;
char *prev_name;
if (!ssl_sock_is_ssl(conn))
return;
ctx = conn->xprt_ctx;
/* if the SNI changes, we must destroy the reusable context so that a
* new connection will present a new SNI. As an optimization we could
* later imagine having a small cache of ssl_ctx to hold a few SNI per
* server.
*/
prev_name = (char *)SSL_get_servername(ctx->ssl, TLSEXT_NAMETYPE_host_name);
if ((!prev_name && hostname) ||
(prev_name && (!hostname || strcmp(hostname, prev_name) != 0)))
SSL_set_session(ctx->ssl, NULL);
SSL_set_tlsext_host_name(ctx->ssl, hostname);
#endif
}
/* Extract peer certificate's common name into the chunk dest
* Returns
* the len of the extracted common name
* or 0 if no CN found in DN
* or -1 on error case (i.e. no peer certificate)
*/
int ssl_sock_get_remote_common_name(struct connection *conn,
struct buffer *dest)
{
struct ssl_sock_ctx *ctx;
X509 *crt = NULL;
X509_NAME *name;
const char find_cn[] = "CN";
const struct buffer find_cn_chunk = {
.area = (char *)&find_cn,
.data = sizeof(find_cn)-1
};
int result = -1;
if (!ssl_sock_is_ssl(conn))
goto out;
ctx = conn->xprt_ctx;
/* SSL_get_peer_certificate, it increase X509 * ref count */
crt = SSL_get_peer_certificate(ctx->ssl);
if (!crt)
goto out;
name = X509_get_subject_name(crt);
if (!name)
goto out;
result = ssl_sock_get_dn_entry(name, &find_cn_chunk, 1, dest);
out:
if (crt)
X509_free(crt);
return result;
}
/* returns 1 if client passed a certificate for this session, 0 if not */
int ssl_sock_get_cert_used_sess(struct connection *conn)
{
struct ssl_sock_ctx *ctx;
X509 *crt = NULL;
if (!ssl_sock_is_ssl(conn))
return 0;
ctx = conn->xprt_ctx;
/* SSL_get_peer_certificate, it increase X509 * ref count */
crt = SSL_get_peer_certificate(ctx->ssl);
if (!crt)
return 0;
X509_free(crt);
return 1;
}
/* returns 1 if client passed a certificate for this connection, 0 if not */
int ssl_sock_get_cert_used_conn(struct connection *conn)
{
struct ssl_sock_ctx *ctx;
if (!ssl_sock_is_ssl(conn))
return 0;
ctx = conn->xprt_ctx;
return SSL_SOCK_ST_FL_VERIFY_DONE & ctx->xprt_st ? 1 : 0;
}
/* returns result from SSL verify */
unsigned int ssl_sock_get_verify_result(struct connection *conn)
{
struct ssl_sock_ctx *ctx;
if (!ssl_sock_is_ssl(conn))
return (unsigned int)X509_V_ERR_APPLICATION_VERIFICATION;
ctx = conn->xprt_ctx;
return (unsigned int)SSL_get_verify_result(ctx->ssl);
}
/* Returns the application layer protocol name in <str> and <len> when known.
* Zero is returned if the protocol name was not found, otherwise non-zero is
* returned. The string is allocated in the SSL context and doesn't have to be
* freed by the caller. NPN is also checked if available since older versions
* of openssl (1.0.1) which are more common in field only support this one.
*/
static int ssl_sock_get_alpn(const struct connection *conn, void *xprt_ctx, const char **str, int *len)
{
#if defined(TLSEXT_TYPE_application_layer_protocol_negotiation) || \
defined(OPENSSL_NPN_NEGOTIATED) && !defined(OPENSSL_NO_NEXTPROTONEG)
struct ssl_sock_ctx *ctx = xprt_ctx;
if (!ctx)
return 0;
*str = NULL;
#ifdef TLSEXT_TYPE_application_layer_protocol_negotiation
SSL_get0_alpn_selected(ctx->ssl, (const unsigned char **)str, (unsigned *)len);
if (*str)
return 1;
#endif
#if defined(OPENSSL_NPN_NEGOTIATED) && !defined(OPENSSL_NO_NEXTPROTONEG)
SSL_get0_next_proto_negotiated(ctx->ssl, (const unsigned char **)str, (unsigned *)len);
if (*str)
return 1;
#endif
#endif
return 0;
}
/***** Below are some sample fetching functions for ACL/patterns *****/
static int
smp_fetch_ssl_fc_has_early(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct connection *conn;
conn = objt_conn(smp->sess->origin);
if (!conn || conn->xprt != &ssl_sock)
return 0;
smp->flags = 0;
smp->data.type = SMP_T_BOOL;
#ifdef OPENSSL_IS_BORINGSSL
{
struct ssl_sock_ctx *ctx = conn->xprt_ctx;
smp->data.u.sint = (SSL_in_early_data(ctx->ssl) &&
SSL_early_data_accepted(ctx->ssl));
}
#else
smp->data.u.sint = ((conn->flags & CO_FL_EARLY_DATA) &&
(conn->flags & (CO_FL_EARLY_SSL_HS | CO_FL_HANDSHAKE))) ? 1 : 0;
#endif
return 1;
}
/* boolean, returns true if client cert was present */
static int
smp_fetch_ssl_fc_has_crt(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct connection *conn;
struct ssl_sock_ctx *ctx;
conn = objt_conn(smp->sess->origin);
if (!conn || conn->xprt != &ssl_sock)
return 0;
ctx = conn->xprt_ctx;
if (!(conn->flags & CO_FL_CONNECTED)) {
smp->flags |= SMP_F_MAY_CHANGE;
return 0;
}
smp->flags = 0;
smp->data.type = SMP_T_BOOL;
smp->data.u.sint = SSL_SOCK_ST_FL_VERIFY_DONE & ctx->xprt_st ? 1 : 0;
return 1;
}
/* binary, returns a certificate in a binary chunk (der/raw).
* The 5th keyword char is used to know if SSL_get_certificate or SSL_get_peer_certificate
* should be use.
*/
static int
smp_fetch_ssl_x_der(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
int cert_peer = (kw[4] == 'c') ? 1 : 0;
X509 *crt = NULL;
int ret = 0;
struct buffer *smp_trash;
struct connection *conn;
struct ssl_sock_ctx *ctx;
conn = objt_conn(smp->sess->origin);
if (!conn || conn->xprt != &ssl_sock)
return 0;
ctx = conn->xprt_ctx;
if (!(conn->flags & CO_FL_CONNECTED)) {
smp->flags |= SMP_F_MAY_CHANGE;
return 0;
}
if (cert_peer)
crt = SSL_get_peer_certificate(ctx->ssl);
else
crt = SSL_get_certificate(ctx->ssl);
if (!crt)
goto out;
smp_trash = get_trash_chunk();
if (ssl_sock_crt2der(crt, smp_trash) <= 0)
goto out;
smp->data.u.str = *smp_trash;
smp->data.type = SMP_T_BIN;
ret = 1;
out:
/* SSL_get_peer_certificate, it increase X509 * ref count */
if (cert_peer && crt)
X509_free(crt);
return ret;
}
/* binary, returns serial of certificate in a binary chunk.
* The 5th keyword char is used to know if SSL_get_certificate or SSL_get_peer_certificate
* should be use.
*/
static int
smp_fetch_ssl_x_serial(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
int cert_peer = (kw[4] == 'c') ? 1 : 0;
X509 *crt = NULL;
int ret = 0;
struct buffer *smp_trash;
struct connection *conn;
struct ssl_sock_ctx *ctx;
conn = objt_conn(smp->sess->origin);
if (!conn || conn->xprt != &ssl_sock)
return 0;
ctx = conn->xprt_ctx;
if (!(conn->flags & CO_FL_CONNECTED)) {
smp->flags |= SMP_F_MAY_CHANGE;
return 0;
}
if (cert_peer)
crt = SSL_get_peer_certificate(ctx->ssl);
else
crt = SSL_get_certificate(ctx->ssl);
if (!crt)
goto out;
smp_trash = get_trash_chunk();
if (ssl_sock_get_serial(crt, smp_trash) <= 0)
goto out;
smp->data.u.str = *smp_trash;
smp->data.type = SMP_T_BIN;
ret = 1;
out:
/* SSL_get_peer_certificate, it increase X509 * ref count */
if (cert_peer && crt)
X509_free(crt);
return ret;
}
/* binary, returns the client certificate's SHA-1 fingerprint (SHA-1 hash of DER-encoded certificate) in a binary chunk.
* The 5th keyword char is used to know if SSL_get_certificate or SSL_get_peer_certificate
* should be use.
*/
static int
smp_fetch_ssl_x_sha1(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
int cert_peer = (kw[4] == 'c') ? 1 : 0;
X509 *crt = NULL;
const EVP_MD *digest;
int ret = 0;
struct buffer *smp_trash;
struct connection *conn;
struct ssl_sock_ctx *ctx;
conn = objt_conn(smp->sess->origin);
if (!conn || conn->xprt != &ssl_sock)
return 0;
ctx = conn->xprt_ctx;
if (!(conn->flags & CO_FL_CONNECTED)) {
smp->flags |= SMP_F_MAY_CHANGE;
return 0;
}
if (cert_peer)
crt = SSL_get_peer_certificate(ctx->ssl);
else
crt = SSL_get_certificate(ctx->ssl);
if (!crt)
goto out;
smp_trash = get_trash_chunk();
digest = EVP_sha1();
X509_digest(crt, digest, (unsigned char *) smp_trash->area,
(unsigned int *)&smp_trash->data);
smp->data.u.str = *smp_trash;
smp->data.type = SMP_T_BIN;
ret = 1;
out:
/* SSL_get_peer_certificate, it increase X509 * ref count */
if (cert_peer && crt)
X509_free(crt);
return ret;
}
/* string, returns certificate's notafter date in ASN1_UTCTIME format.
* The 5th keyword char is used to know if SSL_get_certificate or SSL_get_peer_certificate
* should be use.
*/
static int
smp_fetch_ssl_x_notafter(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
int cert_peer = (kw[4] == 'c') ? 1 : 0;
X509 *crt = NULL;
int ret = 0;
struct buffer *smp_trash;
struct connection *conn;
struct ssl_sock_ctx *ctx;
conn = objt_conn(smp->sess->origin);
if (!conn || conn->xprt != &ssl_sock)
return 0;
ctx = conn->xprt_ctx;
if (!(conn->flags & CO_FL_CONNECTED)) {
smp->flags |= SMP_F_MAY_CHANGE;
return 0;
}
if (cert_peer)
crt = SSL_get_peer_certificate(ctx->ssl);
else
crt = SSL_get_certificate(ctx->ssl);
if (!crt)
goto out;
smp_trash = get_trash_chunk();
if (ssl_sock_get_time(X509_getm_notAfter(crt), smp_trash) <= 0)
goto out;
smp->data.u.str = *smp_trash;
smp->data.type = SMP_T_STR;
ret = 1;
out:
/* SSL_get_peer_certificate, it increase X509 * ref count */
if (cert_peer && crt)
X509_free(crt);
return ret;
}
/* string, returns a string of a formatted full dn \C=..\O=..\OU=.. \CN=.. of certificate's issuer
* The 5th keyword char is used to know if SSL_get_certificate or SSL_get_peer_certificate
* should be use.
*/
static int
smp_fetch_ssl_x_i_dn(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
int cert_peer = (kw[4] == 'c') ? 1 : 0;
X509 *crt = NULL;
X509_NAME *name;
int ret = 0;
struct buffer *smp_trash;
struct connection *conn;
struct ssl_sock_ctx *ctx;
conn = objt_conn(smp->sess->origin);
if (!conn || conn->xprt != &ssl_sock)
return 0;
ctx = conn->xprt_ctx;
if (!(conn->flags & CO_FL_CONNECTED)) {
smp->flags |= SMP_F_MAY_CHANGE;
return 0;
}
if (cert_peer)
crt = SSL_get_peer_certificate(ctx->ssl);
else
crt = SSL_get_certificate(ctx->ssl);
if (!crt)
goto out;
name = X509_get_issuer_name(crt);
if (!name)
goto out;
smp_trash = get_trash_chunk();
if (args && args[0].type == ARGT_STR) {
int pos = 1;
if (args[1].type == ARGT_SINT)
pos = args[1].data.sint;
if (ssl_sock_get_dn_entry(name, &args[0].data.str, pos, smp_trash) <= 0)
goto out;
}
else if (ssl_sock_get_dn_oneline(name, smp_trash) <= 0)
goto out;
smp->data.type = SMP_T_STR;
smp->data.u.str = *smp_trash;
ret = 1;
out:
/* SSL_get_peer_certificate, it increase X509 * ref count */
if (cert_peer && crt)
X509_free(crt);
return ret;
}
/* string, returns notbefore date in ASN1_UTCTIME format.
* The 5th keyword char is used to know if SSL_get_certificate or SSL_get_peer_certificate
* should be use.
*/
static int
smp_fetch_ssl_x_notbefore(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
int cert_peer = (kw[4] == 'c') ? 1 : 0;
X509 *crt = NULL;
int ret = 0;
struct buffer *smp_trash;
struct connection *conn;
struct ssl_sock_ctx *ctx;
conn = objt_conn(smp->sess->origin);
if (!conn || conn->xprt != &ssl_sock)
return 0;
ctx = conn->xprt_ctx;
if (!(conn->flags & CO_FL_CONNECTED)) {
smp->flags |= SMP_F_MAY_CHANGE;
return 0;
}
if (cert_peer)
crt = SSL_get_peer_certificate(ctx->ssl);
else
crt = SSL_get_certificate(ctx->ssl);
if (!crt)
goto out;
smp_trash = get_trash_chunk();
if (ssl_sock_get_time(X509_getm_notBefore(crt), smp_trash) <= 0)
goto out;
smp->data.u.str = *smp_trash;
smp->data.type = SMP_T_STR;
ret = 1;
out:
/* SSL_get_peer_certificate, it increase X509 * ref count */
if (cert_peer && crt)
X509_free(crt);
return ret;
}
/* string, returns a string of a formatted full dn \C=..\O=..\OU=.. \CN=.. of certificate's subject
* The 5th keyword char is used to know if SSL_get_certificate or SSL_get_peer_certificate
* should be use.
*/
static int
smp_fetch_ssl_x_s_dn(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
int cert_peer = (kw[4] == 'c') ? 1 : 0;
X509 *crt = NULL;
X509_NAME *name;
int ret = 0;
struct buffer *smp_trash;
struct connection *conn;
struct ssl_sock_ctx *ctx;
conn = objt_conn(smp->sess->origin);
if (!conn || conn->xprt != &ssl_sock)
return 0;
ctx = conn->xprt_ctx;
if (!(conn->flags & CO_FL_CONNECTED)) {
smp->flags |= SMP_F_MAY_CHANGE;
return 0;
}
if (cert_peer)
crt = SSL_get_peer_certificate(ctx->ssl);
else
crt = SSL_get_certificate(ctx->ssl);
if (!crt)
goto out;
name = X509_get_subject_name(crt);
if (!name)
goto out;
smp_trash = get_trash_chunk();
if (args && args[0].type == ARGT_STR) {
int pos = 1;
if (args[1].type == ARGT_SINT)
pos = args[1].data.sint;
if (ssl_sock_get_dn_entry(name, &args[0].data.str, pos, smp_trash) <= 0)
goto out;
}
else if (ssl_sock_get_dn_oneline(name, smp_trash) <= 0)
goto out;
smp->data.type = SMP_T_STR;
smp->data.u.str = *smp_trash;
ret = 1;
out:
/* SSL_get_peer_certificate, it increase X509 * ref count */
if (cert_peer && crt)
X509_free(crt);
return ret;
}
/* integer, returns true if current session use a client certificate */
static int
smp_fetch_ssl_c_used(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
X509 *crt;
struct connection *conn;
struct ssl_sock_ctx *ctx;
conn = objt_conn(smp->sess->origin);
if (!conn || conn->xprt != &ssl_sock)
return 0;
ctx = conn->xprt_ctx;
if (!(conn->flags & CO_FL_CONNECTED)) {
smp->flags |= SMP_F_MAY_CHANGE;
return 0;
}
/* SSL_get_peer_certificate returns a ptr on allocated X509 struct */
crt = SSL_get_peer_certificate(ctx->ssl);
if (crt) {
X509_free(crt);
}
smp->data.type = SMP_T_BOOL;
smp->data.u.sint = (crt != NULL);
return 1;
}
/* integer, returns the certificate version
* The 5th keyword char is used to know if SSL_get_certificate or SSL_get_peer_certificate
* should be use.
*/
static int
smp_fetch_ssl_x_version(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
int cert_peer = (kw[4] == 'c') ? 1 : 0;
X509 *crt;
struct connection *conn;
struct ssl_sock_ctx *ctx;
conn = objt_conn(smp->sess->origin);
if (!conn || conn->xprt != &ssl_sock)
return 0;
ctx = conn->xprt_ctx;
if (!(conn->flags & CO_FL_CONNECTED)) {
smp->flags |= SMP_F_MAY_CHANGE;
return 0;
}
if (cert_peer)
crt = SSL_get_peer_certificate(ctx->ssl);
else
crt = SSL_get_certificate(ctx->ssl);
if (!crt)
return 0;
smp->data.u.sint = (unsigned int)(1 + X509_get_version(crt));
/* SSL_get_peer_certificate increase X509 * ref count */
if (cert_peer)
X509_free(crt);
smp->data.type = SMP_T_SINT;
return 1;
}
/* string, returns the certificate's signature algorithm.
* The 5th keyword char is used to know if SSL_get_certificate or SSL_get_peer_certificate
* should be use.
*/
static int
smp_fetch_ssl_x_sig_alg(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
int cert_peer = (kw[4] == 'c') ? 1 : 0;
X509 *crt;
__OPENSSL_110_CONST__ ASN1_OBJECT *algorithm;
int nid;
struct connection *conn;
struct ssl_sock_ctx *ctx;
conn = objt_conn(smp->sess->origin);
if (!conn || conn->xprt != &ssl_sock)
return 0;
ctx = conn->xprt_ctx;
if (!(conn->flags & CO_FL_CONNECTED)) {
smp->flags |= SMP_F_MAY_CHANGE;
return 0;
}
if (cert_peer)
crt = SSL_get_peer_certificate(ctx->ssl);
else
crt = SSL_get_certificate(ctx->ssl);
if (!crt)
return 0;
X509_ALGOR_get0(&algorithm, NULL, NULL, X509_get0_tbs_sigalg(crt));
nid = OBJ_obj2nid(algorithm);
smp->data.u.str.area = (char *)OBJ_nid2sn(nid);
if (!smp->data.u.str.area) {
/* SSL_get_peer_certificate increase X509 * ref count */
if (cert_peer)
X509_free(crt);
return 0;
}
smp->data.type = SMP_T_STR;
smp->flags |= SMP_F_CONST;
smp->data.u.str.data = strlen(smp->data.u.str.area);
/* SSL_get_peer_certificate increase X509 * ref count */
if (cert_peer)
X509_free(crt);
return 1;
}
/* string, returns the certificate's key algorithm.
* The 5th keyword char is used to know if SSL_get_certificate or SSL_get_peer_certificate
* should be use.
*/
static int
smp_fetch_ssl_x_key_alg(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
int cert_peer = (kw[4] == 'c') ? 1 : 0;
X509 *crt;
ASN1_OBJECT *algorithm;
int nid;
struct connection *conn;
struct ssl_sock_ctx *ctx;
conn = objt_conn(smp->sess->origin);
if (!conn || conn->xprt != &ssl_sock)
return 0;
ctx = conn->xprt_ctx;
if (!(conn->flags & CO_FL_CONNECTED)) {
smp->flags |= SMP_F_MAY_CHANGE;
return 0;
}
if (cert_peer)
crt = SSL_get_peer_certificate(ctx->ssl);
else
crt = SSL_get_certificate(ctx->ssl);
if (!crt)
return 0;
X509_PUBKEY_get0_param(&algorithm, NULL, NULL, NULL, X509_get_X509_PUBKEY(crt));
nid = OBJ_obj2nid(algorithm);
smp->data.u.str.area = (char *)OBJ_nid2sn(nid);
if (!smp->data.u.str.area) {
/* SSL_get_peer_certificate increase X509 * ref count */
if (cert_peer)
X509_free(crt);
return 0;
}
smp->data.type = SMP_T_STR;
smp->flags |= SMP_F_CONST;
smp->data.u.str.data = strlen(smp->data.u.str.area);
if (cert_peer)
X509_free(crt);
return 1;
}
/* boolean, returns true if front conn. transport layer is SSL.
* This function is also usable on backend conn if the fetch keyword 5th
* char is 'b'.
*/
static int
smp_fetch_ssl_fc(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct connection *conn = (kw[4] != 'b') ? objt_conn(smp->sess->origin) :
smp->strm ? cs_conn(objt_cs(smp->strm->si[1].end)) : NULL;
smp->data.type = SMP_T_BOOL;
smp->data.u.sint = (conn && conn->xprt == &ssl_sock);
return 1;
}
/* boolean, returns true if client present a SNI */
static int
smp_fetch_ssl_fc_has_sni(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
#ifdef SSL_CTRL_SET_TLSEXT_HOSTNAME
struct connection *conn = objt_conn(smp->sess->origin);
struct ssl_sock_ctx *ctx = conn ? conn->xprt_ctx : NULL;
smp->data.type = SMP_T_BOOL;
smp->data.u.sint = (conn && conn->xprt == &ssl_sock) &&
conn->xprt_ctx &&
SSL_get_servername(ctx->ssl, TLSEXT_NAMETYPE_host_name) != NULL;
return 1;
#else
return 0;
#endif
}
/* boolean, returns true if client session has been resumed.
* This function is also usable on backend conn if the fetch keyword 5th
* char is 'b'.
*/
static int
smp_fetch_ssl_fc_is_resumed(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct connection *conn = (kw[4] != 'b') ? objt_conn(smp->sess->origin) :
smp->strm ? cs_conn(objt_cs(smp->strm->si[1].end)) : NULL;
struct ssl_sock_ctx *ctx = conn ? conn->xprt_ctx : NULL;
smp->data.type = SMP_T_BOOL;
smp->data.u.sint = (conn && conn->xprt == &ssl_sock) &&
conn->xprt_ctx &&
SSL_session_reused(ctx->ssl);
return 1;
}
/* string, returns the used cipher if front conn. transport layer is SSL.
* This function is also usable on backend conn if the fetch keyword 5th
* char is 'b'.
*/
static int
smp_fetch_ssl_fc_cipher(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct connection *conn = (kw[4] != 'b') ? objt_conn(smp->sess->origin) :
smp->strm ? cs_conn(objt_cs(smp->strm->si[1].end)) : NULL;
struct ssl_sock_ctx *ctx;
smp->flags = 0;
if (!conn || !conn->xprt_ctx || conn->xprt != &ssl_sock)
return 0;
ctx = conn->xprt_ctx;
smp->data.u.str.area = (char *)SSL_get_cipher_name(ctx->ssl);
if (!smp->data.u.str.area)
return 0;
smp->data.type = SMP_T_STR;
smp->flags |= SMP_F_CONST;
smp->data.u.str.data = strlen(smp->data.u.str.area);
return 1;
}
/* integer, returns the algoritm's keysize if front conn. transport layer
* is SSL.
* This function is also usable on backend conn if the fetch keyword 5th
* char is 'b'.
*/
static int
smp_fetch_ssl_fc_alg_keysize(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct connection *conn = (kw[4] != 'b') ? objt_conn(smp->sess->origin) :
smp->strm ? cs_conn(objt_cs(smp->strm->si[1].end)) : NULL;
struct ssl_sock_ctx *ctx;
int sint;
smp->flags = 0;
if (!conn || !conn->xprt_ctx || conn->xprt != &ssl_sock)
return 0;
ctx = conn->xprt_ctx;
if (!SSL_get_cipher_bits(ctx->ssl, &sint))
return 0;
smp->data.u.sint = sint;
smp->data.type = SMP_T_SINT;
return 1;
}
/* integer, returns the used keysize if front conn. transport layer is SSL.
* This function is also usable on backend conn if the fetch keyword 5th
* char is 'b'.
*/
static int
smp_fetch_ssl_fc_use_keysize(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct connection *conn = (kw[4] != 'b') ? objt_conn(smp->sess->origin) :
smp->strm ? cs_conn(objt_cs(smp->strm->si[1].end)) : NULL;
struct ssl_sock_ctx *ctx;
smp->flags = 0;
if (!conn || !conn->xprt_ctx || conn->xprt != &ssl_sock)
return 0;
ctx = conn->xprt_ctx;
smp->data.u.sint = (unsigned int)SSL_get_cipher_bits(ctx->ssl, NULL);
if (!smp->data.u.sint)
return 0;
smp->data.type = SMP_T_SINT;
return 1;
}
#if defined(OPENSSL_NPN_NEGOTIATED) && !defined(OPENSSL_NO_NEXTPROTONEG)
static int
smp_fetch_ssl_fc_npn(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct connection *conn;
struct ssl_sock_ctx *ctx;
smp->flags = SMP_F_CONST;
smp->data.type = SMP_T_STR;
conn = (kw[4] != 'b' ) ? objt_conn(smp->sess->origin) :
smp->strm ? cs_conn(objt_cs(smp->strm->si[1].end)) : NULL;
if (!conn || !conn->xprt_ctx || conn->xprt != &ssl_sock)
return 0;
ctx = conn->xprt_ctx;
smp->data.u.str.area = NULL;
SSL_get0_next_proto_negotiated(ctx->ssl,
(const unsigned char **)&smp->data.u.str.area,
(unsigned *)&smp->data.u.str.data);
if (!smp->data.u.str.area)
return 0;
return 1;
}
#endif
#ifdef TLSEXT_TYPE_application_layer_protocol_negotiation
static int
smp_fetch_ssl_fc_alpn(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct connection *conn;
struct ssl_sock_ctx *ctx;
smp->flags = SMP_F_CONST;
smp->data.type = SMP_T_STR;
conn = (kw[4] != 'b' ) ? objt_conn(smp->sess->origin) :
smp->strm ? cs_conn(objt_cs(smp->strm->si[1].end)) : NULL;
if (!conn || !conn->xprt_ctx || conn->xprt != &ssl_sock)
return 0;
ctx = conn->xprt_ctx;
smp->data.u.str.area = NULL;
SSL_get0_alpn_selected(ctx->ssl,
(const unsigned char **)&smp->data.u.str.area,
(unsigned *)&smp->data.u.str.data);
if (!smp->data.u.str.area)
return 0;
return 1;
}
#endif
/* string, returns the used protocol if front conn. transport layer is SSL.
* This function is also usable on backend conn if the fetch keyword 5th
* char is 'b'.
*/
static int
smp_fetch_ssl_fc_protocol(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct connection *conn = (kw[4] != 'b') ? objt_conn(smp->sess->origin) :
smp->strm ? cs_conn(objt_cs(smp->strm->si[1].end)) : NULL;
struct ssl_sock_ctx *ctx;
smp->flags = 0;
if (!conn || !conn->xprt_ctx || conn->xprt != &ssl_sock)
return 0;
ctx = conn->xprt_ctx;
smp->data.u.str.area = (char *)SSL_get_version(ctx->ssl);
if (!smp->data.u.str.area)
return 0;
smp->data.type = SMP_T_STR;
smp->flags = SMP_F_CONST;
smp->data.u.str.data = strlen(smp->data.u.str.area);
return 1;
}
/* binary, returns the SSL stream id if front conn. transport layer is SSL.
* This function is also usable on backend conn if the fetch keyword 5th
* char is 'b'.
*/
#if HA_OPENSSL_VERSION_NUMBER > 0x0090800fL
static int
smp_fetch_ssl_fc_session_id(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct connection *conn = (kw[4] != 'b') ? objt_conn(smp->sess->origin) :
smp->strm ? cs_conn(objt_cs(smp->strm->si[1].end)) : NULL;
SSL_SESSION *ssl_sess;
struct ssl_sock_ctx *ctx;
smp->flags = SMP_F_CONST;
smp->data.type = SMP_T_BIN;
if (!conn || !conn->xprt_ctx || conn->xprt != &ssl_sock)
return 0;
ctx = conn->xprt_ctx;
ssl_sess = SSL_get_session(ctx->ssl);
if (!ssl_sess)
return 0;
smp->data.u.str.area = (char *)SSL_SESSION_get_id(ssl_sess,
(unsigned int *)&smp->data.u.str.data);
if (!smp->data.u.str.area || !smp->data.u.str.data)
return 0;
return 1;
}
#endif
#if HA_OPENSSL_VERSION_NUMBER >= 0x10100000L
static int
smp_fetch_ssl_fc_random(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct connection *conn = (kw[4] != 'b') ? objt_conn(smp->sess->origin) :
smp->strm ? cs_conn(objt_cs(smp->strm->si[1].end)) : NULL;
struct buffer *data;
struct ssl_sock_ctx *ctx;
if (!conn || !conn->xprt_ctx || conn->xprt != &ssl_sock)
return 0;
ctx = conn->xprt_ctx;
data = get_trash_chunk();
if (kw[7] == 'c')
data->data = SSL_get_client_random(ctx->ssl,
(unsigned char *) data->area,
data->size);
else
data->data = SSL_get_server_random(ctx->ssl,
(unsigned char *) data->area,
data->size);
if (!data->data)
return 0;
smp->flags = 0;
smp->data.type = SMP_T_BIN;
smp->data.u.str = *data;
return 1;
}
static int
smp_fetch_ssl_fc_session_key(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct connection *conn = (kw[4] != 'b') ? objt_conn(smp->sess->origin) :
smp->strm ? cs_conn(objt_cs(smp->strm->si[1].end)) : NULL;
SSL_SESSION *ssl_sess;
struct buffer *data;
struct ssl_sock_ctx *ctx;
if (!conn || !conn->xprt_ctx || conn->xprt != &ssl_sock)
return 0;
ctx = conn->xprt_ctx;
ssl_sess = SSL_get_session(ctx->ssl);
if (!ssl_sess)
return 0;
data = get_trash_chunk();
data->data = SSL_SESSION_get_master_key(ssl_sess,
(unsigned char *) data->area,
data->size);
if (!data->data)
return 0;
smp->flags = 0;
smp->data.type = SMP_T_BIN;
smp->data.u.str = *data;
return 1;
}
#endif
#ifdef SSL_CTRL_SET_TLSEXT_HOSTNAME
static int
smp_fetch_ssl_fc_sni(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct connection *conn;
struct ssl_sock_ctx *ctx;
smp->flags = SMP_F_CONST;
smp->data.type = SMP_T_STR;
conn = objt_conn(smp->sess->origin);
if (!conn || !conn->xprt_ctx || conn->xprt != &ssl_sock)
return 0;
ctx = conn->xprt_ctx;
smp->data.u.str.area = (char *)SSL_get_servername(ctx->ssl, TLSEXT_NAMETYPE_host_name);
if (!smp->data.u.str.area)
return 0;
smp->data.u.str.data = strlen(smp->data.u.str.area);
return 1;
}
#endif
static int
smp_fetch_ssl_fc_cl_bin(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct connection *conn;
struct ssl_capture *capture;
struct ssl_sock_ctx *ctx;
conn = objt_conn(smp->sess->origin);
if (!conn || !conn->xprt_ctx || conn->xprt != &ssl_sock)
return 0;
ctx = conn->xprt_ctx;
capture = SSL_get_ex_data(ctx->ssl, ssl_capture_ptr_index);
if (!capture)
return 0;
smp->flags = SMP_F_CONST;
smp->data.type = SMP_T_BIN;
smp->data.u.str.area = capture->ciphersuite;
smp->data.u.str.data = capture->ciphersuite_len;
return 1;
}
static int
smp_fetch_ssl_fc_cl_hex(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct buffer *data;
if (!smp_fetch_ssl_fc_cl_bin(args, smp, kw, private))
return 0;
data = get_trash_chunk();
dump_binary(data, smp->data.u.str.area, smp->data.u.str.data);
smp->data.type = SMP_T_BIN;
smp->data.u.str = *data;
return 1;
}
static int
smp_fetch_ssl_fc_cl_xxh64(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct connection *conn;
struct ssl_capture *capture;
struct ssl_sock_ctx *ctx;
conn = objt_conn(smp->sess->origin);
if (!conn || !conn->xprt_ctx || conn->xprt != &ssl_sock)
return 0;
ctx = conn->xprt_ctx;
capture = SSL_get_ex_data(ctx->ssl, ssl_capture_ptr_index);
if (!capture)
return 0;
smp->data.type = SMP_T_SINT;
smp->data.u.sint = capture->xxh64;
return 1;
}
static int
smp_fetch_ssl_fc_cl_str(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
#if (HA_OPENSSL_VERSION_NUMBER >= 0x1000200fL)
struct buffer *data;
int i;
if (!smp_fetch_ssl_fc_cl_bin(args, smp, kw, private))
return 0;
data = get_trash_chunk();
for (i = 0; i + 1 < smp->data.u.str.data; i += 2) {
const char *str;
const SSL_CIPHER *cipher;
const unsigned char *bin = (const unsigned char *) smp->data.u.str.area + i;
uint16_t id = (bin[0] << 8) | bin[1];
#if defined(OPENSSL_IS_BORINGSSL)
cipher = SSL_get_cipher_by_value(id);
#else
struct connection *conn = __objt_conn(smp->sess->origin);
struct ssl_sock_ctx *ctx = conn->xprt_ctx;
cipher = SSL_CIPHER_find(ctx->ssl, bin);
#endif
str = SSL_CIPHER_get_name(cipher);
if (!str || strcmp(str, "(NONE)") == 0)
chunk_appendf(data, "%sUNKNOWN(%04x)", i == 0 ? "" : ",", id);
else
chunk_appendf(data, "%s%s", i == 0 ? "" : ",", str);
}
smp->data.type = SMP_T_STR;
smp->data.u.str = *data;
return 1;
#else
return smp_fetch_ssl_fc_cl_xxh64(args, smp, kw, private);
#endif
}
#if HA_OPENSSL_VERSION_NUMBER > 0x0090800fL
static int
smp_fetch_ssl_fc_unique_id(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct connection *conn = (kw[4] != 'b') ? objt_conn(smp->sess->origin) :
smp->strm ? cs_conn(objt_cs(smp->strm->si[1].end)) : NULL;
int finished_len;
struct buffer *finished_trash;
struct ssl_sock_ctx *ctx;
smp->flags = 0;
if (!conn || !conn->xprt_ctx || conn->xprt != &ssl_sock)
return 0;
ctx = conn->xprt_ctx;
if (!(conn->flags & CO_FL_CONNECTED)) {
smp->flags |= SMP_F_MAY_CHANGE;
return 0;
}
finished_trash = get_trash_chunk();
if (!SSL_session_reused(ctx->ssl))
finished_len = SSL_get_peer_finished(ctx->ssl,
finished_trash->area,
finished_trash->size);
else
finished_len = SSL_get_finished(ctx->ssl,
finished_trash->area,
finished_trash->size);
if (!finished_len)
return 0;
finished_trash->data = finished_len;
smp->data.u.str = *finished_trash;
smp->data.type = SMP_T_BIN;
return 1;
}
#endif
/* integer, returns the first verify error in CA chain of client certificate chain. */
static int
smp_fetch_ssl_c_ca_err(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct connection *conn;
struct ssl_sock_ctx *ctx;
conn = objt_conn(smp->sess->origin);
if (!conn || conn->xprt != &ssl_sock)
return 0;
ctx = conn->xprt_ctx;
if (!(conn->flags & CO_FL_CONNECTED)) {
smp->flags = SMP_F_MAY_CHANGE;
return 0;
}
smp->data.type = SMP_T_SINT;
smp->data.u.sint = (unsigned long long int)SSL_SOCK_ST_TO_CA_ERROR(ctx->xprt_st);
smp->flags = 0;
return 1;
}
/* integer, returns the depth of the first verify error in CA chain of client certificate chain. */
static int
smp_fetch_ssl_c_ca_err_depth(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct connection *conn;
struct ssl_sock_ctx *ctx;
conn = objt_conn(smp->sess->origin);
if (!conn || conn->xprt != &ssl_sock)
return 0;
if (!(conn->flags & CO_FL_CONNECTED)) {
smp->flags = SMP_F_MAY_CHANGE;
return 0;
}
ctx = conn->xprt_ctx;
smp->data.type = SMP_T_SINT;
smp->data.u.sint = (long long int)SSL_SOCK_ST_TO_CAEDEPTH(ctx->xprt_st);
smp->flags = 0;
return 1;
}
/* integer, returns the first verify error on client certificate */
static int
smp_fetch_ssl_c_err(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct connection *conn;
struct ssl_sock_ctx *ctx;
conn = objt_conn(smp->sess->origin);
if (!conn || conn->xprt != &ssl_sock)
return 0;
if (!(conn->flags & CO_FL_CONNECTED)) {
smp->flags = SMP_F_MAY_CHANGE;
return 0;
}
ctx = conn->xprt_ctx;
smp->data.type = SMP_T_SINT;
smp->data.u.sint = (long long int)SSL_SOCK_ST_TO_CRTERROR(ctx->xprt_st);
smp->flags = 0;
return 1;
}
/* integer, returns the verify result on client cert */
static int
smp_fetch_ssl_c_verify(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct connection *conn;
struct ssl_sock_ctx *ctx;
conn = objt_conn(smp->sess->origin);
if (!conn || conn->xprt != &ssl_sock)
return 0;
if (!(conn->flags & CO_FL_CONNECTED)) {
smp->flags = SMP_F_MAY_CHANGE;
return 0;
}
if (!conn->xprt_ctx)
return 0;
ctx = conn->xprt_ctx;
smp->data.type = SMP_T_SINT;
smp->data.u.sint = (long long int)SSL_get_verify_result(ctx->ssl);
smp->flags = 0;
return 1;
}
/* parse the "ca-file" bind keyword */
static int ssl_bind_parse_ca_file(char **args, int cur_arg, struct proxy *px, struct ssl_bind_conf *conf, char **err)
{
if (!*args[cur_arg + 1]) {
if (err)
memprintf(err, "'%s' : missing CAfile path", args[cur_arg]);
return ERR_ALERT | ERR_FATAL;
}
if ((*args[cur_arg + 1] != '/') && global_ssl.ca_base)
memprintf(&conf->ca_file, "%s/%s", global_ssl.ca_base, args[cur_arg + 1]);
else
memprintf(&conf->ca_file, "%s", args[cur_arg + 1]);
return 0;
}
static int bind_parse_ca_file(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
{
return ssl_bind_parse_ca_file(args, cur_arg, px, &conf->ssl_conf, err);
}
/* parse the "ca-sign-file" bind keyword */
static int bind_parse_ca_sign_file(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
{
if (!*args[cur_arg + 1]) {
if (err)
memprintf(err, "'%s' : missing CAfile path", args[cur_arg]);
return ERR_ALERT | ERR_FATAL;
}
if ((*args[cur_arg + 1] != '/') && global_ssl.ca_base)
memprintf(&conf->ca_sign_file, "%s/%s", global_ssl.ca_base, args[cur_arg + 1]);
else
memprintf(&conf->ca_sign_file, "%s", args[cur_arg + 1]);
return 0;
}
/* parse the "ca-sign-pass" bind keyword */
static int bind_parse_ca_sign_pass(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
{
if (!*args[cur_arg + 1]) {
if (err)
memprintf(err, "'%s' : missing CAkey password", args[cur_arg]);
return ERR_ALERT | ERR_FATAL;
}
memprintf(&conf->ca_sign_pass, "%s", args[cur_arg + 1]);
return 0;
}
/* parse the "ciphers" bind keyword */
static int ssl_bind_parse_ciphers(char **args, int cur_arg, struct proxy *px, struct ssl_bind_conf *conf, char **err)
{
if (!*args[cur_arg + 1]) {
memprintf(err, "'%s' : missing cipher suite", args[cur_arg]);
return ERR_ALERT | ERR_FATAL;
}
free(conf->ciphers);
conf->ciphers = strdup(args[cur_arg + 1]);
return 0;
}
static int bind_parse_ciphers(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
{
return ssl_bind_parse_ciphers(args, cur_arg, px, &conf->ssl_conf, err);
}
#if (HA_OPENSSL_VERSION_NUMBER >= 0x10101000L)
/* parse the "ciphersuites" bind keyword */
static int ssl_bind_parse_ciphersuites(char **args, int cur_arg, struct proxy *px, struct ssl_bind_conf *conf, char **err)
{
if (!*args[cur_arg + 1]) {
memprintf(err, "'%s' : missing cipher suite", args[cur_arg]);
return ERR_ALERT | ERR_FATAL;
}
free(conf->ciphersuites);
conf->ciphersuites = strdup(args[cur_arg + 1]);
return 0;
}
static int bind_parse_ciphersuites(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
{
return ssl_bind_parse_ciphersuites(args, cur_arg, px, &conf->ssl_conf, err);
}
#endif
/* parse the "crt" bind keyword. Returns a set of ERR_* flags possibly with an error in <err>. */
static int bind_parse_crt(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
{
char path[MAXPATHLEN];
if (!*args[cur_arg + 1]) {
memprintf(err, "'%s' : missing certificate location", args[cur_arg]);
return ERR_ALERT | ERR_FATAL;
}
if ((*args[cur_arg + 1] != '/' ) && global_ssl.crt_base) {
if ((strlen(global_ssl.crt_base) + 1 + strlen(args[cur_arg + 1]) + 1) > MAXPATHLEN) {
memprintf(err, "'%s' : path too long", args[cur_arg]);
return ERR_ALERT | ERR_FATAL;
}
snprintf(path, sizeof(path), "%s/%s", global_ssl.crt_base, args[cur_arg + 1]);
return ssl_sock_load_cert(path, conf, err);
}
return ssl_sock_load_cert(args[cur_arg + 1], conf, err);
}
/* parse the "crt-list" bind keyword. Returns a set of ERR_* flags possibly with an error in <err>. */
static int bind_parse_crt_list(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
{
int err_code;
if (!*args[cur_arg + 1]) {
memprintf(err, "'%s' : missing certificate location", args[cur_arg]);
return ERR_ALERT | ERR_FATAL;
}
err_code = ssl_sock_load_cert_list_file(args[cur_arg + 1], conf, px, err);
if (err_code)
memprintf(err, "'%s' : %s", args[cur_arg], *err);
return err_code;
}
/* parse the "crl-file" bind keyword */
static int ssl_bind_parse_crl_file(char **args, int cur_arg, struct proxy *px, struct ssl_bind_conf *conf, char **err)
{
#ifndef X509_V_FLAG_CRL_CHECK
if (err)
memprintf(err, "'%s' : library does not support CRL verify", args[cur_arg]);
return ERR_ALERT | ERR_FATAL;
#else
if (!*args[cur_arg + 1]) {
if (err)
memprintf(err, "'%s' : missing CRLfile path", args[cur_arg]);
return ERR_ALERT | ERR_FATAL;
}
if ((*args[cur_arg + 1] != '/') && global_ssl.ca_base)
memprintf(&conf->crl_file, "%s/%s", global_ssl.ca_base, args[cur_arg + 1]);
else
memprintf(&conf->crl_file, "%s", args[cur_arg + 1]);
return 0;
#endif
}
static int bind_parse_crl_file(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
{
return ssl_bind_parse_crl_file(args, cur_arg, px, &conf->ssl_conf, err);
}
/* parse the "curves" bind keyword keyword */
static int ssl_bind_parse_curves(char **args, int cur_arg, struct proxy *px, struct ssl_bind_conf *conf, char **err)
{
#if HA_OPENSSL_VERSION_NUMBER >= 0x1000200fL
if (!*args[cur_arg + 1]) {
if (err)
memprintf(err, "'%s' : missing curve suite", args[cur_arg]);
return ERR_ALERT | ERR_FATAL;
}
conf->curves = strdup(args[cur_arg + 1]);
return 0;
#else
if (err)
memprintf(err, "'%s' : library does not support curve suite", args[cur_arg]);
return ERR_ALERT | ERR_FATAL;
#endif
}
static int bind_parse_curves(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
{
return ssl_bind_parse_curves(args, cur_arg, px, &conf->ssl_conf, err);
}
/* parse the "ecdhe" bind keyword keyword */
static int ssl_bind_parse_ecdhe(char **args, int cur_arg, struct proxy *px, struct ssl_bind_conf *conf, char **err)
{
#if HA_OPENSSL_VERSION_NUMBER < 0x0090800fL
if (err)
memprintf(err, "'%s' : library does not support elliptic curve Diffie-Hellman (too old)", args[cur_arg]);
return ERR_ALERT | ERR_FATAL;
#elif defined(OPENSSL_NO_ECDH)
if (err)
memprintf(err, "'%s' : library does not support elliptic curve Diffie-Hellman (disabled via OPENSSL_NO_ECDH)", args[cur_arg]);
return ERR_ALERT | ERR_FATAL;
#else
if (!*args[cur_arg + 1]) {
if (err)
memprintf(err, "'%s' : missing named curve", args[cur_arg]);
return ERR_ALERT | ERR_FATAL;
}
conf->ecdhe = strdup(args[cur_arg + 1]);
return 0;
#endif
}
static int bind_parse_ecdhe(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
{
return ssl_bind_parse_ecdhe(args, cur_arg, px, &conf->ssl_conf, err);
}
/* parse the "crt-ignore-err" and "ca-ignore-err" bind keywords */
static int bind_parse_ignore_err(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
{
int code;
char *p = args[cur_arg + 1];
unsigned long long *ignerr = &conf->crt_ignerr;
if (!*p) {
if (err)
memprintf(err, "'%s' : missing error IDs list", args[cur_arg]);
return ERR_ALERT | ERR_FATAL;
}
if (strcmp(args[cur_arg], "ca-ignore-err") == 0)
ignerr = &conf->ca_ignerr;
if (strcmp(p, "all") == 0) {
*ignerr = ~0ULL;
return 0;
}
while (p) {
code = atoi(p);
if ((code <= 0) || (code > 63)) {
if (err)
memprintf(err, "'%s' : ID '%d' out of range (1..63) in error IDs list '%s'",
args[cur_arg], code, args[cur_arg + 1]);
return ERR_ALERT | ERR_FATAL;
}
*ignerr |= 1ULL << code;
p = strchr(p, ',');
if (p)
p++;
}
return 0;
}
/* parse tls_method_options "no-xxx" and "force-xxx" */
static int parse_tls_method_options(char *arg, struct tls_version_filter *methods, char **err)
{
uint16_t v;
char *p;
p = strchr(arg, '-');
if (!p)
goto fail;
p++;
if (!strcmp(p, "sslv3"))
v = CONF_SSLV3;
else if (!strcmp(p, "tlsv10"))
v = CONF_TLSV10;
else if (!strcmp(p, "tlsv11"))
v = CONF_TLSV11;
else if (!strcmp(p, "tlsv12"))
v = CONF_TLSV12;
else if (!strcmp(p, "tlsv13"))
v = CONF_TLSV13;
else
goto fail;
if (!strncmp(arg, "no-", 3))
methods->flags |= methodVersions[v].flag;
else if (!strncmp(arg, "force-", 6))
methods->min = methods->max = v;
else
goto fail;
return 0;
fail:
if (err)
memprintf(err, "'%s' : option not implemented", arg);
return ERR_ALERT | ERR_FATAL;
}
static int bind_parse_tls_method_options(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
{
return parse_tls_method_options(args[cur_arg], &conf->ssl_conf.ssl_methods, err);
}
static int srv_parse_tls_method_options(char **args, int *cur_arg, struct proxy *px, struct server *newsrv, char **err)
{
return parse_tls_method_options(args[*cur_arg], &newsrv->ssl_ctx.methods, err);
}
/* parse tls_method min/max: "ssl-min-ver" and "ssl-max-ver" */
static int parse_tls_method_minmax(char **args, int cur_arg, struct tls_version_filter *methods, char **err)
{
uint16_t i, v = 0;
char *argv = args[cur_arg + 1];
if (!*argv) {
if (err)
memprintf(err, "'%s' : missing the ssl/tls version", args[cur_arg]);
return ERR_ALERT | ERR_FATAL;
}
for (i = CONF_TLSV_MIN; i <= CONF_TLSV_MAX; i++)
if (!strcmp(argv, methodVersions[i].name))
v = i;
if (!v) {
if (err)
memprintf(err, "'%s' : unknown ssl/tls version", args[cur_arg + 1]);
return ERR_ALERT | ERR_FATAL;
}
if (!strcmp("ssl-min-ver", args[cur_arg]))
methods->min = v;
else if (!strcmp("ssl-max-ver", args[cur_arg]))
methods->max = v;
else {
if (err)
memprintf(err, "'%s' : option not implemented", args[cur_arg]);
return ERR_ALERT | ERR_FATAL;
}
return 0;
}
static int ssl_bind_parse_tls_method_minmax(char **args, int cur_arg, struct proxy *px, struct ssl_bind_conf *conf, char **err)
{
#if (HA_OPENSSL_VERSION_NUMBER < 0x10101000L) && !defined(OPENSSL_IS_BORINGSSL)
ha_warning("crt-list: ssl-min-ver and ssl-max-ver are not supported with this Openssl version (skipped).\n");
#endif
return parse_tls_method_minmax(args, cur_arg, &conf->ssl_methods, err);
}
static int bind_parse_tls_method_minmax(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
{
return parse_tls_method_minmax(args, cur_arg, &conf->ssl_conf.ssl_methods, err);
}
static int srv_parse_tls_method_minmax(char **args, int *cur_arg, struct proxy *px, struct server *newsrv, char **err)
{
return parse_tls_method_minmax(args, *cur_arg, &newsrv->ssl_ctx.methods, err);
}
/* parse the "no-tls-tickets" bind keyword */
static int bind_parse_no_tls_tickets(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
{
conf->ssl_options |= BC_SSL_O_NO_TLS_TICKETS;
return 0;
}
/* parse the "allow-0rtt" bind keyword */
static int ssl_bind_parse_allow_0rtt(char **args, int cur_arg, struct proxy *px, struct ssl_bind_conf *conf, char **err)
{
conf->early_data = 1;
return 0;
}
static int bind_parse_allow_0rtt(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
{
conf->ssl_conf.early_data = 1;
return 0;
}
/* parse the "npn" bind keyword */
static int ssl_bind_parse_npn(char **args, int cur_arg, struct proxy *px, struct ssl_bind_conf *conf, char **err)
{
#if defined(OPENSSL_NPN_NEGOTIATED) && !defined(OPENSSL_NO_NEXTPROTONEG)
char *p1, *p2;
if (!*args[cur_arg + 1]) {
memprintf(err, "'%s' : missing the comma-delimited NPN protocol suite", args[cur_arg]);
return ERR_ALERT | ERR_FATAL;
}
free(conf->npn_str);
/* the NPN string is built as a suite of (<len> <name>)*,
* so we reuse each comma to store the next <len> and need
* one more for the end of the string.
*/
conf->npn_len = strlen(args[cur_arg + 1]) + 1;
conf->npn_str = calloc(1, conf->npn_len + 1);
memcpy(conf->npn_str + 1, args[cur_arg + 1], conf->npn_len);
/* replace commas with the name length */
p1 = conf->npn_str;
p2 = p1 + 1;
while (1) {
p2 = memchr(p1 + 1, ',', conf->npn_str + conf->npn_len - (p1 + 1));
if (!p2)
p2 = p1 + 1 + strlen(p1 + 1);
if (p2 - (p1 + 1) > 255) {
*p2 = '\0';
memprintf(err, "'%s' : NPN protocol name too long : '%s'", args[cur_arg], p1 + 1);
return ERR_ALERT | ERR_FATAL;
}
*p1 = p2 - (p1 + 1);
p1 = p2;
if (!*p2)
break;
*(p2++) = '\0';
}
return 0;
#else
if (err)
memprintf(err, "'%s' : library does not support TLS NPN extension", args[cur_arg]);
return ERR_ALERT | ERR_FATAL;
#endif
}
static int bind_parse_npn(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
{
return ssl_bind_parse_npn(args, cur_arg, px, &conf->ssl_conf, err);
}
/* parse the "alpn" bind keyword */
static int ssl_bind_parse_alpn(char **args, int cur_arg, struct proxy *px, struct ssl_bind_conf *conf, char **err)
{
#ifdef TLSEXT_TYPE_application_layer_protocol_negotiation
char *p1, *p2;
if (!*args[cur_arg + 1]) {
memprintf(err, "'%s' : missing the comma-delimited ALPN protocol suite", args[cur_arg]);
return ERR_ALERT | ERR_FATAL;
}
free(conf->alpn_str);
/* the ALPN string is built as a suite of (<len> <name>)*,
* so we reuse each comma to store the next <len> and need
* one more for the end of the string.
*/
conf->alpn_len = strlen(args[cur_arg + 1]) + 1;
conf->alpn_str = calloc(1, conf->alpn_len + 1);
memcpy(conf->alpn_str + 1, args[cur_arg + 1], conf->alpn_len);
/* replace commas with the name length */
p1 = conf->alpn_str;
p2 = p1 + 1;
while (1) {
p2 = memchr(p1 + 1, ',', conf->alpn_str + conf->alpn_len - (p1 + 1));
if (!p2)
p2 = p1 + 1 + strlen(p1 + 1);
if (p2 - (p1 + 1) > 255) {
*p2 = '\0';
memprintf(err, "'%s' : ALPN protocol name too long : '%s'", args[cur_arg], p1 + 1);
return ERR_ALERT | ERR_FATAL;
}
*p1 = p2 - (p1 + 1);
p1 = p2;
if (!*p2)
break;
*(p2++) = '\0';
}
return 0;
#else
if (err)
memprintf(err, "'%s' : library does not support TLS ALPN extension", args[cur_arg]);
return ERR_ALERT | ERR_FATAL;
#endif
}
static int bind_parse_alpn(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
{
return ssl_bind_parse_alpn(args, cur_arg, px, &conf->ssl_conf, err);
}
/* parse the "ssl" bind keyword */
static int bind_parse_ssl(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
{
conf->xprt = &ssl_sock;
conf->is_ssl = 1;
if (global_ssl.listen_default_ciphers && !conf->ssl_conf.ciphers)
conf->ssl_conf.ciphers = strdup(global_ssl.listen_default_ciphers);
#if (HA_OPENSSL_VERSION_NUMBER >= 0x10101000L)
if (global_ssl.listen_default_ciphersuites && !conf->ssl_conf.ciphersuites)
conf->ssl_conf.ciphersuites = strdup(global_ssl.listen_default_ciphersuites);
#endif
conf->ssl_options |= global_ssl.listen_default_ssloptions;
conf->ssl_conf.ssl_methods.flags |= global_ssl.listen_default_sslmethods.flags;
if (!conf->ssl_conf.ssl_methods.min)
conf->ssl_conf.ssl_methods.min = global_ssl.listen_default_sslmethods.min;
if (!conf->ssl_conf.ssl_methods.max)
conf->ssl_conf.ssl_methods.max = global_ssl.listen_default_sslmethods.max;
return 0;
}
/* parse the "prefer-client-ciphers" bind keyword */
static int bind_parse_pcc(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
{
conf->ssl_options |= BC_SSL_O_PREF_CLIE_CIPH;
return 0;
}
/* parse the "generate-certificates" bind keyword */
static int bind_parse_generate_certs(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
{
#if (defined SSL_CTRL_SET_TLSEXT_HOSTNAME && !defined SSL_NO_GENERATE_CERTIFICATES)
conf->generate_certs = 1;
#else
memprintf(err, "%sthis version of openssl cannot generate SSL certificates.\n",
err && *err ? *err : "");
#endif
return 0;
}
/* parse the "strict-sni" bind keyword */
static int bind_parse_strict_sni(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
{
conf->strict_sni = 1;
return 0;
}
/* parse the "tls-ticket-keys" bind keyword */
static int bind_parse_tls_ticket_keys(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
{
#if (defined SSL_CTRL_SET_TLSEXT_TICKET_KEY_CB && TLS_TICKETS_NO > 0)
FILE *f = NULL;
int i = 0;
char thisline[LINESIZE];
struct tls_keys_ref *keys_ref = NULL;
if (!*args[cur_arg + 1]) {
if (err)
memprintf(err, "'%s' : missing TLS ticket keys file path", args[cur_arg]);
goto fail;
}
keys_ref = tlskeys_ref_lookup(args[cur_arg + 1]);
if (keys_ref) {
keys_ref->refcount++;
conf->keys_ref = keys_ref;
return 0;
}
keys_ref = calloc(1, sizeof(*keys_ref));
if (!keys_ref) {
if (err)
memprintf(err, "'%s' : allocation error", args[cur_arg+1]);
goto fail;
}
keys_ref->tlskeys = malloc(TLS_TICKETS_NO * sizeof(union tls_sess_key));
if (!keys_ref->tlskeys) {
if (err)
memprintf(err, "'%s' : allocation error", args[cur_arg+1]);
goto fail;
}
if ((f = fopen(args[cur_arg + 1], "r")) == NULL) {
if (err)
memprintf(err, "'%s' : unable to load ssl tickets keys file", args[cur_arg+1]);
goto fail;
}
keys_ref->filename = strdup(args[cur_arg + 1]);
if (!keys_ref->filename) {
if (err)
memprintf(err, "'%s' : allocation error", args[cur_arg+1]);
goto fail;
}
keys_ref->key_size_bits = 0;
while (fgets(thisline, sizeof(thisline), f) != NULL) {
int len = strlen(thisline);
int dec_size;
/* Strip newline characters from the end */
if(thisline[len - 1] == '\n')
thisline[--len] = 0;
if(thisline[len - 1] == '\r')
thisline[--len] = 0;
dec_size = base64dec(thisline, len, (char *) (keys_ref->tlskeys + i % TLS_TICKETS_NO), sizeof(union tls_sess_key));
if (dec_size < 0) {
if (err)
memprintf(err, "'%s' : unable to decode base64 key on line %d", args[cur_arg+1], i + 1);
goto fail;
}
else if (!keys_ref->key_size_bits && (dec_size == sizeof(struct tls_sess_key_128))) {
keys_ref->key_size_bits = 128;
}
else if (!keys_ref->key_size_bits && (dec_size == sizeof(struct tls_sess_key_256))) {
keys_ref->key_size_bits = 256;
}
else if (((dec_size != sizeof(struct tls_sess_key_128)) && (dec_size != sizeof(struct tls_sess_key_256)))
|| ((dec_size == sizeof(struct tls_sess_key_128) && (keys_ref->key_size_bits != 128)))
|| ((dec_size == sizeof(struct tls_sess_key_256) && (keys_ref->key_size_bits != 256)))) {
if (err)
memprintf(err, "'%s' : wrong sized key on line %d", args[cur_arg+1], i + 1);
goto fail;
}
i++;
}
if (i < TLS_TICKETS_NO) {
if (err)
memprintf(err, "'%s' : please supply at least %d keys in the tls-tickets-file", args[cur_arg+1], TLS_TICKETS_NO);
goto fail;
}
fclose(f);
/* Use penultimate key for encryption, handle when TLS_TICKETS_NO = 1 */
i -= 2;
keys_ref->tls_ticket_enc_index = i < 0 ? 0 : i % TLS_TICKETS_NO;
keys_ref->unique_id = -1;
keys_ref->refcount = 1;
HA_RWLOCK_INIT(&keys_ref->lock);
conf->keys_ref = keys_ref;
LIST_ADD(&tlskeys_reference, &keys_ref->list);
return 0;
fail:
if (f)
fclose(f);
if (keys_ref) {
free(keys_ref->filename);
free(keys_ref->tlskeys);
free(keys_ref);
}
return ERR_ALERT | ERR_FATAL;
#else
if (err)
memprintf(err, "'%s' : TLS ticket callback extension not supported", args[cur_arg]);
return ERR_ALERT | ERR_FATAL;
#endif /* SSL_CTRL_SET_TLSEXT_TICKET_KEY_CB */
}
/* parse the "verify" bind keyword */
static int ssl_bind_parse_verify(char **args, int cur_arg, struct proxy *px, struct ssl_bind_conf *conf, char **err)
{
if (!*args[cur_arg + 1]) {
if (err)
memprintf(err, "'%s' : missing verify method", args[cur_arg]);
return ERR_ALERT | ERR_FATAL;
}
if (strcmp(args[cur_arg + 1], "none") == 0)
conf->verify = SSL_SOCK_VERIFY_NONE;
else if (strcmp(args[cur_arg + 1], "optional") == 0)
conf->verify = SSL_SOCK_VERIFY_OPTIONAL;
else if (strcmp(args[cur_arg + 1], "required") == 0)
conf->verify = SSL_SOCK_VERIFY_REQUIRED;
else {
if (err)
memprintf(err, "'%s' : unknown verify method '%s', only 'none', 'optional', and 'required' are supported\n",
args[cur_arg], args[cur_arg + 1]);
return ERR_ALERT | ERR_FATAL;
}
return 0;
}
static int bind_parse_verify(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
{
return ssl_bind_parse_verify(args, cur_arg, px, &conf->ssl_conf, err);
}
/* parse the "no-ca-names" bind keyword */
static int ssl_bind_parse_no_ca_names(char **args, int cur_arg, struct proxy *px, struct ssl_bind_conf *conf, char **err)
{
conf->no_ca_names = 1;
return 0;
}
static int bind_parse_no_ca_names(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
{
return ssl_bind_parse_no_ca_names(args, cur_arg, px, &conf->ssl_conf, err);
}
/************** "server" keywords ****************/
/* parse the "npn" bind keyword */
static int srv_parse_npn(char **args, int *cur_arg, struct proxy *px, struct server *newsrv, char **err)
{
#if defined(OPENSSL_NPN_NEGOTIATED) && !defined(OPENSSL_NO_NEXTPROTONEG)
char *p1, *p2;
if (!*args[*cur_arg + 1]) {
memprintf(err, "'%s' : missing the comma-delimited NPN protocol suite", args[*cur_arg]);
return ERR_ALERT | ERR_FATAL;
}
free(newsrv->ssl_ctx.npn_str);
/* the NPN string is built as a suite of (<len> <name>)*,
* so we reuse each comma to store the next <len> and need
* one more for the end of the string.
*/
newsrv->ssl_ctx.npn_len = strlen(args[*cur_arg + 1]) + 1;
newsrv->ssl_ctx.npn_str = calloc(1, newsrv->ssl_ctx.npn_len + 1);
memcpy(newsrv->ssl_ctx.npn_str + 1, args[*cur_arg + 1],
newsrv->ssl_ctx.npn_len);
/* replace commas with the name length */
p1 = newsrv->ssl_ctx.npn_str;
p2 = p1 + 1;
while (1) {
p2 = memchr(p1 + 1, ',', newsrv->ssl_ctx.npn_str +
newsrv->ssl_ctx.npn_len - (p1 + 1));
if (!p2)
p2 = p1 + 1 + strlen(p1 + 1);
if (p2 - (p1 + 1) > 255) {
*p2 = '\0';
memprintf(err, "'%s' : NPN protocol name too long : '%s'", args[*cur_arg], p1 + 1);
return ERR_ALERT | ERR_FATAL;
}
*p1 = p2 - (p1 + 1);
p1 = p2;
if (!*p2)
break;
*(p2++) = '\0';
}
return 0;
#else
if (err)
memprintf(err, "'%s' : library does not support TLS NPN extension", args[*cur_arg]);
return ERR_ALERT | ERR_FATAL;
#endif
}
/* parse the "alpn" or the "check-alpn" server keyword */
static int srv_parse_alpn(char **args, int *cur_arg, struct proxy *px, struct server *newsrv, char **err)
{
#ifdef TLSEXT_TYPE_application_layer_protocol_negotiation
char *p1, *p2;
char **alpn_str;
int *alpn_len;
if (*args[*cur_arg] == 'c') {
alpn_str = &newsrv->check.alpn_str;
alpn_len = &newsrv->check.alpn_len;
} else {
alpn_str = &newsrv->ssl_ctx.alpn_str;
alpn_len = &newsrv->ssl_ctx.alpn_len;
}
if (!*args[*cur_arg + 1]) {
memprintf(err, "'%s' : missing the comma-delimited ALPN protocol suite", args[*cur_arg]);
return ERR_ALERT | ERR_FATAL;
}
free(*alpn_str);
/* the ALPN string is built as a suite of (<len> <name>)*,
* so we reuse each comma to store the next <len> and need
* one more for the end of the string.
*/
*alpn_len = strlen(args[*cur_arg + 1]) + 1;
*alpn_str = calloc(1, *alpn_len + 1);
memcpy(*alpn_str + 1, args[*cur_arg + 1], *alpn_len);
/* replace commas with the name length */
p1 = *alpn_str;
p2 = p1 + 1;
while (1) {
p2 = memchr(p1 + 1, ',', *alpn_str + *alpn_len - (p1 + 1));
if (!p2)
p2 = p1 + 1 + strlen(p1 + 1);
if (p2 - (p1 + 1) > 255) {
*p2 = '\0';
memprintf(err, "'%s' : ALPN protocol name too long : '%s'", args[*cur_arg], p1 + 1);
return ERR_ALERT | ERR_FATAL;
}
*p1 = p2 - (p1 + 1);
p1 = p2;
if (!*p2)
break;
*(p2++) = '\0';
}
return 0;
#else
if (err)
memprintf(err, "'%s' : library does not support TLS ALPN extension", args[*cur_arg]);
return ERR_ALERT | ERR_FATAL;
#endif
}
/* parse the "ca-file" server keyword */
static int srv_parse_ca_file(char **args, int *cur_arg, struct proxy *px, struct server *newsrv, char **err)
{
if (!*args[*cur_arg + 1]) {
if (err)
memprintf(err, "'%s' : missing CAfile path", args[*cur_arg]);
return ERR_ALERT | ERR_FATAL;
}
if ((*args[*cur_arg + 1] != '/') && global_ssl.ca_base)
memprintf(&newsrv->ssl_ctx.ca_file, "%s/%s", global_ssl.ca_base, args[*cur_arg + 1]);
else
memprintf(&newsrv->ssl_ctx.ca_file, "%s", args[*cur_arg + 1]);
return 0;
}
/* parse the "check-sni" server keyword */
static int srv_parse_check_sni(char **args, int *cur_arg, struct proxy *px, struct server *newsrv, char **err)
{
if (!*args[*cur_arg + 1]) {
if (err)
memprintf(err, "'%s' : missing SNI", args[*cur_arg]);
return ERR_ALERT | ERR_FATAL;
}
newsrv->check.sni = strdup(args[*cur_arg + 1]);
if (!newsrv->check.sni) {
memprintf(err, "'%s' : failed to allocate memory", args[*cur_arg]);
return ERR_ALERT | ERR_FATAL;
}
return 0;
}
/* parse the "check-ssl" server keyword */
static int srv_parse_check_ssl(char **args, int *cur_arg, struct proxy *px, struct server *newsrv, char **err)
{
newsrv->check.use_ssl = 1;
if (global_ssl.connect_default_ciphers && !newsrv->ssl_ctx.ciphers)
newsrv->ssl_ctx.ciphers = strdup(global_ssl.connect_default_ciphers);
#if (HA_OPENSSL_VERSION_NUMBER >= 0x10101000L)
if (global_ssl.connect_default_ciphersuites && !newsrv->ssl_ctx.ciphersuites)
newsrv->ssl_ctx.ciphersuites = strdup(global_ssl.connect_default_ciphersuites);
#endif
newsrv->ssl_ctx.options |= global_ssl.connect_default_ssloptions;
newsrv->ssl_ctx.methods.flags |= global_ssl.connect_default_sslmethods.flags;
if (!newsrv->ssl_ctx.methods.min)
newsrv->ssl_ctx.methods.min = global_ssl.connect_default_sslmethods.min;
if (!newsrv->ssl_ctx.methods.max)
newsrv->ssl_ctx.methods.max = global_ssl.connect_default_sslmethods.max;
return 0;
}
/* parse the "ciphers" server keyword */
static int srv_parse_ciphers(char **args, int *cur_arg, struct proxy *px, struct server *newsrv, char **err)
{
if (!*args[*cur_arg + 1]) {
memprintf(err, "'%s' : missing cipher suite", args[*cur_arg]);
return ERR_ALERT | ERR_FATAL;
}
free(newsrv->ssl_ctx.ciphers);
newsrv->ssl_ctx.ciphers = strdup(args[*cur_arg + 1]);
return 0;
}
#if (HA_OPENSSL_VERSION_NUMBER >= 0x10101000L)
/* parse the "ciphersuites" server keyword */
static int srv_parse_ciphersuites(char **args, int *cur_arg, struct proxy *px, struct server *newsrv, char **err)
{
if (!*args[*cur_arg + 1]) {
memprintf(err, "'%s' : missing cipher suite", args[*cur_arg]);
return ERR_ALERT | ERR_FATAL;
}
free(newsrv->ssl_ctx.ciphersuites);
newsrv->ssl_ctx.ciphersuites = strdup(args[*cur_arg + 1]);
return 0;
}
#endif
/* parse the "crl-file" server keyword */
static int srv_parse_crl_file(char **args, int *cur_arg, struct proxy *px, struct server *newsrv, char **err)
{
#ifndef X509_V_FLAG_CRL_CHECK
if (err)
memprintf(err, "'%s' : library does not support CRL verify", args[*cur_arg]);
return ERR_ALERT | ERR_FATAL;
#else
if (!*args[*cur_arg + 1]) {
if (err)
memprintf(err, "'%s' : missing CRLfile path", args[*cur_arg]);
return ERR_ALERT | ERR_FATAL;
}
if ((*args[*cur_arg + 1] != '/') && global_ssl.ca_base)
memprintf(&newsrv->ssl_ctx.crl_file, "%s/%s", global_ssl.ca_base, args[*cur_arg + 1]);
else
memprintf(&newsrv->ssl_ctx.crl_file, "%s", args[*cur_arg + 1]);
return 0;
#endif
}
/* parse the "crt" server keyword */
static int srv_parse_crt(char **args, int *cur_arg, struct proxy *px, struct server *newsrv, char **err)
{
if (!*args[*cur_arg + 1]) {
if (err)
memprintf(err, "'%s' : missing certificate file path", args[*cur_arg]);
return ERR_ALERT | ERR_FATAL;
}
if ((*args[*cur_arg + 1] != '/') && global_ssl.crt_base)
memprintf(&newsrv->ssl_ctx.client_crt, "%s/%s", global_ssl.crt_base, args[*cur_arg + 1]);
else
memprintf(&newsrv->ssl_ctx.client_crt, "%s", args[*cur_arg + 1]);
return 0;
}
/* parse the "no-check-ssl" server keyword */
static int srv_parse_no_check_ssl(char **args, int *cur_arg, struct proxy *px, struct server *newsrv, char **err)
{
newsrv->check.use_ssl = 0;
free(newsrv->ssl_ctx.ciphers);
newsrv->ssl_ctx.ciphers = NULL;
newsrv->ssl_ctx.options &= ~global_ssl.connect_default_ssloptions;
return 0;
}
/* parse the "no-send-proxy-v2-ssl" server keyword */
static int srv_parse_no_send_proxy_ssl(char **args, int *cur_arg, struct proxy *px, struct server *newsrv, char **err)
{
newsrv->pp_opts &= ~SRV_PP_V2;
newsrv->pp_opts &= ~SRV_PP_V2_SSL;
return 0;
}
/* parse the "no-send-proxy-v2-ssl-cn" server keyword */
static int srv_parse_no_send_proxy_cn(char **args, int *cur_arg, struct proxy *px, struct server *newsrv, char **err)
{
newsrv->pp_opts &= ~SRV_PP_V2;
newsrv->pp_opts &= ~SRV_PP_V2_SSL;
newsrv->pp_opts &= ~SRV_PP_V2_SSL_CN;
return 0;
}
/* parse the "no-ssl" server keyword */
static int srv_parse_no_ssl(char **args, int *cur_arg, struct proxy *px, struct server *newsrv, char **err)
{
newsrv->use_ssl = 0;
free(newsrv->ssl_ctx.ciphers);
newsrv->ssl_ctx.ciphers = NULL;
return 0;
}
/* parse the "allow-0rtt" server keyword */
static int srv_parse_allow_0rtt(char **args, int *cur_arg, struct proxy *px, struct server *newsrv, char **err)
{
newsrv->ssl_ctx.options |= SRV_SSL_O_EARLY_DATA;
return 0;
}
/* parse the "no-ssl-reuse" server keyword */
static int srv_parse_no_ssl_reuse(char **args, int *cur_arg, struct proxy *px, struct server *newsrv, char **err)
{
newsrv->ssl_ctx.options |= SRV_SSL_O_NO_REUSE;
return 0;
}
/* parse the "no-tls-tickets" server keyword */
static int srv_parse_no_tls_tickets(char **args, int *cur_arg, struct proxy *px, struct server *newsrv, char **err)
{
newsrv->ssl_ctx.options |= SRV_SSL_O_NO_TLS_TICKETS;
return 0;
}
/* parse the "send-proxy-v2-ssl" server keyword */
static int srv_parse_send_proxy_ssl(char **args, int *cur_arg, struct proxy *px, struct server *newsrv, char **err)
{
newsrv->pp_opts |= SRV_PP_V2;
newsrv->pp_opts |= SRV_PP_V2_SSL;
return 0;
}
/* parse the "send-proxy-v2-ssl-cn" server keyword */
static int srv_parse_send_proxy_cn(char **args, int *cur_arg, struct proxy *px, struct server *newsrv, char **err)
{
newsrv->pp_opts |= SRV_PP_V2;
newsrv->pp_opts |= SRV_PP_V2_SSL;
newsrv->pp_opts |= SRV_PP_V2_SSL_CN;
return 0;
}
/* parse the "sni" server keyword */
static int srv_parse_sni(char **args, int *cur_arg, struct proxy *px, struct server *newsrv, char **err)
{
#ifndef SSL_CTRL_SET_TLSEXT_HOSTNAME
memprintf(err, "'%s' : the current SSL library doesn't support the SNI TLS extension", args[*cur_arg]);
return ERR_ALERT | ERR_FATAL;
#else
char *arg;
arg = args[*cur_arg + 1];
if (!*arg) {
memprintf(err, "'%s' : missing sni expression", args[*cur_arg]);
return ERR_ALERT | ERR_FATAL;
}
free(newsrv->sni_expr);
newsrv->sni_expr = strdup(arg);
return 0;
#endif
}
/* parse the "ssl" server keyword */
static int srv_parse_ssl(char **args, int *cur_arg, struct proxy *px, struct server *newsrv, char **err)
{
newsrv->use_ssl = 1;
if (global_ssl.connect_default_ciphers && !newsrv->ssl_ctx.ciphers)
newsrv->ssl_ctx.ciphers = strdup(global_ssl.connect_default_ciphers);
#if (HA_OPENSSL_VERSION_NUMBER >= 0x10101000L)
if (global_ssl.connect_default_ciphersuites && !newsrv->ssl_ctx.ciphersuites)
newsrv->ssl_ctx.ciphersuites = strdup(global_ssl.connect_default_ciphersuites);
#endif
return 0;
}
/* parse the "ssl-reuse" server keyword */
static int srv_parse_ssl_reuse(char **args, int *cur_arg, struct proxy *px, struct server *newsrv, char **err)
{
newsrv->ssl_ctx.options &= ~SRV_SSL_O_NO_REUSE;
return 0;
}
/* parse the "tls-tickets" server keyword */
static int srv_parse_tls_tickets(char **args, int *cur_arg, struct proxy *px, struct server *newsrv, char **err)
{
newsrv->ssl_ctx.options &= ~SRV_SSL_O_NO_TLS_TICKETS;
return 0;
}
/* parse the "verify" server keyword */
static int srv_parse_verify(char **args, int *cur_arg, struct proxy *px, struct server *newsrv, char **err)
{
if (!*args[*cur_arg + 1]) {
if (err)
memprintf(err, "'%s' : missing verify method", args[*cur_arg]);
return ERR_ALERT | ERR_FATAL;
}
if (strcmp(args[*cur_arg + 1], "none") == 0)
newsrv->ssl_ctx.verify = SSL_SOCK_VERIFY_NONE;
else if (strcmp(args[*cur_arg + 1], "required") == 0)
newsrv->ssl_ctx.verify = SSL_SOCK_VERIFY_REQUIRED;
else {
if (err)
memprintf(err, "'%s' : unknown verify method '%s', only 'none' and 'required' are supported\n",
args[*cur_arg], args[*cur_arg + 1]);
return ERR_ALERT | ERR_FATAL;
}
return 0;
}
/* parse the "verifyhost" server keyword */
static int srv_parse_verifyhost(char **args, int *cur_arg, struct proxy *px, struct server *newsrv, char **err)
{
if (!*args[*cur_arg + 1]) {
if (err)
memprintf(err, "'%s' : missing hostname to verify against", args[*cur_arg]);
return ERR_ALERT | ERR_FATAL;
}
free(newsrv->ssl_ctx.verify_host);
newsrv->ssl_ctx.verify_host = strdup(args[*cur_arg + 1]);
return 0;
}
/* parse the "ssl-default-bind-options" keyword in global section */
static int ssl_parse_default_bind_options(char **args, int section_type, struct proxy *curpx,
struct proxy *defpx, const char *file, int line,
char **err) {
int i = 1;
if (*(args[i]) == 0) {
memprintf(err, "global statement '%s' expects an option as an argument.", args[0]);
return -1;
}
while (*(args[i])) {
if (!strcmp(args[i], "no-tls-tickets"))
global_ssl.listen_default_ssloptions |= BC_SSL_O_NO_TLS_TICKETS;
else if (!strcmp(args[i], "prefer-client-ciphers"))
global_ssl.listen_default_ssloptions |= BC_SSL_O_PREF_CLIE_CIPH;
else if (!strcmp(args[i], "ssl-min-ver") || !strcmp(args[i], "ssl-max-ver")) {
if (!parse_tls_method_minmax(args, i, &global_ssl.listen_default_sslmethods, err))
i++;
else {
memprintf(err, "%s on global statement '%s'.", *err, args[0]);
return -1;
}
}
else if (parse_tls_method_options(args[i], &global_ssl.listen_default_sslmethods, err)) {
memprintf(err, "unknown option '%s' on global statement '%s'.", args[i], args[0]);
return -1;
}
i++;
}
return 0;
}
/* parse the "ssl-default-server-options" keyword in global section */
static int ssl_parse_default_server_options(char **args, int section_type, struct proxy *curpx,
struct proxy *defpx, const char *file, int line,
char **err) {
int i = 1;
if (*(args[i]) == 0) {
memprintf(err, "global statement '%s' expects an option as an argument.", args[0]);
return -1;
}
while (*(args[i])) {
if (!strcmp(args[i], "no-tls-tickets"))
global_ssl.connect_default_ssloptions |= SRV_SSL_O_NO_TLS_TICKETS;
else if (!strcmp(args[i], "ssl-min-ver") || !strcmp(args[i], "ssl-max-ver")) {
if (!parse_tls_method_minmax(args, i, &global_ssl.connect_default_sslmethods, err))
i++;
else {
memprintf(err, "%s on global statement '%s'.", *err, args[0]);
return -1;
}
}
else if (parse_tls_method_options(args[i], &global_ssl.connect_default_sslmethods, err)) {
memprintf(err, "unknown option '%s' on global statement '%s'.", args[i], args[0]);
return -1;
}
i++;
}
return 0;
}
/* parse the "ca-base" / "crt-base" keywords in global section.
* Returns <0 on alert, >0 on warning, 0 on success.
*/
static int ssl_parse_global_ca_crt_base(char **args, int section_type, struct proxy *curpx,
struct proxy *defpx, const char *file, int line,
char **err)
{
char **target;
target = (args[0][1] == 'a') ? &global_ssl.ca_base : &global_ssl.crt_base;
if (too_many_args(1, args, err, NULL))
return -1;
if (*target) {
memprintf(err, "'%s' already specified.", args[0]);
return -1;
}
if (*(args[1]) == 0) {
memprintf(err, "global statement '%s' expects a directory path as an argument.", args[0]);
return -1;
}
*target = strdup(args[1]);
return 0;
}
/* parse the "ssl-mode-async" keyword in global section.
* Returns <0 on alert, >0 on warning, 0 on success.
*/
static int ssl_parse_global_ssl_async(char **args, int section_type, struct proxy *curpx,
struct proxy *defpx, const char *file, int line,
char **err)
{
#if (HA_OPENSSL_VERSION_NUMBER >= 0x1010000fL) && !defined(OPENSSL_NO_ASYNC)
global_ssl.async = 1;
global.ssl_used_async_engines = nb_engines;
return 0;
#else
memprintf(err, "'%s': openssl library does not support async mode", args[0]);
return -1;
#endif
}
#ifndef OPENSSL_NO_ENGINE
static int ssl_check_async_engine_count(void) {
int err_code = 0;
if (global_ssl.async && (openssl_engines_initialized > 32)) {
ha_alert("ssl-mode-async only supports a maximum of 32 engines.\n");
err_code = ERR_ABORT;
}
return err_code;
}
/* parse the "ssl-engine" keyword in global section.
* Returns <0 on alert, >0 on warning, 0 on success.
*/
static int ssl_parse_global_ssl_engine(char **args, int section_type, struct proxy *curpx,
struct proxy *defpx, const char *file, int line,
char **err)
{
char *algo;
int ret = -1;
if (*(args[1]) == 0) {
memprintf(err, "global statement '%s' expects a valid engine name as an argument.", args[0]);
return ret;
}
if (*(args[2]) == 0) {
/* if no list of algorithms is given, it defaults to ALL */
algo = strdup("ALL");
goto add_engine;
}
/* otherwise the expected format is ssl-engine <engine_name> algo <list of algo> */
if (strcmp(args[2], "algo") != 0) {
memprintf(err, "global statement '%s' expects to have algo keyword.", args[0]);
return ret;
}
if (*(args[3]) == 0) {
memprintf(err, "global statement '%s' expects algorithm names as an argument.", args[0]);
return ret;
}
algo = strdup(args[3]);
add_engine:
if (ssl_init_single_engine(args[1], algo)==0) {
openssl_engines_initialized++;
ret = 0;
}
free(algo);
return ret;
}
#endif
/* parse the "ssl-default-bind-ciphers" / "ssl-default-server-ciphers" keywords
* in global section. Returns <0 on alert, >0 on warning, 0 on success.
*/
static int ssl_parse_global_ciphers(char **args, int section_type, struct proxy *curpx,
struct proxy *defpx, const char *file, int line,
char **err)
{
char **target;
target = (args[0][12] == 'b') ? &global_ssl.listen_default_ciphers : &global_ssl.connect_default_ciphers;
if (too_many_args(1, args, err, NULL))
return -1;
if (*(args[1]) == 0) {
memprintf(err, "global statement '%s' expects a cipher suite as an argument.", args[0]);
return -1;
}
free(*target);
*target = strdup(args[1]);
return 0;
}
#if (HA_OPENSSL_VERSION_NUMBER >= 0x10101000L)
/* parse the "ssl-default-bind-ciphersuites" / "ssl-default-server-ciphersuites" keywords
* in global section. Returns <0 on alert, >0 on warning, 0 on success.
*/
static int ssl_parse_global_ciphersuites(char **args, int section_type, struct proxy *curpx,
struct proxy *defpx, const char *file, int line,
char **err)
{
char **target;
target = (args[0][12] == 'b') ? &global_ssl.listen_default_ciphersuites : &global_ssl.connect_default_ciphersuites;
if (too_many_args(1, args, err, NULL))
return -1;
if (*(args[1]) == 0) {
memprintf(err, "global statement '%s' expects a cipher suite as an argument.", args[0]);
return -1;
}
free(*target);
*target = strdup(args[1]);
return 0;
}
#endif
/* parse various global tune.ssl settings consisting in positive integers.
* Returns <0 on alert, >0 on warning, 0 on success.
*/
static int ssl_parse_global_int(char **args, int section_type, struct proxy *curpx,
struct proxy *defpx, const char *file, int line,
char **err)
{
int *target;
if (strcmp(args[0], "tune.ssl.cachesize") == 0)
target = &global.tune.sslcachesize;
else if (strcmp(args[0], "tune.ssl.maxrecord") == 0)
target = (int *)&global_ssl.max_record;
else if (strcmp(args[0], "tune.ssl.ssl-ctx-cache-size") == 0)
target = &global_ssl.ctx_cache;
else if (strcmp(args[0], "maxsslconn") == 0)
target = &global.maxsslconn;
else if (strcmp(args[0], "tune.ssl.capture-cipherlist-size") == 0)
target = &global_ssl.capture_cipherlist;
else {
memprintf(err, "'%s' keyword not unhandled (please report this bug).", args[0]);
return -1;
}
if (too_many_args(1, args, err, NULL))
return -1;
if (*(args[1]) == 0) {
memprintf(err, "'%s' expects an integer argument.", args[0]);
return -1;
}
*target = atoi(args[1]);
if (*target < 0) {
memprintf(err, "'%s' expects a positive numeric value.", args[0]);
return -1;
}
return 0;
}
static int ssl_parse_global_capture_cipherlist(char **args, int section_type, struct proxy *curpx,
struct proxy *defpx, const char *file, int line,
char **err)
{
int ret;
ret = ssl_parse_global_int(args, section_type, curpx, defpx, file, line, err);
if (ret != 0)
return ret;
if (pool_head_ssl_capture) {
memprintf(err, "'%s' is already configured.", args[0]);
return -1;
}
pool_head_ssl_capture = create_pool("ssl-capture", sizeof(struct ssl_capture) + global_ssl.capture_cipherlist, MEM_F_SHARED);
if (!pool_head_ssl_capture) {
memprintf(err, "Out of memory error.");
return -1;
}
return 0;
}
/* parse "ssl.force-private-cache".
* Returns <0 on alert, >0 on warning, 0 on success.
*/
static int ssl_parse_global_private_cache(char **args, int section_type, struct proxy *curpx,
struct proxy *defpx, const char *file, int line,
char **err)
{
if (too_many_args(0, args, err, NULL))
return -1;
global_ssl.private_cache = 1;
return 0;
}
/* parse "ssl.lifetime".
* Returns <0 on alert, >0 on warning, 0 on success.
*/
static int ssl_parse_global_lifetime(char **args, int section_type, struct proxy *curpx,
struct proxy *defpx, const char *file, int line,
char **err)
{
const char *res;
if (too_many_args(1, args, err, NULL))
return -1;
if (*(args[1]) == 0) {
memprintf(err, "'%s' expects ssl sessions <lifetime> in seconds as argument.", args[0]);
return -1;
}
res = parse_time_err(args[1], &global_ssl.life_time, TIME_UNIT_S);
if (res == PARSE_TIME_OVER) {
memprintf(err, "timer overflow in argument '%s' to <%s> (maximum value is 2147483647 s or ~68 years).",
args[1], args[0]);
return -1;
}
else if (res == PARSE_TIME_UNDER) {
memprintf(err, "timer underflow in argument '%s' to <%s> (minimum non-null value is 1 s).",
args[1], args[0]);
return -1;
}
else if (res) {
memprintf(err, "unexpected character '%c' in argument to <%s>.", *res, args[0]);
return -1;
}
return 0;
}
#ifndef OPENSSL_NO_DH
/* parse "ssl-dh-param-file".
* Returns <0 on alert, >0 on warning, 0 on success.
*/
static int ssl_parse_global_dh_param_file(char **args, int section_type, struct proxy *curpx,
struct proxy *defpx, const char *file, int line,
char **err)
{
if (too_many_args(1, args, err, NULL))
return -1;
if (*(args[1]) == 0) {
memprintf(err, "'%s' expects a file path as an argument.", args[0]);
return -1;
}
if (ssl_sock_load_global_dh_param_from_file(args[1])) {
memprintf(err, "'%s': unable to load DH parameters from file <%s>.", args[0], args[1]);
return -1;
}
return 0;
}
/* parse "ssl.default-dh-param".
* Returns <0 on alert, >0 on warning, 0 on success.
*/
static int ssl_parse_global_default_dh(char **args, int section_type, struct proxy *curpx,
struct proxy *defpx, const char *file, int line,
char **err)
{
if (too_many_args(1, args, err, NULL))
return -1;
if (*(args[1]) == 0) {
memprintf(err, "'%s' expects an integer argument.", args[0]);
return -1;
}
global_ssl.default_dh_param = atoi(args[1]);
if (global_ssl.default_dh_param < 1024) {
memprintf(err, "'%s' expects a value >= 1024.", args[0]);
return -1;
}
return 0;
}
#endif
/* This function is used with TLS ticket keys management. It permits to browse
* each reference. The variable <getnext> must contain the current node,
* <end> point to the root node.
*/
#if (defined SSL_CTRL_SET_TLSEXT_TICKET_KEY_CB && TLS_TICKETS_NO > 0)
static inline
struct tls_keys_ref *tlskeys_list_get_next(struct tls_keys_ref *getnext, struct list *end)
{
struct tls_keys_ref *ref = getnext;
while (1) {
/* Get next list entry. */
ref = LIST_NEXT(&ref->list, struct tls_keys_ref *, list);
/* If the entry is the last of the list, return NULL. */
if (&ref->list == end)
return NULL;
return ref;
}
}
static inline
struct tls_keys_ref *tlskeys_ref_lookup_ref(const char *reference)
{
int id;
char *error;
/* If the reference starts by a '#', this is numeric id. */
if (reference[0] == '#') {
/* Try to convert the numeric id. If the conversion fails, the lookup fails. */
id = strtol(reference + 1, &error, 10);
if (*error != '\0')
return NULL;
/* Perform the unique id lookup. */
return tlskeys_ref_lookupid(id);
}
/* Perform the string lookup. */
return tlskeys_ref_lookup(reference);
}
#endif
#if (defined SSL_CTRL_SET_TLSEXT_TICKET_KEY_CB && TLS_TICKETS_NO > 0)
static int cli_io_handler_tlskeys_files(struct appctx *appctx);
static inline int cli_io_handler_tlskeys_entries(struct appctx *appctx) {
return cli_io_handler_tlskeys_files(appctx);
}
/* dumps all tls keys. Relies on cli.i0 (non-null = only list file names), cli.i1
* (next index to be dumped), and cli.p0 (next key reference).
*/
static int cli_io_handler_tlskeys_files(struct appctx *appctx) {
struct stream_interface *si = appctx->owner;
switch (appctx->st2) {
case STAT_ST_INIT:
/* Display the column headers. If the message cannot be sent,
* quit the function with returning 0. The function is called
* later and restart at the state "STAT_ST_INIT".
*/
chunk_reset(&trash);
if (appctx->io_handler == cli_io_handler_tlskeys_entries)
chunk_appendf(&trash, "# id secret\n");
else
chunk_appendf(&trash, "# id (file)\n");
if (ci_putchk(si_ic(si), &trash) == -1) {
si_rx_room_blk(si);
return 0;
}
/* Now, we start the browsing of the references lists.
* Note that the following call to LIST_ELEM return bad pointer. The only
* available field of this pointer is <list>. It is used with the function
* tlskeys_list_get_next() for retruning the first available entry
*/
if (appctx->ctx.cli.p0 == NULL) {
appctx->ctx.cli.p0 = LIST_ELEM(&tlskeys_reference, struct tls_keys_ref *, list);
appctx->ctx.cli.p0 = tlskeys_list_get_next(appctx->ctx.cli.p0, &tlskeys_reference);
}
appctx->st2 = STAT_ST_LIST;
/* fall through */
case STAT_ST_LIST:
while (appctx->ctx.cli.p0) {
struct tls_keys_ref *ref = appctx->ctx.cli.p0;
chunk_reset(&trash);
if (appctx->io_handler == cli_io_handler_tlskeys_entries && appctx->ctx.cli.i1 == 0)
chunk_appendf(&trash, "# ");
if (appctx->ctx.cli.i1 == 0)
chunk_appendf(&trash, "%d (%s)\n", ref->unique_id, ref->filename);
if (appctx->io_handler == cli_io_handler_tlskeys_entries) {
int head;
HA_RWLOCK_RDLOCK(TLSKEYS_REF_LOCK, &ref->lock);
head = ref->tls_ticket_enc_index;
while (appctx->ctx.cli.i1 < TLS_TICKETS_NO) {
struct buffer *t2 = get_trash_chunk();
chunk_reset(t2);
/* should never fail here because we dump only a key in the t2 buffer */
if (ref->key_size_bits == 128) {
t2->data = a2base64((char *)(ref->tlskeys + (head + 2 + appctx->ctx.cli.i1) % TLS_TICKETS_NO),
sizeof(struct tls_sess_key_128),
t2->area, t2->size);
chunk_appendf(&trash, "%d.%d %s\n", ref->unique_id, appctx->ctx.cli.i1,
t2->area);
}
else if (ref->key_size_bits == 256) {
t2->data = a2base64((char *)(ref->tlskeys + (head + 2 + appctx->ctx.cli.i1) % TLS_TICKETS_NO),
sizeof(struct tls_sess_key_256),
t2->area, t2->size);
chunk_appendf(&trash, "%d.%d %s\n", ref->unique_id, appctx->ctx.cli.i1,
t2->area);
}
else {
/* This case should never happen */
chunk_appendf(&trash, "%d.%d <unknown>\n", ref->unique_id, appctx->ctx.cli.i1);
}
if (ci_putchk(si_ic(si), &trash) == -1) {
/* let's try again later from this stream. We add ourselves into
* this stream's users so that it can remove us upon termination.
*/
HA_RWLOCK_RDUNLOCK(TLSKEYS_REF_LOCK, &ref->lock);
si_rx_room_blk(si);
return 0;
}
appctx->ctx.cli.i1++;
}
HA_RWLOCK_RDUNLOCK(TLSKEYS_REF_LOCK, &ref->lock);
appctx->ctx.cli.i1 = 0;
}
if (ci_putchk(si_ic(si), &trash) == -1) {
/* let's try again later from this stream. We add ourselves into
* this stream's users so that it can remove us upon termination.
*/
si_rx_room_blk(si);
return 0;
}
if (appctx->ctx.cli.i0 == 0) /* don't display everything if not necessary */
break;
/* get next list entry and check the end of the list */
appctx->ctx.cli.p0 = tlskeys_list_get_next(appctx->ctx.cli.p0, &tlskeys_reference);
}
appctx->st2 = STAT_ST_FIN;
/* fall through */
default:
appctx->st2 = STAT_ST_FIN;
return 1;
}
return 0;
}
/* sets cli.i0 to non-zero if only file lists should be dumped */
static int cli_parse_show_tlskeys(char **args, char *payload, struct appctx *appctx, void *private)
{
/* no parameter, shows only file list */
if (!*args[2]) {
appctx->ctx.cli.i0 = 1;
appctx->io_handler = cli_io_handler_tlskeys_files;
return 0;
}
if (args[2][0] == '*') {
/* list every TLS ticket keys */
appctx->ctx.cli.i0 = 1;
} else {
appctx->ctx.cli.p0 = tlskeys_ref_lookup_ref(args[2]);
if (!appctx->ctx.cli.p0)
return cli_err(appctx, "'show tls-keys' unable to locate referenced filename\n");
}
appctx->io_handler = cli_io_handler_tlskeys_entries;
return 0;
}
static int cli_parse_set_tlskeys(char **args, char *payload, struct appctx *appctx, void *private)
{
struct tls_keys_ref *ref;
int ret;
/* Expect two parameters: the filename and the new new TLS key in encoding */
if (!*args[3] || !*args[4])
return cli_err(appctx, "'set ssl tls-key' expects a filename and the new TLS key in base64 encoding.\n");
ref = tlskeys_ref_lookup_ref(args[3]);
if (!ref)
return cli_err(appctx, "'set ssl tls-key' unable to locate referenced filename\n");
ret = base64dec(args[4], strlen(args[4]), trash.area, trash.size);
if (ret < 0)
return cli_err(appctx, "'set ssl tls-key' received invalid base64 encoded TLS key.\n");
trash.data = ret;
if (ssl_sock_update_tlskey_ref(ref, &trash) < 0)
return cli_err(appctx, "'set ssl tls-key' received a key of wrong size.\n");
return cli_msg(appctx, LOG_INFO, "TLS ticket key updated!\n");
}
#endif
/* Type of SSL payloads that can be updated over the CLI */
enum {
CERT_TYPE_PEM = 0,
CERT_TYPE_OCSP,
CERT_TYPE_ISSUER,
CERT_TYPE_SCTL,
CERT_TYPE_MAX,
};
struct {
const char *ext;
int type;
int (*load)(const char *path, char *payload, struct cert_key_and_chain *ckch, char **err);
/* add a parsing callback */
} cert_exts[CERT_TYPE_MAX+1] = {
[CERT_TYPE_PEM] = { "", CERT_TYPE_PEM, &ssl_sock_load_pem_into_ckch }, /* default mode, no extensions */
#if ((defined SSL_CTRL_SET_TLSEXT_STATUS_REQ_CB && !defined OPENSSL_NO_OCSP) || defined OPENSSL_IS_BORINGSSL)
[CERT_TYPE_OCSP] = { "ocsp", CERT_TYPE_OCSP, &ssl_sock_load_ocsp_response_from_file },
#endif
#if (HA_OPENSSL_VERSION_NUMBER >= 0x1000200fL && !defined OPENSSL_NO_TLSEXT && !defined OPENSSL_IS_BORINGSSL)
[CERT_TYPE_SCTL] = { "sctl", CERT_TYPE_SCTL, &ssl_sock_load_sctl_from_file },
#endif
[CERT_TYPE_ISSUER] = { "issuer", CERT_TYPE_ISSUER, &ssl_sock_load_issuer_file_into_ckch },
[CERT_TYPE_MAX] = { NULL, CERT_TYPE_MAX, NULL },
};
/* states of the CLI IO handler for 'set ssl cert' */
enum {
SETCERT_ST_INIT = 0,
SETCERT_ST_GEN,
SETCERT_ST_INSERT,
SETCERT_ST_FIN,
};
/* release function of the `set ssl cert' command, free things and unlock the spinlock */
static void cli_release_set_cert(struct appctx *appctx)
{
struct ckch_store *new_ckchs;
struct ckch_inst *ckchi, *ckchis;
int it;
HA_SPIN_UNLOCK(CKCH_LOCK, &ckch_lock);
if (appctx->st2 != SETCERT_ST_FIN) {
/* free every new sni_ctx and the new store, which are not in the trees so no spinlock there */
for (it = 0; it < 2; it++) {
new_ckchs = appctx->ctx.ssl.n[it].new_ckchs;
if (!new_ckchs)
continue;
/* if the allocation failed, we need to free everything from the temporary list */
list_for_each_entry_safe(ckchi, ckchis, &new_ckchs->ckch_inst, by_ckchs) {
struct sni_ctx *sc0, *sc0s;
list_for_each_entry_safe(sc0, sc0s, &ckchi->sni_ctx, by_ckch_inst) {
if (sc0->order == 0) /* we only free if it's the first inserted */
SSL_CTX_free(sc0->ctx);
LIST_DEL(&sc0->by_ckch_inst);
free(sc0);
}
LIST_DEL(&ckchi->by_ckchs);
free(ckchi);
}
ckchs_free(new_ckchs);
}
}
}
/*
* This function tries to create the new ckch_inst and their SNIs
*/
static int cli_io_handler_set_cert(struct appctx *appctx)
{
struct stream_interface *si = appctx->owner;
int y = 0;
char *err = NULL;
int errcode = 0;
struct ckch_store *old_ckchs, *new_ckchs = NULL;
struct ckch_inst *ckchi, *ckchis;
char *path = appctx->ctx.ssl.path;
int it = appctx->ctx.ssl.it; /* 0 non-bundle, 1 = bundle */
struct buffer *trash = alloc_trash_chunk();
if (unlikely(si_ic(si)->flags & (CF_WRITE_ERROR|CF_SHUTW)))
goto error;
while (1) {
switch (appctx->st2) {
case SETCERT_ST_INIT:
/* This state just print the update message */
chunk_printf(trash, "Updating %s", path);
if (ci_putchk(si_ic(si), trash) == -1) {
si_rx_room_blk(si);
goto yield;
}
appctx->st2 = SETCERT_ST_GEN;
/* fallthrough */
case SETCERT_ST_GEN:
/*
* This state generates the ckch instances with their
* sni_ctxs and SSL_CTX.
*
* This step could be done twice (without considering
* the yields), once for a cert, and once for a bundle.
*
* Since the SSL_CTX generation can be CPU consumer, we
* yield every 10 instances.
*/
for (; it < 2; it++) { /* we don't init it there because of the yield */
old_ckchs = appctx->ctx.ssl.n[it].old_ckchs;
new_ckchs = appctx->ctx.ssl.n[it].new_ckchs;
if (!new_ckchs)
continue;
/* get the next ckchi to regenerate */
ckchi = appctx->ctx.ssl.n[it].next_ckchi;
/* we didn't start yet, set it to the first elem */
if (ckchi == NULL)
ckchi = LIST_ELEM(old_ckchs->ckch_inst.n, typeof(ckchi), by_ckchs);
/* walk through the old ckch_inst and creates new ckch_inst using the updated ckchs */
list_for_each_entry_from(ckchi, &old_ckchs->ckch_inst, by_ckchs) {
struct ckch_inst *new_inst;
/* it takes a lot of CPU to creates SSL_CTXs, so we yield every 10 CKCH instances */
if (y >= 10) {
/* save the next ckchi to compute */
appctx->ctx.ssl.n[it].next_ckchi = ckchi;
appctx->ctx.ssl.it = it;
goto yield;
}
if (new_ckchs->multi)
errcode |= ckch_inst_new_load_multi_store(new_ckchs->path, new_ckchs, ckchi->bind_conf, ckchi->ssl_conf, NULL, 0, &new_inst, &err);
else
errcode |= ckch_inst_new_load_store(new_ckchs->path, new_ckchs, ckchi->bind_conf, ckchi->ssl_conf, NULL, 0, &new_inst, &err);
if (errcode & ERR_CODE)
goto error;
/* display one dot per new instance */
chunk_appendf(trash, ".");
/* link the new ckch_inst to the duplicate */
LIST_ADDQ(&new_ckchs->ckch_inst, &new_inst->by_ckchs);
y++;
}
}
appctx->st2 = SETCERT_ST_INSERT;
/* fallthrough */
case SETCERT_ST_INSERT:
/* The generation is finished, we can insert everything */
for (it = 0; it < 2; it++) {
old_ckchs = appctx->ctx.ssl.n[it].old_ckchs;
new_ckchs = appctx->ctx.ssl.n[it].new_ckchs;
if (!new_ckchs)
continue;
/* First, we insert every new SNIs in the trees */
list_for_each_entry_safe(ckchi, ckchis, &new_ckchs->ckch_inst, by_ckchs) {
HA_RWLOCK_WRLOCK(SNI_LOCK, &ckchi->bind_conf->sni_lock);
ssl_sock_load_cert_sni(ckchi, ckchi->bind_conf);
HA_RWLOCK_WRUNLOCK(SNI_LOCK, &ckchi->bind_conf->sni_lock);
}
/* delete the old sni_ctx, the old ckch_insts and the ckch_store */
list_for_each_entry_safe(ckchi, ckchis, &old_ckchs->ckch_inst, by_ckchs) {
struct sni_ctx *sc0, *sc0s;
HA_RWLOCK_WRLOCK(SNI_LOCK, &ckchi->bind_conf->sni_lock);
list_for_each_entry_safe(sc0, sc0s, &ckchi->sni_ctx, by_ckch_inst) {
ebmb_delete(&sc0->name);
LIST_DEL(&sc0->by_ckch_inst);
free(sc0);
}
HA_RWLOCK_WRUNLOCK(SNI_LOCK, &ckchi->bind_conf->sni_lock);
LIST_DEL(&ckchi->by_ckchs);
free(ckchi);
}
/* Replace the old ckchs by the new one */
ebmb_delete(&old_ckchs->node);
ckchs_free(old_ckchs);
ebst_insert(&ckchs_tree, &new_ckchs->node);
}
appctx->st2 = SETCERT_ST_FIN;
/* fallthrough */
case SETCERT_ST_FIN:
goto end;
}
}
end:
chunk_appendf(trash, "\nSuccess!");
if (ci_putchk(si_ic(si), trash) == -1)
si_rx_room_blk(si);
free_trash_chunk(trash);
/* success: call the release function and don't come back */
return 1;
yield:
/* store the state */
if (ci_putchk(si_ic(si), trash) == -1)
si_rx_room_blk(si);
free_trash_chunk(trash);
si_rx_endp_more(si); /* let's come back later */
return 0; /* should come back */
error:
/* spin unlock and free are done in the release function */
chunk_appendf(trash, "\n%sFailed!", err);
if (ci_putchk(si_ic(si), trash) == -1)
si_rx_room_blk(si);
free_trash_chunk(trash);
/* error: call the release function and don't come back */
return 1;
}
/*
* Parsing function of `set ssl cert`, try
*/
static int cli_parse_set_cert(char **args, char *payload, struct appctx *appctx, void *private)
{
struct ckch_store *new_ckchs = NULL;
struct ckch_store *old_ckchs = NULL;
struct cert_key_and_chain *ckch;
char *tmpfp = NULL;
char *err = NULL;
int i;
int found = 0;
int bundle = -1; /* TRUE if >= 0 (ckch index) */
int errcode = 0;
char *end;
int type = CERT_TYPE_PEM;
struct buffer *buf = alloc_trash_chunk();
/* init the appctx structure */
appctx->st2 = SETCERT_ST_INIT;
appctx->ctx.ssl.it = 0;
appctx->ctx.ssl.n[0].next_ckchi = NULL;
appctx->ctx.ssl.n[0].new_ckchs = NULL;
appctx->ctx.ssl.n[0].old_ckchs = NULL;
appctx->ctx.ssl.n[1].next_ckchi = NULL;
appctx->ctx.ssl.n[1].new_ckchs = NULL;
appctx->ctx.ssl.n[1].old_ckchs = NULL;
if (!*args[3] || !payload)
return cli_err(appctx, "'set ssl cert expects a filename and a certificat as a payload\n");
/* The operations on the CKCH architecture are locked so we can
* manipulate ckch_store and ckch_inst */
if (HA_SPIN_TRYLOCK(CKCH_LOCK, &ckch_lock))
return cli_err(appctx, "Can't update the certificate!\nOperations on certificates are currently locked!\n");
appctx->ctx.ssl.path = strdup(args[3]);
if (!appctx->ctx.ssl.path) {
memprintf(&err, "%sCan't allocate memory\n", err ? err : "");
errcode |= ERR_ALERT | ERR_FATAL;
goto end;
}
if (!chunk_strcpy(buf, args[3])) {
memprintf(&err, "%sCan't allocate memory\n", err ? err : "");
errcode |= ERR_ALERT | ERR_FATAL;
goto end;
}
/* check which type of file we want to update */
for (i = 0; cert_exts[i].type < CERT_TYPE_MAX; i++) {
end = strrchr(buf->area, '.');
if (end && *cert_exts[i].ext && (!strcmp(end + 1, cert_exts[i].ext))) {
*end = '\0';
type = cert_exts[i].type;
break;
}
}
for (i = 0; i < 2; i++) {
if ((old_ckchs = ckchs_lookup(buf->area)) != NULL) {
/* only the bundle name is in the tree and you should
* never update a bundle name, only a filename */
if (bundle < 0 && old_ckchs->multi) {
/* we tried to look for a non-bundle and we found a bundle */
memprintf(&err, "%s%s is a multi-cert bundle. Try updating %s.{dsa,rsa,ecdsa}\n",
err ? err : "", args[3], args[3]);
errcode |= ERR_ALERT | ERR_FATAL;
goto end;
}
/* If we want a bundle but this is not a bundle */
/* note that it should never happen */
if (bundle >= 0 && old_ckchs->multi == 0)
goto end;
/* TODO: handle filters */
if (old_ckchs->filters) {
memprintf(&err, "%sCertificates used in crt-list with filters are not supported!\n",
err ? err : "");
errcode |= ERR_ALERT | ERR_FATAL;
goto end;
}
/* duplicate the ckch store */
new_ckchs = ckchs_dup(old_ckchs);
if (!new_ckchs) {
memprintf(&err, "%sCannot allocate memory!\n",
err ? err : "");
errcode |= ERR_ALERT | ERR_FATAL;
goto end;
}
if (bundle < 0)
ckch = new_ckchs->ckch;
else
ckch = &new_ckchs->ckch[bundle];
/* appply the change on the duplicate */
if (cert_exts[type].load(tmpfp, payload, ckch, &err) != 0) {
memprintf(&err, "%sCan't load the payload\n", err ? err : "");
errcode |= ERR_ALERT | ERR_FATAL;
goto end;
}
/* we store the ptr in the appctx to be processed in the IO handler */
appctx->ctx.ssl.n[i].new_ckchs = new_ckchs;
appctx->ctx.ssl.n[i].old_ckchs = old_ckchs;
found = 1;
}
#if HA_OPENSSL_VERSION_NUMBER >= 0x1000200fL
{
char *end = NULL;
int j;
if (bundle >= 0) /* we already looked for a bundle */
break;
/* check if it was also used as a bundle by removing the
* .dsa/.rsa/.ecdsa at the end of the filename */
end = strrchr(buf->area, '.');
for (j = 0; *end && j < SSL_SOCK_NUM_KEYTYPES; j++) {
if (!strcmp(end + 1, SSL_SOCK_KEYTYPE_NAMES[j])) {
bundle = j; /* keep the type of certificate so we insert it at the right place */
*end = '\0'; /* it's a bundle let's end the string*/
break;
}
}
if (bundle < 0) /* we didn't find a bundle extension */
break;
}
#else
/* bundles are not supported here, so we don't need to lookup again */
break;
#endif
}
if (!found) {
memprintf(&err, "%sCan't replace a certificate name which is not referenced by the configuration!\n",
err ? err : "");
errcode |= ERR_ALERT | ERR_FATAL;
goto end;
}
/* creates the SNI ctxs later in the IO handler */
end:
free_trash_chunk(buf);
if (errcode & ERR_CODE) {
/* we release the spinlock and free the unused structures in the release function */
cli_release_set_cert(appctx);
return cli_dynerr(appctx, memprintf(&err, "%sCan't update %s!\n", err ? err : "", args[3]));
} else {
return 0;
}
/* TODO: handle the ERR_WARN which are not handled because of the io_handler */
}
static int cli_parse_set_ocspresponse(char **args, char *payload, struct appctx *appctx, void *private)
{
#if (defined SSL_CTRL_SET_TLSEXT_STATUS_REQ_CB && !defined OPENSSL_NO_OCSP)
char *err = NULL;
int i, j, ret;
if (!payload)
payload = args[3];
/* Expect one parameter: the new response in base64 encoding */
if (!*payload)
return cli_err(appctx, "'set ssl ocsp-response' expects response in base64 encoding.\n");
/* remove \r and \n from the payload */
for (i = 0, j = 0; payload[i]; i++) {
if (payload[i] == '\r' || payload[i] == '\n')
continue;
payload[j++] = payload[i];
}
payload[j] = 0;
ret = base64dec(payload, j, trash.area, trash.size);
if (ret < 0)
return cli_err(appctx, "'set ssl ocsp-response' received invalid base64 encoded response.\n");
trash.data = ret;
if (ssl_sock_update_ocsp_response(&trash, &err)) {
if (err)
return cli_dynerr(appctx, memprintf(&err, "%s.\n", err));
else
return cli_err(appctx, "Failed to update OCSP response.\n");
}
return cli_msg(appctx, LOG_INFO, "OCSP Response updated!\n");
#else
return cli_err(appctx, "HAProxy was compiled against a version of OpenSSL that doesn't support OCSP stapling.\n");
#endif
}
#if (HA_OPENSSL_VERSION_NUMBER >= 0x1000100fL)
static inline int sample_conv_var2smp_str(const struct arg *arg, struct sample *smp)
{
switch (arg->type) {
case ARGT_STR:
smp->data.type = SMP_T_STR;
smp->data.u.str = arg->data.str;
return 1;
case ARGT_VAR:
if (!vars_get_by_desc(&arg->data.var, smp))
return 0;
if (!sample_casts[smp->data.type][SMP_T_STR])
return 0;
if (!sample_casts[smp->data.type][SMP_T_STR](smp))
return 0;
return 1;
default:
return 0;
}
}
static int check_aes_gcm(struct arg *args, struct sample_conv *conv,
const char *file, int line, char **err)
{
switch(args[0].data.sint) {
case 128:
case 192:
case 256:
break;
default:
memprintf(err, "key size must be 128, 192 or 256 (bits).");
return 0;
}
/* Try to decode a variable. */
vars_check_arg(&args[1], NULL);
vars_check_arg(&args[2], NULL);
vars_check_arg(&args[3], NULL);
return 1;
}
/* Arguements: AES size in bits, nonce, key, tag. The last three arguments are base64 encoded */
static int sample_conv_aes_gcm_dec(const struct arg *arg_p, struct sample *smp, void *private)
{
struct sample nonce, key, aead_tag;
struct buffer *smp_trash, *smp_trash_alloc;
EVP_CIPHER_CTX *ctx;
int dec_size, ret;
smp_set_owner(&nonce, smp->px, smp->sess, smp->strm, smp->opt);
if (!sample_conv_var2smp_str(&arg_p[1], &nonce))
return 0;
smp_set_owner(&key, smp->px, smp->sess, smp->strm, smp->opt);
if (!sample_conv_var2smp_str(&arg_p[2], &key))
return 0;
smp_set_owner(&aead_tag, smp->px, smp->sess, smp->strm, smp->opt);
if (!sample_conv_var2smp_str(&arg_p[3], &aead_tag))
return 0;
smp_trash = get_trash_chunk();
smp_trash_alloc = alloc_trash_chunk();
if (!smp_trash_alloc)
return 0;
ctx = EVP_CIPHER_CTX_new();
if (!ctx)
goto err;
dec_size = base64dec(nonce.data.u.str.area, nonce.data.u.str.data, smp_trash->area, smp_trash->size);
if (dec_size < 0)
goto err;
smp_trash->data = dec_size;
/* Set cipher type and mode */
switch(arg_p[0].data.sint) {
case 128:
EVP_DecryptInit_ex(ctx, EVP_aes_128_gcm(), NULL, NULL, NULL);
break;
case 192:
EVP_DecryptInit_ex(ctx, EVP_aes_192_gcm(), NULL, NULL, NULL);
break;
case 256:
EVP_DecryptInit_ex(ctx, EVP_aes_256_gcm(), NULL, NULL, NULL);
break;
}
EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_IVLEN, smp_trash->data, NULL);
/* Initialise IV */
if(!EVP_DecryptInit_ex(ctx, NULL, NULL, NULL, (unsigned char *) smp_trash->area))
goto err;
dec_size = base64dec(key.data.u.str.area, key.data.u.str.data, smp_trash->area, smp_trash->size);
if (dec_size < 0)
goto err;
smp_trash->data = dec_size;
/* Initialise key */
if (!EVP_DecryptInit_ex(ctx, NULL, NULL, (unsigned char *) smp_trash->area, NULL))
goto err;
if (!EVP_DecryptUpdate(ctx, (unsigned char *) smp_trash->area, (int *) &smp_trash->data,
(unsigned char *) smp->data.u.str.area, (int) smp->data.u.str.data))
goto err;
dec_size = base64dec(aead_tag.data.u.str.area, aead_tag.data.u.str.data, smp_trash_alloc->area, smp_trash_alloc->size);
if (dec_size < 0)
goto err;
smp_trash_alloc->data = dec_size;
dec_size = smp_trash->data;
EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, smp_trash_alloc->data, (void *) smp_trash_alloc->area);
ret = EVP_DecryptFinal_ex(ctx, (unsigned char *) smp_trash->area + smp_trash->data, (int *) &smp_trash->data);
if (ret <= 0)
goto err;
smp->data.u.str.data = dec_size + smp_trash->data;
smp->data.u.str.area = smp_trash->area;
smp->data.type = SMP_T_BIN;
smp->flags &= ~SMP_F_CONST;
free_trash_chunk(smp_trash_alloc);
return 1;
err:
free_trash_chunk(smp_trash_alloc);
return 0;
}
# endif
/* register cli keywords */
static struct cli_kw_list cli_kws = {{ },{
#if (defined SSL_CTRL_SET_TLSEXT_TICKET_KEY_CB && TLS_TICKETS_NO > 0)
{ { "show", "tls-keys", NULL }, "show tls-keys [id|*]: show tls keys references or dump tls ticket keys when id specified", cli_parse_show_tlskeys, NULL },
{ { "set", "ssl", "tls-key", NULL }, "set ssl tls-key [id|keyfile] <tlskey>: set the next TLS key for the <id> or <keyfile> listener to <tlskey>", cli_parse_set_tlskeys, NULL },
#endif
{ { "set", "ssl", "ocsp-response", NULL }, NULL, cli_parse_set_ocspresponse, NULL },
{ { "set", "ssl", "cert", NULL }, "set ssl cert <certfile> <payload> : replace a certificate file", cli_parse_set_cert, cli_io_handler_set_cert, cli_release_set_cert },
{ { NULL }, NULL, NULL, NULL }
}};
INITCALL1(STG_REGISTER, cli_register_kw, &cli_kws);
/* Note: must not be declared <const> as its list will be overwritten.
* Please take care of keeping this list alphabetically sorted.
*/
static struct sample_fetch_kw_list sample_fetch_keywords = {ILH, {
{ "ssl_bc", smp_fetch_ssl_fc, 0, NULL, SMP_T_BOOL, SMP_USE_L5SRV },
{ "ssl_bc_alg_keysize", smp_fetch_ssl_fc_alg_keysize, 0, NULL, SMP_T_SINT, SMP_USE_L5SRV },
#ifdef TLSEXT_TYPE_application_layer_protocol_negotiation
{ "ssl_bc_alpn", smp_fetch_ssl_fc_alpn, 0, NULL, SMP_T_STR, SMP_USE_L5SRV },
#endif
{ "ssl_bc_cipher", smp_fetch_ssl_fc_cipher, 0, NULL, SMP_T_STR, SMP_USE_L5SRV },
#if defined(OPENSSL_NPN_NEGOTIATED) && !defined(OPENSSL_NO_NEXTPROTONEG)
{ "ssl_bc_npn", smp_fetch_ssl_fc_npn, 0, NULL, SMP_T_STR, SMP_USE_L5SRV },
#endif
{ "ssl_bc_is_resumed", smp_fetch_ssl_fc_is_resumed, 0, NULL, SMP_T_BOOL, SMP_USE_L5SRV },
{ "ssl_bc_protocol", smp_fetch_ssl_fc_protocol, 0, NULL, SMP_T_STR, SMP_USE_L5SRV },
{ "ssl_bc_unique_id", smp_fetch_ssl_fc_unique_id, 0, NULL, SMP_T_BIN, SMP_USE_L5SRV },
{ "ssl_bc_use_keysize", smp_fetch_ssl_fc_use_keysize, 0, NULL, SMP_T_SINT, SMP_USE_L5SRV },
#if HA_OPENSSL_VERSION_NUMBER > 0x0090800fL
{ "ssl_bc_session_id", smp_fetch_ssl_fc_session_id, 0, NULL, SMP_T_BIN, SMP_USE_L5SRV },
#endif
#if HA_OPENSSL_VERSION_NUMBER >= 0x10100000L
{ "ssl_bc_client_random", smp_fetch_ssl_fc_random, 0, NULL, SMP_T_BIN, SMP_USE_L5SRV },
{ "ssl_bc_server_random", smp_fetch_ssl_fc_random, 0, NULL, SMP_T_BIN, SMP_USE_L5SRV },
{ "ssl_bc_session_key", smp_fetch_ssl_fc_session_key, 0, NULL, SMP_T_BIN, SMP_USE_L5SRV },
#endif
{ "ssl_c_ca_err", smp_fetch_ssl_c_ca_err, 0, NULL, SMP_T_SINT, SMP_USE_L5CLI },
{ "ssl_c_ca_err_depth", smp_fetch_ssl_c_ca_err_depth, 0, NULL, SMP_T_SINT, SMP_USE_L5CLI },
{ "ssl_c_der", smp_fetch_ssl_x_der, 0, NULL, SMP_T_BIN, SMP_USE_L5CLI },
{ "ssl_c_err", smp_fetch_ssl_c_err, 0, NULL, SMP_T_SINT, SMP_USE_L5CLI },
{ "ssl_c_i_dn", smp_fetch_ssl_x_i_dn, ARG2(0,STR,SINT), NULL, SMP_T_STR, SMP_USE_L5CLI },
{ "ssl_c_key_alg", smp_fetch_ssl_x_key_alg, 0, NULL, SMP_T_STR, SMP_USE_L5CLI },
{ "ssl_c_notafter", smp_fetch_ssl_x_notafter, 0, NULL, SMP_T_STR, SMP_USE_L5CLI },
{ "ssl_c_notbefore", smp_fetch_ssl_x_notbefore, 0, NULL, SMP_T_STR, SMP_USE_L5CLI },
{ "ssl_c_sig_alg", smp_fetch_ssl_x_sig_alg, 0, NULL, SMP_T_STR, SMP_USE_L5CLI },
{ "ssl_c_s_dn", smp_fetch_ssl_x_s_dn, ARG2(0,STR,SINT), NULL, SMP_T_STR, SMP_USE_L5CLI },
{ "ssl_c_serial", smp_fetch_ssl_x_serial, 0, NULL, SMP_T_BIN, SMP_USE_L5CLI },
{ "ssl_c_sha1", smp_fetch_ssl_x_sha1, 0, NULL, SMP_T_BIN, SMP_USE_L5CLI },
{ "ssl_c_used", smp_fetch_ssl_c_used, 0, NULL, SMP_T_BOOL, SMP_USE_L5CLI },
{ "ssl_c_verify", smp_fetch_ssl_c_verify, 0, NULL, SMP_T_SINT, SMP_USE_L5CLI },
{ "ssl_c_version", smp_fetch_ssl_x_version, 0, NULL, SMP_T_SINT, SMP_USE_L5CLI },
{ "ssl_f_der", smp_fetch_ssl_x_der, 0, NULL, SMP_T_BIN, SMP_USE_L5CLI },
{ "ssl_f_i_dn", smp_fetch_ssl_x_i_dn, ARG2(0,STR,SINT), NULL, SMP_T_STR, SMP_USE_L5CLI },
{ "ssl_f_key_alg", smp_fetch_ssl_x_key_alg, 0, NULL, SMP_T_STR, SMP_USE_L5CLI },
{ "ssl_f_notafter", smp_fetch_ssl_x_notafter, 0, NULL, SMP_T_STR, SMP_USE_L5CLI },
{ "ssl_f_notbefore", smp_fetch_ssl_x_notbefore, 0, NULL, SMP_T_STR, SMP_USE_L5CLI },
{ "ssl_f_sig_alg", smp_fetch_ssl_x_sig_alg, 0, NULL, SMP_T_STR, SMP_USE_L5CLI },
{ "ssl_f_s_dn", smp_fetch_ssl_x_s_dn, ARG2(0,STR,SINT), NULL, SMP_T_STR, SMP_USE_L5CLI },
{ "ssl_f_serial", smp_fetch_ssl_x_serial, 0, NULL, SMP_T_BIN, SMP_USE_L5CLI },
{ "ssl_f_sha1", smp_fetch_ssl_x_sha1, 0, NULL, SMP_T_BIN, SMP_USE_L5CLI },
{ "ssl_f_version", smp_fetch_ssl_x_version, 0, NULL, SMP_T_SINT, SMP_USE_L5CLI },
{ "ssl_fc", smp_fetch_ssl_fc, 0, NULL, SMP_T_BOOL, SMP_USE_L5CLI },
{ "ssl_fc_alg_keysize", smp_fetch_ssl_fc_alg_keysize, 0, NULL, SMP_T_SINT, SMP_USE_L5CLI },
{ "ssl_fc_cipher", smp_fetch_ssl_fc_cipher, 0, NULL, SMP_T_STR, SMP_USE_L5CLI },
{ "ssl_fc_has_crt", smp_fetch_ssl_fc_has_crt, 0, NULL, SMP_T_BOOL, SMP_USE_L5CLI },
{ "ssl_fc_has_early", smp_fetch_ssl_fc_has_early, 0, NULL, SMP_T_BOOL, SMP_USE_L5CLI },
{ "ssl_fc_has_sni", smp_fetch_ssl_fc_has_sni, 0, NULL, SMP_T_BOOL, SMP_USE_L5CLI },
{ "ssl_fc_is_resumed", smp_fetch_ssl_fc_is_resumed, 0, NULL, SMP_T_BOOL, SMP_USE_L5CLI },
#if defined(OPENSSL_NPN_NEGOTIATED) && !defined(OPENSSL_NO_NEXTPROTONEG)
{ "ssl_fc_npn", smp_fetch_ssl_fc_npn, 0, NULL, SMP_T_STR, SMP_USE_L5CLI },
#endif
#ifdef TLSEXT_TYPE_application_layer_protocol_negotiation
{ "ssl_fc_alpn", smp_fetch_ssl_fc_alpn, 0, NULL, SMP_T_STR, SMP_USE_L5CLI },
#endif
{ "ssl_fc_protocol", smp_fetch_ssl_fc_protocol, 0, NULL, SMP_T_STR, SMP_USE_L5CLI },
#if HA_OPENSSL_VERSION_NUMBER > 0x0090800fL
{ "ssl_fc_unique_id", smp_fetch_ssl_fc_unique_id, 0, NULL, SMP_T_BIN, SMP_USE_L5CLI },
#endif
{ "ssl_fc_use_keysize", smp_fetch_ssl_fc_use_keysize, 0, NULL, SMP_T_SINT, SMP_USE_L5CLI },
#if HA_OPENSSL_VERSION_NUMBER > 0x0090800fL
{ "ssl_fc_session_id", smp_fetch_ssl_fc_session_id, 0, NULL, SMP_T_BIN, SMP_USE_L5CLI },
#endif
#if HA_OPENSSL_VERSION_NUMBER >= 0x10100000L
{ "ssl_fc_client_random", smp_fetch_ssl_fc_random, 0, NULL, SMP_T_BIN, SMP_USE_L5CLI },
{ "ssl_fc_server_random", smp_fetch_ssl_fc_random, 0, NULL, SMP_T_BIN, SMP_USE_L5CLI },
{ "ssl_fc_session_key", smp_fetch_ssl_fc_session_key, 0, NULL, SMP_T_BIN, SMP_USE_L5CLI },
#endif
#ifdef SSL_CTRL_SET_TLSEXT_HOSTNAME
{ "ssl_fc_sni", smp_fetch_ssl_fc_sni, 0, NULL, SMP_T_STR, SMP_USE_L5CLI },
#endif
{ "ssl_fc_cipherlist_bin", smp_fetch_ssl_fc_cl_bin, 0, NULL, SMP_T_STR, SMP_USE_L5CLI },
{ "ssl_fc_cipherlist_hex", smp_fetch_ssl_fc_cl_hex, 0, NULL, SMP_T_BIN, SMP_USE_L5CLI },
{ "ssl_fc_cipherlist_str", smp_fetch_ssl_fc_cl_str, 0, NULL, SMP_T_STR, SMP_USE_L5CLI },
{ "ssl_fc_cipherlist_xxh", smp_fetch_ssl_fc_cl_xxh64, 0, NULL, SMP_T_SINT, SMP_USE_L5CLI },
{ NULL, NULL, 0, 0, 0 },
}};
INITCALL1(STG_REGISTER, sample_register_fetches, &sample_fetch_keywords);
/* Note: must not be declared <const> as its list will be overwritten.
* Please take care of keeping this list alphabetically sorted.
*/
static struct acl_kw_list acl_kws = {ILH, {
{ "ssl_fc_sni_end", "ssl_fc_sni", PAT_MATCH_END },
{ "ssl_fc_sni_reg", "ssl_fc_sni", PAT_MATCH_REG },
{ /* END */ },
}};
INITCALL1(STG_REGISTER, acl_register_keywords, &acl_kws);
/* Note: must not be declared <const> as its list will be overwritten.
* Please take care of keeping this list alphabetically sorted, doing so helps
* all code contributors.
* Optional keywords are also declared with a NULL ->parse() function so that
* the config parser can report an appropriate error when a known keyword was
* not enabled.
*/
static struct ssl_bind_kw ssl_bind_kws[] = {
{ "allow-0rtt", ssl_bind_parse_allow_0rtt, 0 }, /* allow 0-RTT */
{ "alpn", ssl_bind_parse_alpn, 1 }, /* set ALPN supported protocols */
{ "ca-file", ssl_bind_parse_ca_file, 1 }, /* set CAfile to process verify on client cert */
{ "ciphers", ssl_bind_parse_ciphers, 1 }, /* set SSL cipher suite */
#if (HA_OPENSSL_VERSION_NUMBER >= 0x10101000L)
{ "ciphersuites", ssl_bind_parse_ciphersuites, 1 }, /* set TLS 1.3 cipher suite */
#endif
{ "crl-file", ssl_bind_parse_crl_file, 1 }, /* set certificat revocation list file use on client cert verify */
{ "curves", ssl_bind_parse_curves, 1 }, /* set SSL curve suite */
{ "ecdhe", ssl_bind_parse_ecdhe, 1 }, /* defines named curve for elliptic curve Diffie-Hellman */
{ "no-ca-names", ssl_bind_parse_no_ca_names, 0 }, /* do not send ca names to clients (ca_file related) */
{ "npn", ssl_bind_parse_npn, 1 }, /* set NPN supported protocols */
{ "ssl-min-ver", ssl_bind_parse_tls_method_minmax,1 }, /* minimum version */
{ "ssl-max-ver", ssl_bind_parse_tls_method_minmax,1 }, /* maximum version */
{ "verify", ssl_bind_parse_verify, 1 }, /* set SSL verify method */
{ NULL, NULL, 0 },
};
/* no initcall for ssl_bind_kws, these ones are parsed in the parser loop */
static struct bind_kw_list bind_kws = { "SSL", { }, {
{ "allow-0rtt", bind_parse_allow_0rtt, 0 }, /* Allow 0RTT */
{ "alpn", bind_parse_alpn, 1 }, /* set ALPN supported protocols */
{ "ca-file", bind_parse_ca_file, 1 }, /* set CAfile to process verify on client cert */
{ "ca-ignore-err", bind_parse_ignore_err, 1 }, /* set error IDs to ignore on verify depth > 0 */
{ "ca-sign-file", bind_parse_ca_sign_file, 1 }, /* set CAFile used to generate and sign server certs */
{ "ca-sign-pass", bind_parse_ca_sign_pass, 1 }, /* set CAKey passphrase */
{ "ciphers", bind_parse_ciphers, 1 }, /* set SSL cipher suite */
#if (HA_OPENSSL_VERSION_NUMBER >= 0x10101000L)
{ "ciphersuites", bind_parse_ciphersuites, 1 }, /* set TLS 1.3 cipher suite */
#endif
{ "crl-file", bind_parse_crl_file, 1 }, /* set certificat revocation list file use on client cert verify */
{ "crt", bind_parse_crt, 1 }, /* load SSL certificates from this location */
{ "crt-ignore-err", bind_parse_ignore_err, 1 }, /* set error IDs to ingore on verify depth == 0 */
{ "crt-list", bind_parse_crt_list, 1 }, /* load a list of crt from this location */
{ "curves", bind_parse_curves, 1 }, /* set SSL curve suite */
{ "ecdhe", bind_parse_ecdhe, 1 }, /* defines named curve for elliptic curve Diffie-Hellman */
{ "force-sslv3", bind_parse_tls_method_options, 0 }, /* force SSLv3 */
{ "force-tlsv10", bind_parse_tls_method_options, 0 }, /* force TLSv10 */
{ "force-tlsv11", bind_parse_tls_method_options, 0 }, /* force TLSv11 */
{ "force-tlsv12", bind_parse_tls_method_options, 0 }, /* force TLSv12 */
{ "force-tlsv13", bind_parse_tls_method_options, 0 }, /* force TLSv13 */
{ "generate-certificates", bind_parse_generate_certs, 0 }, /* enable the server certificates generation */
{ "no-ca-names", bind_parse_no_ca_names, 0 }, /* do not send ca names to clients (ca_file related) */
{ "no-sslv3", bind_parse_tls_method_options, 0 }, /* disable SSLv3 */
{ "no-tlsv10", bind_parse_tls_method_options, 0 }, /* disable TLSv10 */
{ "no-tlsv11", bind_parse_tls_method_options, 0 }, /* disable TLSv11 */
{ "no-tlsv12", bind_parse_tls_method_options, 0 }, /* disable TLSv12 */
{ "no-tlsv13", bind_parse_tls_method_options, 0 }, /* disable TLSv13 */
{ "no-tls-tickets", bind_parse_no_tls_tickets, 0 }, /* disable session resumption tickets */
{ "ssl", bind_parse_ssl, 0 }, /* enable SSL processing */
{ "ssl-min-ver", bind_parse_tls_method_minmax, 1 }, /* minimum version */
{ "ssl-max-ver", bind_parse_tls_method_minmax, 1 }, /* maximum version */
{ "strict-sni", bind_parse_strict_sni, 0 }, /* refuse negotiation if sni doesn't match a certificate */
{ "tls-ticket-keys", bind_parse_tls_ticket_keys, 1 }, /* set file to load TLS ticket keys from */
{ "verify", bind_parse_verify, 1 }, /* set SSL verify method */
{ "npn", bind_parse_npn, 1 }, /* set NPN supported protocols */
{ "prefer-client-ciphers", bind_parse_pcc, 0 }, /* prefer client ciphers */
{ NULL, NULL, 0 },
}};
INITCALL1(STG_REGISTER, bind_register_keywords, &bind_kws);
/* Note: must not be declared <const> as its list will be overwritten.
* Please take care of keeping this list alphabetically sorted, doing so helps
* all code contributors.
* Optional keywords are also declared with a NULL ->parse() function so that
* the config parser can report an appropriate error when a known keyword was
* not enabled.
*/
static struct srv_kw_list srv_kws = { "SSL", { }, {
{ "allow-0rtt", srv_parse_allow_0rtt, 0, 1 }, /* Allow using early data on this server */
{ "alpn", srv_parse_alpn, 1, 1 }, /* Set ALPN supported protocols */
{ "ca-file", srv_parse_ca_file, 1, 1 }, /* set CAfile to process verify server cert */
{ "check-alpn", srv_parse_alpn, 1, 1 }, /* Set ALPN used for checks */
{ "check-sni", srv_parse_check_sni, 1, 1 }, /* set SNI */
{ "check-ssl", srv_parse_check_ssl, 0, 1 }, /* enable SSL for health checks */
{ "ciphers", srv_parse_ciphers, 1, 1 }, /* select the cipher suite */
#if (HA_OPENSSL_VERSION_NUMBER >= 0x10101000L)
{ "ciphersuites", srv_parse_ciphersuites, 1, 1 }, /* select the cipher suite */
#endif
{ "crl-file", srv_parse_crl_file, 1, 1 }, /* set certificate revocation list file use on server cert verify */
{ "crt", srv_parse_crt, 1, 1 }, /* set client certificate */
{ "force-sslv3", srv_parse_tls_method_options, 0, 1 }, /* force SSLv3 */
{ "force-tlsv10", srv_parse_tls_method_options, 0, 1 }, /* force TLSv10 */
{ "force-tlsv11", srv_parse_tls_method_options, 0, 1 }, /* force TLSv11 */
{ "force-tlsv12", srv_parse_tls_method_options, 0, 1 }, /* force TLSv12 */
{ "force-tlsv13", srv_parse_tls_method_options, 0, 1 }, /* force TLSv13 */
{ "no-check-ssl", srv_parse_no_check_ssl, 0, 1 }, /* disable SSL for health checks */
{ "no-send-proxy-v2-ssl", srv_parse_no_send_proxy_ssl, 0, 1 }, /* do not send PROXY protocol header v2 with SSL info */
{ "no-send-proxy-v2-ssl-cn", srv_parse_no_send_proxy_cn, 0, 1 }, /* do not send PROXY protocol header v2 with CN */
{ "no-ssl", srv_parse_no_ssl, 0, 1 }, /* disable SSL processing */
{ "no-ssl-reuse", srv_parse_no_ssl_reuse, 0, 1 }, /* disable session reuse */
{ "no-sslv3", srv_parse_tls_method_options, 0, 0 }, /* disable SSLv3 */
{ "no-tlsv10", srv_parse_tls_method_options, 0, 0 }, /* disable TLSv10 */
{ "no-tlsv11", srv_parse_tls_method_options, 0, 0 }, /* disable TLSv11 */
{ "no-tlsv12", srv_parse_tls_method_options, 0, 0 }, /* disable TLSv12 */
{ "no-tlsv13", srv_parse_tls_method_options, 0, 0 }, /* disable TLSv13 */
{ "no-tls-tickets", srv_parse_no_tls_tickets, 0, 1 }, /* disable session resumption tickets */
{ "npn", srv_parse_npn, 1, 1 }, /* Set NPN supported protocols */
{ "send-proxy-v2-ssl", srv_parse_send_proxy_ssl, 0, 1 }, /* send PROXY protocol header v2 with SSL info */
{ "send-proxy-v2-ssl-cn", srv_parse_send_proxy_cn, 0, 1 }, /* send PROXY protocol header v2 with CN */
{ "sni", srv_parse_sni, 1, 1 }, /* send SNI extension */
{ "ssl", srv_parse_ssl, 0, 1 }, /* enable SSL processing */
{ "ssl-min-ver", srv_parse_tls_method_minmax, 1, 1 }, /* minimum version */
{ "ssl-max-ver", srv_parse_tls_method_minmax, 1, 1 }, /* maximum version */
{ "ssl-reuse", srv_parse_ssl_reuse, 0, 1 }, /* enable session reuse */
{ "tls-tickets", srv_parse_tls_tickets, 0, 1 }, /* enable session resumption tickets */
{ "verify", srv_parse_verify, 1, 1 }, /* set SSL verify method */
{ "verifyhost", srv_parse_verifyhost, 1, 1 }, /* require that SSL cert verifies for hostname */
{ NULL, NULL, 0, 0 },
}};
INITCALL1(STG_REGISTER, srv_register_keywords, &srv_kws);
static struct cfg_kw_list cfg_kws = {ILH, {
{ CFG_GLOBAL, "ca-base", ssl_parse_global_ca_crt_base },
{ CFG_GLOBAL, "crt-base", ssl_parse_global_ca_crt_base },
{ CFG_GLOBAL, "maxsslconn", ssl_parse_global_int },
{ CFG_GLOBAL, "ssl-default-bind-options", ssl_parse_default_bind_options },
{ CFG_GLOBAL, "ssl-default-server-options", ssl_parse_default_server_options },
#ifndef OPENSSL_NO_DH
{ CFG_GLOBAL, "ssl-dh-param-file", ssl_parse_global_dh_param_file },
#endif
{ CFG_GLOBAL, "ssl-mode-async", ssl_parse_global_ssl_async },
#ifndef OPENSSL_NO_ENGINE
{ CFG_GLOBAL, "ssl-engine", ssl_parse_global_ssl_engine },
#endif
{ CFG_GLOBAL, "tune.ssl.cachesize", ssl_parse_global_int },
#ifndef OPENSSL_NO_DH
{ CFG_GLOBAL, "tune.ssl.default-dh-param", ssl_parse_global_default_dh },
#endif
{ CFG_GLOBAL, "tune.ssl.force-private-cache", ssl_parse_global_private_cache },
{ CFG_GLOBAL, "tune.ssl.lifetime", ssl_parse_global_lifetime },
{ CFG_GLOBAL, "tune.ssl.maxrecord", ssl_parse_global_int },
{ CFG_GLOBAL, "tune.ssl.ssl-ctx-cache-size", ssl_parse_global_int },
{ CFG_GLOBAL, "tune.ssl.capture-cipherlist-size", ssl_parse_global_capture_cipherlist },
{ CFG_GLOBAL, "ssl-default-bind-ciphers", ssl_parse_global_ciphers },
{ CFG_GLOBAL, "ssl-default-server-ciphers", ssl_parse_global_ciphers },
#if (HA_OPENSSL_VERSION_NUMBER >= 0x10101000L)
{ CFG_GLOBAL, "ssl-default-bind-ciphersuites", ssl_parse_global_ciphersuites },
{ CFG_GLOBAL, "ssl-default-server-ciphersuites", ssl_parse_global_ciphersuites },
#endif
{ 0, NULL, NULL },
}};
INITCALL1(STG_REGISTER, cfg_register_keywords, &cfg_kws);
/* Note: must not be declared <const> as its list will be overwritten */
static struct sample_conv_kw_list conv_kws = {ILH, {
#if (HA_OPENSSL_VERSION_NUMBER >= 0x1000100fL)
{ "aes_gcm_dec", sample_conv_aes_gcm_dec, ARG4(4,SINT,STR,STR,STR), check_aes_gcm, SMP_T_BIN, SMP_T_BIN },
#endif
{ NULL, NULL, 0, 0, 0 },
}};
INITCALL1(STG_REGISTER, sample_register_convs, &conv_kws);
/* transport-layer operations for SSL sockets */
static struct xprt_ops ssl_sock = {
.snd_buf = ssl_sock_from_buf,
.rcv_buf = ssl_sock_to_buf,
.subscribe = ssl_subscribe,
.unsubscribe = ssl_unsubscribe,
.remove_xprt = ssl_remove_xprt,
.add_xprt = ssl_add_xprt,
.rcv_pipe = NULL,
.snd_pipe = NULL,
.shutr = NULL,
.shutw = ssl_sock_shutw,
.close = ssl_sock_close,
.init = ssl_sock_init,
.prepare_bind_conf = ssl_sock_prepare_bind_conf,
.destroy_bind_conf = ssl_sock_destroy_bind_conf,
.prepare_srv = ssl_sock_prepare_srv_ctx,
.destroy_srv = ssl_sock_free_srv_ctx,
.get_alpn = ssl_sock_get_alpn,
.name = "SSL",
};
enum act_return ssl_action_wait_for_hs(struct act_rule *rule, struct proxy *px,
struct session *sess, struct stream *s, int flags)
{
struct connection *conn;
struct conn_stream *cs;
conn = objt_conn(sess->origin);
cs = objt_cs(s->si[0].end);
if (conn && cs) {
if (conn->flags & (CO_FL_EARLY_SSL_HS | CO_FL_SSL_WAIT_HS)) {
cs->flags |= CS_FL_WAIT_FOR_HS;
s->req.flags |= CF_READ_NULL;
return ACT_RET_YIELD;
}
}
return (ACT_RET_CONT);
}
static enum act_parse_ret ssl_parse_wait_for_hs(const char **args, int *orig_arg, struct proxy *px, struct act_rule *rule, char **err)
{
rule->action_ptr = ssl_action_wait_for_hs;
return ACT_RET_PRS_OK;
}
static struct action_kw_list http_req_actions = {ILH, {
{ "wait-for-handshake", ssl_parse_wait_for_hs },
{ /* END */ }
}};
INITCALL1(STG_REGISTER, http_req_keywords_register, &http_req_actions);
#if (HA_OPENSSL_VERSION_NUMBER >= 0x1000200fL && !defined OPENSSL_NO_TLSEXT && !defined OPENSSL_IS_BORINGSSL)
static void ssl_sock_sctl_free_func(void *parent, void *ptr, CRYPTO_EX_DATA *ad, int idx, long argl, void *argp)
{
if (ptr) {
chunk_destroy(ptr);
free(ptr);
}
}
#endif
static void ssl_sock_capture_free_func(void *parent, void *ptr, CRYPTO_EX_DATA *ad, int idx, long argl, void *argp)
{
pool_free(pool_head_ssl_capture, ptr);
}
__attribute__((constructor))
static void __ssl_sock_init(void)
{
#if (!defined(OPENSSL_NO_COMP) && !defined(SSL_OP_NO_COMPRESSION))
STACK_OF(SSL_COMP)* cm;
int n;
#endif
if (global_ssl.listen_default_ciphers)
global_ssl.listen_default_ciphers = strdup(global_ssl.listen_default_ciphers);
if (global_ssl.connect_default_ciphers)
global_ssl.connect_default_ciphers = strdup(global_ssl.connect_default_ciphers);
#if (HA_OPENSSL_VERSION_NUMBER >= 0x10101000L)
if (global_ssl.listen_default_ciphersuites)
global_ssl.listen_default_ciphersuites = strdup(global_ssl.listen_default_ciphersuites);
if (global_ssl.connect_default_ciphersuites)
global_ssl.connect_default_ciphersuites = strdup(global_ssl.connect_default_ciphersuites);
#endif
xprt_register(XPRT_SSL, &ssl_sock);
#if HA_OPENSSL_VERSION_NUMBER < 0x10100000L
SSL_library_init();
#endif
#if (!defined(OPENSSL_NO_COMP) && !defined(SSL_OP_NO_COMPRESSION))
cm = SSL_COMP_get_compression_methods();
n = sk_SSL_COMP_num(cm);
while (n--) {
(void) sk_SSL_COMP_pop(cm);
}
#endif
#if defined(USE_THREAD) && (HA_OPENSSL_VERSION_NUMBER < 0x10100000L)
ssl_locking_init();
#endif
#if (HA_OPENSSL_VERSION_NUMBER >= 0x1000200fL && !defined OPENSSL_NO_TLSEXT && !defined OPENSSL_IS_BORINGSSL)
sctl_ex_index = SSL_CTX_get_ex_new_index(0, NULL, NULL, NULL, ssl_sock_sctl_free_func);
#endif
ssl_app_data_index = SSL_get_ex_new_index(0, NULL, NULL, NULL, NULL);
ssl_capture_ptr_index = SSL_get_ex_new_index(0, NULL, NULL, NULL, ssl_sock_capture_free_func);
ssl_pkey_info_index = SSL_CTX_get_ex_new_index(0, NULL, NULL, NULL, NULL);
#ifndef OPENSSL_NO_ENGINE
ENGINE_load_builtin_engines();
hap_register_post_check(ssl_check_async_engine_count);
#endif
#if (defined SSL_CTRL_SET_TLSEXT_TICKET_KEY_CB && TLS_TICKETS_NO > 0)
hap_register_post_check(tlskeys_finalize_config);
#endif
global.ssl_session_max_cost = SSL_SESSION_MAX_COST;
global.ssl_handshake_max_cost = SSL_HANDSHAKE_MAX_COST;
#ifndef OPENSSL_NO_DH
ssl_dh_ptr_index = SSL_CTX_get_ex_new_index(0, NULL, NULL, NULL, NULL);
hap_register_post_deinit(ssl_free_dh);
#endif
#ifndef OPENSSL_NO_ENGINE
hap_register_post_deinit(ssl_free_engines);
#endif
/* Load SSL string for the verbose & debug mode. */
ERR_load_SSL_strings();
ha_meth = BIO_meth_new(0x666, "ha methods");
BIO_meth_set_write(ha_meth, ha_ssl_write);
BIO_meth_set_read(ha_meth, ha_ssl_read);
BIO_meth_set_ctrl(ha_meth, ha_ssl_ctrl);
BIO_meth_set_create(ha_meth, ha_ssl_new);
BIO_meth_set_destroy(ha_meth, ha_ssl_free);
BIO_meth_set_puts(ha_meth, ha_ssl_puts);
BIO_meth_set_gets(ha_meth, ha_ssl_gets);
HA_SPIN_INIT(&ckch_lock);
}
/* Compute and register the version string */
static void ssl_register_build_options()
{
char *ptr = NULL;
int i;
memprintf(&ptr, "Built with OpenSSL version : "
#ifdef OPENSSL_IS_BORINGSSL
"BoringSSL");
#else /* OPENSSL_IS_BORINGSSL */
OPENSSL_VERSION_TEXT
"\nRunning on OpenSSL version : %s%s",
OpenSSL_version(OPENSSL_VERSION),
((OPENSSL_VERSION_NUMBER ^ OpenSSL_version_num()) >> 8) ? " (VERSIONS DIFFER!)" : "");
#endif
memprintf(&ptr, "%s\nOpenSSL library supports TLS extensions : "
#if HA_OPENSSL_VERSION_NUMBER < 0x00907000L
"no (library version too old)"
#elif defined(OPENSSL_NO_TLSEXT)
"no (disabled via OPENSSL_NO_TLSEXT)"
#else
"yes"
#endif
"", ptr);
memprintf(&ptr, "%s\nOpenSSL library supports SNI : "
#ifdef SSL_CTRL_SET_TLSEXT_HOSTNAME
"yes"
#else
#ifdef OPENSSL_NO_TLSEXT
"no (because of OPENSSL_NO_TLSEXT)"
#else
"no (version might be too old, 0.9.8f min needed)"
#endif
#endif
"", ptr);
memprintf(&ptr, "%s\nOpenSSL library supports :", ptr);
for (i = CONF_TLSV_MIN; i <= CONF_TLSV_MAX; i++)
if (methodVersions[i].option)
memprintf(&ptr, "%s %s", ptr, methodVersions[i].name);
hap_register_build_opts(ptr, 1);
}
INITCALL0(STG_REGISTER, ssl_register_build_options);
#ifndef OPENSSL_NO_ENGINE
void ssl_free_engines(void) {
struct ssl_engine_list *wl, *wlb;
/* free up engine list */
list_for_each_entry_safe(wl, wlb, &openssl_engines, list) {
ENGINE_finish(wl->e);
ENGINE_free(wl->e);
LIST_DEL(&wl->list);
free(wl);
}
}
#endif
#ifndef OPENSSL_NO_DH
void ssl_free_dh(void) {
if (local_dh_1024) {
DH_free(local_dh_1024);
local_dh_1024 = NULL;
}
if (local_dh_2048) {
DH_free(local_dh_2048);
local_dh_2048 = NULL;
}
if (local_dh_4096) {
DH_free(local_dh_4096);
local_dh_4096 = NULL;
}
if (global_dh) {
DH_free(global_dh);
global_dh = NULL;
}
}
#endif
__attribute__((destructor))
static void __ssl_sock_deinit(void)
{
#if (defined SSL_CTRL_SET_TLSEXT_HOSTNAME && !defined SSL_NO_GENERATE_CERTIFICATES)
if (ssl_ctx_lru_tree) {
lru64_destroy(ssl_ctx_lru_tree);
HA_RWLOCK_DESTROY(&ssl_ctx_lru_rwlock);
}
#endif
#if (HA_OPENSSL_VERSION_NUMBER < 0x10100000L)
ERR_remove_state(0);
ERR_free_strings();
EVP_cleanup();
#endif
#if (HA_OPENSSL_VERSION_NUMBER >= 0x00907000L) && (HA_OPENSSL_VERSION_NUMBER < 0x10100000L)
CRYPTO_cleanup_all_ex_data();
#endif
BIO_meth_free(ha_meth);
}
/*
* Local variables:
* c-indent-level: 8
* c-basic-offset: 8
* End:
*/