Mingkai Hu | 0e58b51 | 2015-10-26 19:47:50 +0800 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright 2014-2015 Freescale Semiconductor, Inc. |
| 3 | * |
| 4 | * SPDX-License-Identifier: GPL-2.0+ |
| 5 | */ |
| 6 | |
| 7 | #include <common.h> |
| 8 | #include <asm/io.h> |
| 9 | #include <asm/errno.h> |
| 10 | #include <asm/system.h> |
| 11 | #include <asm/armv8/mmu.h> |
| 12 | #include <asm/io.h> |
| 13 | #include <asm/arch/fsl_serdes.h> |
| 14 | #include <asm/arch/soc.h> |
| 15 | #include <asm/arch/cpu.h> |
| 16 | #include <asm/arch/speed.h> |
| 17 | #ifdef CONFIG_MP |
| 18 | #include <asm/arch/mp.h> |
| 19 | #endif |
| 20 | #include <fm_eth.h> |
| 21 | #include <fsl_debug_server.h> |
| 22 | #include <fsl-mc/fsl_mc.h> |
| 23 | #ifdef CONFIG_FSL_ESDHC |
| 24 | #include <fsl_esdhc.h> |
| 25 | #endif |
| 26 | |
| 27 | DECLARE_GLOBAL_DATA_PTR; |
| 28 | |
| 29 | void cpu_name(char *name) |
| 30 | { |
| 31 | struct ccsr_gur __iomem *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR); |
| 32 | unsigned int i, svr, ver; |
| 33 | |
| 34 | svr = gur_in32(&gur->svr); |
| 35 | ver = SVR_SOC_VER(svr); |
| 36 | |
| 37 | for (i = 0; i < ARRAY_SIZE(cpu_type_list); i++) |
| 38 | if ((cpu_type_list[i].soc_ver & SVR_WO_E) == ver) { |
| 39 | strcpy(name, cpu_type_list[i].name); |
| 40 | |
| 41 | if (IS_E_PROCESSOR(svr)) |
| 42 | strcat(name, "E"); |
| 43 | break; |
| 44 | } |
| 45 | |
| 46 | if (i == ARRAY_SIZE(cpu_type_list)) |
| 47 | strcpy(name, "unknown"); |
| 48 | } |
| 49 | |
| 50 | #ifndef CONFIG_SYS_DCACHE_OFF |
| 51 | /* |
| 52 | * Set the block entries according to the information of the table. |
| 53 | */ |
| 54 | static int set_block_entry(const struct sys_mmu_table *list, |
| 55 | struct table_info *table) |
| 56 | { |
| 57 | u64 block_size = 0, block_shift = 0; |
| 58 | u64 block_addr, index; |
| 59 | int j; |
| 60 | |
| 61 | if (table->entry_size == BLOCK_SIZE_L1) { |
| 62 | block_size = BLOCK_SIZE_L1; |
| 63 | block_shift = SECTION_SHIFT_L1; |
| 64 | } else if (table->entry_size == BLOCK_SIZE_L2) { |
| 65 | block_size = BLOCK_SIZE_L2; |
| 66 | block_shift = SECTION_SHIFT_L2; |
| 67 | } else { |
| 68 | return -EINVAL; |
| 69 | } |
| 70 | |
| 71 | block_addr = list->phys_addr; |
| 72 | index = (list->virt_addr - table->table_base) >> block_shift; |
| 73 | |
| 74 | for (j = 0; j < (list->size >> block_shift); j++) { |
| 75 | set_pgtable_section(table->ptr, |
| 76 | index, |
| 77 | block_addr, |
| 78 | list->memory_type, |
| 79 | list->share); |
| 80 | block_addr += block_size; |
| 81 | index++; |
| 82 | } |
| 83 | |
| 84 | return 0; |
| 85 | } |
| 86 | |
| 87 | /* |
| 88 | * Find the corresponding table entry for the list. |
| 89 | */ |
| 90 | static int find_table(const struct sys_mmu_table *list, |
| 91 | struct table_info *table, u64 *level0_table) |
| 92 | { |
| 93 | u64 index = 0, level = 0; |
| 94 | u64 *level_table = level0_table; |
| 95 | u64 temp_base = 0, block_size = 0, block_shift = 0; |
| 96 | |
| 97 | while (level < 3) { |
| 98 | if (level == 0) { |
| 99 | block_size = BLOCK_SIZE_L0; |
| 100 | block_shift = SECTION_SHIFT_L0; |
| 101 | } else if (level == 1) { |
| 102 | block_size = BLOCK_SIZE_L1; |
| 103 | block_shift = SECTION_SHIFT_L1; |
| 104 | } else if (level == 2) { |
| 105 | block_size = BLOCK_SIZE_L2; |
| 106 | block_shift = SECTION_SHIFT_L2; |
| 107 | } |
| 108 | |
| 109 | index = 0; |
| 110 | while (list->virt_addr >= temp_base) { |
| 111 | index++; |
| 112 | temp_base += block_size; |
| 113 | } |
| 114 | |
| 115 | temp_base -= block_size; |
| 116 | |
| 117 | if ((level_table[index - 1] & PMD_TYPE_MASK) == |
| 118 | PMD_TYPE_TABLE) { |
| 119 | level_table = (u64 *)(level_table[index - 1] & |
| 120 | ~PMD_TYPE_MASK); |
| 121 | level++; |
| 122 | continue; |
| 123 | } else { |
| 124 | if (level == 0) |
| 125 | return -EINVAL; |
| 126 | |
| 127 | if ((list->phys_addr + list->size) > |
| 128 | (temp_base + block_size * NUM_OF_ENTRY)) |
| 129 | return -EINVAL; |
| 130 | |
| 131 | /* |
| 132 | * Check the address and size of the list member is |
| 133 | * aligned with the block size. |
| 134 | */ |
| 135 | if (((list->phys_addr & (block_size - 1)) != 0) || |
| 136 | ((list->size & (block_size - 1)) != 0)) |
| 137 | return -EINVAL; |
| 138 | |
| 139 | table->ptr = level_table; |
| 140 | table->table_base = temp_base - |
| 141 | ((index - 1) << block_shift); |
| 142 | table->entry_size = block_size; |
| 143 | |
| 144 | return 0; |
| 145 | } |
| 146 | } |
| 147 | return -EINVAL; |
| 148 | } |
| 149 | |
| 150 | /* |
| 151 | * To start MMU before DDR is available, we create MMU table in SRAM. |
| 152 | * The base address of SRAM is CONFIG_SYS_FSL_OCRAM_BASE. We use three |
| 153 | * levels of translation tables here to cover 40-bit address space. |
| 154 | * We use 4KB granule size, with 40 bits physical address, T0SZ=24 |
| 155 | * Level 0 IA[39], table address @0 |
| 156 | * Level 1 IA[38:30], table address @0x1000, 0x2000 |
| 157 | * Level 2 IA[29:21], table address @0x3000, 0x4000 |
| 158 | * Address above 0x5000 is free for other purpose. |
| 159 | */ |
| 160 | static inline void early_mmu_setup(void) |
| 161 | { |
| 162 | unsigned int el, i; |
| 163 | u64 *level0_table = (u64 *)CONFIG_SYS_FSL_OCRAM_BASE; |
| 164 | u64 *level1_table0 = (u64 *)(CONFIG_SYS_FSL_OCRAM_BASE + 0x1000); |
| 165 | u64 *level1_table1 = (u64 *)(CONFIG_SYS_FSL_OCRAM_BASE + 0x2000); |
| 166 | u64 *level2_table0 = (u64 *)(CONFIG_SYS_FSL_OCRAM_BASE + 0x3000); |
| 167 | u64 *level2_table1 = (u64 *)(CONFIG_SYS_FSL_OCRAM_BASE + 0x4000); |
| 168 | |
| 169 | struct table_info table = {level0_table, 0, BLOCK_SIZE_L0}; |
| 170 | |
| 171 | /* Invalidate all table entries */ |
| 172 | memset(level0_table, 0, 0x5000); |
| 173 | |
| 174 | /* Fill in the table entries */ |
| 175 | set_pgtable_table(level0_table, 0, level1_table0); |
| 176 | set_pgtable_table(level0_table, 1, level1_table1); |
| 177 | set_pgtable_table(level1_table0, 0, level2_table0); |
| 178 | |
| 179 | #ifdef CONFIG_FSL_LSCH3 |
| 180 | set_pgtable_table(level1_table0, |
| 181 | CONFIG_SYS_FLASH_BASE >> SECTION_SHIFT_L1, |
| 182 | level2_table1); |
| 183 | #endif |
| 184 | /* Find the table and fill in the block entries */ |
| 185 | for (i = 0; i < ARRAY_SIZE(early_mmu_table); i++) { |
| 186 | if (find_table(&early_mmu_table[i], |
| 187 | &table, level0_table) == 0) { |
| 188 | /* |
| 189 | * If find_table() returns error, it cannot be dealt |
| 190 | * with here. Breakpoint can be added for debugging. |
| 191 | */ |
| 192 | set_block_entry(&early_mmu_table[i], &table); |
| 193 | /* |
| 194 | * If set_block_entry() returns error, it cannot be |
| 195 | * dealt with here too. |
| 196 | */ |
| 197 | } |
| 198 | } |
| 199 | |
| 200 | el = current_el(); |
| 201 | |
| 202 | set_ttbr_tcr_mair(el, (u64)level0_table, LAYERSCAPE_TCR, |
| 203 | MEMORY_ATTRIBUTES); |
| 204 | set_sctlr(get_sctlr() | CR_M); |
| 205 | } |
| 206 | |
| 207 | /* |
| 208 | * The final tables look similar to early tables, but different in detail. |
| 209 | * These tables are in DRAM. Sub tables are added to enable cache for |
| 210 | * QBMan and OCRAM. |
| 211 | * |
| 212 | * Level 1 table 0 contains 512 entries for each 1GB from 0 to 512GB. |
| 213 | * Level 1 table 1 contains 512 entries for each 1GB from 512GB to 1TB. |
| 214 | * Level 2 table 0 contains 512 entries for each 2MB from 0 to 1GB. |
| 215 | * |
| 216 | * For LSCH3: |
| 217 | * Level 2 table 1 contains 512 entries for each 2MB from 32GB to 33GB. |
| 218 | */ |
| 219 | static inline void final_mmu_setup(void) |
| 220 | { |
| 221 | unsigned int el, i; |
| 222 | u64 *level0_table = (u64 *)gd->arch.tlb_addr; |
| 223 | u64 *level1_table0 = (u64 *)(gd->arch.tlb_addr + 0x1000); |
| 224 | u64 *level1_table1 = (u64 *)(gd->arch.tlb_addr + 0x2000); |
| 225 | u64 *level2_table0 = (u64 *)(gd->arch.tlb_addr + 0x3000); |
| 226 | #ifdef CONFIG_FSL_LSCH3 |
| 227 | u64 *level2_table1 = (u64 *)(gd->arch.tlb_addr + 0x4000); |
| 228 | #endif |
| 229 | struct table_info table = {level0_table, 0, BLOCK_SIZE_L0}; |
| 230 | |
| 231 | /* Invalidate all table entries */ |
| 232 | memset(level0_table, 0, PGTABLE_SIZE); |
| 233 | |
| 234 | /* Fill in the table entries */ |
| 235 | set_pgtable_table(level0_table, 0, level1_table0); |
| 236 | set_pgtable_table(level0_table, 1, level1_table1); |
| 237 | set_pgtable_table(level1_table0, 0, level2_table0); |
| 238 | #ifdef CONFIG_FSL_LSCH3 |
| 239 | set_pgtable_table(level1_table0, |
| 240 | CONFIG_SYS_FSL_QBMAN_BASE >> SECTION_SHIFT_L1, |
| 241 | level2_table1); |
| 242 | #endif |
| 243 | |
| 244 | /* Find the table and fill in the block entries */ |
| 245 | for (i = 0; i < ARRAY_SIZE(final_mmu_table); i++) { |
| 246 | if (find_table(&final_mmu_table[i], |
| 247 | &table, level0_table) == 0) { |
| 248 | if (set_block_entry(&final_mmu_table[i], |
| 249 | &table) != 0) { |
| 250 | printf("MMU error: could not set block entry for %p\n", |
| 251 | &final_mmu_table[i]); |
| 252 | } |
| 253 | |
| 254 | } else { |
| 255 | printf("MMU error: could not find the table for %p\n", |
| 256 | &final_mmu_table[i]); |
| 257 | } |
| 258 | } |
| 259 | |
| 260 | /* flush new MMU table */ |
| 261 | flush_dcache_range(gd->arch.tlb_addr, |
| 262 | gd->arch.tlb_addr + gd->arch.tlb_size); |
| 263 | |
| 264 | /* point TTBR to the new table */ |
| 265 | el = current_el(); |
| 266 | |
| 267 | set_ttbr_tcr_mair(el, (u64)level0_table, LAYERSCAPE_TCR_FINAL, |
| 268 | MEMORY_ATTRIBUTES); |
| 269 | /* |
| 270 | * MMU is already enabled, just need to invalidate TLB to load the |
| 271 | * new table. The new table is compatible with the current table, if |
| 272 | * MMU somehow walks through the new table before invalidation TLB, |
| 273 | * it still works. So we don't need to turn off MMU here. |
| 274 | */ |
| 275 | } |
| 276 | |
| 277 | int arch_cpu_init(void) |
| 278 | { |
| 279 | icache_enable(); |
| 280 | __asm_invalidate_dcache_all(); |
| 281 | __asm_invalidate_tlb_all(); |
| 282 | early_mmu_setup(); |
| 283 | set_sctlr(get_sctlr() | CR_C); |
| 284 | return 0; |
| 285 | } |
| 286 | |
| 287 | /* |
| 288 | * This function is called from lib/board.c. |
| 289 | * It recreates MMU table in main memory. MMU and d-cache are enabled earlier. |
| 290 | * There is no need to disable d-cache for this operation. |
| 291 | */ |
| 292 | void enable_caches(void) |
| 293 | { |
| 294 | final_mmu_setup(); |
| 295 | __asm_invalidate_tlb_all(); |
| 296 | } |
| 297 | #endif |
| 298 | |
| 299 | static inline u32 initiator_type(u32 cluster, int init_id) |
| 300 | { |
| 301 | struct ccsr_gur *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR); |
| 302 | u32 idx = (cluster >> (init_id * 8)) & TP_CLUSTER_INIT_MASK; |
| 303 | u32 type = 0; |
| 304 | |
| 305 | type = gur_in32(&gur->tp_ityp[idx]); |
| 306 | if (type & TP_ITYP_AV) |
| 307 | return type; |
| 308 | |
| 309 | return 0; |
| 310 | } |
| 311 | |
| 312 | u32 cpu_mask(void) |
| 313 | { |
| 314 | struct ccsr_gur __iomem *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR); |
| 315 | int i = 0, count = 0; |
| 316 | u32 cluster, type, mask = 0; |
| 317 | |
| 318 | do { |
| 319 | int j; |
| 320 | |
| 321 | cluster = gur_in32(&gur->tp_cluster[i].lower); |
| 322 | for (j = 0; j < TP_INIT_PER_CLUSTER; j++) { |
| 323 | type = initiator_type(cluster, j); |
| 324 | if (type) { |
| 325 | if (TP_ITYP_TYPE(type) == TP_ITYP_TYPE_ARM) |
| 326 | mask |= 1 << count; |
| 327 | count++; |
| 328 | } |
| 329 | } |
| 330 | i++; |
| 331 | } while ((cluster & TP_CLUSTER_EOC) == 0x0); |
| 332 | |
| 333 | return mask; |
| 334 | } |
| 335 | |
| 336 | /* |
| 337 | * Return the number of cores on this SOC. |
| 338 | */ |
| 339 | int cpu_numcores(void) |
| 340 | { |
| 341 | return hweight32(cpu_mask()); |
| 342 | } |
| 343 | |
| 344 | int fsl_qoriq_core_to_cluster(unsigned int core) |
| 345 | { |
| 346 | struct ccsr_gur __iomem *gur = |
| 347 | (void __iomem *)(CONFIG_SYS_FSL_GUTS_ADDR); |
| 348 | int i = 0, count = 0; |
| 349 | u32 cluster; |
| 350 | |
| 351 | do { |
| 352 | int j; |
| 353 | |
| 354 | cluster = gur_in32(&gur->tp_cluster[i].lower); |
| 355 | for (j = 0; j < TP_INIT_PER_CLUSTER; j++) { |
| 356 | if (initiator_type(cluster, j)) { |
| 357 | if (count == core) |
| 358 | return i; |
| 359 | count++; |
| 360 | } |
| 361 | } |
| 362 | i++; |
| 363 | } while ((cluster & TP_CLUSTER_EOC) == 0x0); |
| 364 | |
| 365 | return -1; /* cannot identify the cluster */ |
| 366 | } |
| 367 | |
| 368 | u32 fsl_qoriq_core_to_type(unsigned int core) |
| 369 | { |
| 370 | struct ccsr_gur __iomem *gur = |
| 371 | (void __iomem *)(CONFIG_SYS_FSL_GUTS_ADDR); |
| 372 | int i = 0, count = 0; |
| 373 | u32 cluster, type; |
| 374 | |
| 375 | do { |
| 376 | int j; |
| 377 | |
| 378 | cluster = gur_in32(&gur->tp_cluster[i].lower); |
| 379 | for (j = 0; j < TP_INIT_PER_CLUSTER; j++) { |
| 380 | type = initiator_type(cluster, j); |
| 381 | if (type) { |
| 382 | if (count == core) |
| 383 | return type; |
| 384 | count++; |
| 385 | } |
| 386 | } |
| 387 | i++; |
| 388 | } while ((cluster & TP_CLUSTER_EOC) == 0x0); |
| 389 | |
| 390 | return -1; /* cannot identify the cluster */ |
| 391 | } |
| 392 | |
| 393 | #ifdef CONFIG_DISPLAY_CPUINFO |
| 394 | int print_cpuinfo(void) |
| 395 | { |
| 396 | struct ccsr_gur __iomem *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR); |
| 397 | struct sys_info sysinfo; |
| 398 | char buf[32]; |
| 399 | unsigned int i, core; |
| 400 | u32 type, rcw; |
| 401 | |
| 402 | puts("SoC: "); |
| 403 | |
| 404 | cpu_name(buf); |
| 405 | printf(" %s (0x%x)\n", buf, gur_in32(&gur->svr)); |
| 406 | memset((u8 *)buf, 0x00, ARRAY_SIZE(buf)); |
| 407 | get_sys_info(&sysinfo); |
| 408 | puts("Clock Configuration:"); |
| 409 | for_each_cpu(i, core, cpu_numcores(), cpu_mask()) { |
| 410 | if (!(i % 3)) |
| 411 | puts("\n "); |
| 412 | type = TP_ITYP_VER(fsl_qoriq_core_to_type(core)); |
| 413 | printf("CPU%d(%s):%-4s MHz ", core, |
| 414 | type == TY_ITYP_VER_A7 ? "A7 " : |
| 415 | (type == TY_ITYP_VER_A53 ? "A53" : |
| 416 | (type == TY_ITYP_VER_A57 ? "A57" : " ")), |
| 417 | strmhz(buf, sysinfo.freq_processor[core])); |
| 418 | } |
| 419 | printf("\n Bus: %-4s MHz ", |
| 420 | strmhz(buf, sysinfo.freq_systembus)); |
| 421 | printf("DDR: %-4s MT/s", strmhz(buf, sysinfo.freq_ddrbus)); |
| 422 | #ifdef CONFIG_FSL_LSCH3 |
| 423 | printf(" DP-DDR: %-4s MT/s", strmhz(buf, sysinfo.freq_ddrbus2)); |
| 424 | #endif |
| 425 | puts("\n"); |
| 426 | |
| 427 | /* |
| 428 | * Display the RCW, so that no one gets confused as to what RCW |
| 429 | * we're actually using for this boot. |
| 430 | */ |
| 431 | puts("Reset Configuration Word (RCW):"); |
| 432 | for (i = 0; i < ARRAY_SIZE(gur->rcwsr); i++) { |
| 433 | rcw = gur_in32(&gur->rcwsr[i]); |
| 434 | if ((i % 4) == 0) |
| 435 | printf("\n %08x:", i * 4); |
| 436 | printf(" %08x", rcw); |
| 437 | } |
| 438 | puts("\n"); |
| 439 | |
| 440 | return 0; |
| 441 | } |
| 442 | #endif |
| 443 | |
| 444 | #ifdef CONFIG_FSL_ESDHC |
| 445 | int cpu_mmc_init(bd_t *bis) |
| 446 | { |
| 447 | return fsl_esdhc_mmc_init(bis); |
| 448 | } |
| 449 | #endif |
| 450 | |
| 451 | int cpu_eth_init(bd_t *bis) |
| 452 | { |
| 453 | int error = 0; |
| 454 | |
| 455 | #ifdef CONFIG_FSL_MC_ENET |
| 456 | error = fsl_mc_ldpaa_init(bis); |
| 457 | #endif |
| 458 | return error; |
| 459 | } |
| 460 | |
| 461 | int arch_early_init_r(void) |
| 462 | { |
| 463 | #ifdef CONFIG_MP |
| 464 | int rv = 1; |
| 465 | |
| 466 | rv = fsl_layerscape_wake_seconday_cores(); |
| 467 | if (rv) |
| 468 | printf("Did not wake secondary cores\n"); |
| 469 | #endif |
| 470 | |
| 471 | #ifdef CONFIG_SYS_HAS_SERDES |
| 472 | fsl_serdes_init(); |
| 473 | #endif |
| 474 | return 0; |
| 475 | } |
| 476 | |
| 477 | int timer_init(void) |
| 478 | { |
| 479 | u32 __iomem *cntcr = (u32 *)CONFIG_SYS_FSL_TIMER_ADDR; |
| 480 | #ifdef CONFIG_FSL_LSCH3 |
| 481 | u32 __iomem *cltbenr = (u32 *)CONFIG_SYS_FSL_PMU_CLTBENR; |
| 482 | #endif |
| 483 | #ifdef COUNTER_FREQUENCY_REAL |
| 484 | unsigned long cntfrq = COUNTER_FREQUENCY_REAL; |
| 485 | |
| 486 | /* Update with accurate clock frequency */ |
| 487 | asm volatile("msr cntfrq_el0, %0" : : "r" (cntfrq) : "memory"); |
| 488 | #endif |
| 489 | |
| 490 | #ifdef CONFIG_FSL_LSCH3 |
| 491 | /* Enable timebase for all clusters. |
| 492 | * It is safe to do so even some clusters are not enabled. |
| 493 | */ |
| 494 | out_le32(cltbenr, 0xf); |
| 495 | #endif |
| 496 | |
| 497 | /* Enable clock for timer |
| 498 | * This is a global setting. |
| 499 | */ |
| 500 | out_le32(cntcr, 0x1); |
| 501 | |
| 502 | return 0; |
| 503 | } |
| 504 | |
| 505 | void reset_cpu(ulong addr) |
| 506 | { |
| 507 | u32 __iomem *rstcr = (u32 *)CONFIG_SYS_FSL_RST_ADDR; |
| 508 | u32 val; |
| 509 | |
| 510 | /* Raise RESET_REQ_B */ |
| 511 | val = scfg_in32(rstcr); |
| 512 | val |= 0x02; |
| 513 | scfg_out32(rstcr, val); |
| 514 | } |