blob: b76f4cbb5e6d43ab4217ddbdc15e6b735c7893f4 [file] [log] [blame]
Alessandro Rubini9b97b452009-02-09 15:53:31 +01001/*
2 * (C) Copyright 2007 STMicroelectronics, <www.st.com>
3 * (C) Copyright 2009 Alessandro Rubini <rubini@unipv.it>
4 *
5 * See file CREDITS for list of people who contributed to this
6 * project.
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation; either version 2 of
11 * the License, or (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
21 * MA 02111-1307 USA
22 */
23
24#include <common.h>
25#include <nand.h>
26#include <asm/io.h>
27
28static inline int parity(int b) /* b is really a byte; returns 0 or ~0 */
29{
30 __asm__ __volatile__(
31 "eor %0, %0, %0, lsr #4\n\t"
32 "eor %0, %0, %0, lsr #2\n\t"
33 "eor %0, %0, %0, lsr #1\n\t"
34 "ands %0, %0, #1\n\t"
35 "subne %0, %0, #2\t"
36 : "=r" (b) : "0" (b));
37 return b;
38}
39
40/*
41 * This is the ECC routine used in hardware, according to the manual.
42 * HW claims to make the calculation but not the correction; so we must
43 * recalculate the bytes for a comparison.
44 */
Jean-Christophe PLAGNIOL-VILLARD0263ada2009-02-22 17:56:50 +010045static int ecc512(const unsigned char *data, unsigned char *ecc)
Alessandro Rubini9b97b452009-02-09 15:53:31 +010046{
47 int gpar = 0;
48 int i, val, par;
49 int pbits = 0; /* P8, P16, ... P2048 */
50 int pprime = 0; /* P8', P16', ... P2048' */
51 int lowbits; /* P1, P2, P4 and primes */
52
53 for (i = 0; i < 512; i++) {
54 par = parity((val = data[i]));
55 gpar ^= val;
56 pbits ^= (i & par);
57 }
58 /*
59 * Ok, now gpar is global parity (xor of all bytes)
60 * pbits are all the parity bits (non-prime ones)
61 */
62 par = parity(gpar);
63 pprime = pbits ^ par;
64 /* Put low bits in the right position for ecc[2] (bits 7..2) */
65 lowbits = 0
66 | (parity(gpar & 0xf0) & 0x80) /* P4 */
67 | (parity(gpar & 0x0f) & 0x40) /* P4' */
68 | (parity(gpar & 0xcc) & 0x20) /* P2 */
69 | (parity(gpar & 0x33) & 0x10) /* P2' */
70 | (parity(gpar & 0xaa) & 0x08) /* P1 */
71 | (parity(gpar & 0x55) & 0x04); /* P1' */
72
73 ecc[2] = ~(lowbits | ((pbits & 0x100) >> 7) | ((pprime & 0x100) >> 8));
74 /* now intermix bits for ecc[1] (P1024..P128') and ecc[0] (P64..P8') */
75 ecc[1] = ~( (pbits & 0x80) >> 0 | ((pprime & 0x80) >> 1)
76 | ((pbits & 0x40) >> 1) | ((pprime & 0x40) >> 2)
77 | ((pbits & 0x20) >> 2) | ((pprime & 0x20) >> 3)
78 | ((pbits & 0x10) >> 3) | ((pprime & 0x10) >> 4));
79
80 ecc[0] = ~( (pbits & 0x8) << 4 | ((pprime & 0x8) << 3)
81 | ((pbits & 0x4) << 3) | ((pprime & 0x4) << 2)
82 | ((pbits & 0x2) << 2) | ((pprime & 0x2) << 1)
83 | ((pbits & 0x1) << 1) | ((pprime & 0x1) << 0));
84 return 0;
85}
86
87/* This is the method in the chip->ecc field */
88static int nomadik_ecc_calculate(struct mtd_info *mtd, const uint8_t *dat,
89 uint8_t *ecc_code)
90{
91 return ecc512(dat, ecc_code);
92}
93
94static int nomadik_ecc_correct(struct mtd_info *mtd, uint8_t *dat,
95 uint8_t *r_ecc, uint8_t *c_ecc)
96{
97 struct nand_chip *chip = mtd->priv;
98 uint32_t r, c, d, diff; /*read, calculated, xor of them */
99
100 if (!memcmp(r_ecc, c_ecc, chip->ecc.bytes))
101 return 0;
102
103 /* Reorder the bytes into ascending-order 24 bits -- see manual */
104 r = r_ecc[2] << 22 | r_ecc[1] << 14 | r_ecc[0] << 6 | r_ecc[2] >> 2;
105 c = c_ecc[2] << 22 | c_ecc[1] << 14 | c_ecc[0] << 6 | c_ecc[2] >> 2;
106 diff = (r ^ c) & ((1<<24)-1); /* use 24 bits only */
107
108 /* If 12 bits are different, one per pair, it's correctable */
109 if (((diff | (diff>>1)) & 0x555555) == 0x555555) {
110 int bit = ((diff & 2) >> 1)
111 | ((diff & 0x8) >> 2) | ((diff & 0x20) >> 3);
112 int byte;
113
114 d = diff >> 6; /* remove bit-order info */
115 byte = ((d & 2) >> 1)
116 | ((d & 0x8) >> 2) | ((d & 0x20) >> 3)
117 | ((d & 0x80) >> 4) | ((d & 0x200) >> 5)
118 | ((d & 0x800) >> 6) | ((d & 0x2000) >> 7)
119 | ((d & 0x8000) >> 8) | ((d & 0x20000) >> 9);
120 /* correct the single bit */
121 dat[byte] ^= 1<<bit;
122 return 0;
123 }
124 /* If 1 bit only differs, it's one bit error in ECC, ignore */
125 if ((diff ^ (1 << (ffs(diff) - 1))) == 0)
126 return 0;
127 /* Otherwise, uncorrectable */
128 return -1;
129}
130
131static void nomadik_ecc_hwctl(struct mtd_info *mtd, int mode)
132{ /* mandatory in the structure but not used here */ }
133
134
135/* This is the layout used by older installations, we keep compatible */
136struct nand_ecclayout nomadik_ecc_layout = {
137 .eccbytes = 3 * 4,
138 .eccpos = { /* each subpage has 16 bytes: pos 2,3,4 hosts ECC */
139 0x02, 0x03, 0x04,
140 0x12, 0x13, 0x14,
141 0x22, 0x23, 0x24,
142 0x32, 0x33, 0x34},
143 .oobfree = { {0x08, 0x08}, {0x18, 0x08}, {0x28, 0x08}, {0x38, 0x08} },
144};
145
146#define MASK_ALE (1 << 24) /* our ALE is AD21 */
147#define MASK_CLE (1 << 23) /* our CLE is AD22 */
148
149/* This is copied from the AT91SAM9 devices (Stelian Pop, Lead Tech Design) */
150static void nomadik_nand_hwcontrol(struct mtd_info *mtd,
151 int cmd, unsigned int ctrl)
152{
153 struct nand_chip *this = mtd->priv;
154 u32 pcr0 = readl(REG_FSMC_PCR0);
155
156 if (ctrl & NAND_CTRL_CHANGE) {
157 ulong IO_ADDR_W = (ulong) this->IO_ADDR_W;
158 IO_ADDR_W &= ~(MASK_ALE | MASK_CLE);
159
160 if (ctrl & NAND_CLE)
161 IO_ADDR_W |= MASK_CLE;
162 if (ctrl & NAND_ALE)
163 IO_ADDR_W |= MASK_ALE;
164
165 if (ctrl & NAND_NCE)
166 writel(pcr0 | 0x4, REG_FSMC_PCR0);
167 else
168 writel(pcr0 & ~0x4, REG_FSMC_PCR0);
169
170 this->IO_ADDR_W = (void *) IO_ADDR_W;
171 this->IO_ADDR_R = (void *) IO_ADDR_W;
172 }
173
174 if (cmd != NAND_CMD_NONE)
175 writeb(cmd, this->IO_ADDR_W);
176}
177
178/* Returns 1 when ready; upper layers timeout at 20ms with timer routines */
179static int nomadik_nand_ready(struct mtd_info *mtd)
180{
181 return 1; /* The ready bit is handled in hardware */
182}
183
184/* Copy a buffer 32bits at a time: faster than defualt method which is 8bit */
185static void nomadik_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
186{
187 int i;
188 struct nand_chip *chip = mtd->priv;
189 u32 *p = (u32 *) buf;
190
191 len >>= 2;
192 writel(0, REG_FSMC_ECCR0);
193 for (i = 0; i < len; i++)
194 p[i] = readl(chip->IO_ADDR_R);
195}
196
197int board_nand_init(struct nand_chip *chip)
198{
199 /* Set up the FSMC_PCR0 for nand access*/
200 writel(0x0000004a, REG_FSMC_PCR0);
201 /* Set up FSMC_PMEM0, FSMC_PATT0 with timing data for access */
202 writel(0x00020401, REG_FSMC_PMEM0);
203 writel(0x00020404, REG_FSMC_PATT0);
204
205 chip->options = NAND_COPYBACK | NAND_CACHEPRG | NAND_NO_PADDING;
206 chip->cmd_ctrl = nomadik_nand_hwcontrol;
207 chip->dev_ready = nomadik_nand_ready;
208 /* The chip allows 32bit reads, so avoid the default 8bit copy */
209 chip->read_buf = nomadik_nand_read_buf;
210
211 /* ECC: follow the hardware-defined rulse, but do it in sw */
212 chip->ecc.mode = NAND_ECC_HW;
213 chip->ecc.bytes = 3;
214 chip->ecc.size = 512;
215 chip->ecc.layout = &nomadik_ecc_layout;
216 chip->ecc.calculate = nomadik_ecc_calculate;
217 chip->ecc.hwctl = nomadik_ecc_hwctl;
218 chip->ecc.correct = nomadik_ecc_correct;
219
220 return 0;
221}