blob: d207bf615cee2412baa0ed356ecb761e6d8c6ef9 [file] [log] [blame]
Ralph Siemsena0dfc712023-05-12 21:36:51 -04001// SPDX-License-Identifier: GPL-2.0
2/*
3 * R9A06G032 clock driver
4 *
5 * Copyright (C) 2018 Renesas Electronics Europe Limited
6 *
7 * Michel Pollet <michel.pollet@bp.renesas.com>, <buserror@gmail.com>
8 */
9
Ralph Siemsena0dfc712023-05-12 21:36:51 -040010#include <clk-uclass.h>
11#include <dm.h>
12#include <dm/device_compat.h>
13#include <regmap.h>
14#include <syscon.h>
15#include <linux/bitops.h>
16#include <linux/clk-provider.h>
17#include <linux/delay.h>
18#include <asm/io.h>
19
20#include <dt-bindings/clock/r9a06g032-sysctrl.h>
21
22/**
23 * struct regbit - describe one bit in a register
24 * @reg: offset of register relative to base address,
25 * expressed in units of 32-bit words (not bytes),
26 * @bit: which bit (0 to 31) in the register
27 *
28 * This structure is used to compactly encode the location
29 * of a single bit in a register. Five bits are needed to
30 * encode the bit number. With uint16_t data type, this
31 * leaves 11 bits to encode a register offset up to 2047.
32 *
33 * Since registers are aligned on 32-bit boundaries, the
34 * offset will be specified in 32-bit words rather than bytes.
35 * This allows encoding an offset up to 0x1FFC (8188) bytes.
36 *
37 * Helper macro RB() takes care of converting the register
38 * offset from bytes to 32-bit words.
39 */
40struct regbit {
41 u16 reg:11;
42 u16 bit:5;
43};
44
45#define RB(_reg, _bit) ((struct regbit) { \
46 .reg = (_reg) / 4, \
47 .bit = (_bit) \
48})
49
50/**
51 * struct r9a06g032_gate - clock-related control bits
52 * @gate: clock enable/disable
53 * @reset: clock module reset (active low)
54 * @ready: enables NoC forwarding of read/write requests to device,
55 * (eg. device is ready to handle read/write requests)
56 * @midle: request to idle the NoC interconnect
57 *
58 * Each of these fields describes a single bit in a register,
59 * which controls some aspect of clock gating. The @gate field
60 * is mandatory, this one enables/disables the clock. The
61 * other fields are optional, with zero indicating "not used".
62 *
63 * In most cases there is a @reset bit which needs to be
64 * de-asserted to bring the module out of reset.
65 *
66 * Modules may also need to signal when the are @ready to
67 * handle requests (read/writes) from the NoC interconnect.
68 *
69 * Similarly, the @midle bit is used to idle the master.
70 */
71struct r9a06g032_gate {
72 struct regbit gate, reset, ready, midle;
73 /* Unused fields omitted to save space */
74 /* struct regbit scon, mirack, mistat */;
75};
76
77enum gate_type {
78 K_GATE = 0, /* gate which enable/disable */
79 K_FFC, /* fixed factor clock */
80 K_DIV, /* divisor */
81 K_BITSEL, /* special for UARTs */
82 K_DUALGATE /* special for UARTs */
83};
84
85/**
86 * struct r9a06g032_clkdesc - describe a single clock
87 * @name: string describing this clock
88 * @managed: boolean indicating if this clock should be
89 * started/stopped as part of power management
90 * (not used in u-boot)
91 * @type: see enum @gate_type
92 * @index: the ID of this clock element
93 * @source: the ID+1 of the parent clock element.
94 * Root clock uses ID of ~0 (PARENT_ID);
95 * @gate: clock enable/disable
96 * @div_min: smallest permitted clock divider
97 * @div_max: largest permitted clock divider
98 * @reg: clock divider register offset, in 32-bit words
99 * @div_table: optional list of fixed clock divider values;
100 * must be in ascending order, zero for unused
101 * @div: divisor for fixed-factor clock
102 * @mul: multiplier for fixed-factor clock
103 * @group: UART group, 0=UART0/1/2, 1=UART3/4/5/6/7
104 * @sel: select either g1/r1 or g2/r2 as clock source
105 * @g1: 1st source gate (clock enable/disable)
106 * @r1: 1st source reset (module reset)
107 * @g2: 2nd source gate (clock enable/disable)
108 * @r2: 2nd source reset (module reset)
109 *
110 * Describes a single element in the clock tree hierarchy.
111 * As there are quite a large number of clock elements, this
112 * structure is packed tightly to conserve space.
113 */
114struct r9a06g032_clkdesc {
115 const char *name;
116 uint32_t managed:1;
117 enum gate_type type:3;
118 uint32_t index:8;
119 uint32_t source:8; /* source index + 1 (0 == none) */
120 union {
121 /* type = K_GATE */
122 struct r9a06g032_gate gate;
123 /* type = K_DIV */
124 struct {
125 unsigned int div_min:10, div_max:10, reg:10;
126 u16 div_table[4];
127 };
128 /* type = K_FFC */
129 struct {
130 u16 div, mul;
131 };
132 /* type = K_DUALGATE */
133 struct {
134 uint16_t group:1;
135 struct regbit sel, g1, r1, g2, r2;
136 } dual;
137 };
138};
139
140/*
141 * The last three arguments are not currently used,
142 * but are kept in the r9a06g032_clocks table below.
143 */
144#define I_GATE(_clk, _rst, _rdy, _midle, _scon, _mirack, _mistat) { \
145 .gate = _clk, \
146 .reset = _rst, \
147 .ready = _rdy, \
148 .midle = _midle, \
149 /* .scon = _scon, */ \
150 /* .mirack = _mirack, */ \
151 /* .mistat = _mistat */ \
152}
153#define D_GATE(_idx, _n, _src, ...) { \
154 .type = K_GATE, \
155 .index = R9A06G032_##_idx, \
156 .source = 1 + R9A06G032_##_src, \
157 .name = _n, \
158 .gate = I_GATE(__VA_ARGS__) \
159}
160#define D_MODULE(_idx, _n, _src, ...) { \
161 .type = K_GATE, \
162 .index = R9A06G032_##_idx, \
163 .source = 1 + R9A06G032_##_src, \
164 .name = _n, \
165 .managed = 1, \
166 .gate = I_GATE(__VA_ARGS__) \
167}
168#define D_ROOT(_idx, _n, _mul, _div) { \
169 .type = K_FFC, \
170 .index = R9A06G032_##_idx, \
171 .name = _n, \
172 .div = _div, \
173 .mul = _mul \
174}
175#define D_FFC(_idx, _n, _src, _div) { \
176 .type = K_FFC, \
177 .index = R9A06G032_##_idx, \
178 .source = 1 + R9A06G032_##_src, \
179 .name = _n, \
180 .div = _div, \
181 .mul = 1 \
182}
183#define D_DIV(_idx, _n, _src, _reg, _min, _max, ...) { \
184 .type = K_DIV, \
185 .index = R9A06G032_##_idx, \
186 .source = 1 + R9A06G032_##_src, \
187 .name = _n, \
188 .reg = _reg, \
189 .div_min = _min, \
190 .div_max = _max, \
191 .div_table = { __VA_ARGS__ } \
192}
193#define D_UGATE(_idx, _n, _src, _g, _g1, _r1, _g2, _r2) { \
194 .type = K_DUALGATE, \
195 .index = R9A06G032_##_idx, \
196 .source = 1 + R9A06G032_##_src, \
197 .name = _n, \
198 .dual = { \
199 .group = _g, \
200 .g1 = _g1, \
201 .r1 = _r1, \
202 .g2 = _g2, \
203 .r2 = _r2 \
204 }, \
205}
206
207/* Internal clock IDs */
208#define R9A06G032_CLKOUT 0
209#define R9A06G032_CLKOUT_D10 2
210#define R9A06G032_CLKOUT_D16 3
211#define R9A06G032_CLKOUT_D160 4
212#define R9A06G032_CLKOUT_D1OR2 5
213#define R9A06G032_CLKOUT_D20 6
214#define R9A06G032_CLKOUT_D40 7
215#define R9A06G032_CLKOUT_D5 8
216#define R9A06G032_CLKOUT_D8 9
217#define R9A06G032_DIV_ADC 10
218#define R9A06G032_DIV_I2C 11
219#define R9A06G032_DIV_NAND 12
220#define R9A06G032_DIV_P1_PG 13
221#define R9A06G032_DIV_P2_PG 14
222#define R9A06G032_DIV_P3_PG 15
223#define R9A06G032_DIV_P4_PG 16
224#define R9A06G032_DIV_P5_PG 17
225#define R9A06G032_DIV_P6_PG 18
226#define R9A06G032_DIV_QSPI0 19
227#define R9A06G032_DIV_QSPI1 20
228#define R9A06G032_DIV_REF_SYNC 21
229#define R9A06G032_DIV_SDIO0 22
230#define R9A06G032_DIV_SDIO1 23
231#define R9A06G032_DIV_SWITCH 24
232#define R9A06G032_DIV_UART 25
233#define R9A06G032_DIV_MOTOR 64
234#define R9A06G032_CLK_DDRPHY_PLLCLK_D4 78
235#define R9A06G032_CLK_ECAT100_D4 79
236#define R9A06G032_CLK_HSR100_D2 80
237#define R9A06G032_CLK_REF_SYNC_D4 81
238#define R9A06G032_CLK_REF_SYNC_D8 82
239#define R9A06G032_CLK_SERCOS100_D2 83
240#define R9A06G032_DIV_CA7 84
241
242#define R9A06G032_UART_GROUP_012 154
243#define R9A06G032_UART_GROUP_34567 155
244
245#define R9A06G032_CLOCK_COUNT (R9A06G032_UART_GROUP_34567 + 1)
246
247static const struct r9a06g032_clkdesc r9a06g032_clocks[] = {
248 D_ROOT(CLKOUT, "clkout", 25, 1),
249 D_ROOT(CLK_PLL_USB, "clk_pll_usb", 12, 10),
250 D_FFC(CLKOUT_D10, "clkout_d10", CLKOUT, 10),
251 D_FFC(CLKOUT_D16, "clkout_d16", CLKOUT, 16),
252 D_FFC(CLKOUT_D160, "clkout_d160", CLKOUT, 160),
253 D_DIV(CLKOUT_D1OR2, "clkout_d1or2", CLKOUT, 0, 1, 2),
254 D_FFC(CLKOUT_D20, "clkout_d20", CLKOUT, 20),
255 D_FFC(CLKOUT_D40, "clkout_d40", CLKOUT, 40),
256 D_FFC(CLKOUT_D5, "clkout_d5", CLKOUT, 5),
257 D_FFC(CLKOUT_D8, "clkout_d8", CLKOUT, 8),
258 D_DIV(DIV_ADC, "div_adc", CLKOUT, 77, 50, 250),
259 D_DIV(DIV_I2C, "div_i2c", CLKOUT, 78, 12, 16),
260 D_DIV(DIV_NAND, "div_nand", CLKOUT, 82, 12, 32),
261 D_DIV(DIV_P1_PG, "div_p1_pg", CLKOUT, 68, 12, 200),
262 D_DIV(DIV_P2_PG, "div_p2_pg", CLKOUT, 62, 12, 128),
263 D_DIV(DIV_P3_PG, "div_p3_pg", CLKOUT, 64, 8, 128),
264 D_DIV(DIV_P4_PG, "div_p4_pg", CLKOUT, 66, 8, 128),
265 D_DIV(DIV_P5_PG, "div_p5_pg", CLKOUT, 71, 10, 40),
266 D_DIV(DIV_P6_PG, "div_p6_pg", CLKOUT, 18, 12, 64),
267 D_DIV(DIV_QSPI0, "div_qspi0", CLKOUT, 73, 3, 7),
268 D_DIV(DIV_QSPI1, "div_qspi1", CLKOUT, 25, 3, 7),
269 D_DIV(DIV_REF_SYNC, "div_ref_sync", CLKOUT, 56, 2, 16, 2, 4, 8, 16),
270 D_DIV(DIV_SDIO0, "div_sdio0", CLKOUT, 74, 20, 128),
271 D_DIV(DIV_SDIO1, "div_sdio1", CLKOUT, 75, 20, 128),
272 D_DIV(DIV_SWITCH, "div_switch", CLKOUT, 37, 5, 40),
273 D_DIV(DIV_UART, "div_uart", CLKOUT, 79, 12, 128),
274 D_GATE(CLK_25_PG4, "clk_25_pg4", CLKOUT_D40, RB(0xe8, 9),
275 RB(0xe8, 10), RB(0xe8, 11), RB(0x00, 0),
276 RB(0x15c, 3), RB(0x00, 0), RB(0x00, 0)),
277 D_GATE(CLK_25_PG5, "clk_25_pg5", CLKOUT_D40, RB(0xe8, 12),
278 RB(0xe8, 13), RB(0xe8, 14), RB(0x00, 0),
279 RB(0x15c, 4), RB(0x00, 0), RB(0x00, 0)),
280 D_GATE(CLK_25_PG6, "clk_25_pg6", CLKOUT_D40, RB(0xe8, 15),
281 RB(0xe8, 16), RB(0xe8, 17), RB(0x00, 0),
282 RB(0x15c, 5), RB(0x00, 0), RB(0x00, 0)),
283 D_GATE(CLK_25_PG7, "clk_25_pg7", CLKOUT_D40, RB(0xe8, 18),
284 RB(0xe8, 19), RB(0xe8, 20), RB(0x00, 0),
285 RB(0x15c, 6), RB(0x00, 0), RB(0x00, 0)),
286 D_GATE(CLK_25_PG8, "clk_25_pg8", CLKOUT_D40, RB(0xe8, 21),
287 RB(0xe8, 22), RB(0xe8, 23), RB(0x00, 0),
288 RB(0x15c, 7), RB(0x00, 0), RB(0x00, 0)),
289 D_GATE(CLK_ADC, "clk_adc", DIV_ADC, RB(0x3c, 10),
290 RB(0x3c, 11), RB(0x00, 0), RB(0x00, 0),
291 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
292 D_GATE(CLK_ECAT100, "clk_ecat100", CLKOUT_D10, RB(0x80, 5),
293 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0),
294 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
295 D_GATE(CLK_HSR100, "clk_hsr100", CLKOUT_D10, RB(0x90, 3),
296 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0),
297 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
298 D_GATE(CLK_I2C0, "clk_i2c0", DIV_I2C, RB(0x3c, 6),
299 RB(0x3c, 7), RB(0x00, 0), RB(0x00, 0),
300 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
301 D_GATE(CLK_I2C1, "clk_i2c1", DIV_I2C, RB(0x3c, 8),
302 RB(0x3c, 9), RB(0x00, 0), RB(0x00, 0),
303 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
304 D_GATE(CLK_MII_REF, "clk_mii_ref", CLKOUT_D40, RB(0x68, 2),
305 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0),
306 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
307 D_GATE(CLK_NAND, "clk_nand", DIV_NAND, RB(0x50, 4),
308 RB(0x50, 5), RB(0x00, 0), RB(0x00, 0),
309 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
310 D_GATE(CLK_NOUSBP2_PG6, "clk_nousbp2_pg6", DIV_P2_PG, RB(0xec, 20),
311 RB(0xec, 21), RB(0x00, 0), RB(0x00, 0),
312 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
313 D_GATE(CLK_P1_PG2, "clk_p1_pg2", DIV_P1_PG, RB(0x10c, 2),
314 RB(0x10c, 3), RB(0x00, 0), RB(0x00, 0),
315 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
316 D_GATE(CLK_P1_PG3, "clk_p1_pg3", DIV_P1_PG, RB(0x10c, 4),
317 RB(0x10c, 5), RB(0x00, 0), RB(0x00, 0),
318 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
319 D_GATE(CLK_P1_PG4, "clk_p1_pg4", DIV_P1_PG, RB(0x10c, 6),
320 RB(0x10c, 7), RB(0x00, 0), RB(0x00, 0),
321 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
322 D_GATE(CLK_P4_PG3, "clk_p4_pg3", DIV_P4_PG, RB(0x104, 4),
323 RB(0x104, 5), RB(0x00, 0), RB(0x00, 0),
324 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
325 D_GATE(CLK_P4_PG4, "clk_p4_pg4", DIV_P4_PG, RB(0x104, 6),
326 RB(0x104, 7), RB(0x00, 0), RB(0x00, 0),
327 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
328 D_GATE(CLK_P6_PG1, "clk_p6_pg1", DIV_P6_PG, RB(0x114, 0),
329 RB(0x114, 1), RB(0x114, 2), RB(0x00, 0),
330 RB(0x16c, 0), RB(0x00, 0), RB(0x00, 0)),
331 D_GATE(CLK_P6_PG2, "clk_p6_pg2", DIV_P6_PG, RB(0x114, 3),
332 RB(0x114, 4), RB(0x114, 5), RB(0x00, 0),
333 RB(0x16c, 1), RB(0x00, 0), RB(0x00, 0)),
334 D_GATE(CLK_P6_PG3, "clk_p6_pg3", DIV_P6_PG, RB(0x114, 6),
335 RB(0x114, 7), RB(0x114, 8), RB(0x00, 0),
336 RB(0x16c, 2), RB(0x00, 0), RB(0x00, 0)),
337 D_GATE(CLK_P6_PG4, "clk_p6_pg4", DIV_P6_PG, RB(0x114, 9),
338 RB(0x114, 10), RB(0x114, 11), RB(0x00, 0),
339 RB(0x16c, 3), RB(0x00, 0), RB(0x00, 0)),
340 D_MODULE(CLK_PCI_USB, "clk_pci_usb", CLKOUT_D40, RB(0x1c, 6),
341 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0),
342 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
343 D_GATE(CLK_QSPI0, "clk_qspi0", DIV_QSPI0, RB(0x54, 4),
344 RB(0x54, 5), RB(0x00, 0), RB(0x00, 0),
345 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
346 D_GATE(CLK_QSPI1, "clk_qspi1", DIV_QSPI1, RB(0x90, 4),
347 RB(0x90, 5), RB(0x00, 0), RB(0x00, 0),
348 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
349 D_GATE(CLK_RGMII_REF, "clk_rgmii_ref", CLKOUT_D8, RB(0x68, 0),
350 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0),
351 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
352 D_GATE(CLK_RMII_REF, "clk_rmii_ref", CLKOUT_D20, RB(0x68, 1),
353 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0),
354 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
355 D_GATE(CLK_SDIO0, "clk_sdio0", DIV_SDIO0, RB(0x0c, 4),
356 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0),
357 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
358 D_GATE(CLK_SDIO1, "clk_sdio1", DIV_SDIO1, RB(0xc8, 4),
359 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0),
360 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
361 D_GATE(CLK_SERCOS100, "clk_sercos100", CLKOUT_D10, RB(0x84, 5),
362 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0),
363 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
364 D_GATE(CLK_SLCD, "clk_slcd", DIV_P1_PG, RB(0x10c, 0),
365 RB(0x10c, 1), RB(0x00, 0), RB(0x00, 0),
366 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
367 D_GATE(CLK_SPI0, "clk_spi0", DIV_P3_PG, RB(0xfc, 0),
368 RB(0xfc, 1), RB(0x00, 0), RB(0x00, 0),
369 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
370 D_GATE(CLK_SPI1, "clk_spi1", DIV_P3_PG, RB(0xfc, 2),
371 RB(0xfc, 3), RB(0x00, 0), RB(0x00, 0),
372 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
373 D_GATE(CLK_SPI2, "clk_spi2", DIV_P3_PG, RB(0xfc, 4),
374 RB(0xfc, 5), RB(0x00, 0), RB(0x00, 0),
375 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
376 D_GATE(CLK_SPI3, "clk_spi3", DIV_P3_PG, RB(0xfc, 6),
377 RB(0xfc, 7), RB(0x00, 0), RB(0x00, 0),
378 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
379 D_GATE(CLK_SPI4, "clk_spi4", DIV_P4_PG, RB(0x104, 0),
380 RB(0x104, 1), RB(0x00, 0), RB(0x00, 0),
381 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
382 D_GATE(CLK_SPI5, "clk_spi5", DIV_P4_PG, RB(0x104, 2),
383 RB(0x104, 3), RB(0x00, 0), RB(0x00, 0),
384 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
385 D_GATE(CLK_SWITCH, "clk_switch", DIV_SWITCH, RB(0x130, 2),
386 RB(0x130, 3), RB(0x00, 0), RB(0x00, 0),
387 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
388 D_DIV(DIV_MOTOR, "div_motor", CLKOUT_D5, 84, 2, 8),
389 D_MODULE(HCLK_ECAT125, "hclk_ecat125", CLKOUT_D8, RB(0x80, 0),
390 RB(0x80, 1), RB(0x00, 0), RB(0x80, 2),
391 RB(0x00, 0), RB(0x88, 0), RB(0x88, 1)),
392 D_MODULE(HCLK_PINCONFIG, "hclk_pinconfig", CLKOUT_D40, RB(0xe8, 0),
393 RB(0xe8, 1), RB(0xe8, 2), RB(0x00, 0),
394 RB(0x15c, 0), RB(0x00, 0), RB(0x00, 0)),
395 D_MODULE(HCLK_SERCOS, "hclk_sercos", CLKOUT_D10, RB(0x84, 0),
396 RB(0x84, 2), RB(0x00, 0), RB(0x84, 1),
397 RB(0x00, 0), RB(0x8c, 0), RB(0x8c, 1)),
398 D_MODULE(HCLK_SGPIO2, "hclk_sgpio2", DIV_P5_PG, RB(0x118, 3),
399 RB(0x118, 4), RB(0x118, 5), RB(0x00, 0),
400 RB(0x168, 1), RB(0x00, 0), RB(0x00, 0)),
401 D_MODULE(HCLK_SGPIO3, "hclk_sgpio3", DIV_P5_PG, RB(0x118, 6),
402 RB(0x118, 7), RB(0x118, 8), RB(0x00, 0),
403 RB(0x168, 2), RB(0x00, 0), RB(0x00, 0)),
404 D_MODULE(HCLK_SGPIO4, "hclk_sgpio4", DIV_P5_PG, RB(0x118, 9),
405 RB(0x118, 10), RB(0x118, 11), RB(0x00, 0),
406 RB(0x168, 3), RB(0x00, 0), RB(0x00, 0)),
407 D_MODULE(HCLK_TIMER0, "hclk_timer0", CLKOUT_D40, RB(0xe8, 3),
408 RB(0xe8, 4), RB(0xe8, 5), RB(0x00, 0),
409 RB(0x15c, 1), RB(0x00, 0), RB(0x00, 0)),
410 D_MODULE(HCLK_TIMER1, "hclk_timer1", CLKOUT_D40, RB(0xe8, 6),
411 RB(0xe8, 7), RB(0xe8, 8), RB(0x00, 0),
412 RB(0x15c, 2), RB(0x00, 0), RB(0x00, 0)),
413 D_MODULE(HCLK_USBF, "hclk_usbf", CLKOUT_D8, RB(0x1c, 3),
414 RB(0x00, 0), RB(0x00, 0), RB(0x1c, 4),
415 RB(0x00, 0), RB(0x20, 2), RB(0x20, 3)),
416 D_MODULE(HCLK_USBH, "hclk_usbh", CLKOUT_D8, RB(0x1c, 0),
417 RB(0x1c, 1), RB(0x00, 0), RB(0x1c, 2),
418 RB(0x00, 0), RB(0x20, 0), RB(0x20, 1)),
419 D_MODULE(HCLK_USBPM, "hclk_usbpm", CLKOUT_D8, RB(0x1c, 5),
420 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0),
421 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
422 D_GATE(CLK_48_PG_F, "clk_48_pg_f", CLK_48, RB(0xf0, 12),
423 RB(0xf0, 13), RB(0x00, 0), RB(0xf0, 14),
424 RB(0x00, 0), RB(0x160, 4), RB(0x160, 5)),
425 D_GATE(CLK_48_PG4, "clk_48_pg4", CLK_48, RB(0xf0, 9),
426 RB(0xf0, 10), RB(0xf0, 11), RB(0x00, 0),
427 RB(0x160, 3), RB(0x00, 0), RB(0x00, 0)),
428 D_FFC(CLK_DDRPHY_PLLCLK_D4, "clk_ddrphy_pllclk_d4", CLK_DDRPHY_PLLCLK, 4),
429 D_FFC(CLK_ECAT100_D4, "clk_ecat100_d4", CLK_ECAT100, 4),
430 D_FFC(CLK_HSR100_D2, "clk_hsr100_d2", CLK_HSR100, 2),
431 D_FFC(CLK_REF_SYNC_D4, "clk_ref_sync_d4", CLK_REF_SYNC, 4),
432 D_FFC(CLK_REF_SYNC_D8, "clk_ref_sync_d8", CLK_REF_SYNC, 8),
433 D_FFC(CLK_SERCOS100_D2, "clk_sercos100_d2", CLK_SERCOS100, 2),
434 D_DIV(DIV_CA7, "div_ca7", CLK_REF_SYNC, 57, 1, 4, 1, 2, 4),
435 D_MODULE(HCLK_CAN0, "hclk_can0", CLK_48, RB(0xf0, 3),
436 RB(0xf0, 4), RB(0xf0, 5), RB(0x00, 0),
437 RB(0x160, 1), RB(0x00, 0), RB(0x00, 0)),
438 D_MODULE(HCLK_CAN1, "hclk_can1", CLK_48, RB(0xf0, 6),
439 RB(0xf0, 7), RB(0xf0, 8), RB(0x00, 0),
440 RB(0x160, 2), RB(0x00, 0), RB(0x00, 0)),
441 D_MODULE(HCLK_DELTASIGMA, "hclk_deltasigma", DIV_MOTOR, RB(0x3c, 15),
442 RB(0x3c, 16), RB(0x3c, 17), RB(0x00, 0),
443 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
444 D_MODULE(HCLK_PWMPTO, "hclk_pwmpto", DIV_MOTOR, RB(0x3c, 12),
445 RB(0x3c, 13), RB(0x3c, 14), RB(0x00, 0),
446 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
447 D_MODULE(HCLK_RSV, "hclk_rsv", CLK_48, RB(0xf0, 0),
448 RB(0xf0, 1), RB(0xf0, 2), RB(0x00, 0),
449 RB(0x160, 0), RB(0x00, 0), RB(0x00, 0)),
450 D_MODULE(HCLK_SGPIO0, "hclk_sgpio0", DIV_MOTOR, RB(0x3c, 0),
451 RB(0x3c, 1), RB(0x3c, 2), RB(0x00, 0),
452 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
453 D_MODULE(HCLK_SGPIO1, "hclk_sgpio1", DIV_MOTOR, RB(0x3c, 3),
454 RB(0x3c, 4), RB(0x3c, 5), RB(0x00, 0),
455 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
456 D_DIV(RTOS_MDC, "rtos_mdc", CLK_REF_SYNC, 100, 80, 640, 80, 160, 320, 640),
457 D_GATE(CLK_CM3, "clk_cm3", CLK_REF_SYNC_D4, RB(0x174, 0),
458 RB(0x174, 1), RB(0x00, 0), RB(0x174, 2),
459 RB(0x00, 0), RB(0x178, 0), RB(0x178, 1)),
460 D_GATE(CLK_DDRC, "clk_ddrc", CLK_DDRPHY_PLLCLK_D4, RB(0x64, 3),
461 RB(0x64, 4), RB(0x00, 0), RB(0x00, 0),
462 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
463 D_GATE(CLK_ECAT25, "clk_ecat25", CLK_ECAT100_D4, RB(0x80, 3),
464 RB(0x80, 4), RB(0x00, 0), RB(0x00, 0),
465 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
466 D_GATE(CLK_HSR50, "clk_hsr50", CLK_HSR100_D2, RB(0x90, 4),
467 RB(0x90, 5), RB(0x00, 0), RB(0x00, 0),
468 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
469 D_GATE(CLK_HW_RTOS, "clk_hw_rtos", CLK_REF_SYNC_D4, RB(0x18c, 0),
470 RB(0x18c, 1), RB(0x00, 0), RB(0x00, 0),
471 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
472 D_GATE(CLK_SERCOS50, "clk_sercos50", CLK_SERCOS100_D2, RB(0x84, 4),
473 RB(0x84, 3), RB(0x00, 0), RB(0x00, 0),
474 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
475 D_MODULE(HCLK_ADC, "hclk_adc", CLK_REF_SYNC_D8, RB(0x34, 15),
476 RB(0x34, 16), RB(0x34, 17), RB(0x00, 0),
477 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
478 D_MODULE(HCLK_CM3, "hclk_cm3", CLK_REF_SYNC_D4, RB(0x184, 0),
479 RB(0x184, 1), RB(0x184, 2), RB(0x00, 0),
480 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
481 D_MODULE(HCLK_CRYPTO_EIP150, "hclk_crypto_eip150", CLK_REF_SYNC_D4, RB(0x24, 3),
482 RB(0x24, 4), RB(0x24, 5), RB(0x00, 0),
483 RB(0x28, 2), RB(0x00, 0), RB(0x00, 0)),
484 D_MODULE(HCLK_CRYPTO_EIP93, "hclk_crypto_eip93", CLK_REF_SYNC_D4, RB(0x24, 0),
485 RB(0x24, 1), RB(0x00, 0), RB(0x24, 2),
486 RB(0x00, 0), RB(0x28, 0), RB(0x28, 1)),
487 D_MODULE(HCLK_DDRC, "hclk_ddrc", CLK_REF_SYNC_D4, RB(0x64, 0),
488 RB(0x64, 2), RB(0x00, 0), RB(0x64, 1),
489 RB(0x00, 0), RB(0x74, 0), RB(0x74, 1)),
490 D_MODULE(HCLK_DMA0, "hclk_dma0", CLK_REF_SYNC_D4, RB(0x4c, 0),
491 RB(0x4c, 1), RB(0x4c, 2), RB(0x4c, 3),
492 RB(0x58, 0), RB(0x58, 1), RB(0x58, 2)),
493 D_MODULE(HCLK_DMA1, "hclk_dma1", CLK_REF_SYNC_D4, RB(0x4c, 4),
494 RB(0x4c, 5), RB(0x4c, 6), RB(0x4c, 7),
495 RB(0x58, 3), RB(0x58, 4), RB(0x58, 5)),
496 D_MODULE(HCLK_GMAC0, "hclk_gmac0", CLK_REF_SYNC_D4, RB(0x6c, 0),
497 RB(0x6c, 1), RB(0x6c, 2), RB(0x6c, 3),
498 RB(0x78, 0), RB(0x78, 1), RB(0x78, 2)),
499 D_MODULE(HCLK_GMAC1, "hclk_gmac1", CLK_REF_SYNC_D4, RB(0x70, 0),
500 RB(0x70, 1), RB(0x70, 2), RB(0x70, 3),
501 RB(0x7c, 0), RB(0x7c, 1), RB(0x7c, 2)),
502 D_MODULE(HCLK_GPIO0, "hclk_gpio0", CLK_REF_SYNC_D4, RB(0x40, 18),
503 RB(0x40, 19), RB(0x40, 20), RB(0x00, 0),
504 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
505 D_MODULE(HCLK_GPIO1, "hclk_gpio1", CLK_REF_SYNC_D4, RB(0x40, 21),
506 RB(0x40, 22), RB(0x40, 23), RB(0x00, 0),
507 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
508 D_MODULE(HCLK_GPIO2, "hclk_gpio2", CLK_REF_SYNC_D4, RB(0x44, 9),
509 RB(0x44, 10), RB(0x44, 11), RB(0x00, 0),
510 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
511 D_MODULE(HCLK_HSR, "hclk_hsr", CLK_HSR100_D2, RB(0x90, 0),
512 RB(0x90, 2), RB(0x00, 0), RB(0x90, 1),
513 RB(0x00, 0), RB(0x98, 0), RB(0x98, 1)),
514 D_MODULE(HCLK_I2C0, "hclk_i2c0", CLK_REF_SYNC_D8, RB(0x34, 9),
515 RB(0x34, 10), RB(0x34, 11), RB(0x00, 0),
516 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
517 D_MODULE(HCLK_I2C1, "hclk_i2c1", CLK_REF_SYNC_D8, RB(0x34, 12),
518 RB(0x34, 13), RB(0x34, 14), RB(0x00, 0),
519 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
520 D_MODULE(HCLK_LCD, "hclk_lcd", CLK_REF_SYNC_D4, RB(0xf4, 0),
521 RB(0xf4, 1), RB(0xf4, 2), RB(0x00, 0),
522 RB(0x164, 0), RB(0x00, 0), RB(0x00, 0)),
523 D_MODULE(HCLK_MSEBI_M, "hclk_msebi_m", CLK_REF_SYNC_D4, RB(0x2c, 4),
524 RB(0x2c, 5), RB(0x2c, 6), RB(0x00, 0),
525 RB(0x30, 3), RB(0x00, 0), RB(0x00, 0)),
526 D_MODULE(HCLK_MSEBI_S, "hclk_msebi_s", CLK_REF_SYNC_D4, RB(0x2c, 0),
527 RB(0x2c, 1), RB(0x2c, 2), RB(0x2c, 3),
528 RB(0x30, 0), RB(0x30, 1), RB(0x30, 2)),
529 D_MODULE(HCLK_NAND, "hclk_nand", CLK_REF_SYNC_D4, RB(0x50, 0),
530 RB(0x50, 1), RB(0x50, 2), RB(0x50, 3),
531 RB(0x5c, 0), RB(0x5c, 1), RB(0x5c, 2)),
532 D_MODULE(HCLK_PG_I, "hclk_pg_i", CLK_REF_SYNC_D4, RB(0xf4, 12),
533 RB(0xf4, 13), RB(0x00, 0), RB(0xf4, 14),
534 RB(0x00, 0), RB(0x164, 4), RB(0x164, 5)),
535 D_MODULE(HCLK_PG19, "hclk_pg19", CLK_REF_SYNC_D4, RB(0x44, 12),
536 RB(0x44, 13), RB(0x44, 14), RB(0x00, 0),
537 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
538 D_MODULE(HCLK_PG20, "hclk_pg20", CLK_REF_SYNC_D4, RB(0x44, 15),
539 RB(0x44, 16), RB(0x44, 17), RB(0x00, 0),
540 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
541 D_MODULE(HCLK_PG3, "hclk_pg3", CLK_REF_SYNC_D4, RB(0xf4, 6),
542 RB(0xf4, 7), RB(0xf4, 8), RB(0x00, 0),
543 RB(0x164, 2), RB(0x00, 0), RB(0x00, 0)),
544 D_MODULE(HCLK_PG4, "hclk_pg4", CLK_REF_SYNC_D4, RB(0xf4, 9),
545 RB(0xf4, 10), RB(0xf4, 11), RB(0x00, 0),
546 RB(0x164, 3), RB(0x00, 0), RB(0x00, 0)),
547 D_MODULE(HCLK_QSPI0, "hclk_qspi0", CLK_REF_SYNC_D4, RB(0x54, 0),
548 RB(0x54, 1), RB(0x54, 2), RB(0x54, 3),
549 RB(0x60, 0), RB(0x60, 1), RB(0x60, 2)),
550 D_MODULE(HCLK_QSPI1, "hclk_qspi1", CLK_REF_SYNC_D4, RB(0x90, 0),
551 RB(0x90, 1), RB(0x90, 2), RB(0x90, 3),
552 RB(0x98, 0), RB(0x98, 1), RB(0x98, 2)),
553 D_MODULE(HCLK_ROM, "hclk_rom", CLK_REF_SYNC_D4, RB(0x154, 0),
554 RB(0x154, 1), RB(0x154, 2), RB(0x00, 0),
555 RB(0x170, 0), RB(0x00, 0), RB(0x00, 0)),
556 D_MODULE(HCLK_RTC, "hclk_rtc", CLK_REF_SYNC_D8, RB(0x140, 0),
557 RB(0x140, 3), RB(0x00, 0), RB(0x140, 2),
558 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
559 D_MODULE(HCLK_SDIO0, "hclk_sdio0", CLK_REF_SYNC_D4, RB(0x0c, 0),
560 RB(0x0c, 1), RB(0x0c, 2), RB(0x0c, 3),
561 RB(0x10, 0), RB(0x10, 1), RB(0x10, 2)),
562 D_MODULE(HCLK_SDIO1, "hclk_sdio1", CLK_REF_SYNC_D4, RB(0xc8, 0),
563 RB(0xc8, 1), RB(0xc8, 2), RB(0xc8, 3),
564 RB(0xcc, 0), RB(0xcc, 1), RB(0xcc, 2)),
565 D_MODULE(HCLK_SEMAP, "hclk_semap", CLK_REF_SYNC_D4, RB(0xf4, 3),
566 RB(0xf4, 4), RB(0xf4, 5), RB(0x00, 0),
567 RB(0x164, 1), RB(0x00, 0), RB(0x00, 0)),
568 D_MODULE(HCLK_SPI0, "hclk_spi0", CLK_REF_SYNC_D4, RB(0x40, 0),
569 RB(0x40, 1), RB(0x40, 2), RB(0x00, 0),
570 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
571 D_MODULE(HCLK_SPI1, "hclk_spi1", CLK_REF_SYNC_D4, RB(0x40, 3),
572 RB(0x40, 4), RB(0x40, 5), RB(0x00, 0),
573 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
574 D_MODULE(HCLK_SPI2, "hclk_spi2", CLK_REF_SYNC_D4, RB(0x40, 6),
575 RB(0x40, 7), RB(0x40, 8), RB(0x00, 0),
576 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
577 D_MODULE(HCLK_SPI3, "hclk_spi3", CLK_REF_SYNC_D4, RB(0x40, 9),
578 RB(0x40, 10), RB(0x40, 11), RB(0x00, 0),
579 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
580 D_MODULE(HCLK_SPI4, "hclk_spi4", CLK_REF_SYNC_D4, RB(0x40, 12),
581 RB(0x40, 13), RB(0x40, 14), RB(0x00, 0),
582 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
583 D_MODULE(HCLK_SPI5, "hclk_spi5", CLK_REF_SYNC_D4, RB(0x40, 15),
584 RB(0x40, 16), RB(0x40, 17), RB(0x00, 0),
585 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
586 D_MODULE(HCLK_SWITCH, "hclk_switch", CLK_REF_SYNC_D4, RB(0x130, 0),
587 RB(0x00, 0), RB(0x130, 1), RB(0x00, 0),
588 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
589 D_MODULE(HCLK_SWITCH_RG, "hclk_switch_rg", CLK_REF_SYNC_D4, RB(0x188, 0),
590 RB(0x188, 1), RB(0x188, 2), RB(0x00, 0),
591 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
592 D_MODULE(HCLK_UART0, "hclk_uart0", CLK_REF_SYNC_D8, RB(0x34, 0),
593 RB(0x34, 1), RB(0x34, 2), RB(0x00, 0),
594 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
595 D_MODULE(HCLK_UART1, "hclk_uart1", CLK_REF_SYNC_D8, RB(0x34, 3),
596 RB(0x34, 4), RB(0x34, 5), RB(0x00, 0),
597 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
598 D_MODULE(HCLK_UART2, "hclk_uart2", CLK_REF_SYNC_D8, RB(0x34, 6),
599 RB(0x34, 7), RB(0x34, 8), RB(0x00, 0),
600 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
601 D_MODULE(HCLK_UART3, "hclk_uart3", CLK_REF_SYNC_D4, RB(0x40, 24),
602 RB(0x40, 25), RB(0x40, 26), RB(0x00, 0),
603 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
604 D_MODULE(HCLK_UART4, "hclk_uart4", CLK_REF_SYNC_D4, RB(0x40, 27),
605 RB(0x40, 28), RB(0x40, 29), RB(0x00, 0),
606 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
607 D_MODULE(HCLK_UART5, "hclk_uart5", CLK_REF_SYNC_D4, RB(0x44, 0),
608 RB(0x44, 1), RB(0x44, 2), RB(0x00, 0),
609 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
610 D_MODULE(HCLK_UART6, "hclk_uart6", CLK_REF_SYNC_D4, RB(0x44, 3),
611 RB(0x44, 4), RB(0x44, 5), RB(0x00, 0),
612 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
613 D_MODULE(HCLK_UART7, "hclk_uart7", CLK_REF_SYNC_D4, RB(0x44, 6),
614 RB(0x44, 7), RB(0x44, 8), RB(0x00, 0),
615 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
616 /*
617 * These are not hardware clocks, but are needed to handle the special
618 * case where we have a 'selector bit' that doesn't just change the
619 * parent for a clock, but also the gate it's supposed to use.
620 */
621 {
622 .index = R9A06G032_UART_GROUP_012,
623 .name = "uart_group_012",
624 .type = K_BITSEL,
625 .source = 1 + R9A06G032_DIV_UART,
626 /* R9A06G032_SYSCTRL_REG_PWRCTRL_PG0_0 */
627 .dual.sel = RB(0x34, 30),
628 .dual.group = 0,
629 },
630 {
631 .index = R9A06G032_UART_GROUP_34567,
632 .name = "uart_group_34567",
633 .type = K_BITSEL,
634 .source = 1 + R9A06G032_DIV_P2_PG,
635 /* R9A06G032_SYSCTRL_REG_PWRCTRL_PG1_PR2 */
636 .dual.sel = RB(0xec, 24),
637 .dual.group = 1,
638 },
639 D_UGATE(CLK_UART0, "clk_uart0", UART_GROUP_012, 0,
640 RB(0x34, 18), RB(0x34, 19), RB(0x34, 20), RB(0x34, 21)),
641 D_UGATE(CLK_UART1, "clk_uart1", UART_GROUP_012, 0,
642 RB(0x34, 22), RB(0x34, 23), RB(0x34, 24), RB(0x34, 25)),
643 D_UGATE(CLK_UART2, "clk_uart2", UART_GROUP_012, 0,
644 RB(0x34, 26), RB(0x34, 27), RB(0x34, 28), RB(0x34, 29)),
645 D_UGATE(CLK_UART3, "clk_uart3", UART_GROUP_34567, 1,
646 RB(0xec, 0), RB(0xec, 1), RB(0xec, 2), RB(0xec, 3)),
647 D_UGATE(CLK_UART4, "clk_uart4", UART_GROUP_34567, 1,
648 RB(0xec, 4), RB(0xec, 5), RB(0xec, 6), RB(0xec, 7)),
649 D_UGATE(CLK_UART5, "clk_uart5", UART_GROUP_34567, 1,
650 RB(0xec, 8), RB(0xec, 9), RB(0xec, 10), RB(0xec, 11)),
651 D_UGATE(CLK_UART6, "clk_uart6", UART_GROUP_34567, 1,
652 RB(0xec, 12), RB(0xec, 13), RB(0xec, 14), RB(0xec, 15)),
653 D_UGATE(CLK_UART7, "clk_uart7", UART_GROUP_34567, 1,
654 RB(0xec, 16), RB(0xec, 17), RB(0xec, 18), RB(0xec, 19)),
655};
656
657struct r9a06g032_priv {
658 struct regmap *regmap;
659 struct clk mclk;
660};
661
662static const struct r9a06g032_clkdesc *r9a06g032_clk_get(struct clk *clk)
663{
664 const unsigned long clkid = clk->id & 0xffff;
665 int i;
666
667 for (i = 0; i < ARRAY_SIZE(r9a06g032_clocks); i++) {
668 if (r9a06g032_clocks[i].index == clkid)
669 return &r9a06g032_clocks[i];
670 }
671
672 return NULL;
673}
674
675#define PARENT_ID (~0)
676
677static int r9a06g032_clk_get_parent(struct clk *clk, struct clk *parent)
678{
679 const struct r9a06g032_clkdesc *desc = r9a06g032_clk_get(clk);
680
681 if (!desc)
682 return -ENOENT;
683
684 if (desc->source)
685 parent->id = desc->source - 1;
686 else
687 parent->id = PARENT_ID; /* Top-level clock */
688
689 parent->dev = clk->dev;
690
691 return 0;
692}
693
694static ulong r9a06g032_clk_get_parent_rate(struct clk *clk)
695{
696 struct clk parent;
697 unsigned long parent_rate;
698 struct r9a06g032_priv *clocks = dev_get_priv(clk->dev);
699
700 if (r9a06g032_clk_get_parent(clk, &parent)) {
701 dev_dbg(clk->dev, "Failed to get parent clock for id=%lu\b", clk->id);
702 return 0;
703 }
704
705 if (parent.id == PARENT_ID)
706 parent_rate = clk_get_rate(&clocks->mclk);
707 else
708 parent_rate = clk_get_rate(&parent);
709
710 if (!parent_rate)
711 dev_dbg(clk->dev, "%s: parent_rate is zero\n", __func__);
712
713 return parent_rate;
714}
715
716/* register/bit pairs are encoded as an uint16_t */
717static void clk_rdesc_set(struct r9a06g032_priv *clocks,
718 struct regbit rb, unsigned int on)
719{
720 uint reg = rb.reg * 4;
721 uint bit = rb.bit;
722
723 if (!reg && !bit)
724 return;
725
726 uint mask = BIT(bit);
727 uint val = (!!on) << bit;
728
729 regmap_update_bits(clocks->regmap, reg, mask, val);
730}
731
732static int clk_rdesc_get(struct r9a06g032_priv *clocks,
733 struct regbit rb)
734{
735 uint reg = rb.reg * 4;
736 uint bit = rb.bit;
737 u32 val = 0;
738
739 regmap_read(clocks->regmap, reg, &val);
740
741 return !!(val & BIT(bit));
742}
743
744/*
745 * Cheating a little bit here: leverage the existing code to control the
746 * per-clock reset. It should really be handled by a reset controller instead.
747 */
748void clk_rzn1_reset_state(struct clk *clk, int on)
749{
750 struct r9a06g032_priv *clocks = dev_get_priv(clk->dev);
751 const struct r9a06g032_clkdesc *desc = r9a06g032_clk_get(clk);
752 const struct r9a06g032_gate *g;
753
754 assert(desc);
755 assert(desc->type == K_GATE);
756 g = &desc->gate;
757
758 clk_rdesc_set(clocks, g->reset, on);
759}
760
761/*
762 * This implements the R9A06G032 clock gate 'driver'. We cannot use the system's
763 * clock gate framework as the gates on the R9A06G032 have a special enabling
764 * sequence, therefore we use this little proxy.
765 */
766static int r9a06g032_clk_gate_set(struct clk *clk, int on)
767{
768 struct r9a06g032_priv *clocks = dev_get_priv(clk->dev);
769 const struct r9a06g032_clkdesc *desc = r9a06g032_clk_get(clk);
770 const struct r9a06g032_gate *g;
771
772 assert(desc);
773 assert(desc->type == K_GATE);
774 g = &desc->gate;
775
776 /* Enable or disable the clock */
777 clk_rdesc_set(clocks, g->gate, on);
778
779 /* De-assert reset */
780 clk_rdesc_set(clocks, g->reset, 1);
781
782 /* Hardware manual recommends 5us delay after enabling clock & reset */
783 udelay(5);
784
785 /* If the peripheral is memory mapped (i.e. an AXI slave), there is an
786 * associated SLVRDY bit in the System Controller that needs to be set
787 * so that the FlexWAY bus fabric passes on the read/write requests.
788 */
789 clk_rdesc_set(clocks, g->ready, on);
790
791 /* Clear 'Master Idle Request' bit */
792 clk_rdesc_set(clocks, g->midle, !on);
793
794 /* Note: We don't wait for FlexWAY Socket Connection signal */
795
796 return 0;
797}
798
799static int r9a06g032_clk_gate_enable(struct clk *clk)
800{
801 return r9a06g032_clk_gate_set(clk, 1);
802}
803
804static int r9a06g032_clk_gate_disable(struct clk *clk)
805{
806 return r9a06g032_clk_gate_set(clk, 0);
807}
808
809/*
810 * Fixed factor clock
811 */
812static ulong r9a06g032_ffc_get_rate(struct clk *clk)
813{
814 const struct r9a06g032_clkdesc *desc = r9a06g032_clk_get(clk);
815 unsigned long parent_rate = r9a06g032_clk_get_parent_rate(clk);
816 unsigned long long rate;
817
818 rate = (unsigned long long)parent_rate * desc->mul;
819 rate = DIV_ROUND_UP(rate, desc->div);
820
821 return (ulong)rate;
822}
823
824/*
825 * This implements R9A06G032 clock divider 'driver'. This differs from the
826 * standard clk_divider because the set_rate method must also set b[31] to
827 * trigger the hardware rate change. In theory it should also wait for this
828 * bit to clear.
829 */
830static ulong r9a06g032_div_get_rate(struct clk *clk)
831{
832 struct r9a06g032_priv *clocks = dev_get_priv(clk->dev);
833 const struct r9a06g032_clkdesc *desc = r9a06g032_clk_get(clk);
834 unsigned long parent_rate = r9a06g032_clk_get_parent_rate(clk);
835 u32 div = 0;
836
837 regmap_read(clocks->regmap, 4 * desc->reg, &div);
838
839 if (div < desc->div_min)
840 div = desc->div_min;
841 else if (div > desc->div_max)
842 div = desc->div_max;
843 return DIV_ROUND_UP(parent_rate, div);
844}
845
846static ulong r9a06g032_div_set_rate(struct clk *clk, ulong rate)
847{
848 struct r9a06g032_priv *clocks = dev_get_priv(clk->dev);
849 const struct r9a06g032_clkdesc *desc = r9a06g032_clk_get(clk);
850 unsigned long parent_rate = r9a06g032_clk_get_parent_rate(clk);
851 size_t i;
852
853 /* + 1 to cope with rates that have the remainder dropped */
854 u32 div = DIV_ROUND_UP(parent_rate, rate + 1);
855
856 /* Clamp to allowable range */
857 if (div < desc->div_min)
858 div = desc->div_min;
859 else if (div > desc->div_max)
860 div = desc->div_max;
861
862 /* Limit to allowable divisors */
863 for (i = 0; i < ARRAY_SIZE(desc->div_table) - 2; i++) {
864 u16 div_m = desc->div_table[i];
865 u16 div_p = desc->div_table[i + 1];
866
867 if (!div_m || !div_p)
868 continue;
869
870 if (div >= div_m && div <= div_p) {
871 /*
872 * select the divider that generates
873 * the value closest to ideal frequency
874 */
875 u32 m = rate - DIV_ROUND_UP(parent_rate, div_m);
876 u32 p = DIV_ROUND_UP(parent_rate, div_p) - rate;
877
878 div = p >= m ? div_m : div_p;
879 }
880 }
881
882 dev_dbg(clk->dev, "%s clkid %lu rate %ld parent %ld div %d\n",
883 __func__, clk->id, rate, parent_rate, div);
884
885 /*
886 * Need to write the bit 31 with the divider value to
887 * latch it. Technically we should wait until it has been
888 * cleared too.
889 * TODO: Find whether this callback is sleepable, in case
890 * the hardware /does/ require some sort of spinloop here.
891 */
892 regmap_write(clocks->regmap, 4 * desc->reg, div | BIT(31));
893
894 return 0;
895}
896
897/*
898 * Dual gate. This handles toggling the approprate clock/reset bits,
899 * which depends on the mux setting above.
900 */
901static int r9a06g032_clk_dualgate_setenable(struct r9a06g032_priv *clocks,
902 const struct r9a06g032_clkdesc *desc,
903 int enable)
904{
905 u8 sel_bit = clk_rdesc_get(clocks, desc->dual.sel);
906 struct regbit gate[2] = { desc->dual.g1, desc->dual.g2 };
907 struct regbit reset[2] = { desc->dual.r1, desc->dual.r2 };
908
909 /* we always turn off the 'other' gate, regardless */
910 clk_rdesc_set(clocks, gate[!sel_bit], 0);
911 clk_rdesc_set(clocks, reset[!sel_bit], 1);
912
913 /* set the gate as requested */
914 clk_rdesc_set(clocks, gate[sel_bit], enable);
915 clk_rdesc_set(clocks, reset[sel_bit], 1);
916
917 return 0;
918}
919
920static int r9a06g032_clk_dualgate_enable(struct clk *clk)
921{
922 struct r9a06g032_priv *clocks = dev_get_priv(clk->dev);
923 const struct r9a06g032_clkdesc *desc = r9a06g032_clk_get(clk);
924
925 return r9a06g032_clk_dualgate_setenable(clocks, desc, 1);
926}
927
928static int r9a06g032_clk_dualgate_disable(struct clk *clk)
929{
930 struct r9a06g032_priv *clocks = dev_get_priv(clk->dev);
931 const struct r9a06g032_clkdesc *desc = r9a06g032_clk_get(clk);
932
933 return r9a06g032_clk_dualgate_setenable(clocks, desc, 0);
934}
935
936static int r9a06g032_clk_dualgate_is_enabled(struct clk *clk)
937{
938 struct r9a06g032_priv *clocks = dev_get_priv(clk->dev);
939 const struct r9a06g032_clkdesc *desc = r9a06g032_clk_get(clk);
940 u8 sel_bit = clk_rdesc_get(clocks, desc->dual.sel);
941 struct regbit gate[2] = { desc->dual.g1, desc->dual.g2 };
942
943 return clk_rdesc_get(clocks, gate[sel_bit]);
944}
945
946/*
947 * Main clock driver
948 */
949static int r9a06g032_clk_enable(struct clk *clk)
950{
951 const struct r9a06g032_clkdesc *desc = r9a06g032_clk_get(clk);
952
953 switch (desc->type) {
954 case K_GATE:
955 return r9a06g032_clk_gate_enable(clk);
956 case K_DUALGATE:
957 return r9a06g032_clk_dualgate_enable(clk);
958 default:
959 dev_dbg(clk->dev, "ERROR: unhandled type=%d\n", desc->type);
960 break;
961 }
962
963 return 0;
964}
965
966static int r9a06g032_clk_disable(struct clk *clk)
967{
968 const struct r9a06g032_clkdesc *desc = r9a06g032_clk_get(clk);
969
970 switch (desc->type) {
971 case K_GATE:
972 return r9a06g032_clk_gate_disable(clk);
973 case K_DUALGATE:
974 return r9a06g032_clk_dualgate_disable(clk);
975 default:
976 dev_dbg(clk->dev, "ERROR: unhandled type=%d\n", desc->type);
977 break;
978 }
979
980 return 0;
981}
982
983static ulong r9a06g032_clk_get_rate(struct clk *clk)
984{
985 const struct r9a06g032_clkdesc *desc = r9a06g032_clk_get(clk);
986 ulong ret = 0;
987
988 assert(desc);
989
990 switch (desc->type) {
991 case K_FFC:
992 ret = r9a06g032_ffc_get_rate(clk);
993 break;
994 case K_GATE:
995 ret = r9a06g032_clk_get_parent_rate(clk);
996 break;
997 case K_DIV:
998 ret = r9a06g032_div_get_rate(clk);
999 break;
1000 case K_BITSEL:
1001 /*
1002 * Look at the mux to determine parent.
1003 * 0 means it is coming from UART DIV (group 012 or 34567)
1004 * 1 means it is coming from USB_PLL (fixed at 48MHz)
1005 */
1006 if (r9a06g032_clk_dualgate_is_enabled(clk)) {
1007 struct clk usb_clk = { .id = R9A06G032_CLK_PLL_USB };
1008
1009 ret = r9a06g032_clk_get_parent_rate(&usb_clk);
1010 } else {
1011 ret = r9a06g032_clk_get_parent_rate(clk);
1012 }
1013 break;
1014 case K_DUALGATE:
1015 ret = r9a06g032_clk_get_parent_rate(clk);
1016 break;
1017 }
1018
1019 return ret;
1020}
1021
1022static ulong r9a06g032_clk_set_rate(struct clk *clk, ulong rate)
1023{
1024 const struct r9a06g032_clkdesc *desc = r9a06g032_clk_get(clk);
1025 ulong ret = 0;
1026
1027 assert(desc);
1028
1029 switch (desc->type) {
1030 case K_DIV:
1031 ret = r9a06g032_div_set_rate(clk, rate);
1032 break;
1033 default:
1034 dev_dbg(clk->dev, "ERROR: not implemented for %d\n", desc->type);
1035 };
1036
1037 return ret;
1038}
1039
1040static int r9a06g032_clk_of_xlate(struct clk *clk, struct ofnode_phandle_args *args)
1041{
1042 if (args->args_count != 1) {
1043 dev_dbg(clk->dev, "Invalid args_count: %d\n", args->args_count);
1044 return -EINVAL;
1045 }
1046
1047 clk->id = args->args[0];
1048
1049 return 0;
1050}
1051
1052static const struct clk_ops r9a06g032_clk_ops = {
1053 .enable = r9a06g032_clk_enable,
1054 .disable = r9a06g032_clk_disable,
1055 .get_rate = r9a06g032_clk_get_rate,
1056 .set_rate = r9a06g032_clk_set_rate,
1057 .of_xlate = r9a06g032_clk_of_xlate,
1058};
1059
1060/* Reset Enable Register */
1061#define RZN1_SYSCTRL_REG_RSTEN 288 /* 0x120*/
1062#define RZN1_SYSCTRL_REG_RSTEN_MRESET_EN BIT(0)
1063#define RZN1_SYSCTRL_REG_RSTEN_WDA7RST_CA7_0_EN BIT(1)
1064#define RZN1_SYSCTRL_REG_RSTEN_WDA7RST_CA7_1_EN BIT(2)
1065#define RZN1_SYSCTRL_REG_RSTEN_WDM3RST_EN BIT(3)
1066#define RZN1_SYSCTRL_REG_RSTEN_CM3LOCKUPRST_EN BIT(4)
1067#define RZN1_SYSCTRL_REG_RSTEN_CM3SYSRESET_EN BIT(5)
1068#define RZN1_SYSCTRL_REG_RSTEN_SWRST_EN BIT(6)
1069
1070static int r9a06g032_clk_probe(struct udevice *dev)
1071{
1072 struct r9a06g032_priv *priv = dev_get_priv(dev);
1073
1074 priv->regmap = syscon_regmap_lookup_by_phandle(dev, "regmap");
1075 if (IS_ERR(priv->regmap)) {
1076 dev_dbg(dev, "unable to find regmap\n");
1077 return PTR_ERR(priv->regmap);
1078 }
1079
1080 /* Enable S/W reset */
1081 regmap_write(priv->regmap, RZN1_SYSCTRL_REG_RSTEN,
1082 RZN1_SYSCTRL_REG_RSTEN_MRESET_EN |
1083 RZN1_SYSCTRL_REG_RSTEN_SWRST_EN);
1084
1085 /* Get master clock */
1086 return clk_get_by_name(dev, "mclk", &priv->mclk);
1087}
1088
1089static const struct udevice_id r9a06g032_clk_ids[] = {
1090 { .compatible = "renesas,r9a06g032-sysctrl" },
1091 { }
1092};
1093
1094U_BOOT_DRIVER(clk_r9a06g032) = {
1095 .name = "clk_r9a06g032",
1096 .id = UCLASS_CLK,
1097 .of_match = r9a06g032_clk_ids,
1098 .priv_auto = sizeof(struct r9a06g032_priv),
1099 .ops = &r9a06g032_clk_ops,
1100 .probe = &r9a06g032_clk_probe,
1101 .flags = DM_FLAG_PRE_RELOC,
1102};