blob: 3fca3c53b2e12d5af12b39af88c9c2c9c0465ec9 [file] [log] [blame]
Dirk Eibach762d3df2013-06-26 15:55:17 +02001/*
2 * (C) Copyright 2013
3 * Reinhard Pfau, Guntermann & Drunck GmbH, reinhard.pfau@gdsys.cc
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License as published by the Free
7 * Software Foundation; either version 2 of the License, or (at your option)
8 * any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
18 * MA 02110-1301, USA.
19 */
20
21/* TODO: some more #ifdef's to avoid unneeded code for stage 1 / stage 2 */
22
23#ifdef CCDM_ID_DEBUG
24#define DEBUG
25#endif
26
27#include <common.h>
28#include <malloc.h>
29#include <fs.h>
30#include <i2c.h>
31#include <mmc.h>
32#include <tpm.h>
33#include <sha1.h>
34#include <asm/byteorder.h>
35#include <asm/unaligned.h>
36#include <pca9698.h>
37
38#undef CCDM_FIRST_STAGE
39#undef CCDM_SECOND_STAGE
40#undef CCDM_AUTO_FIRST_STAGE
41
42#ifdef CONFIG_DEVELOP
43#define CCDM_DEVELOP
44#endif
45
46#ifdef CONFIG_TRAILBLAZER
47#define CCDM_FIRST_STAGE
48#undef CCDM_SECOND_STAGE
49#else
50#undef CCDM_FIRST_STAGE
51#define CCDM_SECOND_STAGE
52#endif
53
54#if defined(CCDM_DEVELOP) && defined(CCDM_SECOND_STAGE) && \
55 !defined(CCCM_FIRST_STAGE)
56#define CCDM_AUTO_FIRST_STAGE
57#endif
58
59/* enums from TCG specs */
60enum {
61 /* capability areas */
62 TPM_CAP_NV_INDEX = 0x00000011,
63 TPM_CAP_HANDLE = 0x00000014,
64 /* resource types */
65 TPM_RT_KEY = 0x00000001,
66};
67
68/* CCDM specific contants */
69enum {
70 /* NV indices */
71 NV_COMMON_DATA_INDEX = 0x40000001,
72 /* magics for key blob chains */
73 MAGIC_KEY_PROGRAM = 0x68726500,
74 MAGIC_HMAC = 0x68616300,
75 MAGIC_END_OF_CHAIN = 0x00000000,
76 /* sizes */
77 NV_COMMON_DATA_MIN_SIZE = 3 * sizeof(uint64_t) + 2 * sizeof(uint16_t),
78};
79
80/* other constants */
81enum {
82 ESDHC_BOOT_IMAGE_SIG_OFS = 0x40,
83 ESDHC_BOOT_IMAGE_SIZE_OFS = 0x48,
84 ESDHC_BOOT_IMAGE_ADDR_OFS = 0x50,
85 ESDHC_BOOT_IMAGE_TARGET_OFS = 0x58,
86 ESDHC_BOOT_IMAGE_ENTRY_OFS = 0x60,
87};
88
89struct key_program {
90 uint32_t magic;
91 uint32_t code_crc;
92 uint32_t code_size;
93 uint8_t code[];
94};
95
96struct h_reg {
97 bool valid;
98 uint8_t digest[20];
99};
100
101
102enum access_mode {
103 HREG_NONE = 0,
104 HREG_RD = 1,
105 HREG_WR = 2,
106 HREG_RDWR = 3,
107};
108
109/* register constants */
110enum {
111 FIX_HREG_DEVICE_ID_HASH = 0,
112 FIX_HREG_SELF_HASH = 1,
113 FIX_HREG_STAGE2_HASH = 2,
114 FIX_HREG_VENDOR = 3,
115 COUNT_FIX_HREGS
116};
117
118
119/* hre opcodes */
120enum {
121 /* opcodes w/o data */
122 HRE_NOP = 0x00,
123 HRE_SYNC = HRE_NOP,
124 HRE_CHECK0 = 0x01,
125 /* opcodes w/o data, w/ sync dst */
126 /* opcodes w/ data */
127 HRE_LOAD = 0x81,
128 /* opcodes w/data, w/sync dst */
129 HRE_XOR = 0xC1,
130 HRE_AND = 0xC2,
131 HRE_OR = 0xC3,
132 HRE_EXTEND = 0xC4,
133 HRE_LOADKEY = 0xC5,
134};
135
136/* hre errors */
137enum {
138 HRE_E_OK = 0,
139 HRE_E_TPM_FAILURE,
140 HRE_E_INVALID_HREG,
141};
142
143static uint64_t device_id;
144static uint64_t device_cl;
145static uint64_t device_type;
146
147static uint32_t platform_key_handle;
148
149static void(*bl2_entry)(void);
150
151static struct h_reg pcr_hregs[24];
152static struct h_reg fix_hregs[COUNT_FIX_HREGS];
153static struct h_reg var_hregs[8];
154static uint32_t hre_tpm_err;
155static int hre_err = HRE_E_OK;
156
157#define IS_PCR_HREG(spec) ((spec) & 0x20)
158#define IS_FIX_HREG(spec) (((spec) & 0x38) == 0x08)
159#define IS_VAR_HREG(spec) (((spec) & 0x38) == 0x10)
160#define HREG_IDX(spec) ((spec) & (IS_PCR_HREG(spec) ? 0x1f : 0x7))
161
162
163static const uint8_t prg_stage1_prepare[] = {
164 0x00, 0x20, 0x00, 0x00, /* opcode: SYNC f0 */
165 0x00, 0x24, 0x00, 0x00, /* opcode: SYNC f1 */
166 0x01, 0x80, 0x00, 0x00, /* opcode: CHECK0 PCR0 */
167 0x81, 0x22, 0x00, 0x00, /* opcode: LOAD PCR0, f0 */
168 0x01, 0x84, 0x00, 0x00, /* opcode: CHECK0 PCR1 */
169 0x81, 0x26, 0x10, 0x00, /* opcode: LOAD PCR1, f1 */
170 0x01, 0x88, 0x00, 0x00, /* opcode: CHECK0 PCR2 */
171 0x81, 0x2a, 0x20, 0x00, /* opcode: LOAD PCR2, f2 */
172 0x01, 0x8c, 0x00, 0x00, /* opcode: CHECK0 PCR3 */
173 0x81, 0x2e, 0x30, 0x00, /* opcode: LOAD PCR3, f3 */
174};
175
176static const uint8_t prg_stage2_prepare[] = {
177 0x00, 0x80, 0x00, 0x00, /* opcode: SYNC PCR0 */
178 0x00, 0x84, 0x00, 0x00, /* opcode: SYNC PCR1 */
179 0x00, 0x88, 0x00, 0x00, /* opcode: SYNC PCR2 */
180 0x00, 0x8c, 0x00, 0x00, /* opcode: SYNC PCR3 */
181 0x00, 0x90, 0x00, 0x00, /* opcode: SYNC PCR4 */
182};
183
184static const uint8_t prg_stage2_success[] = {
185 0x81, 0x02, 0x40, 0x14, /* opcode: LOAD PCR4, #<20B data> */
186 0x48, 0xfd, 0x95, 0x17, 0xe7, 0x54, 0x6b, 0x68, /* data */
187 0x92, 0x31, 0x18, 0x05, 0xf8, 0x58, 0x58, 0x3c, /* data */
188 0xe4, 0xd2, 0x81, 0xe0, /* data */
189};
190
191static const uint8_t prg_stage_fail[] = {
192 0x81, 0x01, 0x00, 0x14, /* opcode: LOAD v0, #<20B data> */
193 0xc0, 0x32, 0xad, 0xc1, 0xff, 0x62, 0x9c, 0x9b, /* data */
194 0x66, 0xf2, 0x27, 0x49, 0xad, 0x66, 0x7e, 0x6b, /* data */
195 0xea, 0xdf, 0x14, 0x4b, /* data */
196 0x81, 0x42, 0x30, 0x00, /* opcode: LOAD PCR3, v0 */
197 0x81, 0x42, 0x40, 0x00, /* opcode: LOAD PCR4, v0 */
198};
199
200static const uint8_t vendor[] = "Guntermann & Drunck";
201
202
203/**
204 * @brief read a bunch of data from MMC into memory.
205 *
206 * @param mmc pointer to the mmc structure to use.
207 * @param src offset where the data starts on MMC/SD device (in bytes).
208 * @param dst pointer to the location where the read data should be stored.
209 * @param size number of bytes to read from the MMC/SD device.
210 * @return number of bytes read or -1 on error.
211 */
212static int ccdm_mmc_read(struct mmc *mmc, u64 src, u8 *dst, int size)
213{
214 int result = 0;
215 u32 blk_len, ofs;
216 ulong block_no, n, cnt;
217 u8 *tmp_buf = NULL;
218
219 if (size <= 0)
220 goto end;
221
222 blk_len = mmc->read_bl_len;
223 tmp_buf = malloc(blk_len);
224 if (!tmp_buf)
225 goto failure;
226 block_no = src / blk_len;
227 ofs = src % blk_len;
228
229 if (ofs) {
230 n = mmc->block_dev.block_read(mmc->block_dev.dev, block_no++, 1,
231 tmp_buf);
232 if (!n)
233 goto failure;
234 result = min(size, blk_len - ofs);
235 memcpy(dst, tmp_buf + ofs, result);
236 dst += result;
237 size -= result;
238 }
239 cnt = size / blk_len;
240 if (cnt) {
241 n = mmc->block_dev.block_read(mmc->block_dev.dev, block_no, cnt,
242 dst);
243 if (n != cnt)
244 goto failure;
245 size -= cnt * blk_len;
246 result += cnt * blk_len;
247 dst += cnt * blk_len;
248 block_no += cnt;
249 }
250 if (size) {
251 n = mmc->block_dev.block_read(mmc->block_dev.dev, block_no++, 1,
252 tmp_buf);
253 if (!n)
254 goto failure;
255 memcpy(dst, tmp_buf, size);
256 result += size;
257 }
258 goto end;
259failure:
260 result = -1;
261end:
262 if (tmp_buf)
263 free(tmp_buf);
264 return result;
265}
266
267/**
268 * @brief returns a location where the 2nd stage bootloader can be(/ is) placed.
269 *
270 * @return pointer to the location for/of the 2nd stage bootloader
271 */
272static u8 *get_2nd_stage_bl_location(ulong target_addr)
273{
274 ulong addr;
275#ifdef CCDM_SECOND_STAGE
276 addr = getenv_ulong("loadaddr", 16, CONFIG_LOADADDR);
277#else
278 addr = target_addr;
279#endif
280 return (u8 *)(addr);
281}
282
283
284#ifdef CCDM_SECOND_STAGE
285/**
286 * @brief returns a location where the image can be(/ is) placed.
287 *
288 * @return pointer to the location for/of the image
289 */
290static u8 *get_image_location(void)
291{
292 ulong addr;
293 /* TODO use other area? */
294 addr = getenv_ulong("loadaddr", 16, CONFIG_LOADADDR);
295 return (u8 *)(addr);
296}
297#endif
298
299/**
300 * @brief get the size of a given (TPM) NV area
301 * @param index NV index of the area to get size for
302 * @param size pointer to the size
303 * @return 0 on success, != 0 on error
304 */
305static int get_tpm_nv_size(uint32_t index, uint32_t *size)
306{
307 uint32_t err;
308 uint8_t info[72];
309 uint8_t *ptr;
310 uint16_t v16;
311
312 err = tpm_get_capability(TPM_CAP_NV_INDEX, index,
313 info, sizeof(info));
314 if (err) {
315 printf("tpm_get_capability(CAP_NV_INDEX, %08x) failed: %u\n",
316 index, err);
317 return 1;
318 }
319
320 /* skip tag and nvIndex */
321 ptr = info + 6;
322 /* skip 2 pcr info fields */
323 v16 = get_unaligned_be16(ptr);
324 ptr += 2 + v16 + 1 + 20;
325 v16 = get_unaligned_be16(ptr);
326 ptr += 2 + v16 + 1 + 20;
327 /* skip permission and flags */
328 ptr += 6 + 3;
329
330 *size = get_unaligned_be32(ptr);
331 return 0;
332}
333
334/**
335 * @brief search for a key by usage auth and pub key hash.
336 * @param auth usage auth of the key to search for
337 * @param pubkey_digest (SHA1) hash of the pub key structure of the key
338 * @param[out] handle the handle of the key iff found
339 * @return 0 if key was found in TPM; != 0 if not.
340 */
341static int find_key(const uint8_t auth[20], const uint8_t pubkey_digest[20],
342 uint32_t *handle)
343{
344 uint16_t key_count;
345 uint32_t key_handles[10];
346 uint8_t buf[288];
347 uint8_t *ptr;
348 uint32_t err;
349 uint8_t digest[20];
350 size_t buf_len;
351 unsigned int i;
352
353 /* fetch list of already loaded keys in the TPM */
354 err = tpm_get_capability(TPM_CAP_HANDLE, TPM_RT_KEY, buf, sizeof(buf));
355 if (err)
356 return -1;
357 key_count = get_unaligned_be16(buf);
358 ptr = buf + 2;
359 for (i = 0; i < key_count; ++i, ptr += 4)
360 key_handles[i] = get_unaligned_be32(ptr);
361
362 /* now search a(/ the) key which we can access with the given auth */
363 for (i = 0; i < key_count; ++i) {
364 buf_len = sizeof(buf);
365 err = tpm_get_pub_key_oiap(key_handles[i], auth, buf, &buf_len);
366 if (err && err != TPM_AUTHFAIL)
367 return -1;
368 if (err)
369 continue;
370 sha1_csum(buf, buf_len, digest);
371 if (!memcmp(digest, pubkey_digest, 20)) {
372 *handle = key_handles[i];
373 return 0;
374 }
375 }
376 return 1;
377}
378
379/**
380 * @brief read CCDM common data from TPM NV
381 * @return 0 if CCDM common data was found and read, !=0 if something failed.
382 */
383static int read_common_data(void)
384{
385 uint32_t size;
386 uint32_t err;
387 uint8_t buf[256];
388 sha1_context ctx;
389
390 if (get_tpm_nv_size(NV_COMMON_DATA_INDEX, &size) ||
391 size < NV_COMMON_DATA_MIN_SIZE)
392 return 1;
393 err = tpm_nv_read_value(NV_COMMON_DATA_INDEX,
394 buf, min(sizeof(buf), size));
395 if (err) {
396 printf("tpm_nv_read_value() failed: %u\n", err);
397 return 1;
398 }
399
400 device_id = get_unaligned_be64(buf);
401 device_cl = get_unaligned_be64(buf + 8);
402 device_type = get_unaligned_be64(buf + 16);
403
404 sha1_starts(&ctx);
405 sha1_update(&ctx, buf, 24);
406 sha1_finish(&ctx, fix_hregs[FIX_HREG_DEVICE_ID_HASH].digest);
407 fix_hregs[FIX_HREG_DEVICE_ID_HASH].valid = true;
408
409 platform_key_handle = get_unaligned_be32(buf + 24);
410
411 return 0;
412}
413
414/**
415 * @brief compute hash of bootloader itself.
416 * @param[out] dst hash register where the hash should be stored
417 * @return 0 on success, != 0 on failure.
418 *
419 * @note MUST be called at a time where the boot loader is accessible at the
420 * configured location (; so take care when code is reallocated).
421 */
422static int compute_self_hash(struct h_reg *dst)
423{
424 sha1_csum((const uint8_t *)CONFIG_SYS_MONITOR_BASE,
425 CONFIG_SYS_MONITOR_LEN, dst->digest);
426 dst->valid = true;
427 return 0;
428}
429
430int ccdm_compute_self_hash(void)
431{
432 if (!fix_hregs[FIX_HREG_SELF_HASH].valid)
433 compute_self_hash(&fix_hregs[FIX_HREG_SELF_HASH]);
434 return 0;
435}
436
437/**
438 * @brief compute the hash of the 2nd stage boot loader (on SD card)
439 * @param[out] dst hash register to store the computed hash
440 * @return 0 on success, != 0 on failure
441 *
442 * Determines the size and location of the 2nd stage boot loader on SD card,
443 * loads the 2nd stage boot loader and computes the (SHA1) hash value.
444 * Within the 1st stage boot loader, the 2nd stage boot loader is loaded at
445 * the desired memory location and the variable @a bl2_entry is set.
446 *
447 * @note This sets the variable @a bl2_entry to the entry point when the
448 * 2nd stage boot loader is loaded at its configured memory location.
449 */
450static int compute_second_stage_hash(struct h_reg *dst)
451{
452 int result = 0;
453 u32 code_len, code_offset, target_addr, exec_entry;
454 struct mmc *mmc;
455 u8 *load_addr = NULL;
456 u8 buf[128];
457
458 mmc = find_mmc_device(0);
459 if (!mmc)
460 goto failure;
461 mmc_init(mmc);
462
463 if (ccdm_mmc_read(mmc, 0, buf, sizeof(buf)) < 0)
464 goto failure;
465
466 code_offset = *(u32 *)(buf + ESDHC_BOOT_IMAGE_ADDR_OFS);
467 code_len = *(u32 *)(buf + ESDHC_BOOT_IMAGE_SIZE_OFS);
468 target_addr = *(u32 *)(buf + ESDHC_BOOT_IMAGE_TARGET_OFS);
469 exec_entry = *(u32 *)(buf + ESDHC_BOOT_IMAGE_ENTRY_OFS);
470
471 load_addr = get_2nd_stage_bl_location(target_addr);
472 if (load_addr == (u8 *)target_addr)
473 bl2_entry = (void(*)(void))exec_entry;
474
475 if (ccdm_mmc_read(mmc, code_offset, load_addr, code_len) < 0)
476 goto failure;
477
478 sha1_csum(load_addr, code_len, dst->digest);
479 dst->valid = true;
480
481 goto end;
482failure:
483 result = 1;
484 bl2_entry = NULL;
485end:
486 return result;
487}
488
489/**
490 * @brief get pointer to hash register by specification
491 * @param spec specification of a hash register
492 * @return pointer to hash register or NULL if @a spec does not qualify a
493 * valid hash register; NULL else.
494 */
495static struct h_reg *get_hreg(uint8_t spec)
496{
497 uint8_t idx;
498
499 idx = HREG_IDX(spec);
500 if (IS_FIX_HREG(spec)) {
501 if (idx < ARRAY_SIZE(fix_hregs))
502 return fix_hregs + idx;
503 hre_err = HRE_E_INVALID_HREG;
504 } else if (IS_PCR_HREG(spec)) {
505 if (idx < ARRAY_SIZE(pcr_hregs))
506 return pcr_hregs + idx;
507 hre_err = HRE_E_INVALID_HREG;
508 } else if (IS_VAR_HREG(spec)) {
509 if (idx < ARRAY_SIZE(var_hregs))
510 return var_hregs + idx;
511 hre_err = HRE_E_INVALID_HREG;
512 }
513 return NULL;
514}
515
516/**
517 * @brief get pointer of a hash register by specification and usage.
518 * @param spec specification of a hash register
519 * @param mode access mode (read or write or read/write)
520 * @return pointer to hash register if found and valid; NULL else.
521 *
522 * This func uses @a get_reg() to determine the hash register for a given spec.
523 * If a register is found it is validated according to the desired access mode.
524 * The value of automatic registers (PCR register and fixed registers) is
525 * loaded or computed on read access.
526 */
527static struct h_reg *access_hreg(uint8_t spec, enum access_mode mode)
528{
529 struct h_reg *result;
530
531 result = get_hreg(spec);
532 if (!result)
533 return NULL;
534
535 if (mode & HREG_WR) {
536 if (IS_FIX_HREG(spec)) {
537 hre_err = HRE_E_INVALID_HREG;
538 return NULL;
539 }
540 }
541 if (mode & HREG_RD) {
542 if (!result->valid) {
543 if (IS_PCR_HREG(spec)) {
544 hre_tpm_err = tpm_pcr_read(HREG_IDX(spec),
545 result->digest, 20);
546 result->valid = (hre_tpm_err == TPM_SUCCESS);
547 } else if (IS_FIX_HREG(spec)) {
548 switch (HREG_IDX(spec)) {
549 case FIX_HREG_DEVICE_ID_HASH:
550 read_common_data();
551 break;
552 case FIX_HREG_SELF_HASH:
553 ccdm_compute_self_hash();
554 break;
555 case FIX_HREG_STAGE2_HASH:
556 compute_second_stage_hash(result);
557 break;
558 case FIX_HREG_VENDOR:
559 memcpy(result->digest, vendor, 20);
560 result->valid = true;
561 break;
562 }
563 } else {
564 result->valid = true;
565 }
566 }
567 if (!result->valid) {
568 hre_err = HRE_E_INVALID_HREG;
569 return NULL;
570 }
571 }
572
573 return result;
574}
575
576static void *compute_and(void *_dst, const void *_src, size_t n)
577{
578 uint8_t *dst = _dst;
579 const uint8_t *src = _src;
580 size_t i;
581
582 for (i = n; i-- > 0; )
583 *dst++ &= *src++;
584
585 return _dst;
586}
587
588static void *compute_or(void *_dst, const void *_src, size_t n)
589{
590 uint8_t *dst = _dst;
591 const uint8_t *src = _src;
592 size_t i;
593
594 for (i = n; i-- > 0; )
595 *dst++ |= *src++;
596
597 return _dst;
598}
599
600static void *compute_xor(void *_dst, const void *_src, size_t n)
601{
602 uint8_t *dst = _dst;
603 const uint8_t *src = _src;
604 size_t i;
605
606 for (i = n; i-- > 0; )
607 *dst++ ^= *src++;
608
609 return _dst;
610}
611
612static void *compute_extend(void *_dst, const void *_src, size_t n)
613{
614 uint8_t digest[20];
615 sha1_context ctx;
616
617 sha1_starts(&ctx);
618 sha1_update(&ctx, _dst, n);
619 sha1_update(&ctx, _src, n);
620 sha1_finish(&ctx, digest);
621 memcpy(_dst, digest, min(n, sizeof(digest)));
622
623 return _dst;
624}
625
626static int hre_op_loadkey(struct h_reg *src_reg, struct h_reg *dst_reg,
627 const void *key, size_t key_size)
628{
629 uint32_t parent_handle;
630 uint32_t key_handle;
631
632 if (!src_reg || !dst_reg || !src_reg->valid || !dst_reg->valid)
633 return -1;
634 if (find_key(src_reg->digest, dst_reg->digest, &parent_handle))
635 return -1;
636 hre_tpm_err = tpm_load_key2_oiap(parent_handle, key, key_size,
637 src_reg->digest, &key_handle);
638 if (hre_tpm_err) {
639 hre_err = HRE_E_TPM_FAILURE;
640 return -1;
641 }
642 /* TODO remember key handle somehow? */
643
644 return 0;
645}
646
647/**
648 * @brief executes the next opcode on the hash register engine.
649 * @param[in,out] ip pointer to the opcode (instruction pointer)
650 * @param[in,out] code_size (remaining) size of the code
651 * @return new instruction pointer on success, NULL on error.
652 */
653static const uint8_t *hre_execute_op(const uint8_t **ip, size_t *code_size)
654{
655 bool dst_modified = false;
656 uint32_t ins;
657 uint8_t opcode;
658 uint8_t src_spec;
659 uint8_t dst_spec;
660 uint16_t data_size;
661 struct h_reg *src_reg, *dst_reg;
662 uint8_t buf[20];
663 const uint8_t *src_buf, *data;
664 uint8_t *ptr;
665 int i;
666 void * (*bin_func)(void *, const void *, size_t);
667
668 if (*code_size < 4)
669 return NULL;
670
671 ins = get_unaligned_be32(*ip);
672 opcode = **ip;
673 data = *ip + 4;
674 src_spec = (ins >> 18) & 0x3f;
675 dst_spec = (ins >> 12) & 0x3f;
676 data_size = (ins & 0x7ff);
677
678 debug("HRE: ins=%08x (op=%02x, s=%02x, d=%02x, L=%d)\n", ins,
679 opcode, src_spec, dst_spec, data_size);
680
681 if ((opcode & 0x80) && (data_size + 4) > *code_size)
682 return NULL;
683
684 src_reg = access_hreg(src_spec, HREG_RD);
685 if (hre_err || hre_tpm_err)
686 return NULL;
687 dst_reg = access_hreg(dst_spec, (opcode & 0x40) ? HREG_RDWR : HREG_WR);
688 if (hre_err || hre_tpm_err)
689 return NULL;
690
691 switch (opcode) {
692 case HRE_NOP:
693 goto end;
694 case HRE_CHECK0:
695 if (src_reg) {
696 for (i = 0; i < 20; ++i) {
697 if (src_reg->digest[i])
698 return NULL;
699 }
700 }
701 break;
702 case HRE_LOAD:
703 bin_func = memcpy;
704 goto do_bin_func;
705 case HRE_XOR:
706 bin_func = compute_xor;
707 goto do_bin_func;
708 case HRE_AND:
709 bin_func = compute_and;
710 goto do_bin_func;
711 case HRE_OR:
712 bin_func = compute_or;
713 goto do_bin_func;
714 case HRE_EXTEND:
715 bin_func = compute_extend;
716do_bin_func:
717 if (!dst_reg)
718 return NULL;
719 if (src_reg) {
720 src_buf = src_reg->digest;
721 } else {
722 if (!data_size) {
723 memset(buf, 0, 20);
724 src_buf = buf;
725 } else if (data_size == 1) {
726 memset(buf, *data, 20);
727 src_buf = buf;
728 } else if (data_size >= 20) {
729 src_buf = data;
730 } else {
731 src_buf = buf;
732 for (ptr = (uint8_t *)src_buf, i = 20; i > 0;
733 i -= data_size, ptr += data_size)
734 memcpy(ptr, data, min(i, data_size));
735 }
736 }
737 bin_func(dst_reg->digest, src_buf, 20);
738 dst_reg->valid = true;
739 dst_modified = true;
740 break;
741 case HRE_LOADKEY:
742 if (hre_op_loadkey(src_reg, dst_reg, data, data_size))
743 return NULL;
744 break;
745 default:
746 return NULL;
747 }
748
749 if (dst_reg && dst_modified && IS_PCR_HREG(dst_spec)) {
750 hre_tpm_err = tpm_extend(HREG_IDX(dst_spec), dst_reg->digest,
751 dst_reg->digest);
752 if (hre_tpm_err) {
753 hre_err = HRE_E_TPM_FAILURE;
754 return NULL;
755 }
756 }
757end:
758 *ip += 4;
759 *code_size -= 4;
760 if (opcode & 0x80) {
761 *ip += data_size;
762 *code_size -= data_size;
763 }
764
765 return *ip;
766}
767
768/**
769 * @brief runs a program on the hash register engine.
770 * @param code pointer to the (HRE) code.
771 * @param code_size size of the code (in bytes).
772 * @return 0 on success, != 0 on failure.
773 */
774static int hre_run_program(const uint8_t *code, size_t code_size)
775{
776 size_t code_left;
777 const uint8_t *ip = code;
778
779 code_left = code_size;
780 hre_tpm_err = 0;
781 hre_err = HRE_E_OK;
782 while (code_left > 0)
783 if (!hre_execute_op(&ip, &code_left))
784 return -1;
785
786 return hre_err;
787}
788
789static int check_hmac(struct key_program *hmac,
790 const uint8_t *data, size_t data_size)
791{
792 uint8_t key[20], computed_hmac[20];
793 uint32_t type;
794
795 type = get_unaligned_be32(hmac->code);
796 if (type != 0)
797 return 1;
798 memset(key, 0, sizeof(key));
799 compute_extend(key, pcr_hregs[1].digest, 20);
800 compute_extend(key, pcr_hregs[2].digest, 20);
801 compute_extend(key, pcr_hregs[3].digest, 20);
802 compute_extend(key, pcr_hregs[4].digest, 20);
803
804 sha1_hmac(key, sizeof(key), data, data_size, computed_hmac);
805
806 return memcmp(computed_hmac, hmac->code + 4, 20);
807}
808
809static int verify_program(struct key_program *prg)
810{
811 uint32_t crc;
812 crc = crc32(0, prg->code, prg->code_size);
813
814 if (crc != prg->code_crc) {
815 printf("HRC crc mismatch: %08x != %08x\n",
816 crc, prg->code_crc);
817 return 1;
818 }
819 return 0;
820}
821
822#if defined(CCDM_FIRST_STAGE) || (defined CCDM_AUTO_FIRST_STAGE)
823static struct key_program *load_sd_key_program(void)
824{
825 u32 code_len, code_offset;
826 struct mmc *mmc;
827 u8 buf[128];
828 struct key_program *result = NULL, *hmac = NULL;
829 struct key_program header;
830
831 mmc = find_mmc_device(0);
832 if (!mmc)
833 return NULL;
834 mmc_init(mmc);
835
836 if (ccdm_mmc_read(mmc, 0, buf, sizeof(buf)) <= 0)
837 goto failure;
838
839 code_offset = *(u32 *)(buf + ESDHC_BOOT_IMAGE_ADDR_OFS);
840 code_len = *(u32 *)(buf + ESDHC_BOOT_IMAGE_SIZE_OFS);
841
842 code_offset += code_len;
843 /* TODO: the following needs to be the size of the 2nd stage env */
844 code_offset += CONFIG_ENV_SIZE;
845
846 if (ccdm_mmc_read(mmc, code_offset, buf, 4*3) < 0)
847 goto failure;
848
849 header.magic = get_unaligned_be32(buf);
850 header.code_crc = get_unaligned_be32(buf + 4);
851 header.code_size = get_unaligned_be32(buf + 8);
852
853 if (header.magic != MAGIC_KEY_PROGRAM)
854 goto failure;
855
856 result = malloc(sizeof(struct key_program) + header.code_size);
857 if (!result)
858 goto failure;
859 *result = header;
860
861 printf("load key program chunk from SD card (%u bytes) ",
862 header.code_size);
863 code_offset += 12;
864 if (ccdm_mmc_read(mmc, code_offset, result->code, header.code_size)
865 < 0)
866 goto failure;
867 code_offset += header.code_size;
868 puts("\n");
869
870 if (verify_program(result))
871 goto failure;
872
873 if (ccdm_mmc_read(mmc, code_offset, buf, 4*3) < 0)
874 goto failure;
875
876 header.magic = get_unaligned_be32(buf);
877 header.code_crc = get_unaligned_be32(buf + 4);
878 header.code_size = get_unaligned_be32(buf + 8);
879
880 if (header.magic == MAGIC_HMAC) {
881 puts("check integrity\n");
882 hmac = malloc(sizeof(struct key_program) + header.code_size);
883 if (!hmac)
884 goto failure;
885 *hmac = header;
886 code_offset += 12;
887 if (ccdm_mmc_read(mmc, code_offset, hmac->code,
888 hmac->code_size) < 0)
889 goto failure;
890 if (verify_program(hmac))
891 goto failure;
892 if (check_hmac(hmac, result->code, result->code_size)) {
893 puts("key program integrity could not be verified\n");
894 goto failure;
895 }
896 puts("key program verified\n");
897 }
898
899 goto end;
900failure:
901 if (result)
902 free(result);
903 result = NULL;
904end:
905 if (hmac)
906 free(hmac);
907
908 return result;
909}
910#endif
911
912#ifdef CCDM_SECOND_STAGE
913/**
914 * @brief load a key program from file system.
915 * @param ifname interface of the file system
916 * @param dev_part_str device part of the file system
917 * @param fs_type tyep of the file system
918 * @param path path of the file to load.
919 * @return the loaded structure or NULL on failure.
920 */
921static struct key_program *load_key_chunk(const char *ifname,
922 const char *dev_part_str, int fs_type,
923 const char *path)
924{
925 struct key_program *result = NULL;
926 struct key_program header;
927 uint32_t crc;
928 uint8_t buf[12];
929 int i;
930
931 if (fs_set_blk_dev(ifname, dev_part_str, fs_type))
932 goto failure;
933 i = fs_read(path, (ulong)buf, 0, 12);
934 if (i < 12)
935 goto failure;
936 header.magic = get_unaligned_be32(buf);
937 header.code_crc = get_unaligned_be32(buf + 4);
938 header.code_size = get_unaligned_be32(buf + 8);
939
940 if (header.magic != MAGIC_HMAC && header.magic != MAGIC_KEY_PROGRAM)
941 goto failure;
942
943 result = malloc(sizeof(struct key_program) + header.code_size);
944 if (!result)
945 goto failure;
946 if (fs_set_blk_dev(ifname, dev_part_str, fs_type))
947 goto failure;
948 i = fs_read(path, (ulong)result, 0,
949 sizeof(struct key_program) + header.code_size);
950 if (i <= 0)
951 goto failure;
952 *result = header;
953
954 crc = crc32(0, result->code, result->code_size);
955
956 if (crc != result->code_crc) {
957 printf("%s: HRC crc mismatch: %08x != %08x\n",
958 path, crc, result->code_crc);
959 goto failure;
960 }
961 goto end;
962failure:
963 if (result) {
964 free(result);
965 result = NULL;
966 }
967end:
968 return result;
969}
970#endif
971
972#if defined(CCDM_FIRST_STAGE) || (defined CCDM_AUTO_FIRST_STAGE)
973static int first_stage_actions(void)
974{
975 int result = 0;
976 struct key_program *sd_prg = NULL;
977
978 puts("CCDM S1: start actions\n");
979#ifndef CCDM_SECOND_STAGE
980 if (tpm_continue_self_test())
981 goto failure;
982#else
983 tpm_continue_self_test();
984#endif
985 mdelay(37);
986
987 if (hre_run_program(prg_stage1_prepare, sizeof(prg_stage1_prepare)))
988 goto failure;
989
990 sd_prg = load_sd_key_program();
991 if (sd_prg) {
992 if (hre_run_program(sd_prg->code, sd_prg->code_size))
993 goto failure;
994 puts("SD code run successfully\n");
995 } else {
996 puts("no key program found on SD\n");
997 goto failure;
998 }
999 goto end;
1000failure:
1001 result = 1;
1002end:
1003 if (sd_prg)
1004 free(sd_prg);
1005 printf("CCDM S1: actions done (%d)\n", result);
1006 return result;
1007}
1008#endif
1009
1010#ifdef CCDM_FIRST_STAGE
1011static int first_stage_init(void)
1012{
1013 int res = 0;
1014 puts("CCDM S1\n");
1015 if (tpm_init() || tpm_startup(TPM_ST_CLEAR))
1016 return 1;
1017 res = first_stage_actions();
1018#ifndef CCDM_SECOND_STAGE
1019 if (!res) {
1020 if (bl2_entry)
1021 (*bl2_entry)();
1022 res = 1;
1023 }
1024#endif
1025 return res;
1026}
1027#endif
1028
1029#ifdef CCDM_SECOND_STAGE
1030static int second_stage_init(void)
1031{
1032 static const char mac_suffix[] = ".mac";
1033 bool did_first_stage_run = true;
1034 int result = 0;
1035 char *cptr, *mmcdev = NULL;
1036 struct key_program *hmac_blob = NULL;
1037 const char *image_path = "/ccdm.itb";
1038 char *mac_path = NULL;
1039 ulong image_addr;
1040 size_t image_size;
1041 uint32_t err;
1042
1043 printf("CCDM S2\n");
1044 if (tpm_init())
1045 return 1;
1046 err = tpm_startup(TPM_ST_CLEAR);
1047 if (err != TPM_INVALID_POSTINIT)
1048 did_first_stage_run = false;
1049
1050#ifdef CCDM_AUTO_FIRST_STAGE
1051 if (!did_first_stage_run && first_stage_actions())
1052 goto failure;
1053#else
1054 if (!did_first_stage_run)
1055 goto failure;
1056#endif
1057
1058 if (hre_run_program(prg_stage2_prepare, sizeof(prg_stage2_prepare)))
1059 goto failure;
1060
1061 /* run "prepboot" from env to get "mmcdev" set */
1062 cptr = getenv("prepboot");
1063 if (cptr && !run_command(cptr, 0))
1064 mmcdev = getenv("mmcdev");
1065 if (!mmcdev)
1066 goto failure;
1067
1068 cptr = getenv("ramdiskimage");
1069 if (cptr)
1070 image_path = cptr;
1071
1072 mac_path = malloc(strlen(image_path) + strlen(mac_suffix) + 1);
1073 if (mac_path == NULL)
1074 goto failure;
1075 strcpy(mac_path, image_path);
1076 strcat(mac_path, mac_suffix);
1077
1078 /* read image from mmcdev (ccdm.itb) */
1079 image_addr = (ulong)get_image_location();
1080 if (fs_set_blk_dev("mmc", mmcdev, FS_TYPE_EXT))
1081 goto failure;
1082 image_size = fs_read(image_path, image_addr, 0, 0);
1083 if (image_size <= 0)
1084 goto failure;
1085 printf("CCDM image found on %s, %d bytes\n", mmcdev, image_size);
1086
1087 hmac_blob = load_key_chunk("mmc", mmcdev, FS_TYPE_EXT, mac_path);
1088 if (!hmac_blob) {
1089 puts("failed to load mac file\n");
1090 goto failure;
1091 }
1092 if (verify_program(hmac_blob)) {
1093 puts("corrupted mac file\n");
1094 goto failure;
1095 }
1096 if (check_hmac(hmac_blob, (u8 *)image_addr, image_size)) {
1097 puts("image integrity could not be verified\n");
1098 goto failure;
1099 }
1100 puts("CCDM image OK\n");
1101
1102 hre_run_program(prg_stage2_success, sizeof(prg_stage2_success));
1103
1104 goto end;
1105failure:
1106 result = 1;
1107 hre_run_program(prg_stage_fail, sizeof(prg_stage_fail));
1108end:
1109 if (hmac_blob)
1110 free(hmac_blob);
1111 if (mac_path)
1112 free(mac_path);
1113
1114 return result;
1115}
1116#endif
1117
1118int show_self_hash(void)
1119{
1120 struct h_reg *hash_ptr;
1121#ifdef CCDM_SECOND_STAGE
1122 struct h_reg hash;
1123
1124 hash_ptr = &hash;
1125 if (compute_self_hash(hash_ptr))
1126 return 1;
1127#else
1128 hash_ptr = &fix_hregs[FIX_HREG_SELF_HASH];
1129#endif
1130 puts("self hash: ");
1131 if (hash_ptr && hash_ptr->valid)
1132 print_buffer(0, hash_ptr->digest, 1, 20, 20);
1133 else
1134 puts("INVALID\n");
1135
1136 return 0;
1137}
1138
1139/**
1140 * @brief let the system hang.
1141 *
1142 * Called on error.
1143 * Will stop the boot process; display a message and signal the error condition
1144 * by blinking the "status" and the "finder" LED of the controller board.
1145 *
1146 * @note the develop version runs the blink cycle 2 times and then returns.
1147 * The release version never returns.
1148 */
1149static void ccdm_hang(void)
1150{
1151 static const u64 f0 = 0x0ba3bb8ba2e880; /* blink code "finder" LED */
1152 static const u64 s0 = 0x00f0f0f0f0f0f0; /* blink code "status" LED */
1153 u64 f, s;
1154 int i;
1155#ifdef CCDM_DEVELOP
1156 int j;
1157#endif
1158
1159 I2C_SET_BUS(0);
1160 pca9698_direction_output(0x22, 0, 0); /* Finder */
1161 pca9698_direction_output(0x22, 4, 0); /* Status */
1162
1163 puts("### ERROR ### Please RESET the board ###\n");
1164 bootstage_error(BOOTSTAGE_ID_NEED_RESET);
1165#ifdef CCDM_DEVELOP
1166 puts("*** ERROR ******** THIS WOULD HANG ******** ERROR ***\n");
1167 puts("** but we continue since this is a DEVELOP version **\n");
1168 puts("*** ERROR ******** THIS WOULD HANG ******** ERROR ***\n");
1169 for (j = 2; j-- > 0;) {
1170 putc('#');
1171#else
1172 for (;;) {
1173#endif
1174 f = f0;
1175 s = s0;
1176 for (i = 54; i-- > 0;) {
1177 pca9698_set_value(0x22, 0, !(f & 1));
1178 pca9698_set_value(0x22, 4, (s & 1));
1179 f >>= 1;
1180 s >>= 1;
1181 mdelay(120);
1182 }
1183 }
1184 puts("\ncontinue...\n");
1185}
1186
1187int startup_ccdm_id_module(void)
1188{
1189 int result = 0;
1190 unsigned int orig_i2c_bus;
1191
1192 orig_i2c_bus = I2C_GET_BUS();
1193 I2C_SET_BUS(1);
1194
1195 /* goto end; */
1196
1197#ifdef CCDM_DEVELOP
1198 show_self_hash();
1199#endif
1200#ifdef CCDM_FIRST_STAGE
1201 result = first_stage_init();
1202 if (result) {
1203 puts("1st stage init failed\n");
1204 goto failure;
1205 }
1206#endif
1207#ifdef CCDM_SECOND_STAGE
1208 result = second_stage_init();
1209 if (result) {
1210 puts("2nd stage init failed\n");
1211 goto failure;
1212 }
1213#endif
1214
1215 goto end;
1216failure:
1217 result = 1;
1218end:
1219 I2C_SET_BUS(orig_i2c_bus);
1220 if (result)
1221 ccdm_hang();
1222
1223 return result;
1224}