blob: b11a0a1ff7c8a190e22e543c041d04b0556a14d7 [file] [log] [blame]
Allen Martin21f5b932013-03-16 18:58:13 +00001/*
2 * NVIDIA Tegra SPI controller (T114 and later)
3 *
4 * Copyright (c) 2010-2013 NVIDIA Corporation
5 *
6 * See file CREDITS for list of people who contributed to this
7 * project.
8 *
9 * This software is licensed under the terms of the GNU General Public
10 * License version 2, as published by the Free Software Foundation, and
11 * may be copied, distributed, and modified under those terms.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
21 * MA 02111-1307 USA
22 */
23
24#include <common.h>
25#include <malloc.h>
26#include <asm/io.h>
27#include <asm/gpio.h>
28#include <asm/arch/clock.h>
29#include <asm/arch-tegra/clk_rst.h>
30#include <asm/arch-tegra114/tegra114_spi.h>
31#include <spi.h>
32#include <fdtdec.h>
33
34DECLARE_GLOBAL_DATA_PTR;
35
36/* COMMAND1 */
37#define SPI_CMD1_GO (1 << 31)
38#define SPI_CMD1_M_S (1 << 30)
39#define SPI_CMD1_MODE_MASK 0x3
40#define SPI_CMD1_MODE_SHIFT 28
41#define SPI_CMD1_CS_SEL_MASK 0x3
42#define SPI_CMD1_CS_SEL_SHIFT 26
43#define SPI_CMD1_CS_POL_INACTIVE3 (1 << 25)
44#define SPI_CMD1_CS_POL_INACTIVE2 (1 << 24)
45#define SPI_CMD1_CS_POL_INACTIVE1 (1 << 23)
46#define SPI_CMD1_CS_POL_INACTIVE0 (1 << 22)
47#define SPI_CMD1_CS_SW_HW (1 << 21)
48#define SPI_CMD1_CS_SW_VAL (1 << 20)
49#define SPI_CMD1_IDLE_SDA_MASK 0x3
50#define SPI_CMD1_IDLE_SDA_SHIFT 18
51#define SPI_CMD1_BIDIR (1 << 17)
52#define SPI_CMD1_LSBI_FE (1 << 16)
53#define SPI_CMD1_LSBY_FE (1 << 15)
54#define SPI_CMD1_BOTH_EN_BIT (1 << 14)
55#define SPI_CMD1_BOTH_EN_BYTE (1 << 13)
56#define SPI_CMD1_RX_EN (1 << 12)
57#define SPI_CMD1_TX_EN (1 << 11)
58#define SPI_CMD1_PACKED (1 << 5)
59#define SPI_CMD1_BIT_LEN_MASK 0x1F
60#define SPI_CMD1_BIT_LEN_SHIFT 0
61
62/* COMMAND2 */
63#define SPI_CMD2_TX_CLK_TAP_DELAY (1 << 6)
64#define SPI_CMD2_TX_CLK_TAP_DELAY_MASK (0x3F << 6)
65#define SPI_CMD2_RX_CLK_TAP_DELAY (1 << 0)
66#define SPI_CMD2_RX_CLK_TAP_DELAY_MASK (0x3F << 0)
67
68/* TRANSFER STATUS */
69#define SPI_XFER_STS_RDY (1 << 30)
70
71/* FIFO STATUS */
72#define SPI_FIFO_STS_CS_INACTIVE (1 << 31)
73#define SPI_FIFO_STS_FRAME_END (1 << 30)
74#define SPI_FIFO_STS_RX_FIFO_FLUSH (1 << 15)
75#define SPI_FIFO_STS_TX_FIFO_FLUSH (1 << 14)
76#define SPI_FIFO_STS_ERR (1 << 8)
77#define SPI_FIFO_STS_TX_FIFO_OVF (1 << 7)
78#define SPI_FIFO_STS_TX_FIFO_UNR (1 << 6)
79#define SPI_FIFO_STS_RX_FIFO_OVF (1 << 5)
80#define SPI_FIFO_STS_RX_FIFO_UNR (1 << 4)
81#define SPI_FIFO_STS_TX_FIFO_FULL (1 << 3)
82#define SPI_FIFO_STS_TX_FIFO_EMPTY (1 << 2)
83#define SPI_FIFO_STS_RX_FIFO_FULL (1 << 1)
84#define SPI_FIFO_STS_RX_FIFO_EMPTY (1 << 0)
85
86#define SPI_TIMEOUT 1000
87#define TEGRA_SPI_MAX_FREQ 52000000
88
89struct spi_regs {
90 u32 command1; /* 000:SPI_COMMAND1 register */
91 u32 command2; /* 004:SPI_COMMAND2 register */
92 u32 timing1; /* 008:SPI_CS_TIM1 register */
93 u32 timing2; /* 00c:SPI_CS_TIM2 register */
94 u32 xfer_status;/* 010:SPI_TRANS_STATUS register */
95 u32 fifo_status;/* 014:SPI_FIFO_STATUS register */
96 u32 tx_data; /* 018:SPI_TX_DATA register */
97 u32 rx_data; /* 01c:SPI_RX_DATA register */
98 u32 dma_ctl; /* 020:SPI_DMA_CTL register */
99 u32 dma_blk; /* 024:SPI_DMA_BLK register */
100 u32 rsvd[56]; /* 028-107 reserved */
101 u32 tx_fifo; /* 108:SPI_FIFO1 register */
102 u32 rsvd2[31]; /* 10c-187 reserved */
103 u32 rx_fifo; /* 188:SPI_FIFO2 register */
104 u32 spare_ctl; /* 18c:SPI_SPARE_CTRL register */
105};
106
107struct tegra_spi_ctrl {
108 struct spi_regs *regs;
109 unsigned int freq;
110 unsigned int mode;
111 int periph_id;
112 int valid;
113};
114
115struct tegra_spi_slave {
116 struct spi_slave slave;
117 struct tegra_spi_ctrl *ctrl;
118};
119
120static struct tegra_spi_ctrl spi_ctrls[CONFIG_TEGRA114_SPI_CTRLS];
121
122static inline struct tegra_spi_slave *to_tegra_spi(struct spi_slave *slave)
123{
124 return container_of(slave, struct tegra_spi_slave, slave);
125}
126
127int tegra114_spi_cs_is_valid(unsigned int bus, unsigned int cs)
128{
129 if (bus >= CONFIG_TEGRA114_SPI_CTRLS || cs > 3 || !spi_ctrls[bus].valid)
130 return 0;
131 else
132 return 1;
133}
134
135struct spi_slave *tegra114_spi_setup_slave(unsigned int bus, unsigned int cs,
136 unsigned int max_hz, unsigned int mode)
137{
138 struct tegra_spi_slave *spi;
139
140 debug("%s: bus: %u, cs: %u, max_hz: %u, mode: %u\n", __func__,
141 bus, cs, max_hz, mode);
142
143 if (!spi_cs_is_valid(bus, cs)) {
144 printf("SPI error: unsupported bus %d / chip select %d\n",
145 bus, cs);
146 return NULL;
147 }
148
149 if (max_hz > TEGRA_SPI_MAX_FREQ) {
150 printf("SPI error: unsupported frequency %d Hz. Max frequency"
151 " is %d Hz\n", max_hz, TEGRA_SPI_MAX_FREQ);
152 return NULL;
153 }
154
155 spi = malloc(sizeof(struct tegra_spi_slave));
156 if (!spi) {
157 printf("SPI error: malloc of SPI structure failed\n");
158 return NULL;
159 }
160 spi->slave.bus = bus;
161 spi->slave.cs = cs;
162 spi->ctrl = &spi_ctrls[bus];
163 if (!spi->ctrl) {
164 printf("SPI error: could not find controller for bus %d\n",
165 bus);
166 return NULL;
167 }
168
169 if (max_hz < spi->ctrl->freq) {
170 debug("%s: limiting frequency from %u to %u\n", __func__,
171 spi->ctrl->freq, max_hz);
172 spi->ctrl->freq = max_hz;
173 }
174 spi->ctrl->mode = mode;
175
176 return &spi->slave;
177}
178
179void tegra114_spi_free_slave(struct spi_slave *slave)
180{
181 struct tegra_spi_slave *spi = to_tegra_spi(slave);
182
183 free(spi);
184}
185
186int tegra114_spi_init(int *node_list, int count)
187{
188 struct tegra_spi_ctrl *ctrl;
189 int i;
190 int node = 0;
191 int found = 0;
192
193 for (i = 0; i < count; i++) {
194 ctrl = &spi_ctrls[i];
195 node = node_list[i];
196
197 ctrl->regs = (struct spi_regs *)fdtdec_get_addr(gd->fdt_blob,
198 node, "reg");
199 if ((fdt_addr_t)ctrl->regs == FDT_ADDR_T_NONE) {
200 debug("%s: no spi register found\n", __func__);
201 continue;
202 }
203 ctrl->freq = fdtdec_get_int(gd->fdt_blob, node,
204 "spi-max-frequency", 0);
205 if (!ctrl->freq) {
206 debug("%s: no spi max frequency found\n", __func__);
207 continue;
208 }
209
210 ctrl->periph_id = clock_decode_periph_id(gd->fdt_blob, node);
211 if (ctrl->periph_id == PERIPH_ID_NONE) {
212 debug("%s: could not decode periph id\n", __func__);
213 continue;
214 }
215 ctrl->valid = 1;
216 found = 1;
217
218 debug("%s: found controller at %p, freq = %u, periph_id = %d\n",
219 __func__, ctrl->regs, ctrl->freq, ctrl->periph_id);
220 }
221
222 return !found;
223}
224
225int tegra114_spi_claim_bus(struct spi_slave *slave)
226{
227 struct tegra_spi_slave *spi = to_tegra_spi(slave);
228 struct spi_regs *regs = spi->ctrl->regs;
229
230 /* Change SPI clock to correct frequency, PLLP_OUT0 source */
231 clock_start_periph_pll(spi->ctrl->periph_id, CLOCK_ID_PERIPH,
232 spi->ctrl->freq);
233
234 /* Clear stale status here */
235 setbits_le32(&regs->fifo_status,
236 SPI_FIFO_STS_ERR |
237 SPI_FIFO_STS_TX_FIFO_OVF |
238 SPI_FIFO_STS_TX_FIFO_UNR |
239 SPI_FIFO_STS_RX_FIFO_OVF |
240 SPI_FIFO_STS_RX_FIFO_UNR |
241 SPI_FIFO_STS_TX_FIFO_FULL |
242 SPI_FIFO_STS_TX_FIFO_EMPTY |
243 SPI_FIFO_STS_RX_FIFO_FULL |
244 SPI_FIFO_STS_RX_FIFO_EMPTY);
245 debug("%s: FIFO STATUS = %08x\n", __func__, readl(&regs->fifo_status));
246
247 /* Set master mode and sw controlled CS */
248 setbits_le32(&regs->command1, SPI_CMD1_M_S | SPI_CMD1_CS_SW_HW |
249 (spi->ctrl->mode << SPI_CMD1_MODE_SHIFT));
250 debug("%s: COMMAND1 = %08x\n", __func__, readl(&regs->command1));
251
252 return 0;
253}
254
255void tegra114_spi_cs_activate(struct spi_slave *slave)
256{
257 struct tegra_spi_slave *spi = to_tegra_spi(slave);
258 struct spi_regs *regs = spi->ctrl->regs;
259
260 clrbits_le32(&regs->command1, SPI_CMD1_CS_SW_VAL);
261}
262
263void tegra114_spi_cs_deactivate(struct spi_slave *slave)
264{
265 struct tegra_spi_slave *spi = to_tegra_spi(slave);
266 struct spi_regs *regs = spi->ctrl->regs;
267
268 setbits_le32(&regs->command1, SPI_CMD1_CS_SW_VAL);
269}
270
271int tegra114_spi_xfer(struct spi_slave *slave, unsigned int bitlen,
272 const void *data_out, void *data_in, unsigned long flags)
273{
274 struct tegra_spi_slave *spi = to_tegra_spi(slave);
275 struct spi_regs *regs = spi->ctrl->regs;
276 u32 reg, tmpdout, tmpdin = 0;
277 const u8 *dout = data_out;
278 u8 *din = data_in;
279 int num_bytes;
280 int ret;
281
282 debug("%s: slave %u:%u dout %p din %p bitlen %u\n",
283 __func__, slave->bus, slave->cs, dout, din, bitlen);
284 if (bitlen % 8)
285 return -1;
286 num_bytes = bitlen / 8;
287
288 ret = 0;
289
290 /* clear all error status bits */
291 reg = readl(&regs->fifo_status);
292 writel(reg, &regs->fifo_status);
293
294 /* clear ready bit */
295 setbits_le32(&regs->xfer_status, SPI_XFER_STS_RDY);
296
297 clrsetbits_le32(&regs->command1, SPI_CMD1_CS_SW_VAL,
298 SPI_CMD1_RX_EN | SPI_CMD1_TX_EN | SPI_CMD1_LSBY_FE |
299 (slave->cs << SPI_CMD1_CS_SEL_SHIFT));
300
301 /* set xfer size to 1 block (32 bits) */
302 writel(0, &regs->dma_blk);
303
304 if (flags & SPI_XFER_BEGIN)
305 spi_cs_activate(slave);
306
307 /* handle data in 32-bit chunks */
308 while (num_bytes > 0) {
309 int bytes;
310 int is_read = 0;
311 int tm, i;
312
313 tmpdout = 0;
314 bytes = (num_bytes > 4) ? 4 : num_bytes;
315
316 if (dout != NULL) {
317 for (i = 0; i < bytes; ++i)
318 tmpdout = (tmpdout << 8) | dout[i];
319 dout += bytes;
320 }
321
322 num_bytes -= bytes;
323
324 clrsetbits_le32(&regs->command1,
325 SPI_CMD1_BIT_LEN_MASK << SPI_CMD1_BIT_LEN_SHIFT,
326 (bytes * 8 - 1) << SPI_CMD1_BIT_LEN_SHIFT);
327 writel(tmpdout, &regs->tx_fifo);
328 setbits_le32(&regs->command1, SPI_CMD1_GO);
329
330 /*
331 * Wait for SPI transmit FIFO to empty, or to time out.
332 * The RX FIFO status will be read and cleared last
333 */
334 for (tm = 0, is_read = 0; tm < SPI_TIMEOUT; ++tm) {
335 u32 fifo_status, xfer_status;
336
337 fifo_status = readl(&regs->fifo_status);
338
339 /* We can exit when we've had both RX and TX activity */
340 if (is_read &&
341 (fifo_status & SPI_FIFO_STS_TX_FIFO_EMPTY))
342 break;
343
344 xfer_status = readl(&regs->xfer_status);
345 if (!(xfer_status & SPI_XFER_STS_RDY))
346 continue;
347
348 if (fifo_status & SPI_FIFO_STS_ERR) {
349 debug("%s: got a fifo error: ", __func__);
350 if (fifo_status & SPI_FIFO_STS_TX_FIFO_OVF)
351 debug("tx FIFO overflow ");
352 if (fifo_status & SPI_FIFO_STS_TX_FIFO_UNR)
353 debug("tx FIFO underrun ");
354 if (fifo_status & SPI_FIFO_STS_RX_FIFO_OVF)
355 debug("rx FIFO overflow ");
356 if (fifo_status & SPI_FIFO_STS_RX_FIFO_UNR)
357 debug("rx FIFO underrun ");
358 if (fifo_status & SPI_FIFO_STS_TX_FIFO_FULL)
359 debug("tx FIFO full ");
360 if (fifo_status & SPI_FIFO_STS_TX_FIFO_EMPTY)
361 debug("tx FIFO empty ");
362 if (fifo_status & SPI_FIFO_STS_RX_FIFO_FULL)
363 debug("rx FIFO full ");
364 if (fifo_status & SPI_FIFO_STS_RX_FIFO_EMPTY)
365 debug("rx FIFO empty ");
366 debug("\n");
367 break;
368 }
369
370 if (!(fifo_status & SPI_FIFO_STS_RX_FIFO_EMPTY)) {
371 tmpdin = readl(&regs->rx_fifo);
372 is_read = 1;
373
374 /* swap bytes read in */
375 if (din != NULL) {
376 for (i = bytes - 1; i >= 0; --i) {
377 din[i] = tmpdin & 0xff;
378 tmpdin >>= 8;
379 }
380 din += bytes;
381 }
382 }
383 }
384
385 if (tm >= SPI_TIMEOUT)
386 ret = tm;
387
388 /* clear ACK RDY, etc. bits */
389 writel(readl(&regs->fifo_status), &regs->fifo_status);
390 }
391
392 if (flags & SPI_XFER_END)
393 spi_cs_deactivate(slave);
394
395 debug("%s: transfer ended. Value=%08x, fifo_status = %08x\n",
396 __func__, tmpdin, readl(&regs->fifo_status));
397
398 if (ret) {
399 printf("%s: timeout during SPI transfer, tm %d\n",
400 __func__, ret);
401 return -1;
402 }
403
404 return 0;
405}