blob: 9471ed5b22043b0db89ab9d881267cb8664ac40c [file] [log] [blame]
Dinh Nguyen135cc7f2015-06-02 22:52:49 -05001/*
2 * Copyright Altera Corporation (C) 2012-2015
3 *
4 * SPDX-License-Identifier: BSD-3-Clause
5 */
6
7#include <common.h>
8#include <asm/io.h>
9#include <asm/arch/sdram.h>
10#include "sequencer.h"
11#include "sequencer_auto.h"
12#include "sequencer_auto_ac_init.h"
13#include "sequencer_auto_inst_init.h"
14#include "sequencer_defines.h"
15
16static void scc_mgr_load_dqs_for_write_group(uint32_t write_group);
17
18static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
19 (struct socfpga_sdr_rw_load_manager *)(BASE_RW_MGR + 0x800);
20
21static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
22 (struct socfpga_sdr_rw_load_jump_manager *)(BASE_RW_MGR + 0xC00);
23
24static struct socfpga_sdr_reg_file *sdr_reg_file =
25 (struct socfpga_sdr_reg_file *)(BASE_REG_FILE);
26
27static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
28 (struct socfpga_sdr_scc_mgr *)(BASE_SCC_MGR + 0x0E00);
29
30static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
31 (struct socfpga_phy_mgr_cmd *)(BASE_PHY_MGR);
32
33static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
34 (struct socfpga_phy_mgr_cfg *)(BASE_PHY_MGR + 0x4000);
35
36static struct socfpga_data_mgr *data_mgr =
37 (struct socfpga_data_mgr *)(BASE_DATA_MGR);
38
39#define DELTA_D 1
40#define MGR_SELECT_MASK 0xf8000
41
42/*
43 * In order to reduce ROM size, most of the selectable calibration steps are
44 * decided at compile time based on the user's calibration mode selection,
45 * as captured by the STATIC_CALIB_STEPS selection below.
46 *
47 * However, to support simulation-time selection of fast simulation mode, where
48 * we skip everything except the bare minimum, we need a few of the steps to
49 * be dynamic. In those cases, we either use the DYNAMIC_CALIB_STEPS for the
50 * check, which is based on the rtl-supplied value, or we dynamically compute
51 * the value to use based on the dynamically-chosen calibration mode
52 */
53
54#define DLEVEL 0
55#define STATIC_IN_RTL_SIM 0
56#define STATIC_SKIP_DELAY_LOOPS 0
57
58#define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
59 STATIC_SKIP_DELAY_LOOPS)
60
61/* calibration steps requested by the rtl */
62uint16_t dyn_calib_steps;
63
64/*
65 * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
66 * instead of static, we use boolean logic to select between
67 * non-skip and skip values
68 *
69 * The mask is set to include all bits when not-skipping, but is
70 * zero when skipping
71 */
72
73uint16_t skip_delay_mask; /* mask off bits when skipping/not-skipping */
74
75#define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
76 ((non_skip_value) & skip_delay_mask)
77
78struct gbl_type *gbl;
79struct param_type *param;
80uint32_t curr_shadow_reg;
81
82static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
83 uint32_t write_group, uint32_t use_dm,
84 uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks);
85
86static u32 sdr_get_addr(u32 *base)
87{
88 u32 addr = (u32)base & MGR_SELECT_MASK;
89
90 switch (addr) {
91 case BASE_PHY_MGR:
92 addr = (((u32)base >> 8) & (1 << 6)) | ((u32)base & 0x3f) |
93 SDR_PHYGRP_PHYMGRGRP_ADDRESS;
94 break;
95 case BASE_RW_MGR:
96 addr = ((u32)base & 0x1fff) | SDR_PHYGRP_RWMGRGRP_ADDRESS;
97 break;
98 case BASE_DATA_MGR:
99 addr = ((u32)base & 0x7ff) | SDR_PHYGRP_DATAMGRGRP_ADDRESS;
100 break;
101 case BASE_SCC_MGR:
102 addr = ((u32)base & 0xfff) | SDR_PHYGRP_SCCGRP_ADDRESS;
103 break;
104 case BASE_REG_FILE:
105 addr = ((u32)base & 0x7ff) | SDR_PHYGRP_REGFILEGRP_ADDRESS;
106 break;
107 case BASE_MMR:
108 addr = ((u32)base & 0xfff) | SDR_CTRLGRP_ADDRESS;
109 break;
110 default:
111 return -1;
112 }
113
114 return addr;
115}
116
117static void set_failing_group_stage(uint32_t group, uint32_t stage,
118 uint32_t substage)
119{
120 /*
121 * Only set the global stage if there was not been any other
122 * failing group
123 */
124 if (gbl->error_stage == CAL_STAGE_NIL) {
125 gbl->error_substage = substage;
126 gbl->error_stage = stage;
127 gbl->error_group = group;
128 }
129}
130
131static void reg_file_set_group(uint32_t set_group)
132{
133 u32 addr = sdr_get_addr(&sdr_reg_file->cur_stage);
134
135 /* Read the current group and stage */
136 uint32_t cur_stage_group = readl(SOCFPGA_SDR_ADDRESS + addr);
137
138 /* Clear the group */
139 cur_stage_group &= 0x0000FFFF;
140
141 /* Set the group */
142 cur_stage_group |= (set_group << 16);
143
144 /* Write the data back */
145 writel(cur_stage_group, SOCFPGA_SDR_ADDRESS + addr);
146}
147
148static void reg_file_set_stage(uint32_t set_stage)
149{
150 u32 addr = sdr_get_addr(&sdr_reg_file->cur_stage);
151 /* Read the current group and stage */
152 uint32_t cur_stage_group = readl(SOCFPGA_SDR_ADDRESS + addr);
153
154 /* Clear the stage and substage */
155 cur_stage_group &= 0xFFFF0000;
156
157 /* Set the stage */
158 cur_stage_group |= (set_stage & 0x000000FF);
159
160 /* Write the data back */
161 writel(cur_stage_group, SOCFPGA_SDR_ADDRESS + addr);
162}
163
164static void reg_file_set_sub_stage(uint32_t set_sub_stage)
165{
166 u32 addr = sdr_get_addr(&sdr_reg_file->cur_stage);
167 /* Read the current group and stage */
168 uint32_t cur_stage_group = readl(SOCFPGA_SDR_ADDRESS + addr);
169
170 /* Clear the substage */
171 cur_stage_group &= 0xFFFF00FF;
172
173 /* Set the sub stage */
174 cur_stage_group |= ((set_sub_stage << 8) & 0x0000FF00);
175
176 /* Write the data back */
177 writel(cur_stage_group, SOCFPGA_SDR_ADDRESS + addr);
178}
179
180static void initialize(void)
181{
182 u32 addr = sdr_get_addr(&phy_mgr_cfg->mux_sel);
183
184 debug("%s:%d\n", __func__, __LINE__);
185 /* USER calibration has control over path to memory */
186 /*
187 * In Hard PHY this is a 2-bit control:
188 * 0: AFI Mux Select
189 * 1: DDIO Mux Select
190 */
191 writel(0x3, SOCFPGA_SDR_ADDRESS + addr);
192
193 /* USER memory clock is not stable we begin initialization */
194 addr = sdr_get_addr(&phy_mgr_cfg->reset_mem_stbl);
195 writel(0, SOCFPGA_SDR_ADDRESS + addr);
196
197 /* USER calibration status all set to zero */
198 addr = sdr_get_addr(&phy_mgr_cfg->cal_status);
199 writel(0, SOCFPGA_SDR_ADDRESS + addr);
200
201 addr = sdr_get_addr(&phy_mgr_cfg->cal_debug_info);
202 writel(0, SOCFPGA_SDR_ADDRESS + addr);
203
204 if ((dyn_calib_steps & CALIB_SKIP_ALL) != CALIB_SKIP_ALL) {
205 param->read_correct_mask_vg = ((uint32_t)1 <<
206 (RW_MGR_MEM_DQ_PER_READ_DQS /
207 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1;
208 param->write_correct_mask_vg = ((uint32_t)1 <<
209 (RW_MGR_MEM_DQ_PER_READ_DQS /
210 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1;
211 param->read_correct_mask = ((uint32_t)1 <<
212 RW_MGR_MEM_DQ_PER_READ_DQS) - 1;
213 param->write_correct_mask = ((uint32_t)1 <<
214 RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1;
215 param->dm_correct_mask = ((uint32_t)1 <<
216 (RW_MGR_MEM_DATA_WIDTH / RW_MGR_MEM_DATA_MASK_WIDTH))
217 - 1;
218 }
219}
220
221static void set_rank_and_odt_mask(uint32_t rank, uint32_t odt_mode)
222{
223 uint32_t odt_mask_0 = 0;
224 uint32_t odt_mask_1 = 0;
225 uint32_t cs_and_odt_mask;
226 uint32_t addr;
227
228 if (odt_mode == RW_MGR_ODT_MODE_READ_WRITE) {
229 if (RW_MGR_MEM_NUMBER_OF_RANKS == 1) {
230 /*
231 * 1 Rank
232 * Read: ODT = 0
233 * Write: ODT = 1
234 */
235 odt_mask_0 = 0x0;
236 odt_mask_1 = 0x1;
237 } else if (RW_MGR_MEM_NUMBER_OF_RANKS == 2) {
238 /* 2 Ranks */
239 if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) {
240 /* - Dual-Slot , Single-Rank
241 * (1 chip-select per DIMM)
242 * OR
243 * - RDIMM, 4 total CS (2 CS per DIMM)
244 * means 2 DIMM
245 * Since MEM_NUMBER_OF_RANKS is 2 they are
246 * both single rank
247 * with 2 CS each (special for RDIMM)
248 * Read: Turn on ODT on the opposite rank
249 * Write: Turn on ODT on all ranks
250 */
251 odt_mask_0 = 0x3 & ~(1 << rank);
252 odt_mask_1 = 0x3;
253 } else {
254 /*
255 * USER - Single-Slot , Dual-rank DIMMs
256 * (2 chip-selects per DIMM)
257 * USER Read: Turn on ODT off on all ranks
258 * USER Write: Turn on ODT on active rank
259 */
260 odt_mask_0 = 0x0;
261 odt_mask_1 = 0x3 & (1 << rank);
262 }
Marek Vasutf84348d2015-07-18 02:23:29 +0200263 } else {
Dinh Nguyen135cc7f2015-06-02 22:52:49 -0500264 /* 4 Ranks
265 * Read:
266 * ----------+-----------------------+
267 * | |
268 * | ODT |
269 * Read From +-----------------------+
270 * Rank | 3 | 2 | 1 | 0 |
271 * ----------+-----+-----+-----+-----+
272 * 0 | 0 | 1 | 0 | 0 |
273 * 1 | 1 | 0 | 0 | 0 |
274 * 2 | 0 | 0 | 0 | 1 |
275 * 3 | 0 | 0 | 1 | 0 |
276 * ----------+-----+-----+-----+-----+
277 *
278 * Write:
279 * ----------+-----------------------+
280 * | |
281 * | ODT |
282 * Write To +-----------------------+
283 * Rank | 3 | 2 | 1 | 0 |
284 * ----------+-----+-----+-----+-----+
285 * 0 | 0 | 1 | 0 | 1 |
286 * 1 | 1 | 0 | 1 | 0 |
287 * 2 | 0 | 1 | 0 | 1 |
288 * 3 | 1 | 0 | 1 | 0 |
289 * ----------+-----+-----+-----+-----+
290 */
291 switch (rank) {
292 case 0:
293 odt_mask_0 = 0x4;
294 odt_mask_1 = 0x5;
295 break;
296 case 1:
297 odt_mask_0 = 0x8;
298 odt_mask_1 = 0xA;
299 break;
300 case 2:
301 odt_mask_0 = 0x1;
302 odt_mask_1 = 0x5;
303 break;
304 case 3:
305 odt_mask_0 = 0x2;
306 odt_mask_1 = 0xA;
307 break;
308 }
309 }
310 } else {
311 odt_mask_0 = 0x0;
312 odt_mask_1 = 0x0;
313 }
314
315 cs_and_odt_mask =
316 (0xFF & ~(1 << rank)) |
317 ((0xFF & odt_mask_0) << 8) |
318 ((0xFF & odt_mask_1) << 16);
319 addr = sdr_get_addr((u32 *)RW_MGR_SET_CS_AND_ODT_MASK);
320 writel(cs_and_odt_mask, SOCFPGA_SDR_ADDRESS + addr);
321}
322
323static void scc_mgr_initialize(void)
324{
325 u32 addr = sdr_get_addr((u32 *)SCC_MGR_HHP_RFILE);
326
327 /*
328 * Clear register file for HPS
329 * 16 (2^4) is the size of the full register file in the scc mgr:
330 * RFILE_DEPTH = log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
331 * MEM_IF_READ_DQS_WIDTH - 1) + 1;
332 */
333 uint32_t i;
334 for (i = 0; i < 16; i++) {
Marek Vasut0eacf7e2015-06-26 18:56:54 +0200335 debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n",
Dinh Nguyen135cc7f2015-06-02 22:52:49 -0500336 __func__, __LINE__, i);
337 writel(0, SOCFPGA_SDR_ADDRESS + addr + (i << 2));
338 }
339}
340
341static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group,
342 uint32_t delay)
343{
344 u32 addr = sdr_get_addr((u32 *)SCC_MGR_DQS_IN_DELAY);
345
346 /* Load the setting in the SCC manager */
347 writel(delay, SOCFPGA_SDR_ADDRESS + addr + (read_group << 2));
348}
349
350static void scc_mgr_set_dqs_io_in_delay(uint32_t write_group,
351 uint32_t delay)
352{
353 u32 addr = sdr_get_addr((u32 *)SCC_MGR_IO_IN_DELAY);
354
355 writel(delay, SOCFPGA_SDR_ADDRESS + addr + (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
356}
357
358static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase)
359{
360 u32 addr = sdr_get_addr((u32 *)SCC_MGR_DQS_EN_PHASE);
361
362 /* Load the setting in the SCC manager */
363 writel(phase, SOCFPGA_SDR_ADDRESS + addr + (read_group << 2));
364}
365
366static void scc_mgr_set_dqs_en_phase_all_ranks(uint32_t read_group,
367 uint32_t phase)
368{
369 uint32_t r;
370 uint32_t update_scan_chains;
371 uint32_t addr;
372
373 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
374 r += NUM_RANKS_PER_SHADOW_REG) {
375 /*
376 * USER although the h/w doesn't support different phases per
377 * shadow register, for simplicity our scc manager modeling
378 * keeps different phase settings per shadow reg, and it's
379 * important for us to keep them in sync to match h/w.
380 * for efficiency, the scan chain update should occur only
381 * once to sr0.
382 */
383 update_scan_chains = (r == 0) ? 1 : 0;
384
385 scc_mgr_set_dqs_en_phase(read_group, phase);
386
387 if (update_scan_chains) {
388 addr = sdr_get_addr(&sdr_scc_mgr->dqs_ena);
389 writel(read_group, SOCFPGA_SDR_ADDRESS + addr);
390
391 addr = sdr_get_addr(&sdr_scc_mgr->update);
392 writel(0, SOCFPGA_SDR_ADDRESS + addr);
393 }
394 }
395}
396
397static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group,
398 uint32_t phase)
399{
400 u32 addr = sdr_get_addr((u32 *)SCC_MGR_DQDQS_OUT_PHASE);
401
402 /* Load the setting in the SCC manager */
403 writel(phase, SOCFPGA_SDR_ADDRESS + addr + (write_group << 2));
404}
405
406static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group,
407 uint32_t phase)
408{
409 uint32_t r;
410 uint32_t update_scan_chains;
411 uint32_t addr;
412
413 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
414 r += NUM_RANKS_PER_SHADOW_REG) {
415 /*
416 * USER although the h/w doesn't support different phases per
417 * shadow register, for simplicity our scc manager modeling
418 * keeps different phase settings per shadow reg, and it's
419 * important for us to keep them in sync to match h/w.
420 * for efficiency, the scan chain update should occur only
421 * once to sr0.
422 */
423 update_scan_chains = (r == 0) ? 1 : 0;
424
425 scc_mgr_set_dqdqs_output_phase(write_group, phase);
426
427 if (update_scan_chains) {
428 addr = sdr_get_addr(&sdr_scc_mgr->dqs_ena);
429 writel(write_group, SOCFPGA_SDR_ADDRESS + addr);
430
431 addr = sdr_get_addr(&sdr_scc_mgr->update);
432 writel(0, SOCFPGA_SDR_ADDRESS + addr);
433 }
434 }
435}
436
437static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay)
438{
439 uint32_t addr = sdr_get_addr((u32 *)SCC_MGR_DQS_EN_DELAY);
440
441 /* Load the setting in the SCC manager */
442 writel(delay + IO_DQS_EN_DELAY_OFFSET, SOCFPGA_SDR_ADDRESS + addr +
443 (read_group << 2));
444}
445
446static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group,
447 uint32_t delay)
448{
449 uint32_t r;
450 uint32_t addr;
451
452 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
453 r += NUM_RANKS_PER_SHADOW_REG) {
454 scc_mgr_set_dqs_en_delay(read_group, delay);
455
456 addr = sdr_get_addr(&sdr_scc_mgr->dqs_ena);
457 writel(read_group, SOCFPGA_SDR_ADDRESS + addr);
458 /*
459 * In shadow register mode, the T11 settings are stored in
460 * registers in the core, which are updated by the DQS_ENA
461 * signals. Not issuing the SCC_MGR_UPD command allows us to
462 * save lots of rank switching overhead, by calling
463 * select_shadow_regs_for_update with update_scan_chains
464 * set to 0.
465 */
466 addr = sdr_get_addr(&sdr_scc_mgr->update);
467 writel(0, SOCFPGA_SDR_ADDRESS + addr);
468 }
469 /*
470 * In shadow register mode, the T11 settings are stored in
471 * registers in the core, which are updated by the DQS_ENA
472 * signals. Not issuing the SCC_MGR_UPD command allows us to
473 * save lots of rank switching overhead, by calling
474 * select_shadow_regs_for_update with update_scan_chains
475 * set to 0.
476 */
477 addr = sdr_get_addr(&sdr_scc_mgr->update);
478 writel(0, SOCFPGA_SDR_ADDRESS + addr);
479}
480
481static void scc_mgr_set_oct_out1_delay(uint32_t write_group, uint32_t delay)
482{
483 uint32_t read_group;
484 uint32_t addr = sdr_get_addr((u32 *)SCC_MGR_OCT_OUT1_DELAY);
485
486 /*
487 * Load the setting in the SCC manager
488 * Although OCT affects only write data, the OCT delay is controlled
489 * by the DQS logic block which is instantiated once per read group.
490 * For protocols where a write group consists of multiple read groups,
491 * the setting must be set multiple times.
492 */
493 for (read_group = write_group * RW_MGR_MEM_IF_READ_DQS_WIDTH /
494 RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
495 read_group < (write_group + 1) * RW_MGR_MEM_IF_READ_DQS_WIDTH /
496 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; ++read_group)
497 writel(delay, SOCFPGA_SDR_ADDRESS + addr + (read_group << 2));
498}
499
500static void scc_mgr_set_dq_out1_delay(uint32_t write_group,
501 uint32_t dq_in_group, uint32_t delay)
502{
503 uint32_t addr = sdr_get_addr((u32 *)SCC_MGR_IO_OUT1_DELAY);
504
505 /* Load the setting in the SCC manager */
506 writel(delay, SOCFPGA_SDR_ADDRESS + addr + (dq_in_group << 2));
507}
508
509static void scc_mgr_set_dq_in_delay(uint32_t write_group,
510 uint32_t dq_in_group, uint32_t delay)
511{
512 uint32_t addr = sdr_get_addr((u32 *)SCC_MGR_IO_IN_DELAY);
513
514 /* Load the setting in the SCC manager */
515 writel(delay, SOCFPGA_SDR_ADDRESS + addr + (dq_in_group << 2));
516}
517
518static void scc_mgr_set_hhp_extras(void)
519{
520 /*
521 * Load the fixed setting in the SCC manager
522 * bits: 0:0 = 1'b1 - dqs bypass
523 * bits: 1:1 = 1'b1 - dq bypass
524 * bits: 4:2 = 3'b001 - rfifo_mode
525 * bits: 6:5 = 2'b01 - rfifo clock_select
526 * bits: 7:7 = 1'b0 - separate gating from ungating setting
527 * bits: 8:8 = 1'b0 - separate OE from Output delay setting
528 */
529 uint32_t value = (0<<8) | (0<<7) | (1<<5) | (1<<2) | (1<<1) | (1<<0);
530 uint32_t addr = sdr_get_addr((u32 *)SCC_MGR_HHP_GLOBALS);
531
532 writel(value, SOCFPGA_SDR_ADDRESS + addr + SCC_MGR_HHP_EXTRAS_OFFSET);
533}
534
535static void scc_mgr_set_dqs_out1_delay(uint32_t write_group,
536 uint32_t delay)
537{
538 uint32_t addr = sdr_get_addr((u32 *)SCC_MGR_IO_OUT1_DELAY);
539
540 /* Load the setting in the SCC manager */
541 writel(delay, SOCFPGA_SDR_ADDRESS + addr + (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
542}
543
544static void scc_mgr_set_dm_out1_delay(uint32_t write_group,
545 uint32_t dm, uint32_t delay)
546{
547 uint32_t addr = sdr_get_addr((u32 *)SCC_MGR_IO_OUT1_DELAY);
548
549 /* Load the setting in the SCC manager */
550 writel(delay, SOCFPGA_SDR_ADDRESS + addr +
551 ((RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm) << 2));
552}
553
554/*
555 * USER Zero all DQS config
556 * TODO: maybe rename to scc_mgr_zero_dqs_config (or something)
557 */
558static void scc_mgr_zero_all(void)
559{
560 uint32_t i, r;
561 uint32_t addr;
562
563 /*
564 * USER Zero all DQS config settings, across all groups and all
565 * shadow registers
566 */
567 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r +=
568 NUM_RANKS_PER_SHADOW_REG) {
569 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
570 /*
571 * The phases actually don't exist on a per-rank basis,
572 * but there's no harm updating them several times, so
573 * let's keep the code simple.
574 */
575 scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE);
576 scc_mgr_set_dqs_en_phase(i, 0);
577 scc_mgr_set_dqs_en_delay(i, 0);
578 }
579
580 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
581 scc_mgr_set_dqdqs_output_phase(i, 0);
582 /* av/cv don't have out2 */
583 scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE);
584 }
585 }
586
587 /* multicast to all DQS group enables */
588 addr = sdr_get_addr(&sdr_scc_mgr->dqs_ena);
589 writel(0xff, SOCFPGA_SDR_ADDRESS + addr);
590
591 addr = sdr_get_addr(&sdr_scc_mgr->update);
592 writel(0, SOCFPGA_SDR_ADDRESS + addr);
593}
594
595static void scc_set_bypass_mode(uint32_t write_group, uint32_t mode)
596{
597 uint32_t addr;
598 /* mode = 0 : Do NOT bypass - Half Rate Mode */
599 /* mode = 1 : Bypass - Full Rate Mode */
600
601 /* only need to set once for all groups, pins, dq, dqs, dm */
602 if (write_group == 0) {
603 debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n", __func__,
604 __LINE__);
605 scc_mgr_set_hhp_extras();
606 debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n",
607 __func__, __LINE__);
608 }
609 /* multicast to all DQ enables */
610 addr = sdr_get_addr(&sdr_scc_mgr->dq_ena);
611 writel(0xff, SOCFPGA_SDR_ADDRESS + addr);
612
613 addr = sdr_get_addr(&sdr_scc_mgr->dm_ena);
614 writel(0xff, SOCFPGA_SDR_ADDRESS + addr);
615
616 /* update current DQS IO enable */
617 addr = sdr_get_addr(&sdr_scc_mgr->dqs_io_ena);
618 writel(0, SOCFPGA_SDR_ADDRESS + addr);
619
620 /* update the DQS logic */
621 addr = sdr_get_addr(&sdr_scc_mgr->dqs_ena);
622 writel(write_group, SOCFPGA_SDR_ADDRESS + addr);
623
624 /* hit update */
625 addr = sdr_get_addr(&sdr_scc_mgr->update);
626 writel(0, SOCFPGA_SDR_ADDRESS + addr);
627}
628
629static void scc_mgr_zero_group(uint32_t write_group, uint32_t test_begin,
630 int32_t out_only)
631{
632 uint32_t i, r;
633 uint32_t addr;
634
635 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r +=
636 NUM_RANKS_PER_SHADOW_REG) {
637 /* Zero all DQ config settings */
638 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
639 scc_mgr_set_dq_out1_delay(write_group, i, 0);
640 if (!out_only)
641 scc_mgr_set_dq_in_delay(write_group, i, 0);
642 }
643
644 /* multicast to all DQ enables */
645 addr = sdr_get_addr(&sdr_scc_mgr->dq_ena);
646 writel(0xff, SOCFPGA_SDR_ADDRESS + addr);
647
648 /* Zero all DM config settings */
649 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
650 scc_mgr_set_dm_out1_delay(write_group, i, 0);
651 }
652
653 /* multicast to all DM enables */
654 addr = sdr_get_addr(&sdr_scc_mgr->dm_ena);
655 writel(0xff, SOCFPGA_SDR_ADDRESS + addr);
656
657 /* zero all DQS io settings */
658 if (!out_only)
659 scc_mgr_set_dqs_io_in_delay(write_group, 0);
660 /* av/cv don't have out2 */
661 scc_mgr_set_dqs_out1_delay(write_group, IO_DQS_OUT_RESERVE);
662 scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE);
663 scc_mgr_load_dqs_for_write_group(write_group);
664
665 /* multicast to all DQS IO enables (only 1) */
666 addr = sdr_get_addr(&sdr_scc_mgr->dqs_io_ena);
667 writel(0, SOCFPGA_SDR_ADDRESS + addr);
668
669 /* hit update to zero everything */
670 addr = sdr_get_addr(&sdr_scc_mgr->update);
671 writel(0, SOCFPGA_SDR_ADDRESS + addr);
672 }
673}
674
675/* load up dqs config settings */
676static void scc_mgr_load_dqs(uint32_t dqs)
677{
678 uint32_t addr = sdr_get_addr(&sdr_scc_mgr->dqs_ena);
679
680 writel(dqs, SOCFPGA_SDR_ADDRESS + addr);
681}
682
683static void scc_mgr_load_dqs_for_write_group(uint32_t write_group)
684{
685 uint32_t read_group;
686 uint32_t addr = sdr_get_addr(&sdr_scc_mgr->dqs_ena);
687 /*
688 * Although OCT affects only write data, the OCT delay is controlled
689 * by the DQS logic block which is instantiated once per read group.
690 * For protocols where a write group consists of multiple read groups,
691 * the setting must be scanned multiple times.
692 */
693 for (read_group = write_group * RW_MGR_MEM_IF_READ_DQS_WIDTH /
694 RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
695 read_group < (write_group + 1) * RW_MGR_MEM_IF_READ_DQS_WIDTH /
696 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; ++read_group)
697 writel(read_group, SOCFPGA_SDR_ADDRESS + addr);
698}
699
700/* load up dqs io config settings */
701static void scc_mgr_load_dqs_io(void)
702{
703 uint32_t addr = sdr_get_addr(&sdr_scc_mgr->dqs_io_ena);
704
705 writel(0, SOCFPGA_SDR_ADDRESS + addr);
706}
707
708/* load up dq config settings */
709static void scc_mgr_load_dq(uint32_t dq_in_group)
710{
711 uint32_t addr = sdr_get_addr(&sdr_scc_mgr->dq_ena);
712
713 writel(dq_in_group, SOCFPGA_SDR_ADDRESS + addr);
714}
715
716/* load up dm config settings */
717static void scc_mgr_load_dm(uint32_t dm)
718{
719 uint32_t addr = sdr_get_addr(&sdr_scc_mgr->dm_ena);
720
721 writel(dm, SOCFPGA_SDR_ADDRESS + addr);
722}
723
724/*
725 * apply and load a particular input delay for the DQ pins in a group
726 * group_bgn is the index of the first dq pin (in the write group)
727 */
728static void scc_mgr_apply_group_dq_in_delay(uint32_t write_group,
729 uint32_t group_bgn, uint32_t delay)
730{
731 uint32_t i, p;
732
733 for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
734 scc_mgr_set_dq_in_delay(write_group, p, delay);
735 scc_mgr_load_dq(p);
736 }
737}
738
739/* apply and load a particular output delay for the DQ pins in a group */
740static void scc_mgr_apply_group_dq_out1_delay(uint32_t write_group,
741 uint32_t group_bgn,
742 uint32_t delay1)
743{
744 uint32_t i, p;
745
746 for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
747 scc_mgr_set_dq_out1_delay(write_group, i, delay1);
748 scc_mgr_load_dq(i);
749 }
750}
751
752/* apply and load a particular output delay for the DM pins in a group */
753static void scc_mgr_apply_group_dm_out1_delay(uint32_t write_group,
754 uint32_t delay1)
755{
756 uint32_t i;
757
758 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
759 scc_mgr_set_dm_out1_delay(write_group, i, delay1);
760 scc_mgr_load_dm(i);
761 }
762}
763
764
765/* apply and load delay on both DQS and OCT out1 */
766static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group,
767 uint32_t delay)
768{
769 scc_mgr_set_dqs_out1_delay(write_group, delay);
770 scc_mgr_load_dqs_io();
771
772 scc_mgr_set_oct_out1_delay(write_group, delay);
773 scc_mgr_load_dqs_for_write_group(write_group);
774}
775
776/* apply a delay to the entire output side: DQ, DM, DQS, OCT */
777static void scc_mgr_apply_group_all_out_delay_add(uint32_t write_group,
778 uint32_t group_bgn,
779 uint32_t delay)
780{
781 uint32_t i, p, new_delay;
782
783 /* dq shift */
784 for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
785 new_delay = READ_SCC_DQ_OUT2_DELAY;
786 new_delay += delay;
787
788 if (new_delay > IO_IO_OUT2_DELAY_MAX) {
789 debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DQ[%u,%u]:\
790 %u > %lu => %lu", __func__, __LINE__,
791 write_group, group_bgn, delay, i, p, new_delay,
792 (long unsigned int)IO_IO_OUT2_DELAY_MAX,
793 (long unsigned int)IO_IO_OUT2_DELAY_MAX);
794 new_delay = IO_IO_OUT2_DELAY_MAX;
795 }
796
797 scc_mgr_load_dq(i);
798 }
799
800 /* dm shift */
801 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
802 new_delay = READ_SCC_DM_IO_OUT2_DELAY;
803 new_delay += delay;
804
805 if (new_delay > IO_IO_OUT2_DELAY_MAX) {
806 debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DM[%u]:\
807 %u > %lu => %lu\n", __func__, __LINE__,
808 write_group, group_bgn, delay, i, new_delay,
809 (long unsigned int)IO_IO_OUT2_DELAY_MAX,
810 (long unsigned int)IO_IO_OUT2_DELAY_MAX);
811 new_delay = IO_IO_OUT2_DELAY_MAX;
812 }
813
814 scc_mgr_load_dm(i);
815 }
816
817 /* dqs shift */
818 new_delay = READ_SCC_DQS_IO_OUT2_DELAY;
819 new_delay += delay;
820
821 if (new_delay > IO_IO_OUT2_DELAY_MAX) {
822 debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DQS: %u > %d => %d;"
823 " adding %u to OUT1\n", __func__, __LINE__,
824 write_group, group_bgn, delay, new_delay,
825 IO_IO_OUT2_DELAY_MAX, IO_IO_OUT2_DELAY_MAX,
826 new_delay - IO_IO_OUT2_DELAY_MAX);
827 scc_mgr_set_dqs_out1_delay(write_group, new_delay -
828 IO_IO_OUT2_DELAY_MAX);
829 new_delay = IO_IO_OUT2_DELAY_MAX;
830 }
831
832 scc_mgr_load_dqs_io();
833
834 /* oct shift */
835 new_delay = READ_SCC_OCT_OUT2_DELAY;
836 new_delay += delay;
837
838 if (new_delay > IO_IO_OUT2_DELAY_MAX) {
839 debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DQS: %u > %d => %d;"
840 " adding %u to OUT1\n", __func__, __LINE__,
841 write_group, group_bgn, delay, new_delay,
842 IO_IO_OUT2_DELAY_MAX, IO_IO_OUT2_DELAY_MAX,
843 new_delay - IO_IO_OUT2_DELAY_MAX);
844 scc_mgr_set_oct_out1_delay(write_group, new_delay -
845 IO_IO_OUT2_DELAY_MAX);
846 new_delay = IO_IO_OUT2_DELAY_MAX;
847 }
848
849 scc_mgr_load_dqs_for_write_group(write_group);
850}
851
852/*
853 * USER apply a delay to the entire output side (DQ, DM, DQS, OCT)
854 * and to all ranks
855 */
856static void scc_mgr_apply_group_all_out_delay_add_all_ranks(
857 uint32_t write_group, uint32_t group_bgn, uint32_t delay)
858{
859 uint32_t r;
860 uint32_t addr = sdr_get_addr(&sdr_scc_mgr->update);
861
862 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
863 r += NUM_RANKS_PER_SHADOW_REG) {
864 scc_mgr_apply_group_all_out_delay_add(write_group,
865 group_bgn, delay);
866 writel(0, SOCFPGA_SDR_ADDRESS + addr);
867 }
868}
869
870/* optimization used to recover some slots in ddr3 inst_rom */
871/* could be applied to other protocols if we wanted to */
872static void set_jump_as_return(void)
873{
874 uint32_t addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr0);
875
876 /*
877 * to save space, we replace return with jump to special shared
878 * RETURN instruction so we set the counter to large value so that
879 * we always jump
880 */
881 writel(0xff, SOCFPGA_SDR_ADDRESS + addr);
882 addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add0);
883 writel(RW_MGR_RETURN, SOCFPGA_SDR_ADDRESS + addr);
884}
885
886/*
887 * should always use constants as argument to ensure all computations are
888 * performed at compile time
889 */
890static void delay_for_n_mem_clocks(const uint32_t clocks)
891{
892 uint32_t afi_clocks;
893 uint8_t inner = 0;
894 uint8_t outer = 0;
895 uint16_t c_loop = 0;
896 uint32_t addr;
897
898 debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
899
900
901 afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO;
902 /* scale (rounding up) to get afi clocks */
903
904 /*
905 * Note, we don't bother accounting for being off a little bit
906 * because of a few extra instructions in outer loops
907 * Note, the loops have a test at the end, and do the test before
908 * the decrement, and so always perform the loop
909 * 1 time more than the counter value
910 */
911 if (afi_clocks == 0) {
912 ;
913 } else if (afi_clocks <= 0x100) {
914 inner = afi_clocks-1;
915 outer = 0;
916 c_loop = 0;
917 } else if (afi_clocks <= 0x10000) {
918 inner = 0xff;
919 outer = (afi_clocks-1) >> 8;
920 c_loop = 0;
921 } else {
922 inner = 0xff;
923 outer = 0xff;
924 c_loop = (afi_clocks-1) >> 16;
925 }
926
927 /*
928 * rom instructions are structured as follows:
929 *
930 * IDLE_LOOP2: jnz cntr0, TARGET_A
931 * IDLE_LOOP1: jnz cntr1, TARGET_B
932 * return
933 *
934 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
935 * TARGET_B is set to IDLE_LOOP2 as well
936 *
937 * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
938 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
939 *
940 * a little confusing, but it helps save precious space in the inst_rom
941 * and sequencer rom and keeps the delays more accurate and reduces
942 * overhead
943 */
944 if (afi_clocks <= 0x100) {
945 addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr1);
946 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), SOCFPGA_SDR_ADDRESS + addr);
947
948 addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add1);
949 writel(RW_MGR_IDLE_LOOP1, SOCFPGA_SDR_ADDRESS + addr);
950
951 addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
952 writel(RW_MGR_IDLE_LOOP1, SOCFPGA_SDR_ADDRESS + addr);
953 } else {
954 addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr0);
955 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), SOCFPGA_SDR_ADDRESS + addr);
956
957 addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr1);
958 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer), SOCFPGA_SDR_ADDRESS + addr);
959
960 addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add0);
961 writel(RW_MGR_IDLE_LOOP2, SOCFPGA_SDR_ADDRESS + addr);
962
963 addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add1);
964 writel(RW_MGR_IDLE_LOOP2, SOCFPGA_SDR_ADDRESS + addr);
965
966 /* hack to get around compiler not being smart enough */
967 if (afi_clocks <= 0x10000) {
968 /* only need to run once */
969 addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
970 writel(RW_MGR_IDLE_LOOP2, SOCFPGA_SDR_ADDRESS + addr);
971 } else {
972 do {
973 addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
974 writel(RW_MGR_IDLE_LOOP2, SOCFPGA_SDR_ADDRESS + addr);
975 } while (c_loop-- != 0);
976 }
977 }
978 debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
979}
980
981static void rw_mgr_mem_initialize(void)
982{
983 uint32_t r;
984 uint32_t addr;
985
986 debug("%s:%d\n", __func__, __LINE__);
987
988 /* The reset / cke part of initialization is broadcasted to all ranks */
989 addr = sdr_get_addr((u32 *)RW_MGR_SET_CS_AND_ODT_MASK);
990 writel(RW_MGR_RANK_ALL, SOCFPGA_SDR_ADDRESS + addr);
991
992 /*
993 * Here's how you load register for a loop
994 * Counters are located @ 0x800
995 * Jump address are located @ 0xC00
996 * For both, registers 0 to 3 are selected using bits 3 and 2, like
997 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
998 * I know this ain't pretty, but Avalon bus throws away the 2 least
999 * significant bits
1000 */
1001
1002 /* start with memory RESET activated */
1003
1004 /* tINIT = 200us */
1005
1006 /*
1007 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
1008 * If a and b are the number of iteration in 2 nested loops
1009 * it takes the following number of cycles to complete the operation:
1010 * number_of_cycles = ((2 + n) * a + 2) * b
1011 * where n is the number of instruction in the inner loop
1012 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
1013 * b = 6A
1014 */
1015
1016 /* Load counters */
1017 addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr0);
1018 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR0_VAL),
1019 SOCFPGA_SDR_ADDRESS + addr);
1020 addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr1);
1021 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR1_VAL),
1022 SOCFPGA_SDR_ADDRESS + addr);
1023 addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr2);
1024 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR2_VAL),
1025 SOCFPGA_SDR_ADDRESS + addr);
1026
1027 /* Load jump address */
1028 addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1029 writel(RW_MGR_INIT_RESET_0_CKE_0, SOCFPGA_SDR_ADDRESS + addr);
1030
1031 addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1032 writel(RW_MGR_INIT_RESET_0_CKE_0, SOCFPGA_SDR_ADDRESS + addr);
1033
1034 addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1035 writel(RW_MGR_INIT_RESET_0_CKE_0, SOCFPGA_SDR_ADDRESS + addr);
1036
1037 /* Execute count instruction */
1038 addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
1039 writel(RW_MGR_INIT_RESET_0_CKE_0, SOCFPGA_SDR_ADDRESS + addr);
1040
1041 /* indicate that memory is stable */
1042 addr = sdr_get_addr(&phy_mgr_cfg->reset_mem_stbl);
1043 writel(1, SOCFPGA_SDR_ADDRESS + addr);
1044
1045 /*
1046 * transition the RESET to high
1047 * Wait for 500us
1048 */
1049
1050 /*
1051 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
1052 * If a and b are the number of iteration in 2 nested loops
1053 * it takes the following number of cycles to complete the operation
1054 * number_of_cycles = ((2 + n) * a + 2) * b
1055 * where n is the number of instruction in the inner loop
1056 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
1057 * b = FF
1058 */
1059
1060 /* Load counters */
1061 addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr0);
1062 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR0_VAL),
1063 SOCFPGA_SDR_ADDRESS + addr);
1064 addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr1);
1065 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR1_VAL),
1066 SOCFPGA_SDR_ADDRESS + addr);
1067 addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr2);
1068 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR2_VAL),
1069 SOCFPGA_SDR_ADDRESS + addr);
1070
1071 /* Load jump address */
1072 addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1073 writel(RW_MGR_INIT_RESET_1_CKE_0, SOCFPGA_SDR_ADDRESS + addr);
1074 addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1075 writel(RW_MGR_INIT_RESET_1_CKE_0, SOCFPGA_SDR_ADDRESS + addr);
1076 addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1077 writel(RW_MGR_INIT_RESET_1_CKE_0, SOCFPGA_SDR_ADDRESS + addr);
1078
1079 addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
1080 writel(RW_MGR_INIT_RESET_1_CKE_0, SOCFPGA_SDR_ADDRESS + addr);
1081
1082 /* bring up clock enable */
1083
1084 /* tXRP < 250 ck cycles */
1085 delay_for_n_mem_clocks(250);
1086
1087 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
1088 if (param->skip_ranks[r]) {
1089 /* request to skip the rank */
1090 continue;
1091 }
1092
1093 /* set rank */
1094 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
1095
1096 /*
1097 * USER Use Mirror-ed commands for odd ranks if address
1098 * mirrorring is on
1099 */
1100 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
1101 set_jump_as_return();
1102 addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
1103 writel(RW_MGR_MRS2_MIRR, SOCFPGA_SDR_ADDRESS + addr);
1104 delay_for_n_mem_clocks(4);
1105 set_jump_as_return();
1106 writel(RW_MGR_MRS3_MIRR, SOCFPGA_SDR_ADDRESS + addr);
1107 delay_for_n_mem_clocks(4);
1108 set_jump_as_return();
1109 writel(RW_MGR_MRS1_MIRR, SOCFPGA_SDR_ADDRESS + addr);
1110 delay_for_n_mem_clocks(4);
1111 set_jump_as_return();
1112 writel(RW_MGR_MRS0_DLL_RESET_MIRR, SOCFPGA_SDR_ADDRESS + addr);
1113 } else {
1114 set_jump_as_return();
1115 addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
1116 writel(RW_MGR_MRS2, SOCFPGA_SDR_ADDRESS + addr);
1117 delay_for_n_mem_clocks(4);
1118 set_jump_as_return();
1119 writel(RW_MGR_MRS3, SOCFPGA_SDR_ADDRESS + addr);
1120 delay_for_n_mem_clocks(4);
1121 set_jump_as_return();
1122 writel(RW_MGR_MRS1, SOCFPGA_SDR_ADDRESS + addr);
1123 set_jump_as_return();
1124 writel(RW_MGR_MRS0_DLL_RESET, SOCFPGA_SDR_ADDRESS + addr);
1125 }
1126 set_jump_as_return();
1127 addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
1128 writel(RW_MGR_ZQCL, SOCFPGA_SDR_ADDRESS + addr);
1129
1130 /* tZQinit = tDLLK = 512 ck cycles */
1131 delay_for_n_mem_clocks(512);
1132 }
1133}
1134
1135/*
1136 * At the end of calibration we have to program the user settings in, and
1137 * USER hand off the memory to the user.
1138 */
1139static void rw_mgr_mem_handoff(void)
1140{
1141 uint32_t r;
1142 uint32_t addr;
1143
1144 debug("%s:%d\n", __func__, __LINE__);
1145 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
1146 if (param->skip_ranks[r])
1147 /* request to skip the rank */
1148 continue;
1149 /* set rank */
1150 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
1151
1152 /* precharge all banks ... */
1153 addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
1154 writel(RW_MGR_PRECHARGE_ALL, SOCFPGA_SDR_ADDRESS + addr);
1155
1156 /* load up MR settings specified by user */
1157
1158 /*
1159 * Use Mirror-ed commands for odd ranks if address
1160 * mirrorring is on
1161 */
1162 addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
1163 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
1164 set_jump_as_return();
1165 writel(RW_MGR_MRS2_MIRR, SOCFPGA_SDR_ADDRESS + addr);
1166 delay_for_n_mem_clocks(4);
1167 set_jump_as_return();
1168 writel(RW_MGR_MRS3_MIRR, SOCFPGA_SDR_ADDRESS + addr);
1169 delay_for_n_mem_clocks(4);
1170 set_jump_as_return();
1171 writel(RW_MGR_MRS1_MIRR, SOCFPGA_SDR_ADDRESS + addr);
1172 delay_for_n_mem_clocks(4);
1173 set_jump_as_return();
1174 writel(RW_MGR_MRS0_USER_MIRR, SOCFPGA_SDR_ADDRESS + addr);
1175 } else {
1176 set_jump_as_return();
1177 writel(RW_MGR_MRS2, SOCFPGA_SDR_ADDRESS + addr);
1178 delay_for_n_mem_clocks(4);
1179 set_jump_as_return();
1180 writel(RW_MGR_MRS3, SOCFPGA_SDR_ADDRESS + addr);
1181 delay_for_n_mem_clocks(4);
1182 set_jump_as_return();
1183 writel(RW_MGR_MRS1, SOCFPGA_SDR_ADDRESS + addr);
1184 delay_for_n_mem_clocks(4);
1185 set_jump_as_return();
1186 writel(RW_MGR_MRS0_USER, SOCFPGA_SDR_ADDRESS + addr);
1187 }
1188 /*
1189 * USER need to wait tMOD (12CK or 15ns) time before issuing
1190 * other commands, but we will have plenty of NIOS cycles before
1191 * actual handoff so its okay.
1192 */
1193 }
1194}
1195
1196/*
1197 * performs a guaranteed read on the patterns we are going to use during a
1198 * read test to ensure memory works
1199 */
1200static uint32_t rw_mgr_mem_calibrate_read_test_patterns(uint32_t rank_bgn,
1201 uint32_t group, uint32_t num_tries, uint32_t *bit_chk,
1202 uint32_t all_ranks)
1203{
1204 uint32_t r, vg;
1205 uint32_t correct_mask_vg;
1206 uint32_t tmp_bit_chk;
1207 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1208 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1209 uint32_t addr;
1210 uint32_t base_rw_mgr;
1211
1212 *bit_chk = param->read_correct_mask;
1213 correct_mask_vg = param->read_correct_mask_vg;
1214
1215 for (r = rank_bgn; r < rank_end; r++) {
1216 if (param->skip_ranks[r])
1217 /* request to skip the rank */
1218 continue;
1219
1220 /* set rank */
1221 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1222
1223 /* Load up a constant bursts of read commands */
1224 addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr0);
1225 writel(0x20, SOCFPGA_SDR_ADDRESS + addr);
1226 addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1227 writel(RW_MGR_GUARANTEED_READ, SOCFPGA_SDR_ADDRESS + addr);
1228
1229 addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr1);
1230 writel(0x20, SOCFPGA_SDR_ADDRESS + addr);
1231 addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1232 writel(RW_MGR_GUARANTEED_READ_CONT, SOCFPGA_SDR_ADDRESS + addr);
1233
1234 tmp_bit_chk = 0;
1235 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
1236 /* reset the fifos to get pointers to known state */
1237
1238 addr = sdr_get_addr(&phy_mgr_cmd->fifo_reset);
1239 writel(0, SOCFPGA_SDR_ADDRESS + addr);
1240 addr = sdr_get_addr((u32 *)RW_MGR_RESET_READ_DATAPATH);
1241 writel(0, SOCFPGA_SDR_ADDRESS + addr);
1242
1243 tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
1244 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
1245
1246 addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
1247 writel(RW_MGR_GUARANTEED_READ, SOCFPGA_SDR_ADDRESS + addr +
1248 ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1249 vg) << 2));
1250
1251 addr = sdr_get_addr((u32 *)BASE_RW_MGR);
1252 base_rw_mgr = readl(SOCFPGA_SDR_ADDRESS + addr);
1253 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & (~base_rw_mgr));
1254
1255 if (vg == 0)
1256 break;
1257 }
1258 *bit_chk &= tmp_bit_chk;
1259 }
1260
1261 addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
1262 writel(RW_MGR_CLEAR_DQS_ENABLE, SOCFPGA_SDR_ADDRESS + addr + (group << 2));
1263
1264 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1265 debug_cond(DLEVEL == 1, "%s:%d test_load_patterns(%u,ALL) => (%u == %u) =>\
1266 %lu\n", __func__, __LINE__, group, *bit_chk, param->read_correct_mask,
1267 (long unsigned int)(*bit_chk == param->read_correct_mask));
1268 return *bit_chk == param->read_correct_mask;
1269}
1270
1271static uint32_t rw_mgr_mem_calibrate_read_test_patterns_all_ranks
1272 (uint32_t group, uint32_t num_tries, uint32_t *bit_chk)
1273{
1274 return rw_mgr_mem_calibrate_read_test_patterns(0, group,
1275 num_tries, bit_chk, 1);
1276}
1277
1278/* load up the patterns we are going to use during a read test */
1279static void rw_mgr_mem_calibrate_read_load_patterns(uint32_t rank_bgn,
1280 uint32_t all_ranks)
1281{
1282 uint32_t r;
1283 uint32_t addr;
1284 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1285 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1286
1287 debug("%s:%d\n", __func__, __LINE__);
1288 for (r = rank_bgn; r < rank_end; r++) {
1289 if (param->skip_ranks[r])
1290 /* request to skip the rank */
1291 continue;
1292
1293 /* set rank */
1294 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1295
1296 /* Load up a constant bursts */
1297 addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr0);
1298 writel(0x20, SOCFPGA_SDR_ADDRESS + addr);
1299
1300 addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1301 writel(RW_MGR_GUARANTEED_WRITE_WAIT0, SOCFPGA_SDR_ADDRESS + addr);
1302
1303 addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr1);
1304 writel(0x20, SOCFPGA_SDR_ADDRESS + addr);
1305
1306 addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1307 writel(RW_MGR_GUARANTEED_WRITE_WAIT1, SOCFPGA_SDR_ADDRESS + addr);
1308
1309 addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr2);
1310 writel(0x04, SOCFPGA_SDR_ADDRESS + addr);
1311
1312 addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1313 writel(RW_MGR_GUARANTEED_WRITE_WAIT2, SOCFPGA_SDR_ADDRESS + addr);
1314
1315 addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr3);
1316 writel(0x04, SOCFPGA_SDR_ADDRESS + addr);
1317
1318 addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1319 writel(RW_MGR_GUARANTEED_WRITE_WAIT3, SOCFPGA_SDR_ADDRESS + addr);
1320
1321 addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
1322 writel(RW_MGR_GUARANTEED_WRITE, SOCFPGA_SDR_ADDRESS + addr);
1323 }
1324
1325 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1326}
1327
1328/*
1329 * try a read and see if it returns correct data back. has dummy reads
1330 * inserted into the mix used to align dqs enable. has more thorough checks
1331 * than the regular read test.
1332 */
1333static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group,
1334 uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1335 uint32_t all_groups, uint32_t all_ranks)
1336{
1337 uint32_t r, vg;
1338 uint32_t correct_mask_vg;
1339 uint32_t tmp_bit_chk;
1340 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1341 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1342 uint32_t addr;
1343 uint32_t base_rw_mgr;
1344
1345 *bit_chk = param->read_correct_mask;
1346 correct_mask_vg = param->read_correct_mask_vg;
1347
1348 uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) &
1349 CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION);
1350
1351 for (r = rank_bgn; r < rank_end; r++) {
1352 if (param->skip_ranks[r])
1353 /* request to skip the rank */
1354 continue;
1355
1356 /* set rank */
1357 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1358
1359 addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr1);
1360 writel(0x10, SOCFPGA_SDR_ADDRESS + addr);
1361
1362 addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1363 writel(RW_MGR_READ_B2B_WAIT1, SOCFPGA_SDR_ADDRESS + addr);
1364
1365 addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr2);
1366 writel(0x10, SOCFPGA_SDR_ADDRESS + addr);
1367 addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1368 writel(RW_MGR_READ_B2B_WAIT2, SOCFPGA_SDR_ADDRESS + addr);
1369
1370 addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr0);
1371 if (quick_read_mode)
1372 writel(0x1, SOCFPGA_SDR_ADDRESS + addr);
1373 /* need at least two (1+1) reads to capture failures */
1374 else if (all_groups)
1375 writel(0x06, SOCFPGA_SDR_ADDRESS + addr);
1376 else
1377 writel(0x32, SOCFPGA_SDR_ADDRESS + addr);
1378
1379 addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1380 writel(RW_MGR_READ_B2B, SOCFPGA_SDR_ADDRESS + addr);
1381 addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr3);
1382 if (all_groups)
1383 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH *
1384 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1,
1385 SOCFPGA_SDR_ADDRESS + addr);
1386 else
1387 writel(0x0, SOCFPGA_SDR_ADDRESS + addr);
1388
1389 addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1390 writel(RW_MGR_READ_B2B, SOCFPGA_SDR_ADDRESS + addr);
1391
1392 tmp_bit_chk = 0;
1393 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
1394 /* reset the fifos to get pointers to known state */
1395 addr = sdr_get_addr(&phy_mgr_cmd->fifo_reset);
1396 writel(0, SOCFPGA_SDR_ADDRESS + addr);
1397 addr = sdr_get_addr((u32 *)RW_MGR_RESET_READ_DATAPATH);
1398 writel(0, SOCFPGA_SDR_ADDRESS + addr);
1399
1400 tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
1401 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
1402
1403 addr = sdr_get_addr((u32 *)(all_groups ? RW_MGR_RUN_ALL_GROUPS :
1404 RW_MGR_RUN_SINGLE_GROUP));
1405 writel(RW_MGR_READ_B2B, SOCFPGA_SDR_ADDRESS + addr +
1406 ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1407 vg) << 2));
1408
1409 addr = sdr_get_addr((u32 *)BASE_RW_MGR);
1410 base_rw_mgr = readl(SOCFPGA_SDR_ADDRESS + addr);
1411 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
1412
1413 if (vg == 0)
1414 break;
1415 }
1416 *bit_chk &= tmp_bit_chk;
1417 }
1418
1419 addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
1420 writel(RW_MGR_CLEAR_DQS_ENABLE, SOCFPGA_SDR_ADDRESS + addr + (group << 2));
1421
1422 if (all_correct) {
1423 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1424 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\
1425 (%u == %u) => %lu", __func__, __LINE__, group,
1426 all_groups, *bit_chk, param->read_correct_mask,
1427 (long unsigned int)(*bit_chk ==
1428 param->read_correct_mask));
1429 return *bit_chk == param->read_correct_mask;
1430 } else {
1431 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1432 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\
1433 (%u != %lu) => %lu\n", __func__, __LINE__,
1434 group, all_groups, *bit_chk, (long unsigned int)0,
1435 (long unsigned int)(*bit_chk != 0x00));
1436 return *bit_chk != 0x00;
1437 }
1438}
1439
1440static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group,
1441 uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1442 uint32_t all_groups)
1443{
1444 return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct,
1445 bit_chk, all_groups, 1);
1446}
1447
1448static void rw_mgr_incr_vfifo(uint32_t grp, uint32_t *v)
1449{
1450 uint32_t addr = sdr_get_addr(&phy_mgr_cmd->inc_vfifo_hard_phy);
1451
1452 writel(grp, SOCFPGA_SDR_ADDRESS + addr);
1453 (*v)++;
1454}
1455
1456static void rw_mgr_decr_vfifo(uint32_t grp, uint32_t *v)
1457{
1458 uint32_t i;
1459
1460 for (i = 0; i < VFIFO_SIZE-1; i++)
1461 rw_mgr_incr_vfifo(grp, v);
1462}
1463
1464static int find_vfifo_read(uint32_t grp, uint32_t *bit_chk)
1465{
1466 uint32_t v;
1467 uint32_t fail_cnt = 0;
1468 uint32_t test_status;
1469
1470 for (v = 0; v < VFIFO_SIZE; ) {
1471 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo %u\n",
1472 __func__, __LINE__, v);
1473 test_status = rw_mgr_mem_calibrate_read_test_all_ranks
1474 (grp, 1, PASS_ONE_BIT, bit_chk, 0);
1475 if (!test_status) {
1476 fail_cnt++;
1477
1478 if (fail_cnt == 2)
1479 break;
1480 }
1481
1482 /* fiddle with FIFO */
1483 rw_mgr_incr_vfifo(grp, &v);
1484 }
1485
1486 if (v >= VFIFO_SIZE) {
1487 /* no failing read found!! Something must have gone wrong */
1488 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo failed\n",
1489 __func__, __LINE__);
1490 return 0;
1491 } else {
1492 return v;
1493 }
1494}
1495
1496static int find_working_phase(uint32_t *grp, uint32_t *bit_chk,
1497 uint32_t dtaps_per_ptap, uint32_t *work_bgn,
1498 uint32_t *v, uint32_t *d, uint32_t *p,
1499 uint32_t *i, uint32_t *max_working_cnt)
1500{
1501 uint32_t found_begin = 0;
1502 uint32_t tmp_delay = 0;
1503 uint32_t test_status;
1504
1505 for (*d = 0; *d <= dtaps_per_ptap; (*d)++, tmp_delay +=
1506 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1507 *work_bgn = tmp_delay;
1508 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1509
1510 for (*i = 0; *i < VFIFO_SIZE; (*i)++) {
1511 for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_bgn +=
1512 IO_DELAY_PER_OPA_TAP) {
1513 scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1514
1515 test_status =
1516 rw_mgr_mem_calibrate_read_test_all_ranks
1517 (*grp, 1, PASS_ONE_BIT, bit_chk, 0);
1518
1519 if (test_status) {
1520 *max_working_cnt = 1;
1521 found_begin = 1;
1522 break;
1523 }
1524 }
1525
1526 if (found_begin)
1527 break;
1528
1529 if (*p > IO_DQS_EN_PHASE_MAX)
1530 /* fiddle with FIFO */
1531 rw_mgr_incr_vfifo(*grp, v);
1532 }
1533
1534 if (found_begin)
1535 break;
1536 }
1537
1538 if (*i >= VFIFO_SIZE) {
1539 /* cannot find working solution */
1540 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/\
1541 ptap/dtap\n", __func__, __LINE__);
1542 return 0;
1543 } else {
1544 return 1;
1545 }
1546}
1547
1548static void sdr_backup_phase(uint32_t *grp, uint32_t *bit_chk,
1549 uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1550 uint32_t *p, uint32_t *max_working_cnt)
1551{
1552 uint32_t found_begin = 0;
1553 uint32_t tmp_delay;
1554
1555 /* Special case code for backing up a phase */
1556 if (*p == 0) {
1557 *p = IO_DQS_EN_PHASE_MAX;
1558 rw_mgr_decr_vfifo(*grp, v);
1559 } else {
1560 (*p)--;
1561 }
1562 tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP;
1563 scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1564
1565 for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn;
1566 (*d)++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1567 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1568
1569 if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1,
1570 PASS_ONE_BIT,
1571 bit_chk, 0)) {
1572 found_begin = 1;
1573 *work_bgn = tmp_delay;
1574 break;
1575 }
1576 }
1577
1578 /* We have found a working dtap before the ptap found above */
1579 if (found_begin == 1)
1580 (*max_working_cnt)++;
1581
1582 /*
1583 * Restore VFIFO to old state before we decremented it
1584 * (if needed).
1585 */
1586 (*p)++;
1587 if (*p > IO_DQS_EN_PHASE_MAX) {
1588 *p = 0;
1589 rw_mgr_incr_vfifo(*grp, v);
1590 }
1591
1592 scc_mgr_set_dqs_en_delay_all_ranks(*grp, 0);
1593}
1594
1595static int sdr_nonworking_phase(uint32_t *grp, uint32_t *bit_chk,
1596 uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1597 uint32_t *p, uint32_t *i, uint32_t *max_working_cnt,
1598 uint32_t *work_end)
1599{
1600 uint32_t found_end = 0;
1601
1602 (*p)++;
1603 *work_end += IO_DELAY_PER_OPA_TAP;
1604 if (*p > IO_DQS_EN_PHASE_MAX) {
1605 /* fiddle with FIFO */
1606 *p = 0;
1607 rw_mgr_incr_vfifo(*grp, v);
1608 }
1609
1610 for (; *i < VFIFO_SIZE + 1; (*i)++) {
1611 for (; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_end
1612 += IO_DELAY_PER_OPA_TAP) {
1613 scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1614
1615 if (!rw_mgr_mem_calibrate_read_test_all_ranks
1616 (*grp, 1, PASS_ONE_BIT, bit_chk, 0)) {
1617 found_end = 1;
1618 break;
1619 } else {
1620 (*max_working_cnt)++;
1621 }
1622 }
1623
1624 if (found_end)
1625 break;
1626
1627 if (*p > IO_DQS_EN_PHASE_MAX) {
1628 /* fiddle with FIFO */
1629 rw_mgr_incr_vfifo(*grp, v);
1630 *p = 0;
1631 }
1632 }
1633
1634 if (*i >= VFIFO_SIZE + 1) {
1635 /* cannot see edge of failing read */
1636 debug_cond(DLEVEL == 2, "%s:%d sdr_nonworking_phase: end:\
1637 failed\n", __func__, __LINE__);
1638 return 0;
1639 } else {
1640 return 1;
1641 }
1642}
1643
1644static int sdr_find_window_centre(uint32_t *grp, uint32_t *bit_chk,
1645 uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1646 uint32_t *p, uint32_t *work_mid,
1647 uint32_t *work_end)
1648{
1649 int i;
1650 int tmp_delay = 0;
1651
1652 *work_mid = (*work_bgn + *work_end) / 2;
1653
1654 debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n",
1655 *work_bgn, *work_end, *work_mid);
1656 /* Get the middle delay to be less than a VFIFO delay */
1657 for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX;
1658 (*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP)
1659 ;
1660 debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay);
1661 while (*work_mid > tmp_delay)
1662 *work_mid -= tmp_delay;
1663 debug_cond(DLEVEL == 2, "new work_mid %d\n", *work_mid);
1664
1665 tmp_delay = 0;
1666 for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX && tmp_delay < *work_mid;
1667 (*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP)
1668 ;
1669 tmp_delay -= IO_DELAY_PER_OPA_TAP;
1670 debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", (*p) - 1, tmp_delay);
1671 for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_mid; (*d)++,
1672 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP)
1673 ;
1674 debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", *d, tmp_delay);
1675
1676 scc_mgr_set_dqs_en_phase_all_ranks(*grp, (*p) - 1);
1677 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1678
1679 /*
1680 * push vfifo until we can successfully calibrate. We can do this
1681 * because the largest possible margin in 1 VFIFO cycle.
1682 */
1683 for (i = 0; i < VFIFO_SIZE; i++) {
1684 debug_cond(DLEVEL == 2, "find_dqs_en_phase: center: vfifo=%u\n",
1685 *v);
1686 if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1,
1687 PASS_ONE_BIT,
1688 bit_chk, 0)) {
1689 break;
1690 }
1691
1692 /* fiddle with FIFO */
1693 rw_mgr_incr_vfifo(*grp, v);
1694 }
1695
1696 if (i >= VFIFO_SIZE) {
1697 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center: \
1698 failed\n", __func__, __LINE__);
1699 return 0;
1700 } else {
1701 return 1;
1702 }
1703}
1704
1705/* find a good dqs enable to use */
1706static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp)
1707{
1708 uint32_t v, d, p, i;
1709 uint32_t max_working_cnt;
1710 uint32_t bit_chk;
1711 uint32_t dtaps_per_ptap;
1712 uint32_t work_bgn, work_mid, work_end;
1713 uint32_t found_passing_read, found_failing_read, initial_failing_dtap;
1714 uint32_t addr;
1715
1716 debug("%s:%d %u\n", __func__, __LINE__, grp);
1717
1718 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
1719
1720 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1721 scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
1722
1723 /* ************************************************************** */
1724 /* * Step 0 : Determine number of delay taps for each phase tap * */
1725 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP/IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1726
1727 /* ********************************************************* */
1728 /* * Step 1 : First push vfifo until we get a failing read * */
1729 v = find_vfifo_read(grp, &bit_chk);
1730
1731 max_working_cnt = 0;
1732
1733 /* ******************************************************** */
1734 /* * step 2: find first working phase, increment in ptaps * */
1735 work_bgn = 0;
1736 if (find_working_phase(&grp, &bit_chk, dtaps_per_ptap, &work_bgn, &v, &d,
1737 &p, &i, &max_working_cnt) == 0)
1738 return 0;
1739
1740 work_end = work_bgn;
1741
1742 /*
1743 * If d is 0 then the working window covers a phase tap and
1744 * we can follow the old procedure otherwise, we've found the beginning,
1745 * and we need to increment the dtaps until we find the end.
1746 */
1747 if (d == 0) {
1748 /* ********************************************************* */
1749 /* * step 3a: if we have room, back off by one and
1750 increment in dtaps * */
1751
1752 sdr_backup_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1753 &max_working_cnt);
1754
1755 /* ********************************************************* */
1756 /* * step 4a: go forward from working phase to non working
1757 phase, increment in ptaps * */
1758 if (sdr_nonworking_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1759 &i, &max_working_cnt, &work_end) == 0)
1760 return 0;
1761
1762 /* ********************************************************* */
1763 /* * step 5a: back off one from last, increment in dtaps * */
1764
1765 /* Special case code for backing up a phase */
1766 if (p == 0) {
1767 p = IO_DQS_EN_PHASE_MAX;
1768 rw_mgr_decr_vfifo(grp, &v);
1769 } else {
1770 p = p - 1;
1771 }
1772
1773 work_end -= IO_DELAY_PER_OPA_TAP;
1774 scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1775
1776 /* * The actual increment of dtaps is done outside of
1777 the if/else loop to share code */
1778 d = 0;
1779
1780 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p: \
1781 vfifo=%u ptap=%u\n", __func__, __LINE__,
1782 v, p);
1783 } else {
1784 /* ******************************************************* */
1785 /* * step 3-5b: Find the right edge of the window using
1786 delay taps * */
1787 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase:vfifo=%u \
1788 ptap=%u dtap=%u bgn=%u\n", __func__, __LINE__,
1789 v, p, d, work_bgn);
1790
1791 work_end = work_bgn;
1792
1793 /* * The actual increment of dtaps is done outside of the
1794 if/else loop to share code */
1795
1796 /* Only here to counterbalance a subtract later on which is
1797 not needed if this branch of the algorithm is taken */
1798 max_working_cnt++;
1799 }
1800
1801 /* The dtap increment to find the failing edge is done here */
1802 for (; d <= IO_DQS_EN_DELAY_MAX; d++, work_end +=
1803 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1804 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
1805 end-2: dtap=%u\n", __func__, __LINE__, d);
1806 scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1807
1808 if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1809 PASS_ONE_BIT,
1810 &bit_chk, 0)) {
1811 break;
1812 }
1813 }
1814
1815 /* Go back to working dtap */
1816 if (d != 0)
1817 work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1818
1819 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p/d: vfifo=%u \
1820 ptap=%u dtap=%u end=%u\n", __func__, __LINE__,
1821 v, p, d-1, work_end);
1822
1823 if (work_end < work_bgn) {
1824 /* nil range */
1825 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: end-2: \
1826 failed\n", __func__, __LINE__);
1827 return 0;
1828 }
1829
1830 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: found range [%u,%u]\n",
1831 __func__, __LINE__, work_bgn, work_end);
1832
1833 /* *************************************************************** */
1834 /*
1835 * * We need to calculate the number of dtaps that equal a ptap
1836 * * To do that we'll back up a ptap and re-find the edge of the
1837 * * window using dtaps
1838 */
1839
1840 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: calculate dtaps_per_ptap \
1841 for tracking\n", __func__, __LINE__);
1842
1843 /* Special case code for backing up a phase */
1844 if (p == 0) {
1845 p = IO_DQS_EN_PHASE_MAX;
1846 rw_mgr_decr_vfifo(grp, &v);
1847 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
1848 cycle/phase: v=%u p=%u\n", __func__, __LINE__,
1849 v, p);
1850 } else {
1851 p = p - 1;
1852 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
1853 phase only: v=%u p=%u", __func__, __LINE__,
1854 v, p);
1855 }
1856
1857 scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1858
1859 /*
1860 * Increase dtap until we first see a passing read (in case the
1861 * window is smaller than a ptap),
1862 * and then a failing read to mark the edge of the window again
1863 */
1864
1865 /* Find a passing read */
1866 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find passing read\n",
1867 __func__, __LINE__);
1868 found_passing_read = 0;
1869 found_failing_read = 0;
1870 initial_failing_dtap = d;
1871 for (; d <= IO_DQS_EN_DELAY_MAX; d++) {
1872 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: testing \
1873 read d=%u\n", __func__, __LINE__, d);
1874 scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1875
1876 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1877 PASS_ONE_BIT,
1878 &bit_chk, 0)) {
1879 found_passing_read = 1;
1880 break;
1881 }
1882 }
1883
1884 if (found_passing_read) {
1885 /* Find a failing read */
1886 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find failing \
1887 read\n", __func__, __LINE__);
1888 for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) {
1889 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
1890 testing read d=%u\n", __func__, __LINE__, d);
1891 scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1892
1893 if (!rw_mgr_mem_calibrate_read_test_all_ranks
1894 (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
1895 found_failing_read = 1;
1896 break;
1897 }
1898 }
1899 } else {
1900 debug_cond(DLEVEL == 1, "%s:%d find_dqs_en_phase: failed to \
1901 calculate dtaps", __func__, __LINE__);
1902 debug_cond(DLEVEL == 1, "per ptap. Fall back on static value\n");
1903 }
1904
1905 /*
1906 * The dynamically calculated dtaps_per_ptap is only valid if we
1907 * found a passing/failing read. If we didn't, it means d hit the max
1908 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its
1909 * statically calculated value.
1910 */
1911 if (found_passing_read && found_failing_read)
1912 dtaps_per_ptap = d - initial_failing_dtap;
1913
1914 addr = sdr_get_addr(&sdr_reg_file->dtaps_per_ptap);
1915 writel(dtaps_per_ptap, SOCFPGA_SDR_ADDRESS + addr);
1916 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: dtaps_per_ptap=%u \
1917 - %u = %u", __func__, __LINE__, d,
1918 initial_failing_dtap, dtaps_per_ptap);
1919
1920 /* ******************************************** */
1921 /* * step 6: Find the centre of the window * */
1922 if (sdr_find_window_centre(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1923 &work_mid, &work_end) == 0)
1924 return 0;
1925
1926 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center found: \
1927 vfifo=%u ptap=%u dtap=%u\n", __func__, __LINE__,
1928 v, p-1, d);
1929 return 1;
1930}
1931
1932/*
1933 * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
1934 * dq_in_delay values
1935 */
1936static uint32_t
1937rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay
1938(uint32_t write_group, uint32_t read_group, uint32_t test_bgn)
1939{
1940 uint32_t found;
1941 uint32_t i;
1942 uint32_t p;
1943 uint32_t d;
1944 uint32_t r;
1945 uint32_t addr;
1946
1947 const uint32_t delay_step = IO_IO_IN_DELAY_MAX /
1948 (RW_MGR_MEM_DQ_PER_READ_DQS-1);
1949 /* we start at zero, so have one less dq to devide among */
1950
1951 debug("%s:%d (%u,%u,%u)", __func__, __LINE__, write_group, read_group,
1952 test_bgn);
1953
1954 /* try different dq_in_delays since the dq path is shorter than dqs */
1955
1956 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
1957 r += NUM_RANKS_PER_SHADOW_REG) {
1958 for (i = 0, p = test_bgn, d = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS;
1959 i++, p++, d += delay_step) {
1960 debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_\
1961 vfifo_find_dqs_", __func__, __LINE__);
1962 debug_cond(DLEVEL == 1, "en_phase_sweep_dq_in_delay: g=%u/%u ",
1963 write_group, read_group);
1964 debug_cond(DLEVEL == 1, "r=%u, i=%u p=%u d=%u\n", r, i , p, d);
1965 scc_mgr_set_dq_in_delay(write_group, p, d);
1966 scc_mgr_load_dq(p);
1967 }
1968 addr = sdr_get_addr(&sdr_scc_mgr->update);
1969 writel(0, SOCFPGA_SDR_ADDRESS + addr);
1970 }
1971
1972 found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(read_group);
1973
1974 debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_vfifo_find_dqs_\
1975 en_phase_sweep_dq", __func__, __LINE__);
1976 debug_cond(DLEVEL == 1, "_in_delay: g=%u/%u found=%u; Reseting delay \
1977 chain to zero\n", write_group, read_group, found);
1978
1979 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
1980 r += NUM_RANKS_PER_SHADOW_REG) {
1981 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS;
1982 i++, p++) {
1983 scc_mgr_set_dq_in_delay(write_group, p, 0);
1984 scc_mgr_load_dq(p);
1985 }
1986 addr = sdr_get_addr(&sdr_scc_mgr->update);
1987 writel(0, SOCFPGA_SDR_ADDRESS + addr);
1988 }
1989
1990 return found;
1991}
1992
1993/* per-bit deskew DQ and center */
1994static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn,
1995 uint32_t write_group, uint32_t read_group, uint32_t test_bgn,
1996 uint32_t use_read_test, uint32_t update_fom)
1997{
1998 uint32_t i, p, d, min_index;
1999 /*
2000 * Store these as signed since there are comparisons with
2001 * signed numbers.
2002 */
2003 uint32_t bit_chk;
2004 uint32_t sticky_bit_chk;
2005 int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
2006 int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
2007 int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS];
2008 int32_t mid;
2009 int32_t orig_mid_min, mid_min;
2010 int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs,
2011 final_dqs_en;
2012 int32_t dq_margin, dqs_margin;
2013 uint32_t stop;
2014 uint32_t temp_dq_in_delay1, temp_dq_in_delay2;
2015 uint32_t addr;
2016
2017 debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn);
2018
2019 addr = sdr_get_addr((u32 *)SCC_MGR_DQS_IN_DELAY);
2020 start_dqs = readl(SOCFPGA_SDR_ADDRESS + addr + (read_group << 2));
2021 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2022 start_dqs_en = readl(SOCFPGA_SDR_ADDRESS + addr + ((read_group << 2)
2023 - IO_DQS_EN_DELAY_OFFSET));
2024
2025 /* set the left and right edge of each bit to an illegal value */
2026 /* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */
2027 sticky_bit_chk = 0;
2028 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2029 left_edge[i] = IO_IO_IN_DELAY_MAX + 1;
2030 right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
2031 }
2032
2033 addr = sdr_get_addr(&sdr_scc_mgr->update);
2034 /* Search for the left edge of the window for each bit */
2035 for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) {
2036 scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d);
2037
2038 writel(0, SOCFPGA_SDR_ADDRESS + addr);
2039
2040 /*
2041 * Stop searching when the read test doesn't pass AND when
2042 * we've seen a passing read on every bit.
2043 */
2044 if (use_read_test) {
2045 stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
2046 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
2047 &bit_chk, 0, 0);
2048 } else {
2049 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2050 0, PASS_ONE_BIT,
2051 &bit_chk, 0);
2052 bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
2053 (read_group - (write_group *
2054 RW_MGR_MEM_IF_READ_DQS_WIDTH /
2055 RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
2056 stop = (bit_chk == 0);
2057 }
2058 sticky_bit_chk = sticky_bit_chk | bit_chk;
2059 stop = stop && (sticky_bit_chk == param->read_correct_mask);
2060 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \
2061 && %u", __func__, __LINE__, d,
2062 sticky_bit_chk,
2063 param->read_correct_mask, stop);
2064
2065 if (stop == 1) {
2066 break;
2067 } else {
2068 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2069 if (bit_chk & 1) {
2070 /* Remember a passing test as the
2071 left_edge */
2072 left_edge[i] = d;
2073 } else {
2074 /* If a left edge has not been seen yet,
2075 then a future passing test will mark
2076 this edge as the right edge */
2077 if (left_edge[i] ==
2078 IO_IO_IN_DELAY_MAX + 1) {
2079 right_edge[i] = -(d + 1);
2080 }
2081 }
2082 bit_chk = bit_chk >> 1;
2083 }
2084 }
2085 }
2086
2087 /* Reset DQ delay chains to 0 */
2088 scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, 0);
2089 sticky_bit_chk = 0;
2090 for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) {
2091 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
2092 %d right_edge[%u]: %d\n", __func__, __LINE__,
2093 i, left_edge[i], i, right_edge[i]);
2094
2095 /*
2096 * Check for cases where we haven't found the left edge,
2097 * which makes our assignment of the the right edge invalid.
2098 * Reset it to the illegal value.
2099 */
2100 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && (
2101 right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
2102 right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
2103 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \
2104 right_edge[%u]: %d\n", __func__, __LINE__,
2105 i, right_edge[i]);
2106 }
2107
2108 /*
2109 * Reset sticky bit (except for bits where we have seen
2110 * both the left and right edge).
2111 */
2112 sticky_bit_chk = sticky_bit_chk << 1;
2113 if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) &&
2114 (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
2115 sticky_bit_chk = sticky_bit_chk | 1;
2116 }
2117
2118 if (i == 0)
2119 break;
2120 }
2121
2122 addr = sdr_get_addr(&sdr_scc_mgr->update);
2123 /* Search for the right edge of the window for each bit */
2124 for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) {
2125 scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
2126 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2127 uint32_t delay = d + start_dqs_en;
2128 if (delay > IO_DQS_EN_DELAY_MAX)
2129 delay = IO_DQS_EN_DELAY_MAX;
2130 scc_mgr_set_dqs_en_delay(read_group, delay);
2131 }
2132 scc_mgr_load_dqs(read_group);
2133
2134 writel(0, SOCFPGA_SDR_ADDRESS + addr);
2135
2136 /*
2137 * Stop searching when the read test doesn't pass AND when
2138 * we've seen a passing read on every bit.
2139 */
2140 if (use_read_test) {
2141 stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
2142 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
2143 &bit_chk, 0, 0);
2144 } else {
2145 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2146 0, PASS_ONE_BIT,
2147 &bit_chk, 0);
2148 bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
2149 (read_group - (write_group *
2150 RW_MGR_MEM_IF_READ_DQS_WIDTH /
2151 RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
2152 stop = (bit_chk == 0);
2153 }
2154 sticky_bit_chk = sticky_bit_chk | bit_chk;
2155 stop = stop && (sticky_bit_chk == param->read_correct_mask);
2156
2157 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \
2158 %u && %u", __func__, __LINE__, d,
2159 sticky_bit_chk, param->read_correct_mask, stop);
2160
2161 if (stop == 1) {
2162 break;
2163 } else {
2164 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2165 if (bit_chk & 1) {
2166 /* Remember a passing test as
2167 the right_edge */
2168 right_edge[i] = d;
2169 } else {
2170 if (d != 0) {
2171 /* If a right edge has not been
2172 seen yet, then a future passing
2173 test will mark this edge as the
2174 left edge */
2175 if (right_edge[i] ==
2176 IO_IO_IN_DELAY_MAX + 1) {
2177 left_edge[i] = -(d + 1);
2178 }
2179 } else {
2180 /* d = 0 failed, but it passed
2181 when testing the left edge,
2182 so it must be marginal,
2183 set it to -1 */
2184 if (right_edge[i] ==
2185 IO_IO_IN_DELAY_MAX + 1 &&
2186 left_edge[i] !=
2187 IO_IO_IN_DELAY_MAX
2188 + 1) {
2189 right_edge[i] = -1;
2190 }
2191 /* If a right edge has not been
2192 seen yet, then a future passing
2193 test will mark this edge as the
2194 left edge */
2195 else if (right_edge[i] ==
2196 IO_IO_IN_DELAY_MAX +
2197 1) {
2198 left_edge[i] = -(d + 1);
2199 }
2200 }
2201 }
2202
2203 debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\
2204 d=%u]: ", __func__, __LINE__, d);
2205 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ",
2206 (int)(bit_chk & 1), i, left_edge[i]);
2207 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2208 right_edge[i]);
2209 bit_chk = bit_chk >> 1;
2210 }
2211 }
2212 }
2213
2214 /* Check that all bits have a window */
2215 addr = sdr_get_addr(&sdr_scc_mgr->update);
2216 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2217 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
2218 %d right_edge[%u]: %d", __func__, __LINE__,
2219 i, left_edge[i], i, right_edge[i]);
2220 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i]
2221 == IO_IO_IN_DELAY_MAX + 1)) {
2222 /*
2223 * Restore delay chain settings before letting the loop
2224 * in rw_mgr_mem_calibrate_vfifo to retry different
2225 * dqs/ck relationships.
2226 */
2227 scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs);
2228 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2229 scc_mgr_set_dqs_en_delay(read_group,
2230 start_dqs_en);
2231 }
2232 scc_mgr_load_dqs(read_group);
2233 writel(0, SOCFPGA_SDR_ADDRESS + addr);
2234
2235 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \
2236 find edge [%u]: %d %d", __func__, __LINE__,
2237 i, left_edge[i], right_edge[i]);
2238 if (use_read_test) {
2239 set_failing_group_stage(read_group *
2240 RW_MGR_MEM_DQ_PER_READ_DQS + i,
2241 CAL_STAGE_VFIFO,
2242 CAL_SUBSTAGE_VFIFO_CENTER);
2243 } else {
2244 set_failing_group_stage(read_group *
2245 RW_MGR_MEM_DQ_PER_READ_DQS + i,
2246 CAL_STAGE_VFIFO_AFTER_WRITES,
2247 CAL_SUBSTAGE_VFIFO_CENTER);
2248 }
2249 return 0;
2250 }
2251 }
2252
2253 /* Find middle of window for each DQ bit */
2254 mid_min = left_edge[0] - right_edge[0];
2255 min_index = 0;
2256 for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2257 mid = left_edge[i] - right_edge[i];
2258 if (mid < mid_min) {
2259 mid_min = mid;
2260 min_index = i;
2261 }
2262 }
2263
2264 /*
2265 * -mid_min/2 represents the amount that we need to move DQS.
2266 * If mid_min is odd and positive we'll need to add one to
2267 * make sure the rounding in further calculations is correct
2268 * (always bias to the right), so just add 1 for all positive values.
2269 */
2270 if (mid_min > 0)
2271 mid_min++;
2272
2273 mid_min = mid_min / 2;
2274
2275 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n",
2276 __func__, __LINE__, mid_min, min_index);
2277
2278 /* Determine the amount we can change DQS (which is -mid_min) */
2279 orig_mid_min = mid_min;
2280 new_dqs = start_dqs - mid_min;
2281 if (new_dqs > IO_DQS_IN_DELAY_MAX)
2282 new_dqs = IO_DQS_IN_DELAY_MAX;
2283 else if (new_dqs < 0)
2284 new_dqs = 0;
2285
2286 mid_min = start_dqs - new_dqs;
2287 debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
2288 mid_min, new_dqs);
2289
2290 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2291 if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX)
2292 mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX;
2293 else if (start_dqs_en - mid_min < 0)
2294 mid_min += start_dqs_en - mid_min;
2295 }
2296 new_dqs = start_dqs - mid_min;
2297
2298 debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \
2299 new_dqs=%d mid_min=%d\n", start_dqs,
2300 IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1,
2301 new_dqs, mid_min);
2302
2303 /* Initialize data for export structures */
2304 dqs_margin = IO_IO_IN_DELAY_MAX + 1;
2305 dq_margin = IO_IO_IN_DELAY_MAX + 1;
2306
2307 addr = sdr_get_addr((u32 *)SCC_MGR_IO_IN_DELAY);
2308 /* add delay to bring centre of all DQ windows to the same "level" */
2309 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
2310 /* Use values before divide by 2 to reduce round off error */
2311 shift_dq = (left_edge[i] - right_edge[i] -
2312 (left_edge[min_index] - right_edge[min_index]))/2 +
2313 (orig_mid_min - mid_min);
2314
2315 debug_cond(DLEVEL == 2, "vfifo_center: before: \
2316 shift_dq[%u]=%d\n", i, shift_dq);
2317
2318 temp_dq_in_delay1 = readl(SOCFPGA_SDR_ADDRESS + addr + (p << 2));
2319 temp_dq_in_delay2 = readl(SOCFPGA_SDR_ADDRESS + addr + (i << 2));
2320
2321 if (shift_dq + (int32_t)temp_dq_in_delay1 >
2322 (int32_t)IO_IO_IN_DELAY_MAX) {
2323 shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2;
2324 } else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) {
2325 shift_dq = -(int32_t)temp_dq_in_delay1;
2326 }
2327 debug_cond(DLEVEL == 2, "vfifo_center: after: \
2328 shift_dq[%u]=%d\n", i, shift_dq);
2329 final_dq[i] = temp_dq_in_delay1 + shift_dq;
2330 scc_mgr_set_dq_in_delay(write_group, p, final_dq[i]);
2331 scc_mgr_load_dq(p);
2332
2333 debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i,
2334 left_edge[i] - shift_dq + (-mid_min),
2335 right_edge[i] + shift_dq - (-mid_min));
2336 /* To determine values for export structures */
2337 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2338 dq_margin = left_edge[i] - shift_dq + (-mid_min);
2339
2340 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2341 dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2342 }
2343
2344 final_dqs = new_dqs;
2345 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2346 final_dqs_en = start_dqs_en - mid_min;
2347
2348 /* Move DQS-en */
2349 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2350 scc_mgr_set_dqs_en_delay(read_group, final_dqs_en);
2351 scc_mgr_load_dqs(read_group);
2352 }
2353
2354 /* Move DQS */
2355 scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs);
2356 scc_mgr_load_dqs(read_group);
2357 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \
2358 dqs_margin=%d", __func__, __LINE__,
2359 dq_margin, dqs_margin);
2360
2361 /*
2362 * Do not remove this line as it makes sure all of our decisions
2363 * have been applied. Apply the update bit.
2364 */
2365 addr = sdr_get_addr(&sdr_scc_mgr->update);
2366 writel(0, SOCFPGA_SDR_ADDRESS + addr);
2367
2368 return (dq_margin >= 0) && (dqs_margin >= 0);
2369}
2370
2371/*
2372 * calibrate the read valid prediction FIFO.
2373 *
2374 * - read valid prediction will consist of finding a good DQS enable phase,
2375 * DQS enable delay, DQS input phase, and DQS input delay.
2376 * - we also do a per-bit deskew on the DQ lines.
2377 */
2378static uint32_t rw_mgr_mem_calibrate_vfifo(uint32_t read_group,
2379 uint32_t test_bgn)
2380{
2381 uint32_t p, d, rank_bgn, sr;
2382 uint32_t dtaps_per_ptap;
2383 uint32_t tmp_delay;
2384 uint32_t bit_chk;
2385 uint32_t grp_calibrated;
2386 uint32_t write_group, write_test_bgn;
2387 uint32_t failed_substage;
2388
Marek Vasut0eacf7e2015-06-26 18:56:54 +02002389 debug("%s:%d: %u %u\n", __func__, __LINE__, read_group, test_bgn);
Dinh Nguyen135cc7f2015-06-02 22:52:49 -05002390
2391 /* update info for sims */
2392 reg_file_set_stage(CAL_STAGE_VFIFO);
2393
2394 write_group = read_group;
2395 write_test_bgn = test_bgn;
2396
2397 /* USER Determine number of delay taps for each phase tap */
2398 dtaps_per_ptap = 0;
2399 tmp_delay = 0;
2400 while (tmp_delay < IO_DELAY_PER_OPA_TAP) {
2401 dtaps_per_ptap++;
2402 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
2403 }
2404 dtaps_per_ptap--;
2405 tmp_delay = 0;
2406
2407 /* update info for sims */
2408 reg_file_set_group(read_group);
2409
2410 grp_calibrated = 0;
2411
2412 reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
2413 failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
2414
2415 for (d = 0; d <= dtaps_per_ptap && grp_calibrated == 0; d += 2) {
2416 /*
2417 * In RLDRAMX we may be messing the delay of pins in
2418 * the same write group but outside of the current read
2419 * the group, but that's ok because we haven't
2420 * calibrated output side yet.
2421 */
2422 if (d > 0) {
2423 scc_mgr_apply_group_all_out_delay_add_all_ranks
2424 (write_group, write_test_bgn, d);
2425 }
2426
2427 for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX && grp_calibrated == 0;
2428 p++) {
2429 /* set a particular dqdqs phase */
2430 scc_mgr_set_dqdqs_output_phase_all_ranks(read_group, p);
2431
2432 debug_cond(DLEVEL == 1, "%s:%d calibrate_vfifo: g=%u \
2433 p=%u d=%u\n", __func__, __LINE__,
2434 read_group, p, d);
2435
2436 /*
2437 * Load up the patterns used by read calibration
2438 * using current DQDQS phase.
2439 */
2440 rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2441 if (!(gbl->phy_debug_mode_flags &
2442 PHY_DEBUG_DISABLE_GUARANTEED_READ)) {
2443 if (!rw_mgr_mem_calibrate_read_test_patterns_all_ranks
2444 (read_group, 1, &bit_chk)) {
2445 debug_cond(DLEVEL == 1, "%s:%d Guaranteed read test failed:",
2446 __func__, __LINE__);
2447 debug_cond(DLEVEL == 1, " g=%u p=%u d=%u\n",
2448 read_group, p, d);
2449 break;
2450 }
2451 }
2452
2453/* case:56390 */
2454 grp_calibrated = 1;
2455 if (rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay
2456 (write_group, read_group, test_bgn)) {
2457 /*
2458 * USER Read per-bit deskew can be done on a
2459 * per shadow register basis.
2460 */
2461 for (rank_bgn = 0, sr = 0;
2462 rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2463 rank_bgn += NUM_RANKS_PER_SHADOW_REG,
2464 ++sr) {
2465 /*
2466 * Determine if this set of ranks
2467 * should be skipped entirely.
2468 */
2469 if (!param->skip_shadow_regs[sr]) {
2470 /*
2471 * If doing read after write
2472 * calibration, do not update
2473 * FOM, now - do it then.
2474 */
2475 if (!rw_mgr_mem_calibrate_vfifo_center
2476 (rank_bgn, write_group,
2477 read_group, test_bgn, 1, 0)) {
2478 grp_calibrated = 0;
2479 failed_substage =
2480 CAL_SUBSTAGE_VFIFO_CENTER;
2481 }
2482 }
2483 }
2484 } else {
2485 grp_calibrated = 0;
2486 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
2487 }
2488 }
2489 }
2490
2491 if (grp_calibrated == 0) {
2492 set_failing_group_stage(write_group, CAL_STAGE_VFIFO,
2493 failed_substage);
2494 return 0;
2495 }
2496
2497 /*
2498 * Reset the delay chains back to zero if they have moved > 1
2499 * (check for > 1 because loop will increase d even when pass in
2500 * first case).
2501 */
2502 if (d > 2)
2503 scc_mgr_zero_group(write_group, write_test_bgn, 1);
2504
2505 return 1;
2506}
2507
2508/* VFIFO Calibration -- Read Deskew Calibration after write deskew */
2509static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group,
2510 uint32_t test_bgn)
2511{
2512 uint32_t rank_bgn, sr;
2513 uint32_t grp_calibrated;
2514 uint32_t write_group;
2515
2516 debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn);
2517
2518 /* update info for sims */
2519
2520 reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
2521 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
2522
2523 write_group = read_group;
2524
2525 /* update info for sims */
2526 reg_file_set_group(read_group);
2527
2528 grp_calibrated = 1;
2529 /* Read per-bit deskew can be done on a per shadow register basis */
2530 for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2531 rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) {
2532 /* Determine if this set of ranks should be skipped entirely */
2533 if (!param->skip_shadow_regs[sr]) {
2534 /* This is the last calibration round, update FOM here */
2535 if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn,
2536 write_group,
2537 read_group,
2538 test_bgn, 0,
2539 1)) {
2540 grp_calibrated = 0;
2541 }
2542 }
2543 }
2544
2545
2546 if (grp_calibrated == 0) {
2547 set_failing_group_stage(write_group,
2548 CAL_STAGE_VFIFO_AFTER_WRITES,
2549 CAL_SUBSTAGE_VFIFO_CENTER);
2550 return 0;
2551 }
2552
2553 return 1;
2554}
2555
2556/* Calibrate LFIFO to find smallest read latency */
2557static uint32_t rw_mgr_mem_calibrate_lfifo(void)
2558{
2559 uint32_t found_one;
2560 uint32_t bit_chk;
2561 uint32_t addr;
2562
2563 debug("%s:%d\n", __func__, __LINE__);
2564
2565 /* update info for sims */
2566 reg_file_set_stage(CAL_STAGE_LFIFO);
2567 reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
2568
2569 /* Load up the patterns used by read calibration for all ranks */
2570 rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2571 found_one = 0;
2572
2573 addr = sdr_get_addr(&phy_mgr_cfg->phy_rlat);
2574 do {
2575 writel(gbl->curr_read_lat, SOCFPGA_SDR_ADDRESS + addr);
2576 debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u",
2577 __func__, __LINE__, gbl->curr_read_lat);
2578
2579 if (!rw_mgr_mem_calibrate_read_test_all_ranks(0,
2580 NUM_READ_TESTS,
2581 PASS_ALL_BITS,
2582 &bit_chk, 1)) {
2583 break;
2584 }
2585
2586 found_one = 1;
2587 /* reduce read latency and see if things are working */
2588 /* correctly */
2589 gbl->curr_read_lat--;
2590 } while (gbl->curr_read_lat > 0);
2591
2592 /* reset the fifos to get pointers to known state */
2593
2594 addr = sdr_get_addr(&phy_mgr_cmd->fifo_reset);
2595 writel(0, SOCFPGA_SDR_ADDRESS + addr);
2596
2597 if (found_one) {
2598 /* add a fudge factor to the read latency that was determined */
2599 gbl->curr_read_lat += 2;
2600 addr = sdr_get_addr(&phy_mgr_cfg->phy_rlat);
2601 writel(gbl->curr_read_lat, SOCFPGA_SDR_ADDRESS + addr);
2602 debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \
2603 read_lat=%u\n", __func__, __LINE__,
2604 gbl->curr_read_lat);
2605 return 1;
2606 } else {
2607 set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
2608 CAL_SUBSTAGE_READ_LATENCY);
2609
2610 debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \
2611 read_lat=%u\n", __func__, __LINE__,
2612 gbl->curr_read_lat);
2613 return 0;
2614 }
2615}
2616
2617/*
2618 * issue write test command.
2619 * two variants are provided. one that just tests a write pattern and
2620 * another that tests datamask functionality.
2621 */
2622static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group,
2623 uint32_t test_dm)
2624{
2625 uint32_t mcc_instruction;
2626 uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) &&
2627 ENABLE_SUPER_QUICK_CALIBRATION);
2628 uint32_t rw_wl_nop_cycles;
2629 uint32_t addr;
2630
2631 /*
2632 * Set counter and jump addresses for the right
2633 * number of NOP cycles.
2634 * The number of supported NOP cycles can range from -1 to infinity
2635 * Three different cases are handled:
2636 *
2637 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
2638 * mechanism will be used to insert the right number of NOPs
2639 *
2640 * 2. For a number of NOP cycles equals to 0, the micro-instruction
2641 * issuing the write command will jump straight to the
2642 * micro-instruction that turns on DQS (for DDRx), or outputs write
2643 * data (for RLD), skipping
2644 * the NOP micro-instruction all together
2645 *
2646 * 3. A number of NOP cycles equal to -1 indicates that DQS must be
2647 * turned on in the same micro-instruction that issues the write
2648 * command. Then we need
2649 * to directly jump to the micro-instruction that sends out the data
2650 *
2651 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
2652 * (2 and 3). One jump-counter (0) is used to perform multiple
2653 * write-read operations.
2654 * one counter left to issue this command in "multiple-group" mode
2655 */
2656
2657 rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
2658
2659 if (rw_wl_nop_cycles == -1) {
2660 /*
2661 * CNTR 2 - We want to execute the special write operation that
2662 * turns on DQS right away and then skip directly to the
2663 * instruction that sends out the data. We set the counter to a
2664 * large number so that the jump is always taken.
2665 */
2666 addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr2);
2667 writel(0xFF, SOCFPGA_SDR_ADDRESS + addr);
2668
2669 /* CNTR 3 - Not used */
2670 if (test_dm) {
2671 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1;
2672 addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add2);
2673 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA,
2674 SOCFPGA_SDR_ADDRESS + addr);
2675 addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add3);
2676 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2677 SOCFPGA_SDR_ADDRESS + addr);
2678 } else {
2679 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1;
2680 addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add2);
2681 writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA, SOCFPGA_SDR_ADDRESS + addr);
2682 addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add3);
2683 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, SOCFPGA_SDR_ADDRESS + addr);
2684 }
2685 } else if (rw_wl_nop_cycles == 0) {
2686 /*
2687 * CNTR 2 - We want to skip the NOP operation and go straight
2688 * to the DQS enable instruction. We set the counter to a large
2689 * number so that the jump is always taken.
2690 */
2691 addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr2);
2692 writel(0xFF, SOCFPGA_SDR_ADDRESS + addr);
2693
2694 /* CNTR 3 - Not used */
2695 if (test_dm) {
2696 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2697 addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add2);
2698 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS,
2699 SOCFPGA_SDR_ADDRESS + addr);
2700 } else {
2701 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2702 addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add2);
2703 writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS, SOCFPGA_SDR_ADDRESS + addr);
2704 }
2705 } else {
2706 /*
2707 * CNTR 2 - In this case we want to execute the next instruction
2708 * and NOT take the jump. So we set the counter to 0. The jump
2709 * address doesn't count.
2710 */
2711 addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr2);
2712 writel(0x0, SOCFPGA_SDR_ADDRESS + addr);
2713 addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add2);
2714 writel(0x0, SOCFPGA_SDR_ADDRESS + addr);
2715
2716 /*
2717 * CNTR 3 - Set the nop counter to the number of cycles we
2718 * need to loop for, minus 1.
2719 */
2720 addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr3);
2721 writel(rw_wl_nop_cycles - 1, SOCFPGA_SDR_ADDRESS + addr);
2722 if (test_dm) {
2723 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2724 addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add3);
2725 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, SOCFPGA_SDR_ADDRESS + addr);
2726 } else {
2727 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2728 addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add3);
2729 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, SOCFPGA_SDR_ADDRESS + addr);
2730 }
2731 }
2732
2733 addr = sdr_get_addr((u32 *)RW_MGR_RESET_READ_DATAPATH);
2734 writel(0, SOCFPGA_SDR_ADDRESS + addr);
2735
2736 addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr0);
2737 if (quick_write_mode)
2738 writel(0x08, SOCFPGA_SDR_ADDRESS + addr);
2739 else
2740 writel(0x40, SOCFPGA_SDR_ADDRESS + addr);
2741
2742 addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add0);
2743 writel(mcc_instruction, SOCFPGA_SDR_ADDRESS + addr);
2744
2745 /*
2746 * CNTR 1 - This is used to ensure enough time elapses
2747 * for read data to come back.
2748 */
2749 addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr1);
2750 writel(0x30, SOCFPGA_SDR_ADDRESS + addr);
2751
2752 addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add1);
2753 if (test_dm) {
2754 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT, SOCFPGA_SDR_ADDRESS + addr);
2755 } else {
2756 writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT, SOCFPGA_SDR_ADDRESS + addr);
2757 }
2758
2759 addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
2760 writel(mcc_instruction, SOCFPGA_SDR_ADDRESS + addr + (group << 2));
2761}
2762
2763/* Test writes, can check for a single bit pass or multiple bit pass */
2764static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
2765 uint32_t write_group, uint32_t use_dm, uint32_t all_correct,
2766 uint32_t *bit_chk, uint32_t all_ranks)
2767{
2768 uint32_t addr;
2769 uint32_t r;
2770 uint32_t correct_mask_vg;
2771 uint32_t tmp_bit_chk;
2772 uint32_t vg;
2773 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
2774 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
2775 uint32_t addr_rw_mgr;
2776 uint32_t base_rw_mgr;
2777
2778 *bit_chk = param->write_correct_mask;
2779 correct_mask_vg = param->write_correct_mask_vg;
2780
2781 for (r = rank_bgn; r < rank_end; r++) {
2782 if (param->skip_ranks[r]) {
2783 /* request to skip the rank */
2784 continue;
2785 }
2786
2787 /* set rank */
2788 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
2789
2790 tmp_bit_chk = 0;
2791 addr = sdr_get_addr(&phy_mgr_cmd->fifo_reset);
2792 addr_rw_mgr = sdr_get_addr((u32 *)BASE_RW_MGR);
2793 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) {
2794 /* reset the fifos to get pointers to known state */
2795 writel(0, SOCFPGA_SDR_ADDRESS + addr);
2796
2797 tmp_bit_chk = tmp_bit_chk <<
2798 (RW_MGR_MEM_DQ_PER_WRITE_DQS /
2799 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
2800 rw_mgr_mem_calibrate_write_test_issue(write_group *
2801 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg,
2802 use_dm);
2803
2804 base_rw_mgr = readl(SOCFPGA_SDR_ADDRESS + addr_rw_mgr);
2805 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
2806 if (vg == 0)
2807 break;
2808 }
2809 *bit_chk &= tmp_bit_chk;
2810 }
2811
2812 if (all_correct) {
2813 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2814 debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \
2815 %u => %lu", write_group, use_dm,
2816 *bit_chk, param->write_correct_mask,
2817 (long unsigned int)(*bit_chk ==
2818 param->write_correct_mask));
2819 return *bit_chk == param->write_correct_mask;
2820 } else {
2821 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2822 debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ",
2823 write_group, use_dm, *bit_chk);
2824 debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0,
2825 (long unsigned int)(*bit_chk != 0));
2826 return *bit_chk != 0x00;
2827 }
2828}
2829
2830/*
2831 * center all windows. do per-bit-deskew to possibly increase size of
2832 * certain windows.
2833 */
2834static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn,
2835 uint32_t write_group, uint32_t test_bgn)
2836{
2837 uint32_t i, p, min_index;
2838 int32_t d;
2839 /*
2840 * Store these as signed since there are comparisons with
2841 * signed numbers.
2842 */
2843 uint32_t bit_chk;
2844 uint32_t sticky_bit_chk;
2845 int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2846 int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2847 int32_t mid;
2848 int32_t mid_min, orig_mid_min;
2849 int32_t new_dqs, start_dqs, shift_dq;
2850 int32_t dq_margin, dqs_margin, dm_margin;
2851 uint32_t stop;
2852 uint32_t temp_dq_out1_delay;
2853 uint32_t addr;
2854
2855 debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
2856
2857 dm_margin = 0;
2858
2859 addr = sdr_get_addr((u32 *)SCC_MGR_IO_OUT1_DELAY);
2860 start_dqs = readl(SOCFPGA_SDR_ADDRESS + addr +
2861 (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
2862
2863 /* per-bit deskew */
2864
2865 /*
2866 * set the left and right edge of each bit to an illegal value
2867 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
2868 */
2869 sticky_bit_chk = 0;
2870 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2871 left_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2872 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2873 }
2874
2875 /* Search for the left edge of the window for each bit */
2876 addr = sdr_get_addr(&sdr_scc_mgr->update);
2877 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) {
2878 scc_mgr_apply_group_dq_out1_delay(write_group, test_bgn, d);
2879
2880 writel(0, SOCFPGA_SDR_ADDRESS + addr);
2881
2882 /*
2883 * Stop searching when the read test doesn't pass AND when
2884 * we've seen a passing read on every bit.
2885 */
2886 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2887 0, PASS_ONE_BIT, &bit_chk, 0);
2888 sticky_bit_chk = sticky_bit_chk | bit_chk;
2889 stop = stop && (sticky_bit_chk == param->write_correct_mask);
2890 debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \
2891 == %u && %u [bit_chk= %u ]\n",
2892 d, sticky_bit_chk, param->write_correct_mask,
2893 stop, bit_chk);
2894
2895 if (stop == 1) {
2896 break;
2897 } else {
2898 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2899 if (bit_chk & 1) {
2900 /*
2901 * Remember a passing test as the
2902 * left_edge.
2903 */
2904 left_edge[i] = d;
2905 } else {
2906 /*
2907 * If a left edge has not been seen
2908 * yet, then a future passing test will
2909 * mark this edge as the right edge.
2910 */
2911 if (left_edge[i] ==
2912 IO_IO_OUT1_DELAY_MAX + 1) {
2913 right_edge[i] = -(d + 1);
2914 }
2915 }
2916 debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d);
2917 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2918 (int)(bit_chk & 1), i, left_edge[i]);
2919 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2920 right_edge[i]);
2921 bit_chk = bit_chk >> 1;
2922 }
2923 }
2924 }
2925
2926 /* Reset DQ delay chains to 0 */
2927 scc_mgr_apply_group_dq_out1_delay(write_group, test_bgn, 0);
2928 sticky_bit_chk = 0;
2929 for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) {
2930 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2931 %d right_edge[%u]: %d\n", __func__, __LINE__,
2932 i, left_edge[i], i, right_edge[i]);
2933
2934 /*
2935 * Check for cases where we haven't found the left edge,
2936 * which makes our assignment of the the right edge invalid.
2937 * Reset it to the illegal value.
2938 */
2939 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) &&
2940 (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) {
2941 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2942 debug_cond(DLEVEL == 2, "%s:%d write_center: reset \
2943 right_edge[%u]: %d\n", __func__, __LINE__,
2944 i, right_edge[i]);
2945 }
2946
2947 /*
2948 * Reset sticky bit (except for bits where we have
2949 * seen the left edge).
2950 */
2951 sticky_bit_chk = sticky_bit_chk << 1;
2952 if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1))
2953 sticky_bit_chk = sticky_bit_chk | 1;
2954
2955 if (i == 0)
2956 break;
2957 }
2958
2959 /* Search for the right edge of the window for each bit */
2960 addr = sdr_get_addr(&sdr_scc_mgr->update);
2961 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) {
2962 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2963 d + start_dqs);
2964
2965 writel(0, SOCFPGA_SDR_ADDRESS + addr);
2966
2967 /*
2968 * Stop searching when the read test doesn't pass AND when
2969 * we've seen a passing read on every bit.
2970 */
2971 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2972 0, PASS_ONE_BIT, &bit_chk, 0);
2973
2974 sticky_bit_chk = sticky_bit_chk | bit_chk;
2975 stop = stop && (sticky_bit_chk == param->write_correct_mask);
2976
2977 debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \
2978 %u && %u\n", d, sticky_bit_chk,
2979 param->write_correct_mask, stop);
2980
2981 if (stop == 1) {
2982 if (d == 0) {
2983 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS;
2984 i++) {
2985 /* d = 0 failed, but it passed when
2986 testing the left edge, so it must be
2987 marginal, set it to -1 */
2988 if (right_edge[i] ==
2989 IO_IO_OUT1_DELAY_MAX + 1 &&
2990 left_edge[i] !=
2991 IO_IO_OUT1_DELAY_MAX + 1) {
2992 right_edge[i] = -1;
2993 }
2994 }
2995 }
2996 break;
2997 } else {
2998 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2999 if (bit_chk & 1) {
3000 /*
3001 * Remember a passing test as
3002 * the right_edge.
3003 */
3004 right_edge[i] = d;
3005 } else {
3006 if (d != 0) {
3007 /*
3008 * If a right edge has not
3009 * been seen yet, then a future
3010 * passing test will mark this
3011 * edge as the left edge.
3012 */
3013 if (right_edge[i] ==
3014 IO_IO_OUT1_DELAY_MAX + 1)
3015 left_edge[i] = -(d + 1);
3016 } else {
3017 /*
3018 * d = 0 failed, but it passed
3019 * when testing the left edge,
3020 * so it must be marginal, set
3021 * it to -1.
3022 */
3023 if (right_edge[i] ==
3024 IO_IO_OUT1_DELAY_MAX + 1 &&
3025 left_edge[i] !=
3026 IO_IO_OUT1_DELAY_MAX + 1)
3027 right_edge[i] = -1;
3028 /*
3029 * If a right edge has not been
3030 * seen yet, then a future
3031 * passing test will mark this
3032 * edge as the left edge.
3033 */
3034 else if (right_edge[i] ==
3035 IO_IO_OUT1_DELAY_MAX +
3036 1)
3037 left_edge[i] = -(d + 1);
3038 }
3039 }
3040 debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d);
3041 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
3042 (int)(bit_chk & 1), i, left_edge[i]);
3043 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
3044 right_edge[i]);
3045 bit_chk = bit_chk >> 1;
3046 }
3047 }
3048 }
3049
3050 /* Check that all bits have a window */
3051 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
3052 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
3053 %d right_edge[%u]: %d", __func__, __LINE__,
3054 i, left_edge[i], i, right_edge[i]);
3055 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) ||
3056 (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) {
3057 set_failing_group_stage(test_bgn + i,
3058 CAL_STAGE_WRITES,
3059 CAL_SUBSTAGE_WRITES_CENTER);
3060 return 0;
3061 }
3062 }
3063
3064 /* Find middle of window for each DQ bit */
3065 mid_min = left_edge[0] - right_edge[0];
3066 min_index = 0;
3067 for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
3068 mid = left_edge[i] - right_edge[i];
3069 if (mid < mid_min) {
3070 mid_min = mid;
3071 min_index = i;
3072 }
3073 }
3074
3075 /*
3076 * -mid_min/2 represents the amount that we need to move DQS.
3077 * If mid_min is odd and positive we'll need to add one to
3078 * make sure the rounding in further calculations is correct
3079 * (always bias to the right), so just add 1 for all positive values.
3080 */
3081 if (mid_min > 0)
3082 mid_min++;
3083 mid_min = mid_min / 2;
3084 debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__,
3085 __LINE__, mid_min);
3086
3087 /* Determine the amount we can change DQS (which is -mid_min) */
3088 orig_mid_min = mid_min;
3089 new_dqs = start_dqs;
3090 mid_min = 0;
3091 debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \
3092 mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min);
3093 /* Initialize data for export structures */
3094 dqs_margin = IO_IO_OUT1_DELAY_MAX + 1;
3095 dq_margin = IO_IO_OUT1_DELAY_MAX + 1;
3096
3097 /* add delay to bring centre of all DQ windows to the same "level" */
3098 addr = sdr_get_addr((u32 *)SCC_MGR_IO_OUT1_DELAY);
3099 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
3100 /* Use values before divide by 2 to reduce round off error */
3101 shift_dq = (left_edge[i] - right_edge[i] -
3102 (left_edge[min_index] - right_edge[min_index]))/2 +
3103 (orig_mid_min - mid_min);
3104
3105 debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \
3106 [%u]=%d\n", __func__, __LINE__, i, shift_dq);
3107
3108 temp_dq_out1_delay = readl(SOCFPGA_SDR_ADDRESS + addr + (i << 2));
3109 if (shift_dq + (int32_t)temp_dq_out1_delay >
3110 (int32_t)IO_IO_OUT1_DELAY_MAX) {
3111 shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay;
3112 } else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) {
3113 shift_dq = -(int32_t)temp_dq_out1_delay;
3114 }
3115 debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n",
3116 i, shift_dq);
3117 scc_mgr_set_dq_out1_delay(write_group, i, temp_dq_out1_delay +
3118 shift_dq);
3119 scc_mgr_load_dq(i);
3120
3121 debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i,
3122 left_edge[i] - shift_dq + (-mid_min),
3123 right_edge[i] + shift_dq - (-mid_min));
3124 /* To determine values for export structures */
3125 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
3126 dq_margin = left_edge[i] - shift_dq + (-mid_min);
3127
3128 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
3129 dqs_margin = right_edge[i] + shift_dq - (-mid_min);
3130 }
3131
3132 /* Move DQS */
3133 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3134 addr = sdr_get_addr(&sdr_scc_mgr->update);
3135 writel(0, SOCFPGA_SDR_ADDRESS + addr);
3136
3137 /* Centre DM */
3138 debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__);
3139
3140 /*
3141 * set the left and right edge of each bit to an illegal value,
3142 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value,
3143 */
3144 left_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
3145 right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
3146 int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3147 int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3148 int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1;
3149 int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1;
3150 int32_t win_best = 0;
3151
3152 /* Search for the/part of the window with DM shift */
3153 addr = sdr_get_addr(&sdr_scc_mgr->update);
3154 for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) {
3155 scc_mgr_apply_group_dm_out1_delay(write_group, d);
3156 writel(0, SOCFPGA_SDR_ADDRESS + addr);
3157
3158 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
3159 PASS_ALL_BITS, &bit_chk,
3160 0)) {
3161 /* USE Set current end of the window */
3162 end_curr = -d;
3163 /*
3164 * If a starting edge of our window has not been seen
3165 * this is our current start of the DM window.
3166 */
3167 if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
3168 bgn_curr = -d;
3169
3170 /*
3171 * If current window is bigger than best seen.
3172 * Set best seen to be current window.
3173 */
3174 if ((end_curr-bgn_curr+1) > win_best) {
3175 win_best = end_curr-bgn_curr+1;
3176 bgn_best = bgn_curr;
3177 end_best = end_curr;
3178 }
3179 } else {
3180 /* We just saw a failing test. Reset temp edge */
3181 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3182 end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3183 }
3184 }
3185
3186
3187 /* Reset DM delay chains to 0 */
3188 scc_mgr_apply_group_dm_out1_delay(write_group, 0);
3189
3190 /*
3191 * Check to see if the current window nudges up aganist 0 delay.
3192 * If so we need to continue the search by shifting DQS otherwise DQS
3193 * search begins as a new search. */
3194 if (end_curr != 0) {
3195 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3196 end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3197 }
3198
3199 /* Search for the/part of the window with DQS shifts */
3200 addr = sdr_get_addr(&sdr_scc_mgr->update);
3201 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) {
3202 /*
3203 * Note: This only shifts DQS, so are we limiting ourselve to
3204 * width of DQ unnecessarily.
3205 */
3206 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
3207 d + new_dqs);
3208
3209 writel(0, SOCFPGA_SDR_ADDRESS + addr);
3210 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
3211 PASS_ALL_BITS, &bit_chk,
3212 0)) {
3213 /* USE Set current end of the window */
3214 end_curr = d;
3215 /*
3216 * If a beginning edge of our window has not been seen
3217 * this is our current begin of the DM window.
3218 */
3219 if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
3220 bgn_curr = d;
3221
3222 /*
3223 * If current window is bigger than best seen. Set best
3224 * seen to be current window.
3225 */
3226 if ((end_curr-bgn_curr+1) > win_best) {
3227 win_best = end_curr-bgn_curr+1;
3228 bgn_best = bgn_curr;
3229 end_best = end_curr;
3230 }
3231 } else {
3232 /* We just saw a failing test. Reset temp edge */
3233 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3234 end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3235
3236 /* Early exit optimization: if ther remaining delay
3237 chain space is less than already seen largest window
3238 we can exit */
3239 if ((win_best-1) >
3240 (IO_IO_OUT1_DELAY_MAX - new_dqs - d)) {
3241 break;
3242 }
3243 }
3244 }
3245
3246 /* assign left and right edge for cal and reporting; */
3247 left_edge[0] = -1*bgn_best;
3248 right_edge[0] = end_best;
3249
3250 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__,
3251 __LINE__, left_edge[0], right_edge[0]);
3252
3253 /* Move DQS (back to orig) */
3254 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3255
3256 /* Move DM */
3257
3258 /* Find middle of window for the DM bit */
3259 mid = (left_edge[0] - right_edge[0]) / 2;
3260
3261 /* only move right, since we are not moving DQS/DQ */
3262 if (mid < 0)
3263 mid = 0;
3264
3265 /* dm_marign should fail if we never find a window */
3266 if (win_best == 0)
3267 dm_margin = -1;
3268 else
3269 dm_margin = left_edge[0] - mid;
3270
3271 scc_mgr_apply_group_dm_out1_delay(write_group, mid);
3272 addr = sdr_get_addr(&sdr_scc_mgr->update);
3273 writel(0, SOCFPGA_SDR_ADDRESS + addr);
3274
3275 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \
3276 dm_margin=%d\n", __func__, __LINE__, left_edge[0],
3277 right_edge[0], mid, dm_margin);
3278 /* Export values */
3279 gbl->fom_out += dq_margin + dqs_margin;
3280
3281 debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \
3282 dqs_margin=%d dm_margin=%d\n", __func__, __LINE__,
3283 dq_margin, dqs_margin, dm_margin);
3284
3285 /*
3286 * Do not remove this line as it makes sure all of our
3287 * decisions have been applied.
3288 */
3289 addr = sdr_get_addr(&sdr_scc_mgr->update);
3290 writel(0, SOCFPGA_SDR_ADDRESS + addr);
3291 return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0);
3292}
3293
3294/* calibrate the write operations */
3295static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g,
3296 uint32_t test_bgn)
3297{
3298 /* update info for sims */
3299 debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn);
3300
3301 reg_file_set_stage(CAL_STAGE_WRITES);
3302 reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
3303
3304 reg_file_set_group(g);
3305
3306 if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) {
3307 set_failing_group_stage(g, CAL_STAGE_WRITES,
3308 CAL_SUBSTAGE_WRITES_CENTER);
3309 return 0;
3310 }
3311
3312 return 1;
3313}
3314
3315/* precharge all banks and activate row 0 in bank "000..." and bank "111..." */
3316static void mem_precharge_and_activate(void)
3317{
3318 uint32_t r;
3319 uint32_t addr;
3320
3321 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
3322 if (param->skip_ranks[r]) {
3323 /* request to skip the rank */
3324 continue;
3325 }
3326
3327 /* set rank */
3328 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
3329
3330 /* precharge all banks ... */
3331 addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
3332 writel(RW_MGR_PRECHARGE_ALL, SOCFPGA_SDR_ADDRESS + addr);
3333
3334 addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr0);
3335 writel(0x0F, SOCFPGA_SDR_ADDRESS + addr);
3336 addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add0);
3337 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1, SOCFPGA_SDR_ADDRESS + addr);
3338
3339 addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr1);
3340 writel(0x0F, SOCFPGA_SDR_ADDRESS + addr);
3341 addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add1);
3342 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2, SOCFPGA_SDR_ADDRESS + addr);
3343
3344 /* activate rows */
3345 addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
3346 writel(RW_MGR_ACTIVATE_0_AND_1, SOCFPGA_SDR_ADDRESS + addr);
3347 }
3348}
3349
3350/* Configure various memory related parameters. */
3351static void mem_config(void)
3352{
3353 uint32_t rlat, wlat;
3354 uint32_t rw_wl_nop_cycles;
3355 uint32_t max_latency;
3356 uint32_t addr;
3357
3358 debug("%s:%d\n", __func__, __LINE__);
3359 /* read in write and read latency */
3360 addr = sdr_get_addr(&data_mgr->t_wl_add);
3361 wlat = readl(SOCFPGA_SDR_ADDRESS + addr);
3362
3363 addr = sdr_get_addr(&data_mgr->mem_t_add);
3364 wlat += readl(SOCFPGA_SDR_ADDRESS + addr);
3365 /* WL for hard phy does not include additive latency */
3366
3367 /*
3368 * add addtional write latency to offset the address/command extra
3369 * clock cycle. We change the AC mux setting causing AC to be delayed
3370 * by one mem clock cycle. Only do this for DDR3
3371 */
3372 wlat = wlat + 1;
3373
3374 addr = sdr_get_addr(&data_mgr->t_rl_add);
3375 rlat = readl(SOCFPGA_SDR_ADDRESS + addr);
3376
3377 rw_wl_nop_cycles = wlat - 2;
3378 gbl->rw_wl_nop_cycles = rw_wl_nop_cycles;
3379
3380 /*
3381 * For AV/CV, lfifo is hardened and always runs at full rate so
3382 * max latency in AFI clocks, used here, is correspondingly smaller.
3383 */
3384 max_latency = (1<<MAX_LATENCY_COUNT_WIDTH)/1 - 1;
3385 /* configure for a burst length of 8 */
3386
3387 /* write latency */
3388 /* Adjust Write Latency for Hard PHY */
3389 wlat = wlat + 1;
3390
3391 /* set a pretty high read latency initially */
3392 gbl->curr_read_lat = rlat + 16;
3393
3394 if (gbl->curr_read_lat > max_latency)
3395 gbl->curr_read_lat = max_latency;
3396
3397 addr = sdr_get_addr(&phy_mgr_cfg->phy_rlat);
3398 writel(gbl->curr_read_lat, SOCFPGA_SDR_ADDRESS + addr);
3399
3400 /* advertise write latency */
3401 gbl->curr_write_lat = wlat;
3402 addr = sdr_get_addr(&phy_mgr_cfg->afi_wlat);
3403 writel(wlat - 2, SOCFPGA_SDR_ADDRESS + addr);
3404
3405 /* initialize bit slips */
3406 mem_precharge_and_activate();
3407}
3408
3409/* Set VFIFO and LFIFO to instant-on settings in skip calibration mode */
3410static void mem_skip_calibrate(void)
3411{
3412 uint32_t vfifo_offset;
3413 uint32_t i, j, r;
3414 uint32_t addr;
3415
3416 debug("%s:%d\n", __func__, __LINE__);
3417 /* Need to update every shadow register set used by the interface */
3418 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
3419 r += NUM_RANKS_PER_SHADOW_REG) {
3420 /*
3421 * Set output phase alignment settings appropriate for
3422 * skip calibration.
3423 */
3424 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3425 scc_mgr_set_dqs_en_phase(i, 0);
3426#if IO_DLL_CHAIN_LENGTH == 6
3427 scc_mgr_set_dqdqs_output_phase(i, 6);
3428#else
3429 scc_mgr_set_dqdqs_output_phase(i, 7);
3430#endif
3431 /*
3432 * Case:33398
3433 *
3434 * Write data arrives to the I/O two cycles before write
3435 * latency is reached (720 deg).
3436 * -> due to bit-slip in a/c bus
3437 * -> to allow board skew where dqs is longer than ck
3438 * -> how often can this happen!?
3439 * -> can claim back some ptaps for high freq
3440 * support if we can relax this, but i digress...
3441 *
3442 * The write_clk leads mem_ck by 90 deg
3443 * The minimum ptap of the OPA is 180 deg
3444 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
3445 * The write_clk is always delayed by 2 ptaps
3446 *
3447 * Hence, to make DQS aligned to CK, we need to delay
3448 * DQS by:
3449 * (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH))
3450 *
3451 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH)
3452 * gives us the number of ptaps, which simplies to:
3453 *
3454 * (1.25 * IO_DLL_CHAIN_LENGTH - 2)
3455 */
3456 scc_mgr_set_dqdqs_output_phase(i, (1.25 *
3457 IO_DLL_CHAIN_LENGTH - 2));
3458 }
3459 addr = sdr_get_addr(&sdr_scc_mgr->dqs_ena);
3460 writel(0xff, SOCFPGA_SDR_ADDRESS + addr);
3461 addr = sdr_get_addr(&sdr_scc_mgr->dqs_io_ena);
3462 writel(0xff, SOCFPGA_SDR_ADDRESS + addr);
3463
3464 addr = sdr_get_addr((u32 *)SCC_MGR_GROUP_COUNTER);
3465 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
3466 writel(i, SOCFPGA_SDR_ADDRESS + addr);
3467 }
3468 addr = sdr_get_addr(&sdr_scc_mgr->dq_ena);
3469 writel(0xff, SOCFPGA_SDR_ADDRESS + addr);
3470 addr = sdr_get_addr(&sdr_scc_mgr->dm_ena);
3471 writel(0xff, SOCFPGA_SDR_ADDRESS + addr);
3472 addr = sdr_get_addr(&sdr_scc_mgr->update);
3473 writel(0, SOCFPGA_SDR_ADDRESS + addr);
3474 }
3475
3476 /* Compensate for simulation model behaviour */
3477 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3478 scc_mgr_set_dqs_bus_in_delay(i, 10);
3479 scc_mgr_load_dqs(i);
3480 }
3481 addr = sdr_get_addr(&sdr_scc_mgr->update);
3482 writel(0, SOCFPGA_SDR_ADDRESS + addr);
3483
3484 /*
3485 * ArriaV has hard FIFOs that can only be initialized by incrementing
3486 * in sequencer.
3487 */
3488 vfifo_offset = CALIB_VFIFO_OFFSET;
3489 addr = sdr_get_addr(&phy_mgr_cmd->inc_vfifo_hard_phy);
3490 for (j = 0; j < vfifo_offset; j++) {
3491 writel(0xff, SOCFPGA_SDR_ADDRESS + addr);
3492 }
3493 addr = sdr_get_addr(&phy_mgr_cmd->fifo_reset);
3494 writel(0, SOCFPGA_SDR_ADDRESS + addr);
3495
3496 /*
3497 * For ACV with hard lfifo, we get the skip-cal setting from
3498 * generation-time constant.
3499 */
3500 gbl->curr_read_lat = CALIB_LFIFO_OFFSET;
3501 addr = sdr_get_addr(&phy_mgr_cfg->phy_rlat);
3502 writel(gbl->curr_read_lat, SOCFPGA_SDR_ADDRESS + addr);
3503}
3504
3505/* Memory calibration entry point */
3506static uint32_t mem_calibrate(void)
3507{
3508 uint32_t i;
3509 uint32_t rank_bgn, sr;
3510 uint32_t write_group, write_test_bgn;
3511 uint32_t read_group, read_test_bgn;
3512 uint32_t run_groups, current_run;
3513 uint32_t failing_groups = 0;
3514 uint32_t group_failed = 0;
3515 uint32_t sr_failed = 0;
3516 uint32_t addr;
3517
3518 debug("%s:%d\n", __func__, __LINE__);
3519 /* Initialize the data settings */
3520
3521 gbl->error_substage = CAL_SUBSTAGE_NIL;
3522 gbl->error_stage = CAL_STAGE_NIL;
3523 gbl->error_group = 0xff;
3524 gbl->fom_in = 0;
3525 gbl->fom_out = 0;
3526
3527 mem_config();
3528
3529 uint32_t bypass_mode = 0x1;
3530 addr = sdr_get_addr((u32 *)SCC_MGR_GROUP_COUNTER);
3531 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3532 writel(i, SOCFPGA_SDR_ADDRESS + addr);
3533 scc_set_bypass_mode(i, bypass_mode);
3534 }
3535
3536 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
3537 /*
3538 * Set VFIFO and LFIFO to instant-on settings in skip
3539 * calibration mode.
3540 */
3541 mem_skip_calibrate();
3542 } else {
3543 for (i = 0; i < NUM_CALIB_REPEAT; i++) {
3544 /*
3545 * Zero all delay chain/phase settings for all
3546 * groups and all shadow register sets.
3547 */
3548 scc_mgr_zero_all();
3549
3550 run_groups = ~param->skip_groups;
3551
3552 for (write_group = 0, write_test_bgn = 0; write_group
3553 < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++,
3554 write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) {
3555 /* Initialized the group failure */
3556 group_failed = 0;
3557
3558 current_run = run_groups & ((1 <<
3559 RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
3560 run_groups = run_groups >>
3561 RW_MGR_NUM_DQS_PER_WRITE_GROUP;
3562
3563 if (current_run == 0)
3564 continue;
3565
3566 addr = sdr_get_addr((u32 *)SCC_MGR_GROUP_COUNTER);
3567 writel(write_group, SOCFPGA_SDR_ADDRESS + addr);
3568 scc_mgr_zero_group(write_group, write_test_bgn,
3569 0);
3570
3571 for (read_group = write_group *
3572 RW_MGR_MEM_IF_READ_DQS_WIDTH /
3573 RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3574 read_test_bgn = 0;
3575 read_group < (write_group + 1) *
3576 RW_MGR_MEM_IF_READ_DQS_WIDTH /
3577 RW_MGR_MEM_IF_WRITE_DQS_WIDTH &&
3578 group_failed == 0;
3579 read_group++, read_test_bgn +=
3580 RW_MGR_MEM_DQ_PER_READ_DQS) {
3581 /* Calibrate the VFIFO */
3582 if (!((STATIC_CALIB_STEPS) &
3583 CALIB_SKIP_VFIFO)) {
3584 if (!rw_mgr_mem_calibrate_vfifo
3585 (read_group,
3586 read_test_bgn)) {
3587 group_failed = 1;
3588
3589 if (!(gbl->
3590 phy_debug_mode_flags &
3591 PHY_DEBUG_SWEEP_ALL_GROUPS)) {
3592 return 0;
3593 }
3594 }
3595 }
3596 }
3597
3598 /* Calibrate the output side */
3599 if (group_failed == 0) {
3600 for (rank_bgn = 0, sr = 0; rank_bgn
3601 < RW_MGR_MEM_NUMBER_OF_RANKS;
3602 rank_bgn +=
3603 NUM_RANKS_PER_SHADOW_REG,
3604 ++sr) {
3605 sr_failed = 0;
3606 if (!((STATIC_CALIB_STEPS) &
3607 CALIB_SKIP_WRITES)) {
3608 if ((STATIC_CALIB_STEPS)
3609 & CALIB_SKIP_DELAY_SWEEPS) {
3610 /* not needed in quick mode! */
3611 } else {
3612 /*
3613 * Determine if this set of
3614 * ranks should be skipped
3615 * entirely.
3616 */
3617 if (!param->skip_shadow_regs[sr]) {
3618 if (!rw_mgr_mem_calibrate_writes
3619 (rank_bgn, write_group,
3620 write_test_bgn)) {
3621 sr_failed = 1;
3622 if (!(gbl->
3623 phy_debug_mode_flags &
3624 PHY_DEBUG_SWEEP_ALL_GROUPS)) {
3625 return 0;
3626 }
3627 }
3628 }
3629 }
3630 }
3631 if (sr_failed != 0)
3632 group_failed = 1;
3633 }
3634 }
3635
3636 if (group_failed == 0) {
3637 for (read_group = write_group *
3638 RW_MGR_MEM_IF_READ_DQS_WIDTH /
3639 RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3640 read_test_bgn = 0;
3641 read_group < (write_group + 1)
3642 * RW_MGR_MEM_IF_READ_DQS_WIDTH
3643 / RW_MGR_MEM_IF_WRITE_DQS_WIDTH &&
3644 group_failed == 0;
3645 read_group++, read_test_bgn +=
3646 RW_MGR_MEM_DQ_PER_READ_DQS) {
3647 if (!((STATIC_CALIB_STEPS) &
3648 CALIB_SKIP_WRITES)) {
3649 if (!rw_mgr_mem_calibrate_vfifo_end
3650 (read_group, read_test_bgn)) {
3651 group_failed = 1;
3652
3653 if (!(gbl->phy_debug_mode_flags
3654 & PHY_DEBUG_SWEEP_ALL_GROUPS)) {
3655 return 0;
3656 }
3657 }
3658 }
3659 }
3660 }
3661
3662 if (group_failed != 0)
3663 failing_groups++;
3664 }
3665
3666 /*
3667 * USER If there are any failing groups then report
3668 * the failure.
3669 */
3670 if (failing_groups != 0)
3671 return 0;
3672
3673 /* Calibrate the LFIFO */
3674 if (!((STATIC_CALIB_STEPS) & CALIB_SKIP_LFIFO)) {
3675 /*
3676 * If we're skipping groups as part of debug,
3677 * don't calibrate LFIFO.
3678 */
3679 if (param->skip_groups == 0) {
3680 if (!rw_mgr_mem_calibrate_lfifo())
3681 return 0;
3682 }
3683 }
3684 }
3685 }
3686
3687 /*
3688 * Do not remove this line as it makes sure all of our decisions
3689 * have been applied.
3690 */
3691 addr = sdr_get_addr(&sdr_scc_mgr->update);
3692 writel(0, SOCFPGA_SDR_ADDRESS + addr);
3693 return 1;
3694}
3695
3696static uint32_t run_mem_calibrate(void)
3697{
3698 uint32_t pass;
3699 uint32_t debug_info;
3700 uint32_t addr;
3701
3702 debug("%s:%d\n", __func__, __LINE__);
3703
3704 /* Reset pass/fail status shown on afi_cal_success/fail */
3705 addr = sdr_get_addr(&phy_mgr_cfg->cal_status);
3706 writel(PHY_MGR_CAL_RESET, SOCFPGA_SDR_ADDRESS + addr);
3707
3708 addr = sdr_get_addr((u32 *)BASE_MMR);
3709 /* stop tracking manger */
3710 uint32_t ctrlcfg = readl(SOCFPGA_SDR_ADDRESS + addr);
3711
3712 addr = sdr_get_addr((u32 *)BASE_MMR);
3713 writel(ctrlcfg & 0xFFBFFFFF, SOCFPGA_SDR_ADDRESS + addr);
3714
3715 initialize();
3716 rw_mgr_mem_initialize();
3717
3718 pass = mem_calibrate();
3719
3720 mem_precharge_and_activate();
3721 addr = sdr_get_addr(&phy_mgr_cmd->fifo_reset);
3722 writel(0, SOCFPGA_SDR_ADDRESS + addr);
3723
3724 /*
3725 * Handoff:
3726 * Don't return control of the PHY back to AFI when in debug mode.
3727 */
3728 if ((gbl->phy_debug_mode_flags & PHY_DEBUG_IN_DEBUG_MODE) == 0) {
3729 rw_mgr_mem_handoff();
3730 /*
3731 * In Hard PHY this is a 2-bit control:
3732 * 0: AFI Mux Select
3733 * 1: DDIO Mux Select
3734 */
3735 addr = sdr_get_addr(&phy_mgr_cfg->mux_sel);
3736 writel(0x2, SOCFPGA_SDR_ADDRESS + addr);
3737 }
3738
3739 addr = sdr_get_addr((u32 *)BASE_MMR);
3740 writel(ctrlcfg, SOCFPGA_SDR_ADDRESS + addr);
3741
3742 if (pass) {
3743 printf("%s: CALIBRATION PASSED\n", __FILE__);
3744
3745 gbl->fom_in /= 2;
3746 gbl->fom_out /= 2;
3747
3748 if (gbl->fom_in > 0xff)
3749 gbl->fom_in = 0xff;
3750
3751 if (gbl->fom_out > 0xff)
3752 gbl->fom_out = 0xff;
3753
3754 /* Update the FOM in the register file */
3755 debug_info = gbl->fom_in;
3756 debug_info |= gbl->fom_out << 8;
3757 addr = sdr_get_addr(&sdr_reg_file->fom);
3758 writel(debug_info, SOCFPGA_SDR_ADDRESS + addr);
3759
3760 addr = sdr_get_addr(&phy_mgr_cfg->cal_debug_info);
3761 writel(debug_info, SOCFPGA_SDR_ADDRESS + addr);
3762 addr = sdr_get_addr(&phy_mgr_cfg->cal_status);
3763 writel(PHY_MGR_CAL_SUCCESS, SOCFPGA_SDR_ADDRESS + addr);
3764 } else {
3765 printf("%s: CALIBRATION FAILED\n", __FILE__);
3766
3767 debug_info = gbl->error_stage;
3768 debug_info |= gbl->error_substage << 8;
3769 debug_info |= gbl->error_group << 16;
3770
3771 addr = sdr_get_addr(&sdr_reg_file->failing_stage);
3772 writel(debug_info, SOCFPGA_SDR_ADDRESS + addr);
3773 addr = sdr_get_addr(&phy_mgr_cfg->cal_debug_info);
3774 writel(debug_info, SOCFPGA_SDR_ADDRESS + addr);
3775 addr = sdr_get_addr(&phy_mgr_cfg->cal_status);
3776 writel(PHY_MGR_CAL_FAIL, SOCFPGA_SDR_ADDRESS + addr);
3777
3778 /* Update the failing group/stage in the register file */
3779 debug_info = gbl->error_stage;
3780 debug_info |= gbl->error_substage << 8;
3781 debug_info |= gbl->error_group << 16;
3782 addr = sdr_get_addr(&sdr_reg_file->failing_stage);
3783 writel(debug_info, SOCFPGA_SDR_ADDRESS + addr);
3784 }
3785
3786 return pass;
3787}
3788
3789static void hc_initialize_rom_data(void)
3790{
3791 uint32_t i;
3792 uint32_t addr;
3793
3794 addr = sdr_get_addr((u32 *)(RW_MGR_INST_ROM_WRITE));
3795 for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++) {
3796 uint32_t data = inst_rom_init[i];
3797 writel(data, SOCFPGA_SDR_ADDRESS + addr + (i << 2));
3798 }
3799
3800 addr = sdr_get_addr((u32 *)(RW_MGR_AC_ROM_WRITE));
3801 for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++) {
3802 uint32_t data = ac_rom_init[i];
3803 writel(data, SOCFPGA_SDR_ADDRESS + addr + (i << 2));
3804 }
3805}
3806
3807static void initialize_reg_file(void)
3808{
3809 uint32_t addr;
3810
3811 /* Initialize the register file with the correct data */
3812 addr = sdr_get_addr(&sdr_reg_file->signature);
3813 writel(REG_FILE_INIT_SEQ_SIGNATURE, SOCFPGA_SDR_ADDRESS + addr);
3814
3815 addr = sdr_get_addr(&sdr_reg_file->debug_data_addr);
3816 writel(0, SOCFPGA_SDR_ADDRESS + addr);
3817
3818 addr = sdr_get_addr(&sdr_reg_file->cur_stage);
3819 writel(0, SOCFPGA_SDR_ADDRESS + addr);
3820
3821 addr = sdr_get_addr(&sdr_reg_file->fom);
3822 writel(0, SOCFPGA_SDR_ADDRESS + addr);
3823
3824 addr = sdr_get_addr(&sdr_reg_file->failing_stage);
3825 writel(0, SOCFPGA_SDR_ADDRESS + addr);
3826
3827 addr = sdr_get_addr(&sdr_reg_file->debug1);
3828 writel(0, SOCFPGA_SDR_ADDRESS + addr);
3829
3830 addr = sdr_get_addr(&sdr_reg_file->debug2);
3831 writel(0, SOCFPGA_SDR_ADDRESS + addr);
3832}
3833
3834static void initialize_hps_phy(void)
3835{
3836 uint32_t reg;
3837 uint32_t addr;
3838 /*
3839 * Tracking also gets configured here because it's in the
3840 * same register.
3841 */
3842 uint32_t trk_sample_count = 7500;
3843 uint32_t trk_long_idle_sample_count = (10 << 16) | 100;
3844 /*
3845 * Format is number of outer loops in the 16 MSB, sample
3846 * count in 16 LSB.
3847 */
3848
3849 reg = 0;
3850 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
3851 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
3852 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
3853 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
3854 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
3855 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
3856 /*
3857 * This field selects the intrinsic latency to RDATA_EN/FULL path.
3858 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
3859 */
3860 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
3861 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
3862 trk_sample_count);
3863 addr = sdr_get_addr((u32 *)BASE_MMR);
3864 writel(reg, SOCFPGA_SDR_ADDRESS + addr + SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_OFFSET);
3865
3866 reg = 0;
3867 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
3868 trk_sample_count >>
3869 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
3870 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
3871 trk_long_idle_sample_count);
3872 writel(reg, SOCFPGA_SDR_ADDRESS + addr + SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_OFFSET);
3873
3874 reg = 0;
3875 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
3876 trk_long_idle_sample_count >>
3877 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
3878 writel(reg, SOCFPGA_SDR_ADDRESS + addr + SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_OFFSET);
3879}
3880
3881static void initialize_tracking(void)
3882{
3883 uint32_t concatenated_longidle = 0x0;
3884 uint32_t concatenated_delays = 0x0;
3885 uint32_t concatenated_rw_addr = 0x0;
3886 uint32_t concatenated_refresh = 0x0;
3887 uint32_t trk_sample_count = 7500;
3888 uint32_t dtaps_per_ptap;
3889 uint32_t tmp_delay;
3890 uint32_t addr;
3891
3892 /*
3893 * compute usable version of value in case we skip full
3894 * computation later
3895 */
3896 dtaps_per_ptap = 0;
3897 tmp_delay = 0;
3898 while (tmp_delay < IO_DELAY_PER_OPA_TAP) {
3899 dtaps_per_ptap++;
3900 tmp_delay += IO_DELAY_PER_DCHAIN_TAP;
3901 }
3902 dtaps_per_ptap--;
3903
3904 concatenated_longidle = concatenated_longidle ^ 10;
3905 /*longidle outer loop */
3906 concatenated_longidle = concatenated_longidle << 16;
3907 concatenated_longidle = concatenated_longidle ^ 100;
3908 /*longidle sample count */
3909 concatenated_delays = concatenated_delays ^ 243;
3910 /* trfc, worst case of 933Mhz 4Gb */
3911 concatenated_delays = concatenated_delays << 8;
3912 concatenated_delays = concatenated_delays ^ 14;
3913 /* trcd, worst case */
3914 concatenated_delays = concatenated_delays << 8;
3915 concatenated_delays = concatenated_delays ^ 10;
3916 /* vfifo wait */
3917 concatenated_delays = concatenated_delays << 8;
3918 concatenated_delays = concatenated_delays ^ 4;
3919 /* mux delay */
3920
3921 concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_IDLE;
3922 concatenated_rw_addr = concatenated_rw_addr << 8;
3923 concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_ACTIVATE_1;
3924 concatenated_rw_addr = concatenated_rw_addr << 8;
3925 concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_SGLE_READ;
3926 concatenated_rw_addr = concatenated_rw_addr << 8;
3927 concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_PRECHARGE_ALL;
3928
3929 concatenated_refresh = concatenated_refresh ^ RW_MGR_REFRESH_ALL;
3930 concatenated_refresh = concatenated_refresh << 24;
3931 concatenated_refresh = concatenated_refresh ^ 1000; /* trefi */
3932
3933 /* Initialize the register file with the correct data */
3934 addr = sdr_get_addr(&sdr_reg_file->dtaps_per_ptap);
3935 writel(dtaps_per_ptap, SOCFPGA_SDR_ADDRESS + addr);
3936
3937 addr = sdr_get_addr(&sdr_reg_file->trk_sample_count);
3938 writel(trk_sample_count, SOCFPGA_SDR_ADDRESS + addr);
3939
3940 addr = sdr_get_addr(&sdr_reg_file->trk_longidle);
3941 writel(concatenated_longidle, SOCFPGA_SDR_ADDRESS + addr);
3942
3943 addr = sdr_get_addr(&sdr_reg_file->delays);
3944 writel(concatenated_delays, SOCFPGA_SDR_ADDRESS + addr);
3945
3946 addr = sdr_get_addr(&sdr_reg_file->trk_rw_mgr_addr);
3947 writel(concatenated_rw_addr, SOCFPGA_SDR_ADDRESS + addr);
3948
3949 addr = sdr_get_addr(&sdr_reg_file->trk_read_dqs_width);
3950 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH, SOCFPGA_SDR_ADDRESS + addr);
3951
3952 addr = sdr_get_addr(&sdr_reg_file->trk_rfsh);
3953 writel(concatenated_refresh, SOCFPGA_SDR_ADDRESS + addr);
3954}
3955
3956int sdram_calibration_full(void)
3957{
3958 struct param_type my_param;
3959 struct gbl_type my_gbl;
3960 uint32_t pass;
3961 uint32_t i;
3962
3963 param = &my_param;
3964 gbl = &my_gbl;
3965
3966 /* Initialize the debug mode flags */
3967 gbl->phy_debug_mode_flags = 0;
3968 /* Set the calibration enabled by default */
3969 gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
3970 /*
3971 * Only sweep all groups (regardless of fail state) by default
3972 * Set enabled read test by default.
3973 */
3974#if DISABLE_GUARANTEED_READ
3975 gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
3976#endif
3977 /* Initialize the register file */
3978 initialize_reg_file();
3979
3980 /* Initialize any PHY CSR */
3981 initialize_hps_phy();
3982
3983 scc_mgr_initialize();
3984
3985 initialize_tracking();
3986
3987 /* USER Enable all ranks, groups */
3988 for (i = 0; i < RW_MGR_MEM_NUMBER_OF_RANKS; i++)
3989 param->skip_ranks[i] = 0;
3990 for (i = 0; i < NUM_SHADOW_REGS; ++i)
3991 param->skip_shadow_regs[i] = 0;
3992 param->skip_groups = 0;
3993
3994 printf("%s: Preparing to start memory calibration\n", __FILE__);
3995
3996 debug("%s:%d\n", __func__, __LINE__);
Marek Vasut6283b4c2015-07-13 01:05:27 +02003997 debug_cond(DLEVEL == 1,
3998 "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
3999 RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM,
4000 RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS,
4001 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS,
4002 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
4003 debug_cond(DLEVEL == 1,
4004 "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
4005 RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
4006 RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH,
4007 IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP);
4008 debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u",
4009 IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH);
4010 debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
4011 IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX,
4012 IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX);
4013 debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
4014 IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX,
4015 IO_IO_OUT2_DELAY_MAX);
4016 debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
4017 IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE);
Dinh Nguyen135cc7f2015-06-02 22:52:49 -05004018
4019 hc_initialize_rom_data();
4020
4021 /* update info for sims */
4022 reg_file_set_stage(CAL_STAGE_NIL);
4023 reg_file_set_group(0);
4024
4025 /*
4026 * Load global needed for those actions that require
4027 * some dynamic calibration support.
4028 */
4029 dyn_calib_steps = STATIC_CALIB_STEPS;
4030 /*
4031 * Load global to allow dynamic selection of delay loop settings
4032 * based on calibration mode.
4033 */
4034 if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
4035 skip_delay_mask = 0xff;
4036 else
4037 skip_delay_mask = 0x0;
4038
4039 pass = run_mem_calibrate();
4040
4041 printf("%s: Calibration complete\n", __FILE__);
4042 return pass;
4043}