blob: c79eee98fe9842551ad972e245f409cf1fdf346e [file] [log] [blame]
Tom Rini10e47792018-05-06 17:58:06 -04001// SPDX-License-Identifier: GPL-2.0+
Mario Six10d14492017-01-11 16:01:00 +01002/*
3 * Copyright (C) 2015-2016 Reinhard Pfau <reinhard.pfau@gdsys.cc>
Mario Six10d14492017-01-11 16:01:00 +01004 */
5
6#include <config.h>
7#include <common.h>
8#include <errno.h>
9#include <asm/io.h>
10#include <asm/arch/cpu.h>
11#include <asm/arch/efuse.h>
12#include <asm/arch/soc.h>
Simon Glass4dcacfc2020-05-10 11:40:13 -060013#include <linux/bitops.h>
Simon Glassdbd79542020-05-10 11:40:11 -060014#include <linux/delay.h>
Mario Six10d14492017-01-11 16:01:00 +010015#include <linux/mbus.h>
16
17#if defined(CONFIG_MVEBU_EFUSE_FAKE)
18#define DRY_RUN
19#else
20#undef DRY_RUN
21#endif
22
23#define MBUS_EFUSE_BASE 0xF6000000
24#define MBUS_EFUSE_SIZE BIT(20)
25
26#define MVEBU_EFUSE_CONTROL (MVEBU_REGISTER(0xE4008))
27
28enum {
29 MVEBU_EFUSE_CTRL_PROGRAM_ENABLE = (1 << 31),
30};
31
32struct mvebu_hd_efuse {
33 u32 bits_31_0;
34 u32 bits_63_32;
35 u32 bit64;
36 u32 reserved0;
37};
38
39#ifndef DRY_RUN
40static struct mvebu_hd_efuse *efuses =
41 (struct mvebu_hd_efuse *)(MBUS_EFUSE_BASE + 0xF9000);
42#else
43static struct mvebu_hd_efuse efuses[EFUSE_LINE_MAX + 1];
44#endif
45
46static int efuse_initialised;
47
48static struct mvebu_hd_efuse *get_efuse_line(int nr)
49{
50 if (nr < 0 || nr > 63 || !efuse_initialised)
51 return NULL;
52
53 return efuses + nr;
54}
55
56static void enable_efuse_program(void)
57{
58#ifndef DRY_RUN
59 setbits_le32(MVEBU_EFUSE_CONTROL, MVEBU_EFUSE_CTRL_PROGRAM_ENABLE);
60#endif
61}
62
63static void disable_efuse_program(void)
64{
65#ifndef DRY_RUN
66 clrbits_le32(MVEBU_EFUSE_CONTROL, MVEBU_EFUSE_CTRL_PROGRAM_ENABLE);
67#endif
68}
69
70static int do_prog_efuse(struct mvebu_hd_efuse *efuse,
71 struct efuse_val *new_val, u32 mask0, u32 mask1)
72{
73 struct efuse_val val;
74
75 val.dwords.d[0] = readl(&efuse->bits_31_0);
76 val.dwords.d[1] = readl(&efuse->bits_63_32);
77 val.lock = readl(&efuse->bit64);
78
79 if (val.lock & 1)
80 return -EPERM;
81
82 val.dwords.d[0] |= (new_val->dwords.d[0] & mask0);
83 val.dwords.d[1] |= (new_val->dwords.d[1] & mask1);
84 val.lock |= new_val->lock;
85
86 writel(val.dwords.d[0], &efuse->bits_31_0);
87 mdelay(1);
88 writel(val.dwords.d[1], &efuse->bits_63_32);
89 mdelay(1);
90 writel(val.lock, &efuse->bit64);
91 mdelay(5);
92
93 return 0;
94}
95
96static int prog_efuse(int nr, struct efuse_val *new_val, u32 mask0, u32 mask1)
97{
98 struct mvebu_hd_efuse *efuse;
99 int res = 0;
100
101 res = mvebu_efuse_init_hw();
102 if (res)
103 return res;
104
105 efuse = get_efuse_line(nr);
106 if (!efuse)
107 return -ENODEV;
108
109 if (!new_val)
110 return -EINVAL;
111
112 /* only write a fuse line with lock bit */
113 if (!new_val->lock)
114 return -EINVAL;
115
116 /* according to specs ECC protection bits must be 0 on write */
117 if (new_val->bytes.d[7] & 0xFE)
118 return -EINVAL;
119
120 if (!new_val->dwords.d[0] && !new_val->dwords.d[1] && (mask0 | mask1))
121 return 0;
122
123 enable_efuse_program();
124
125 res = do_prog_efuse(efuse, new_val, mask0, mask1);
126
127 disable_efuse_program();
128
129 return res;
130}
131
132int mvebu_efuse_init_hw(void)
133{
134 int ret;
135
136 if (efuse_initialised)
137 return 0;
138
139 ret = mvebu_mbus_add_window_by_id(
140 CPU_TARGET_SATA23_DFX, 0xA, MBUS_EFUSE_BASE, MBUS_EFUSE_SIZE);
141
142 if (ret)
143 return ret;
144
145 efuse_initialised = 1;
146
147 return 0;
148}
149
150int mvebu_read_efuse(int nr, struct efuse_val *val)
151{
152 struct mvebu_hd_efuse *efuse;
153 int res;
154
155 res = mvebu_efuse_init_hw();
156 if (res)
157 return res;
158
159 efuse = get_efuse_line(nr);
160 if (!efuse)
161 return -ENODEV;
162
163 if (!val)
164 return -EINVAL;
165
166 val->dwords.d[0] = readl(&efuse->bits_31_0);
167 val->dwords.d[1] = readl(&efuse->bits_63_32);
168 val->lock = readl(&efuse->bit64);
169 return 0;
170}
171
172int mvebu_write_efuse(int nr, struct efuse_val *val)
173{
174 return prog_efuse(nr, val, ~0, ~0);
175}
176
177int mvebu_lock_efuse(int nr)
178{
179 struct efuse_val val = {
180 .lock = 1,
181 };
182
183 return prog_efuse(nr, &val, 0, 0);
184}
185
186/*
187 * wrapper funcs providing the fuse API
188 *
189 * we use the following mapping:
190 * "bank" -> eFuse line
191 * "word" -> 0: bits 0-31
192 * 1: bits 32-63
193 * 2: bit 64 (lock)
194 */
195
196static struct efuse_val prog_val;
197static int valid_prog_words;
198
199int fuse_read(u32 bank, u32 word, u32 *val)
200{
201 struct efuse_val fuse_line;
202 int res;
203
204 if (bank < EFUSE_LINE_MIN || bank > EFUSE_LINE_MAX || word > 2)
205 return -EINVAL;
206
207 res = mvebu_read_efuse(bank, &fuse_line);
208 if (res)
209 return res;
210
211 if (word < 2)
212 *val = fuse_line.dwords.d[word];
213 else
214 *val = fuse_line.lock;
215
216 return res;
217}
218
219int fuse_sense(u32 bank, u32 word, u32 *val)
220{
221 /* not supported */
222 return -ENOSYS;
223}
224
225int fuse_prog(u32 bank, u32 word, u32 val)
226{
227 int res = 0;
228
229 /*
230 * NOTE: Fuse line should be written as whole.
231 * So how can we do that with this API?
232 * For now: remember values for word == 0 and word == 1 and write the
233 * whole line when word == 2.
234 * This implies that we always require all 3 fuse prog cmds (one for
235 * for each word) to write a single fuse line.
236 * Exception is a single write to word 2 which will lock the fuse line.
237 *
238 * Hope that will be OK.
239 */
240
241 if (bank < EFUSE_LINE_MIN || bank > EFUSE_LINE_MAX || word > 2)
242 return -EINVAL;
243
244 if (word < 2) {
245 prog_val.dwords.d[word] = val;
246 valid_prog_words |= (1 << word);
247 } else if ((valid_prog_words & 3) == 0 && val) {
248 res = mvebu_lock_efuse(bank);
249 valid_prog_words = 0;
250 } else if ((valid_prog_words & 3) != 3 || !val) {
251 res = -EINVAL;
252 } else {
253 prog_val.lock = val != 0;
254 res = mvebu_write_efuse(bank, &prog_val);
255 valid_prog_words = 0;
256 }
257
258 return res;
259}
260
261int fuse_override(u32 bank, u32 word, u32 val)
262{
263 /* not supported */
264 return -ENOSYS;
265}