Jim Liu | 3bfce8c | 2022-06-07 16:32:08 +0800 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0+ |
| 2 | /* |
| 3 | * Copyright (c) 2021 Nuvoton Technology Corp. |
| 4 | */ |
| 5 | |
| 6 | #include <common.h> |
| 7 | #include <dm.h> |
| 8 | #include <uboot_aes.h> |
| 9 | #include <asm/io.h> |
| 10 | #include <asm/arch/aes.h> |
| 11 | #include <asm/arch/otp.h> |
| 12 | #include <malloc.h> |
| 13 | |
| 14 | #define ONE_SECOND 0xC00000 |
| 15 | |
| 16 | struct npcm_aes_priv { |
| 17 | struct npcm_aes_regs *regs; |
| 18 | }; |
| 19 | |
| 20 | static struct npcm_aes_priv *aes_priv; |
| 21 | static u8 fkeyind_to_set = 0xff; |
| 22 | |
| 23 | static int second_timeout(u32 *addr, u32 bitmask, u32 bitpol) |
| 24 | { |
| 25 | ulong time, i = 0; |
| 26 | |
| 27 | time = get_timer(0); |
| 28 | |
| 29 | /* default 1 second timeout */ |
| 30 | while (((readl(addr) & bitmask) == bitpol) && i < ONE_SECOND) |
| 31 | i++; |
| 32 | |
| 33 | if (i == ONE_SECOND) { |
| 34 | printf("%xms timeout: addr = %x, mask = %x\n", (u32)get_timer(time), |
| 35 | *addr, bitmask); |
| 36 | return -1; |
| 37 | } |
| 38 | |
| 39 | return 0; |
| 40 | } |
| 41 | |
| 42 | int npcm_aes_select_key(u8 fkeyind) |
| 43 | { |
| 44 | if (npcm_otp_is_fuse_array_disabled(NPCM_KEY_SA)) { |
| 45 | printf("AES key access denied\n"); |
| 46 | return -EACCES; |
| 47 | } |
| 48 | |
| 49 | if (fkeyind < 4) |
| 50 | fkeyind_to_set = fkeyind; |
| 51 | |
| 52 | return 0; |
| 53 | } |
| 54 | |
| 55 | static int npcm_aes_init(u8 dec_enc) |
| 56 | { |
| 57 | struct npcm_aes_regs *regs = aes_priv->regs; |
| 58 | u32 ctrl, orgctrlval, wrtimeout; |
| 59 | |
| 60 | /* reset hw */ |
| 61 | writel(readl(®s->aes_sw_reset) | SW_RESET_BIT, ®s->aes_sw_reset); |
| 62 | writel(readl(®s->aes_fifo_status) | DIN_FIFO_OVERFLOW, ®s->aes_fifo_status); |
| 63 | writel(readl(®s->aes_fifo_status) | DOUT_FIFO_UNDERFLOW, ®s->aes_fifo_status); |
| 64 | |
| 65 | /* Workaround to over come Errata #648 */ |
| 66 | orgctrlval = readl(®s->aes_control); |
| 67 | ctrl = (0x00002004 | dec_enc); /* AES256(CBC) */ |
| 68 | |
| 69 | if (ctrl != orgctrlval) { |
| 70 | writel(ctrl, ®s->aes_control); |
| 71 | |
| 72 | if (ctrl != readl(®s->aes_control)) { |
| 73 | u32 read_ctrl; |
| 74 | int intwr; |
| 75 | |
| 76 | for (wrtimeout = 0; wrtimeout < 1000; wrtimeout++) { |
| 77 | for (intwr = 0 ; intwr < 10; intwr++) { |
| 78 | writel(ctrl, ®s->aes_control); |
| 79 | writew(ctrl, (u16 *)®s->aes_control + 1); |
| 80 | /* Write configurable info in a single write operation */ |
| 81 | mb(); |
| 82 | } |
| 83 | |
| 84 | read_ctrl = readl(®s->aes_control); |
| 85 | if (ctrl == read_ctrl) |
| 86 | break; |
| 87 | } |
| 88 | |
| 89 | if (wrtimeout == 1000) { |
| 90 | printf("\nTIMEOUT expected data=0x%x Actual AES_CONTROL data 0x%x\n\n", |
| 91 | ctrl, read_ctrl); |
| 92 | return -EAGAIN; |
| 93 | } |
| 94 | |
| 95 | printf("Workaround success, wrtimeout = %d\n", wrtimeout); |
| 96 | } |
| 97 | } |
| 98 | |
| 99 | if (second_timeout(®s->aes_busy, AES_BUSY_BIT, AES_BUSY_BIT)) |
| 100 | return -EAGAIN; |
| 101 | |
| 102 | return 0; |
| 103 | } |
| 104 | |
| 105 | static inline void npcm_aes_load_iv(u8 *iv) |
| 106 | { |
| 107 | struct npcm_aes_regs *regs = aes_priv->regs; |
| 108 | u32 *p = (u32 *)iv; |
| 109 | u32 i; |
| 110 | |
| 111 | /* Initialization Vector is loaded in 32-bit chunks */ |
| 112 | for (i = 0; i < (SIZE_AES_BLOCK / sizeof(u32)); i++) |
| 113 | writel(p[i], ®s->aes_iv_0 + i); |
| 114 | } |
| 115 | |
| 116 | static inline void npcm_aes_load_key(u8 *key) |
| 117 | { |
| 118 | struct npcm_aes_regs *regs = aes_priv->regs; |
| 119 | u32 *p = (u32 *)key; |
| 120 | u32 i; |
| 121 | |
| 122 | /* The key can be loaded either via the configuration or by using sideband |
| 123 | * key port (aes_select_key). |
| 124 | * If aes_select_key has been called ('fkeyind_to_set' was set to desired |
| 125 | * key index) and no key is specified (key is NULL), we should use the |
| 126 | * key index. Otherwise, we write the given key to the registers. |
| 127 | */ |
| 128 | if (!key && fkeyind_to_set < 4) { |
| 129 | npcm_otp_select_key(fkeyind_to_set); |
| 130 | |
| 131 | /* Sample the new key */ |
| 132 | writel(readl(®s->aes_sk) | AES_SK_BIT, ®s->aes_sk); |
| 133 | |
| 134 | } else { |
| 135 | /* Initialization Vector is loaded in 32-bit chunks */ |
| 136 | for (i = 0; i < (2 * SIZE_AES_BLOCK / sizeof(u32)); i++) |
| 137 | writel(p[i], ®s->aes_key_0 + i); |
| 138 | |
| 139 | fkeyind_to_set = 0xff; |
| 140 | } |
| 141 | } |
| 142 | |
| 143 | static inline void npcm_aes_write(u32 *in) |
| 144 | { |
| 145 | struct npcm_aes_regs *regs = aes_priv->regs; |
| 146 | u32 i; |
| 147 | |
| 148 | /* 16 Byte AES Block is written in 32-bit chunks */ |
| 149 | for (i = 0; i < (SIZE_AES_BLOCK / sizeof(u32)); i++) |
| 150 | writel(in[i], ®s->aes_fifo_data); |
| 151 | } |
| 152 | |
| 153 | static inline void npcm_aes_read(u32 *out) |
| 154 | { |
| 155 | struct npcm_aes_regs *regs = aes_priv->regs; |
| 156 | u32 i; |
| 157 | |
| 158 | /* Data is read in 32-bit chunks */ |
| 159 | for (i = 0; i < (SIZE_AES_BLOCK / sizeof(u32)); i++) |
| 160 | out[i] = readl(®s->aes_fifo_data); |
| 161 | } |
| 162 | |
| 163 | static void npcm_aes_feed(u32 num_aes_blocks, u32 *datain, u32 *dataout) |
| 164 | { |
| 165 | struct npcm_aes_regs *regs = aes_priv->regs; |
| 166 | u32 aes_datablk; |
| 167 | u32 total_blocks = num_aes_blocks; |
| 168 | u32 blocks_left = num_aes_blocks; |
| 169 | |
| 170 | /* data mode */ |
| 171 | writel(readl(®s->aes_busy) | AES_BUSY_BIT, ®s->aes_busy); |
| 172 | |
| 173 | /* Clear overflow and underflow */ |
| 174 | writel(readl(®s->aes_fifo_status) | DIN_FIFO_OVERFLOW, ®s->aes_fifo_status); |
| 175 | writel(readl(®s->aes_fifo_status) | DOUT_FIFO_UNDERFLOW, ®s->aes_fifo_status); |
| 176 | |
| 177 | /* datain/dataout is advanced in 32-bit chunks */ |
| 178 | aes_datablk = (SIZE_AES_BLOCK / sizeof(u32)); |
| 179 | |
| 180 | /* Quit if there is no complete blocks */ |
| 181 | if (total_blocks == 0) |
| 182 | return; |
| 183 | |
| 184 | /* Write the first block */ |
| 185 | if (total_blocks > 1) { |
| 186 | npcm_aes_write(datain); |
| 187 | datain += aes_datablk; |
| 188 | blocks_left--; |
| 189 | } |
| 190 | |
| 191 | /* Write the second block */ |
| 192 | if (total_blocks > 2) { |
| 193 | second_timeout(®s->aes_fifo_status, DIN_FIFO_EMPTY, 0); |
| 194 | npcm_aes_write(datain); |
| 195 | datain += aes_datablk; |
| 196 | blocks_left--; |
| 197 | } |
| 198 | |
| 199 | /* Write & read available blocks */ |
| 200 | while (blocks_left > 0) { |
| 201 | second_timeout(®s->aes_fifo_status, DIN_FIFO_FULL, DIN_FIFO_FULL); |
| 202 | |
| 203 | /* Write next block */ |
| 204 | npcm_aes_write(datain); |
| 205 | datain += aes_datablk; |
| 206 | |
| 207 | /* Wait till DOUT FIFO is empty */ |
| 208 | second_timeout(®s->aes_fifo_status, DOUT_FIFO_EMPTY, DOUT_FIFO_EMPTY); |
| 209 | |
| 210 | /* Read next block */ |
| 211 | npcm_aes_read(dataout); |
| 212 | dataout += aes_datablk; |
| 213 | |
| 214 | blocks_left--; |
| 215 | } |
| 216 | |
| 217 | if (total_blocks > 2) { |
| 218 | second_timeout(®s->aes_fifo_status, DOUT_FIFO_FULL, 0); |
| 219 | |
| 220 | /* Read next block */ |
| 221 | npcm_aes_read(dataout); |
| 222 | dataout += aes_datablk; |
| 223 | |
| 224 | second_timeout(®s->aes_fifo_status, DOUT_FIFO_FULL, 0); |
| 225 | |
| 226 | /* Read next block */ |
| 227 | npcm_aes_read(dataout); |
| 228 | dataout += aes_datablk; |
| 229 | } else if (total_blocks > 1) { |
| 230 | second_timeout(®s->aes_fifo_status, DOUT_FIFO_FULL, 0); |
| 231 | |
| 232 | /* Read next block */ |
| 233 | npcm_aes_read(dataout); |
| 234 | dataout += aes_datablk; |
| 235 | } |
| 236 | } |
| 237 | |
| 238 | void aes_expand_key(u8 *key, u32 key_size, u8 *expkey) |
| 239 | { |
| 240 | /* npcm hw expands the key automatically, just copy it */ |
| 241 | memcpy(expkey, key, SIZE_AES_BLOCK * 2); |
| 242 | } |
| 243 | |
| 244 | void aes_cbc_encrypt_blocks(u32 key_size, u8 *key_exp, u8 *iv, u8 *src, u8 *dst, |
| 245 | u32 num_aes_blocks) |
| 246 | { |
| 247 | if (npcm_aes_init(AES_OP_ENCRYPT)) |
| 248 | return; |
| 249 | |
| 250 | npcm_aes_load_iv(iv); |
| 251 | |
| 252 | npcm_aes_load_key(key_exp); |
| 253 | |
| 254 | npcm_aes_feed(num_aes_blocks, (u32 *)src, (u32 *)dst); |
| 255 | } |
| 256 | |
| 257 | void aes_cbc_decrypt_blocks(u32 key_size, u8 *key_exp, u8 *iv, u8 *src, u8 *dst, |
| 258 | u32 num_aes_blocks) |
| 259 | { |
| 260 | if (npcm_aes_init(AES_OP_DECRYPT)) |
| 261 | return; |
| 262 | |
| 263 | npcm_aes_load_iv(iv); |
| 264 | |
| 265 | npcm_aes_load_key(key_exp); |
| 266 | |
| 267 | npcm_aes_feed(num_aes_blocks, (u32 *)src, (u32 *)dst); |
| 268 | } |
| 269 | |
| 270 | static int npcm_aes_bind(struct udevice *dev) |
| 271 | { |
| 272 | aes_priv = calloc(1, sizeof(struct npcm_aes_priv)); |
| 273 | if (!aes_priv) { |
| 274 | printf("%s: %d\n", __func__, __LINE__); |
| 275 | return -ENOMEM; |
| 276 | } |
| 277 | |
| 278 | aes_priv->regs = dev_read_addr_ptr(dev); |
| 279 | if (!aes_priv->regs) { |
| 280 | printf("Cannot find aes reg address, binding failed\n"); |
| 281 | return -EINVAL; |
| 282 | } |
| 283 | |
| 284 | printf("AES: NPCM AES module bind OK\n"); |
| 285 | |
| 286 | return 0; |
| 287 | } |
| 288 | |
| 289 | static const struct udevice_id npcm_aes_ids[] = { |
| 290 | { .compatible = "nuvoton,npcm845-aes" }, |
| 291 | { .compatible = "nuvoton,npcm750-aes" }, |
| 292 | { } |
| 293 | }; |
| 294 | |
| 295 | U_BOOT_DRIVER(npcm_aes) = { |
| 296 | .name = "npcm_aes", |
| 297 | .id = UCLASS_MISC, |
| 298 | .of_match = npcm_aes_ids, |
| 299 | .priv_auto = sizeof(struct npcm_aes_priv), |
| 300 | .bind = npcm_aes_bind, |
| 301 | }; |