blob: 8c681f354132aaf116508ec733d1d318b70914a9 [file] [log] [blame]
Philipp Tomsichd36af1c2016-10-28 18:21:28 +08001/*
2 * sun9i dram controller initialisation
3 *
4 * (C) Copyright 2007-2015
5 * Allwinner Technology Co., Ltd. <www.allwinnertech.com>
6 * Jerry Wang <wangflord@allwinnertech.com>
7 *
8 * (C) Copyright 2016 Theobroma Systems Design und Consulting GmbH
9 * Philipp Tomsich <philipp.tomsich@theobroma-systems.com>
10 *
11 * SPDX-License-Identifier: GPL-2.0+
12 */
13
14#include <common.h>
15#include <dm.h>
16#include <errno.h>
17#include <ram.h>
18#include <asm/io.h>
19#include <asm/arch/clock.h>
20#include <asm/arch/dram.h>
21#include <asm/arch/sys_proto.h>
22
23DECLARE_GLOBAL_DATA_PTR;
24
25#define DRAM_CLK (CONFIG_DRAM_CLK * 1000000)
26
27/*
28 * The following amounts to an extensive rewrite of the code received from
29 * Allwinner as part of the open-source bootloader release (refer to
30 * https://github.com/allwinner-zh/bootloader.git) and augments the upstream
31 * sources (which act as the primary reference point for the inner workings
32 * of the 'underdocumented' DRAM controller in the A80) using the following
33 * documentation for other memory controllers based on the (Synopsys)
34 * Designware IP (DDR memory protocol controller and DDR PHY)
35 * * TI Keystone II Architecture: DDR3 Memory Controller, User's Guide
36 * Document 'SPRUHN7C', Oct 2013 (revised March 2015)
37 * * Xilinx Zynq UltraScale+ MPSoC Register Reference
38 * document ug1087 (v1.0)
39 * Note that the Zynq-documentation provides a very close match for the DDR
40 * memory protocol controller (and provides a very good guide to the rounding
41 * rules for various timings), whereas the TI Keystone II document should be
42 * referred to for DDR PHY specifics only.
43 *
44 * The DRAM controller in the A80 runs at half the frequency of the DDR PHY
45 * (i.e. the rules for MEMC_FREQ_RATIO=2 from the Zynq-documentation apply).
46 *
47 * Known limitations
48 * =================
49 * In the current state, the following features are not fully supported and
50 * a number of simplifying assumptions have been made:
51 * 1) Only DDR3 support is implemented, as our test platform (the A80-Q7
52 * module) is designed to accomodate DDR3/DDR3L.
53 * 2) Only 2T-mode has been implemented and tested.
54 * 3) The controller supports two different clocking strategies (PLL6 can
55 * either be 2*CK or CK/2)... we only support the 2*CK clock at this
56 * time and haven't verified whether the alternative clocking strategy
57 * works. If you are interested in porting this over/testing this,
58 * please refer to cases where bit 0 of 'dram_tpr8' is tested in the
59 * original code from Allwinner.
60 * 4) Support for 2 ranks per controller is not implemented (as we don't
61 * the hardware to test it).
62 *
63 * Future directions
64 * =================
65 * The driver should be driven from a device-tree based configuration that
66 * can dynamically provide the necessary timing parameters (i.e. target
67 * frequency and speed-bin information)---the data structures used in the
68 * calculation of the timing parameters are already designed to capture
69 * similar information as the device tree would provide.
70 *
71 * To enable a device-tree based configuration of the sun9i platform, we
72 * will need to enable CONFIG_TPL and bootstrap in 3 stages: initially
73 * into SRAM A1 (40KB) and next into SRAM A2 (160KB)---which would be the
74 * stage to initialise the platform via the device-tree---before having
75 * the full U-Boot run from DDR.
76 */
77
78/*
79 * A number of DDR3 timings are given as "the greater of a fixed number of
80 * clock cycles (CK) or nanoseconds. We express these using a structure
81 * that holds a cycle count and a duration in picoseconds (so we can model
82 * sub-ns timings, such as 7.5ns without losing precision or resorting to
83 * rounding up early.
84 */
85struct dram_sun9i_timing {
86 u32 ck;
87 u32 ps;
88};
89
90/* */
91struct dram_sun9i_cl_cwl_timing {
92 u32 CL;
93 u32 CWL;
94 u32 tCKmin; /* in ps */
95 u32 tCKmax; /* in ps */
96};
97
98struct dram_sun9i_para {
99 u32 dram_type;
100
101 u8 bus_width;
102 u8 chan;
103 u8 rank;
104 u8 rows;
105 u16 page_size;
106
107 /* Timing information for each speed-bin */
108 struct dram_sun9i_cl_cwl_timing *cl_cwl_table;
109 u32 cl_cwl_numentries;
110
111 /*
112 * For the timings, we try to keep the order and grouping used in
113 * JEDEC Standard No. 79-3F
114 */
115
116 /* timings */
117 u32 tREFI; /* in ns */
118 u32 tRFC; /* in ns */
119
120 u32 tRAS; /* in ps */
121
122 /* command and address timing */
123 u32 tDLLK; /* in nCK */
124 struct dram_sun9i_timing tRTP;
125 struct dram_sun9i_timing tWTR;
126 u32 tWR; /* in nCK */
127 u32 tMRD; /* in nCK */
128 struct dram_sun9i_timing tMOD;
129 u32 tRCD; /* in ps */
130 u32 tRP; /* in ps */
131 u32 tRC; /* in ps */
132 u32 tCCD; /* in nCK */
133 struct dram_sun9i_timing tRRD;
134 u32 tFAW; /* in ps */
135
136 /* calibration timing */
137 /* struct dram_sun9i_timing tZQinit; */
138 struct dram_sun9i_timing tZQoper;
139 struct dram_sun9i_timing tZQCS;
140
141 /* reset timing */
142 /* struct dram_sun9i_timing tXPR; */
143
144 /* self-refresh timings */
145 struct dram_sun9i_timing tXS;
146 u32 tXSDLL; /* in nCK */
147 /* struct dram_sun9i_timing tCKESR; */
148 struct dram_sun9i_timing tCKSRE;
149 struct dram_sun9i_timing tCKSRX;
150
151 /* power-down timings */
152 struct dram_sun9i_timing tXP;
153 struct dram_sun9i_timing tXPDLL;
154 struct dram_sun9i_timing tCKE;
155
156 /* write leveling timings */
157 u32 tWLMRD; /* min, in nCK */
158 /* u32 tWLDQSEN; min, in nCK */
159 u32 tWLO; /* max, in ns */
160 /* u32 tWLOE; max, in ns */
161
162 /* u32 tCKDPX; in nCK */
163 /* u32 tCKCSX; in nCK */
164};
165
166static void mctl_sys_init(void);
167
168#define SCHED_RDWR_IDLE_GAP(n) ((n & 0xff) << 24)
169#define SCHED_GO2CRITICAL_HYSTERESIS(n) ((n & 0xff) << 16)
170#define SCHED_LPR_NUM_ENTRIES(n) ((n & 0xff) << 8)
171#define SCHED_PAGECLOSE (1 << 2)
172#define SCHED_PREFER_WRITE (1 << 1)
173#define SCHED_FORCE_LOW_PRI_N (1 << 0)
174
175#define SCHED_CONFIG (SCHED_RDWR_IDLE_GAP(0xf) | \
176 SCHED_GO2CRITICAL_HYSTERESIS(0x80) | \
177 SCHED_LPR_NUM_ENTRIES(0x20) | \
178 SCHED_FORCE_LOW_PRI_N)
179#define PERFHPR0_CONFIG 0x0000001f
180#define PERFHPR1_CONFIG 0x1f00001f
181#define PERFLPR0_CONFIG 0x000000ff
182#define PERFLPR1_CONFIG 0x0f0000ff
183#define PERFWR0_CONFIG 0x000000ff
184#define PERFWR1_CONFIG 0x0f0001ff
185
186static void mctl_ctl_sched_init(unsigned long base)
187{
188 struct sunxi_mctl_ctl_reg *mctl_ctl =
189 (struct sunxi_mctl_ctl_reg *)base;
190
191 /* Needs to be done before the global clk enable... */
192 writel(SCHED_CONFIG, &mctl_ctl->sched);
193 writel(PERFHPR0_CONFIG, &mctl_ctl->perfhpr0);
194 writel(PERFHPR1_CONFIG, &mctl_ctl->perfhpr1);
195 writel(PERFLPR0_CONFIG, &mctl_ctl->perflpr0);
196 writel(PERFLPR1_CONFIG, &mctl_ctl->perflpr1);
197 writel(PERFWR0_CONFIG, &mctl_ctl->perfwr0);
198 writel(PERFWR1_CONFIG, &mctl_ctl->perfwr1);
199}
200
201static void mctl_sys_init(void)
202{
203 struct sunxi_ccm_reg * const ccm =
204 (struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
205 struct sunxi_mctl_com_reg * const mctl_com =
206 (struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE;
207
208 debug("Setting PLL6 to %d\n", DRAM_CLK * 2);
209 clock_set_pll6(DRAM_CLK * 2);
210
211 /* Original dram init code which may come in handy later
212 ********************************************************
213 clock_set_pll6(use_2channelPLL ? (DRAM_CLK * 2) :
214 (DRAM_CLK / 2), false);
215
216 if ((para->dram_clk <= 400)|((para->dram_tpr8 & 0x1)==0)) {
217 * PLL6 should be 2*CK *
218 * ccm_setup_pll6_ddr_clk(PLL6_DDR_CLK); *
219 ccm_setup_pll6_ddr_clk((1000000 * (para->dram_clk) * 2), 0);
220 } else {
221 * PLL6 should be CK/2 *
222 ccm_setup_pll6_ddr_clk((1000000 * (para->dram_clk) / 2), 1);
223 }
224
225 if (para->dram_tpr13 & (0xf<<18)) {
226 *
227 * bit21:bit18=0001:pll swing 0.4
228 * bit21:bit18=0010:pll swing 0.3
229 * bit21:bit18=0100:pll swing 0.2
230 * bit21:bit18=1000:pll swing 0.1
231 *
232 dram_dbg("DRAM fre extend open !\n");
233 reg_val=mctl_read_w(CCM_PLL6_DDR_REG);
234 reg_val&=(0x1<<16);
235 reg_val=reg_val>>16;
236
237 if(para->dram_tpr13 & (0x1<<18))
238 {
239 mctl_write_w(CCM_PLL_BASE + 0x114,
240 (0x3333U|(0x3<<17)|(reg_val<<19)|(0x120U<<20)|
241 (0x2U<<29)|(0x1U<<31)));
242 }
243 else if(para->dram_tpr13 & (0x1<<19))
244 {
245 mctl_write_w(CCM_PLL_BASE + 0x114,
246 (0x6666U|(0x3U<<17)|(reg_val<<19)|(0xD8U<<20)|
247 (0x2U<<29)|(0x1U<<31)));
248 }
249 else if(para->dram_tpr13 & (0x1<<20))
250 {
251 mctl_write_w(CCM_PLL_BASE + 0x114,
252 (0x9999U|(0x3U<<17)|(reg_val<<19)|(0x90U<<20)|
253 (0x2U<<29)|(0x1U<<31)));
254 }
255 else if(para->dram_tpr13 & (0x1<<21))
256 {
257 mctl_write_w(CCM_PLL_BASE + 0x114,
258 (0xccccU|(0x3U<<17)|(reg_val<<19)|(0x48U<<20)|
259 (0x2U<<29)|(0x1U<<31)));
260 }
261
262 //frequency extend open
263 reg_val = mctl_read_w(CCM_PLL6_DDR_REG);
264 reg_val |= ((0x1<<24)|(0x1<<30));
265 mctl_write_w(CCM_PLL6_DDR_REG, reg_val);
266
267
268 while(mctl_read_w(CCM_PLL6_DDR_REG) & (0x1<<30));
269 }
270
271 aw_delay(0x20000); //make some delay
272 ********************************************************
273 */
274
275 /* assert mctl reset */
276 clrbits_le32(&ccm->ahb_reset0_cfg, 1 << AHB_RESET_OFFSET_MCTL);
277 /* stop mctl clock */
278 clrbits_le32(&ccm->ahb_gate0, 1 << AHB_GATE_OFFSET_MCTL);
279
280 sdelay(2000);
281
282 /* deassert mctl reset */
283 setbits_le32(&ccm->ahb_reset0_cfg, 1 << AHB_RESET_OFFSET_MCTL);
284 /* enable mctl clock */
285 setbits_le32(&ccm->ahb_gate0, 1 << AHB_GATE_OFFSET_MCTL);
286
287 /* set up the transactions scheduling before enabling the global clk */
288 mctl_ctl_sched_init(SUNXI_DRAM_CTL0_BASE);
289 mctl_ctl_sched_init(SUNXI_DRAM_CTL1_BASE);
290 sdelay(1000);
291
292 debug("2\n");
293
294 /* (3 << 12): PLL_DDR */
295 writel((3 << 12) | (1 << 16), &ccm->dram_clk_cfg);
296 do {
297 debug("Waiting for DRAM_CLK_CFG\n");
298 sdelay(10000);
299 } while (readl(&ccm->dram_clk_cfg) & (1 << 16));
300 setbits_le32(&ccm->dram_clk_cfg, (1 << 31));
301
302 /* TODO: we only support the common case ... i.e. 2*CK */
303 setbits_le32(&mctl_com->ccr, (1 << 14) | (1 << 30));
304 writel(2, &mctl_com->rmcr); /* controller clock is PLL6/4 */
305
306 sdelay(2000);
307
308 /* Original dram init code which may come in handy later
309 ********************************************************
310 if ((para->dram_clk <= 400) | ((para->dram_tpr8 & 0x1) == 0)) {
311 * PLL6 should be 2*CK *
312 * gating 2 channel pll *
313 reg_val = mctl_read_w(MC_CCR);
314 reg_val |= ((0x1 << 14) | (0x1U << 30));
315 mctl_write_w(MC_CCR, reg_val);
316 mctl_write_w(MC_RMCR, 0x2); * controller clock use pll6/4 *
317 } else {
318 * enable 2 channel pll *
319 reg_val = mctl_read_w(MC_CCR);
320 reg_val &= ~((0x1 << 14) | (0x1U << 30));
321 mctl_write_w(MC_CCR, reg_val);
322 mctl_write_w(MC_RMCR, 0x0); * controller clock use pll6 *
323 }
324
325 reg_val = mctl_read_w(MC_CCR);
326 reg_val &= ~((0x1<<15)|(0x1U<<31));
327 mctl_write_w(MC_CCR, reg_val);
328 aw_delay(20);
329 //aw_delay(0x10);
330 ********************************************************
331 */
332
333 clrbits_le32(&mctl_com->ccr, MCTL_CCR_CH0_CLK_EN | MCTL_CCR_CH1_CLK_EN);
334 sdelay(1000);
335
336 setbits_le32(&mctl_com->ccr, MCTL_CCR_CH0_CLK_EN);
337 /* TODO if (para->chan == 2) */
338 setbits_le32(&mctl_com->ccr, MCTL_CCR_CH1_CLK_EN);
339}
340
341static void mctl_com_init(struct dram_sun9i_para *para)
342{
343 struct sunxi_mctl_com_reg * const mctl_com =
344 (struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE;
345
346 /* TODO: hard-wired for DDR3 now */
347 writel(((para->chan == 2) ? MCTL_CR_CHANNEL_DUAL :
348 MCTL_CR_CHANNEL_SINGLE)
349 | MCTL_CR_DRAMTYPE_DDR3 | MCTL_CR_BANK(1)
350 | MCTL_CR_ROW(para->rows)
351 | ((para->bus_width == 32) ? MCTL_CR_BUSW32 : MCTL_CR_BUSW16)
352 | MCTL_CR_PAGE_SIZE(para->page_size) | MCTL_CR_RANK(para->rank),
353 &mctl_com->cr);
354
355 debug("CR: %d\n", readl(&mctl_com->cr));
356}
357
358static u32 mctl_channel_init(u32 ch_index, struct dram_sun9i_para *para)
359{
360 struct sunxi_mctl_ctl_reg *mctl_ctl;
361 struct sunxi_mctl_phy_reg *mctl_phy;
362
363 u32 CL = 0;
364 u32 CWL = 0;
365 u16 mr[4] = { 0, };
366
367#define PS2CYCLES_FLOOR(n) ((n * CONFIG_DRAM_CLK) / 1000000)
368#define PS2CYCLES_ROUNDUP(n) ((n * CONFIG_DRAM_CLK + 999999) / 1000000)
369#define NS2CYCLES_FLOOR(n) ((n * CONFIG_DRAM_CLK) / 1000)
370#define NS2CYCLES_ROUNDUP(n) ((n * CONFIG_DRAM_CLK + 999) / 1000)
371#define MAX(a, b) ((a) > (b) ? (a) : (b))
372
373 /*
374 * Convert the values to cycle counts (nCK) from what is provided
375 * by the definition of each speed bin.
376 */
377 /* const u32 tREFI = NS2CYCLES_FLOOR(para->tREFI); */
378 const u32 tREFI = NS2CYCLES_FLOOR(para->tREFI);
379 const u32 tRFC = NS2CYCLES_ROUNDUP(para->tRFC);
380 const u32 tRCD = PS2CYCLES_ROUNDUP(para->tRCD);
381 const u32 tRP = PS2CYCLES_ROUNDUP(para->tRP);
382 const u32 tRC = PS2CYCLES_ROUNDUP(para->tRC);
383 const u32 tRAS = PS2CYCLES_ROUNDUP(para->tRAS);
384
385 /* command and address timing */
386 const u32 tDLLK = para->tDLLK;
387 const u32 tRTP = MAX(para->tRTP.ck, PS2CYCLES_ROUNDUP(para->tRTP.ps));
388 const u32 tWTR = MAX(para->tWTR.ck, PS2CYCLES_ROUNDUP(para->tWTR.ps));
389 const u32 tWR = NS2CYCLES_FLOOR(para->tWR);
390 const u32 tMRD = para->tMRD;
391 const u32 tMOD = MAX(para->tMOD.ck, PS2CYCLES_ROUNDUP(para->tMOD.ps));
392 const u32 tCCD = para->tCCD;
393 const u32 tRRD = MAX(para->tRRD.ck, PS2CYCLES_ROUNDUP(para->tRRD.ps));
394 const u32 tFAW = PS2CYCLES_ROUNDUP(para->tFAW);
395
396 /* calibration timings */
397 /* const u32 tZQinit = MAX(para->tZQinit.ck,
398 PS2CYCLES_ROUNDUP(para->tZQinit.ps)); */
399 const u32 tZQoper = MAX(para->tZQoper.ck,
400 PS2CYCLES_ROUNDUP(para->tZQoper.ps));
401 const u32 tZQCS = MAX(para->tZQCS.ck,
402 PS2CYCLES_ROUNDUP(para->tZQCS.ps));
403
404 /* reset timing */
405 /* const u32 tXPR = MAX(para->tXPR.ck,
406 PS2CYCLES_ROUNDUP(para->tXPR.ps)); */
407
408 /* power-down timings */
409 const u32 tXP = MAX(para->tXP.ck, PS2CYCLES_ROUNDUP(para->tXP.ps));
410 const u32 tXPDLL = MAX(para->tXPDLL.ck,
411 PS2CYCLES_ROUNDUP(para->tXPDLL.ps));
412 const u32 tCKE = MAX(para->tCKE.ck, PS2CYCLES_ROUNDUP(para->tCKE.ps));
413
414 /*
415 * self-refresh timings (keep below power-down timings, as tCKESR
416 * needs to be calculated based on the nCK value of tCKE)
417 */
418 const u32 tXS = MAX(para->tXS.ck, PS2CYCLES_ROUNDUP(para->tXS.ps));
419 const u32 tXSDLL = para->tXSDLL;
420 const u32 tCKSRE = MAX(para->tCKSRE.ck,
421 PS2CYCLES_ROUNDUP(para->tCKSRE.ps));
422 const u32 tCKESR = tCKE + 1;
423 const u32 tCKSRX = MAX(para->tCKSRX.ck,
424 PS2CYCLES_ROUNDUP(para->tCKSRX.ps));
425
426 /* write leveling timings */
427 const u32 tWLMRD = para->tWLMRD;
428 /* const u32 tWLDQSEN = para->tWLDQSEN; */
429 const u32 tWLO = PS2CYCLES_FLOOR(para->tWLO);
430 /* const u32 tWLOE = PS2CYCLES_FLOOR(para->tWLOE); */
431
432 const u32 tRASmax = tREFI * 9;
433 int i;
434
435 for (i = 0; i < para->cl_cwl_numentries; ++i) {
436 const u32 tCK = 1000000 / CONFIG_DRAM_CLK;
437
438 if ((para->cl_cwl_table[i].tCKmin <= tCK) &&
439 (tCK < para->cl_cwl_table[i].tCKmax)) {
440 CL = para->cl_cwl_table[i].CL;
441 CWL = para->cl_cwl_table[i].CWL;
442
443 debug("found CL/CWL: CL = %d, CWL = %d\n", CL, CWL);
444 break;
445 }
446 }
447
448 if ((CL == 0) && (CWL == 0)) {
449 printf("failed to find valid CL/CWL for operating point %d MHz\n",
450 CONFIG_DRAM_CLK);
451 return 0;
452 }
453
454 if (ch_index == 0) {
455 mctl_ctl = (struct sunxi_mctl_ctl_reg *)SUNXI_DRAM_CTL0_BASE;
456 mctl_phy = (struct sunxi_mctl_phy_reg *)SUNXI_DRAM_PHY0_BASE;
457 } else {
458 mctl_ctl = (struct sunxi_mctl_ctl_reg *)SUNXI_DRAM_CTL1_BASE;
459 mctl_phy = (struct sunxi_mctl_phy_reg *)SUNXI_DRAM_PHY1_BASE;
460 }
461
462 if (para->dram_type == DRAM_TYPE_DDR3) {
463 mr[0] = DDR3_MR0_PPD_FAST_EXIT | DDR3_MR0_WR(tWR) |
464 DDR3_MR0_CL(CL);
465 mr[1] = DDR3_MR1_RTT120OHM;
466 mr[2] = DDR3_MR2_TWL(CWL);
467 mr[3] = 0;
468
469 /*
470 * DRAM3 initialisation requires holding CKE LOW for
471 * at least 500us prior to starting the initialisation
472 * sequence and at least 10ns after driving CKE HIGH
473 * before the initialisation sequence may be started).
474 *
475 * Refer to Micron document "TN-41-07: DDR3 Power-Up,
476 * Initialization, and Reset DDR3 Initialization
477 * Routine" for details).
478 */
479 writel(MCTL_INIT0_POST_CKE_x1024(1) |
480 MCTL_INIT0_PRE_CKE_x1024(
481 (500 * CONFIG_DRAM_CLK + 1023) / 1024), /* 500us */
482 &mctl_ctl->init[0]);
483 writel(MCTL_INIT1_DRAM_RSTN_x1024(1),
484 &mctl_ctl->init[1]);
485 /* INIT2 is not used for DDR3 */
486 writel(MCTL_INIT3_MR(mr[0]) | MCTL_INIT3_EMR(mr[1]),
487 &mctl_ctl->init[3]);
488 writel(MCTL_INIT4_EMR2(mr[2]) | MCTL_INIT4_EMR3(mr[3]),
489 &mctl_ctl->init[4]);
490 writel(MCTL_INIT5_DEV_ZQINIT_x32(512 / 32), /* 512 cycles */
491 &mctl_ctl->init[5]);
492 } else {
493 /* !!! UNTESTED !!! */
494 /*
495 * LPDDR2 and/or LPDDR3 require a 200us minimum delay
496 * after driving CKE HIGH in the initialisation sequence.
497 */
498 writel(MCTL_INIT0_POST_CKE_x1024(
499 (200 * CONFIG_DRAM_CLK + 1023) / 1024),
500 &mctl_ctl->init[0]);
501 writel(MCTL_INIT1_DRAM_RSTN_x1024(1),
502 &mctl_ctl->init[1]);
503 writel(MCTL_INIT2_IDLE_AFTER_RESET_x32(
504 (CONFIG_DRAM_CLK + 31) / 32) /* 1us */
505 | MCTL_INIT2_MIN_STABLE_CLOCK_x1(5), /* 5 cycles */
506 &mctl_ctl->init[2]);
507 writel(MCTL_INIT3_MR(mr[1]) | MCTL_INIT3_EMR(mr[2]),
508 &mctl_ctl->init[3]);
509 writel(MCTL_INIT4_EMR2(mr[3]),
510 &mctl_ctl->init[4]);
511 writel(MCTL_INIT5_DEV_ZQINIT_x32(
512 (CONFIG_DRAM_CLK + 31) / 32) /* 1us */
513 | MCTL_INIT5_MAX_AUTO_INIT_x1024(
514 (10 * CONFIG_DRAM_CLK + 1023) / 1024),
515 &mctl_ctl->init[5]);
516 }
517
518 /* (DDR3) We always use a burst-length of 8. */
519#define MCTL_BL 8
520 /* wr2pre: WL + BL/2 + tWR */
521#define WR2PRE (MCTL_BL/2 + CWL + tWTR)
522 /* wr2rd = CWL + BL/2 + tWTR */
523#define WR2RD (MCTL_BL/2 + CWL + tWTR)
524 /*
525 * rd2wr = RL + BL/2 + 2 - WL (for DDR3)
526 * rd2wr = RL + BL/2 + RU(tDQSCKmax/tCK) + 1 - WL (for LPDDR2/LPDDR3)
527 */
528#define RD2WR (CL + MCTL_BL/2 + 2 - CWL)
529#define MCTL_PHY_TRTW 0
530#define MCTL_PHY_TRTODT 0
531
532#define MCTL_DIV2(n) ((n + 1)/2)
533#define MCTL_DIV32(n) (n/32)
534#define MCTL_DIV1024(n) (n/1024)
535
536 writel((MCTL_DIV2(WR2PRE) << 24) | (MCTL_DIV2(tFAW) << 16) |
537 (MCTL_DIV1024(tRASmax) << 8) | (MCTL_DIV2(tRAS) << 0),
538 &mctl_ctl->dramtmg[0]);
539 writel((MCTL_DIV2(tXP) << 16) | (MCTL_DIV2(tRTP) << 8) |
540 (MCTL_DIV2(tRC) << 0),
541 &mctl_ctl->dramtmg[1]);
542 writel((MCTL_DIV2(CWL) << 24) | (MCTL_DIV2(CL) << 16) |
543 (MCTL_DIV2(RD2WR) << 8) | (MCTL_DIV2(WR2RD) << 0),
544 &mctl_ctl->dramtmg[2]);
545 /*
546 * Note: tMRW is located at bit 16 (and up) in DRAMTMG3...
547 * this is only relevant for LPDDR2/LPDDR3
548 */
549 writel((MCTL_DIV2(tMRD) << 12) | (MCTL_DIV2(tMOD) << 0),
550 &mctl_ctl->dramtmg[3]);
551 writel((MCTL_DIV2(tRCD) << 24) | (MCTL_DIV2(tCCD) << 16) |
552 (MCTL_DIV2(tRRD) << 8) | (MCTL_DIV2(tRP) << 0),
553 &mctl_ctl->dramtmg[4]);
554 writel((MCTL_DIV2(tCKSRX) << 24) | (MCTL_DIV2(tCKSRE) << 16) |
555 (MCTL_DIV2(tCKESR) << 8) | (MCTL_DIV2(tCKE) << 0),
556 &mctl_ctl->dramtmg[5]);
557
558 /* These timings are relevant for LPDDR2/LPDDR3 only */
559 /* writel((MCTL_TCKDPDE << 24) | (MCTL_TCKDPX << 16) |
560 (MCTL_TCKCSX << 0), &mctl_ctl->dramtmg[6]); */
561
562 /* printf("DRAMTMG7 reset value: 0x%x\n",
563 readl(&mctl_ctl->dramtmg[7])); */
564 /* DRAMTMG7 reset value: 0x202 */
565 /* DRAMTMG7 should contain t_ckpde and t_ckpdx: check reset values!!! */
566 /* printf("DRAMTMG8 reset value: 0x%x\n",
567 readl(&mctl_ctl->dramtmg[8])); */
568 /* DRAMTMG8 reset value: 0x44 */
569
570 writel((MCTL_DIV32(tXSDLL) << 0), &mctl_ctl->dramtmg[8]);
571
572 writel((MCTL_DIV32(tREFI) << 16) | (MCTL_DIV2(tRFC) << 0),
573 &mctl_ctl->rfshtmg);
574
575 if (para->dram_type == DRAM_TYPE_DDR3) {
576 writel((2 << 24) | ((MCTL_DIV2(CL) - 2) << 16) |
577 (1 << 8) | ((MCTL_DIV2(CWL) - 2) << 0),
578 &mctl_ctl->dfitmg[0]);
579 } else {
580 /* TODO */
581 }
582
583 /* TODO: handle the case of the write latency domain going to 0 ... */
584
585 /*
586 * Disable dfi_init_complete_en (the triggering of the SDRAM
587 * initialisation when the PHY initialisation completes).
588 */
589 clrbits_le32(&mctl_ctl->dfimisc, MCTL_DFIMISC_DFI_INIT_COMPLETE_EN);
590 /* Disable the automatic generation of DLL calibration requests */
591 setbits_le32(&mctl_ctl->dfiupd[0], MCTL_DFIUPD0_DIS_AUTO_CTRLUPD);
592
593 /* A80-Q7: 2T, 1 rank, DDR3, full-32bit-DQ */
594 /* TODO: make 2T and BUSWIDTH configurable */
595 writel(MCTL_MSTR_DEVICETYPE(para->dram_type) |
596 MCTL_MSTR_BURSTLENGTH(para->dram_type) |
597 MCTL_MSTR_ACTIVERANKS(para->rank) |
598 MCTL_MSTR_2TMODE | MCTL_MSTR_BUSWIDTH32,
599 &mctl_ctl->mstr);
600
601 if (para->dram_type == DRAM_TYPE_DDR3) {
602 writel(MCTL_ZQCTRL0_TZQCL(MCTL_DIV2(tZQoper)) |
603 (MCTL_DIV2(tZQCS)), &mctl_ctl->zqctrl[0]);
604 /*
605 * TODO: is the following really necessary as the bottom
606 * half should already be 0x100 and the upper half should
607 * be ignored for a DDR3 device???
608 */
609 writel(MCTL_ZQCTRL1_TZQSI_x1024(0x100),
610 &mctl_ctl->zqctrl[1]);
611 } else {
612 writel(MCTL_ZQCTRL0_TZQCL(0x200) | MCTL_ZQCTRL0_TZQCS(0x40),
613 &mctl_ctl->zqctrl[0]);
614 writel(MCTL_ZQCTRL1_TZQRESET(0x28) |
615 MCTL_ZQCTRL1_TZQSI_x1024(0x100),
616 &mctl_ctl->zqctrl[1]);
617 }
618
619 /* Assert dfi_init_complete signal */
620 setbits_le32(&mctl_ctl->dfimisc, MCTL_DFIMISC_DFI_INIT_COMPLETE_EN);
621 /* Disable auto-refresh */
622 setbits_le32(&mctl_ctl->rfshctl3, MCTL_RFSHCTL3_DIS_AUTO_REFRESH);
623
624 /* PHY initialisation */
625
626 /* TODO: make 2T and 8-bank mode configurable */
627 writel(MCTL_PHY_DCR_BYTEMASK | MCTL_PHY_DCR_2TMODE |
628 MCTL_PHY_DCR_DDR8BNK | MCTL_PHY_DRAMMODE_DDR3,
629 &mctl_phy->dcr);
630
631 /* For LPDDR2 or LPDDR3, set DQSGX to 0 before training. */
632 if (para->dram_type != DRAM_TYPE_DDR3)
633 clrbits_le32(&mctl_phy->dsgcr, (3 << 6));
634
635 writel(mr[0], &mctl_phy->mr0);
636 writel(mr[1], &mctl_phy->mr1);
637 writel(mr[2], &mctl_phy->mr2);
638 writel(mr[3], &mctl_phy->mr3);
639
640 /*
641 * The DFI PHY is running at full rate. We thus use the actual
642 * timings in clock cycles here.
643 */
644 writel((tRC << 26) | (tRRD << 22) | (tRAS << 16) |
645 (tRCD << 12) | (tRP << 8) | (tWTR << 4) | (tRTP << 0),
646 &mctl_phy->dtpr[0]);
647 writel((tMRD << 0) | ((tMOD - 12) << 2) | (tFAW << 5) |
648 (tRFC << 11) | (tWLMRD << 20) | (tWLO << 26),
649 &mctl_phy->dtpr[1]);
650 writel((tXS << 0) | (MAX(tXP, tXPDLL) << 10) |
651 (tCKE << 15) | (tDLLK << 19) |
652 (MCTL_PHY_TRTODT << 29) | (MCTL_PHY_TRTW << 30) |
653 (((tCCD - 4) & 0x1) << 31),
654 &mctl_phy->dtpr[2]);
655
656 /* tDQSCK and tDQSCKmax are used LPDDR2/LPDDR3 */
657 /* writel((tDQSCK << 0) | (tDQSCKMAX << 3), &mctl_phy->dtpr[3]); */
658
659 /*
660 * We use the same values used by Allwinner's Boot0 for the PTR
661 * (PHY timing register) configuration that is tied to the PHY
662 * implementation.
663 */
664 writel(0x42C21590, &mctl_phy->ptr[0]);
665 writel(0xD05612C0, &mctl_phy->ptr[1]);
666 if (para->dram_type == DRAM_TYPE_DDR3) {
667 const unsigned int tdinit0 = 500 * CONFIG_DRAM_CLK; /* 500us */
668 const unsigned int tdinit1 = (360 * CONFIG_DRAM_CLK + 999) /
669 1000; /* 360ns */
670 const unsigned int tdinit2 = 200 * CONFIG_DRAM_CLK; /* 200us */
671 const unsigned int tdinit3 = CONFIG_DRAM_CLK; /* 1us */
672
673 writel((tdinit1 << 20) | tdinit0, &mctl_phy->ptr[3]);
674 writel((tdinit3 << 18) | tdinit2, &mctl_phy->ptr[4]);
675 } else {
676 /* LPDDR2 or LPDDR3 */
677 const unsigned int tdinit0 = (100 * CONFIG_DRAM_CLK + 999) /
678 1000; /* 100ns */
679 const unsigned int tdinit1 = 200 * CONFIG_DRAM_CLK; /* 200us */
680 const unsigned int tdinit2 = 22 * CONFIG_DRAM_CLK; /* 11us */
681 const unsigned int tdinit3 = 2 * CONFIG_DRAM_CLK; /* 2us */
682
683 writel((tdinit1 << 20) | tdinit0, &mctl_phy->ptr[3]);
684 writel((tdinit3 << 18) | tdinit2, &mctl_phy->ptr[4]);
685 }
686
687 /* TEST ME */
688 writel(0x00203131, &mctl_phy->acmdlr);
689
690 /* TODO: can we enable this for 2 ranks, even when we don't know yet */
691 writel(MCTL_DTCR_DEFAULT | MCTL_DTCR_RANKEN(para->rank),
692 &mctl_phy->dtcr);
693
694 /* TODO: half width */
695 debug("DX2GCR0 reset: 0x%x\n", readl(&mctl_phy->dx[2].gcr[0]));
696 writel(0x7C000285, &mctl_phy->dx[2].gcr[0]);
697 writel(0x7C000285, &mctl_phy->dx[3].gcr[0]);
698
699 clrsetbits_le32(&mctl_phy->zq[0].pr, 0xff,
700 (CONFIG_DRAM_ZQ >> 0) & 0xff); /* CK/CA */
701 clrsetbits_le32(&mctl_phy->zq[1].pr, 0xff,
702 (CONFIG_DRAM_ZQ >> 8) & 0xff); /* DX0/DX1 */
703 clrsetbits_le32(&mctl_phy->zq[2].pr, 0xff,
704 (CONFIG_DRAM_ZQ >> 16) & 0xff); /* DX2/DX3 */
705
706 /* TODO: make configurable & implement non-ODT path */
707 if (1) {
708 int lane;
709 for (lane = 0; lane < 4; ++lane) {
710 clrbits_le32(&mctl_phy->dx[lane].gcr[2], 0xffff);
711 clrbits_le32(&mctl_phy->dx[lane].gcr[3],
712 (0x3<<12) | (0x3<<4));
713 }
714 } else {
715 /* TODO: check */
716 int lane;
717 for (lane = 0; lane < 4; ++lane) {
718 clrsetbits_le32(&mctl_phy->dx[lane].gcr[2], 0xffff,
719 0xaaaa);
720 if (para->dram_type == DRAM_TYPE_DDR3)
721 setbits_le32(&mctl_phy->dx[lane].gcr[3],
722 (0x3<<12) | (0x3<<4));
723 else
724 setbits_le32(&mctl_phy->dx[lane].gcr[3],
725 0x00000012);
726 }
727 }
728
729 writel(0x04058D02, &mctl_phy->zq[0].cr); /* CK/CA */
730 writel(0x04058D02, &mctl_phy->zq[1].cr); /* DX0/DX1 */
731 writel(0x04058D02, &mctl_phy->zq[2].cr); /* DX2/DX3 */
732
733 /* Disable auto-refresh prior to data training */
734 setbits_le32(&mctl_ctl->rfshctl3, MCTL_RFSHCTL3_DIS_AUTO_REFRESH);
735
736 setbits_le32(&mctl_phy->dsgcr, 0xf << 24); /* unclear what this is... */
737 /* TODO: IODDRM (IO DDR-MODE) for DDR3L */
738 clrsetbits_le32(&mctl_phy->pgcr[1],
739 MCTL_PGCR1_ZCKSEL_MASK,
740 MCTL_PGCR1_IODDRM_DDR3 | MCTL_PGCR1_INHVT_EN);
741
742 setbits_le32(&mctl_phy->pllcr, 0x3 << 19); /* PLL frequency select */
743 /* TODO: single-channel PLL mode??? missing */
744 setbits_le32(&mctl_phy->pllcr,
745 MCTL_PLLGCR_PLL_BYPASS | MCTL_PLLGCR_PLL_POWERDOWN);
746 /* setbits_le32(&mctl_phy->pir, MCTL_PIR_PLL_BYPASS); included below */
747
748 /* Disable VT compensation */
749 clrbits_le32(&mctl_phy->pgcr[0], 0x3f);
750
751 /* TODO: "other" PLL mode ... 0x20000 seems to be the PLL Bypass */
752 if (para->dram_type == DRAM_TYPE_DDR3)
753 clrsetbits_le32(&mctl_phy->pir, MCTL_PIR_MASK, 0x20df3);
754 else
755 clrsetbits_le32(&mctl_phy->pir, MCTL_PIR_MASK, 0x2c573);
756
757 sdelay(10000); /* XXX necessary? */
758
759 /* Wait for the INIT bit to clear itself... */
760 while ((readl(&mctl_phy->pir) & MCTL_PIR_INIT) != MCTL_PIR_INIT) {
761 /* not done yet -- keep spinning */
762 debug("MCTL_PIR_INIT not set\n");
763 sdelay(1000);
764 /* TODO: implement timeout */
765 }
766
767 /* TODO: not used --- there's a "2rank debug" section here */
768
769 /* Original dram init code which may come in handy later
770 ********************************************************
771 * LPDDR2 and LPDDR3 *
772 if ((para->dram_type) == 6 || (para->dram_type) == 7) {
773 reg_val = mctl_read_w(P0_DSGCR + ch_offset);
774 reg_val &= (~(0x3<<6)); * set DQSGX to 1 *
775 reg_val |= (0x1<<6); * dqs gate extend *
776 mctl_write_w(P0_DSGCR + ch_offset, reg_val);
777 dram_dbg("DQS Gate Extend Enable!\n", ch_index);
778 }
779
780 * Disable ZCAL after initial--for nand dma debug--20140330 by YSZ *
781 if (para->dram_tpr13 & (0x1<<31)) {
782 reg_val = mctl_read_w(P0_ZQ0CR + ch_offset);
783 reg_val |= (0x7<<11);
784 mctl_write_w(P0_ZQ0CR + ch_offset, reg_val);
785 }
786 ********************************************************
787 */
788
789 /*
790 * TODO: more 2-rank support
791 * (setting the "dqs gate delay to average between 2 rank")
792 */
793
794 /* check if any errors are set */
795 if (readl(&mctl_phy->pgsr[0]) & MCTL_PGSR0_ERRORS) {
796 debug("Channel %d unavailable!\n", ch_index);
797 return 0;
798 } else{
799 /* initial OK */
800 debug("Channel %d OK!\n", ch_index);
801 /* return 1; */
802 }
803
804 while ((readl(&mctl_ctl->stat) & 0x1) != 0x1) {
805 debug("Waiting for INIT to be done (controller to come up into 'normal operating' mode\n");
806 sdelay(100000);
807 /* init not done */
808 /* TODO: implement time-out */
809 }
810 debug("done\n");
811
812 /* "DDR is controller by contoller" */
813 clrbits_le32(&mctl_phy->pgcr[3], (1 << 25));
814
815 /* TODO: is the following necessary? */
816 debug("DFIMISC before writing 0: 0x%x\n", readl(&mctl_ctl->dfimisc));
817 writel(0, &mctl_ctl->dfimisc);
818
819 /* Enable auto-refresh */
820 clrbits_le32(&mctl_ctl->rfshctl3, MCTL_RFSHCTL3_DIS_AUTO_REFRESH);
821
822 debug("channel_init complete\n");
823 return 1;
824}
825
826signed int DRAMC_get_dram_size(void)
827{
828 struct sunxi_mctl_com_reg * const mctl_com =
829 (struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE;
830
831 unsigned int reg_val;
832 unsigned int dram_size;
833 unsigned int temp;
834
835 reg_val = readl(&mctl_com->cr);
836
837 temp = (reg_val >> 8) & 0xf; /* page size code */
838 dram_size = (temp - 6); /* (1 << dram_size) * 512Bytes */
839
840 temp = (reg_val >> 4) & 0xf; /* row width code */
841 dram_size += (temp + 1); /* (1 << dram_size) * 512Bytes */
842
843 temp = (reg_val >> 2) & 0x3; /* bank number code */
844 dram_size += (temp + 2); /* (1 << dram_size) * 512Bytes */
845
846 temp = reg_val & 0x3; /* rank number code */
847 dram_size += temp; /* (1 << dram_size) * 512Bytes */
848
849 temp = (reg_val >> 19) & 0x1; /* channel number code */
850 dram_size += temp; /* (1 << dram_size) * 512Bytes */
851
852 dram_size = dram_size - 11; /* (1 << dram_size) MBytes */
853
854 return 1 << dram_size;
855}
856
857unsigned long sunxi_dram_init(void)
858{
859 struct sunxi_mctl_com_reg * const mctl_com =
860 (struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE;
861
862 struct dram_sun9i_cl_cwl_timing cl_cwl[] = {
863 { .CL = 5, .CWL = 5, .tCKmin = 3000, .tCKmax = 3300 },
864 { .CL = 6, .CWL = 5, .tCKmin = 2500, .tCKmax = 3300 },
865 { .CL = 8, .CWL = 6, .tCKmin = 1875, .tCKmax = 2500 },
866 { .CL = 10, .CWL = 7, .tCKmin = 1500, .tCKmax = 1875 },
867 { .CL = 11, .CWL = 8, .tCKmin = 1250, .tCKmax = 1500 }
868 };
869
870 /* Set initial parameters, these get modified by the autodetect code */
871 struct dram_sun9i_para para = {
872 .dram_type = DRAM_TYPE_DDR3,
873 .bus_width = 32,
874 .chan = 2,
875 .rank = 1,
876 /* .rank = 2, */
877 .page_size = 4096,
878 /* .rows = 16, */
879 .rows = 15,
880
881 /* CL/CWL table for the speed bin */
882 .cl_cwl_table = cl_cwl,
883 .cl_cwl_numentries = sizeof(cl_cwl) /
884 sizeof(struct dram_sun9i_cl_cwl_timing),
885
886 /* timings */
887 .tREFI = 7800, /* 7.8us (up to 85 degC) */
888 .tRFC = 260, /* 260ns for 4GBit devices */
889 /* 350ns @ 8GBit */
890
891 .tRCD = 13750,
892 .tRP = 13750,
893 .tRC = 48750,
894 .tRAS = 35000,
895
896 .tDLLK = 512,
897 .tRTP = { .ck = 4, .ps = 7500 },
898 .tWTR = { .ck = 4, .ps = 7500 },
899 .tWR = 15,
900 .tMRD = 4,
901 .tMOD = { .ck = 12, .ps = 15000 },
902 .tCCD = 4,
903 .tRRD = { .ck = 4, .ps = 7500 },
904 .tFAW = 40,
905
906 /* calibration timing */
907 /* .tZQinit = { .ck = 512, .ps = 640000 }, */
908 .tZQoper = { .ck = 256, .ps = 320000 },
909 .tZQCS = { .ck = 64, .ps = 80000 },
910
911 /* reset timing */
912 /* .tXPR = { .ck = 5, .ps = 10000 }, */
913
914 /* self-refresh timings */
915 .tXS = { .ck = 5, .ps = 10000 },
916 .tXSDLL = 512,
917 .tCKSRE = { .ck = 5, .ps = 10000 },
918 .tCKSRX = { .ck = 5, .ps = 10000 },
919
920 /* power-down timings */
921 .tXP = { .ck = 3, .ps = 6000 },
922 .tXPDLL = { .ck = 10, .ps = 24000 },
923 .tCKE = { .ck = 3, .ps = 5000 },
924
925 /* write leveling timings */
926 .tWLMRD = 40,
927 /* .tWLDQSEN = 25, */
928 .tWLO = 7500,
929 /* .tWLOE = 2000, */
930 };
931
932 /*
933 * Disable A80 internal 240 ohm resistor.
934 *
935 * This code sequence is adapated from Allwinner's Boot0 (see
936 * https://github.com/allwinner-zh/bootloader.git), as there
937 * is no documentation for these two registers in the R_PRCM
938 * block.
939 */
940 setbits_le32(SUNXI_PRCM_BASE + 0x1e0, (0x3 << 8));
941 writel(0, SUNXI_PRCM_BASE + 0x1e8);
942
943 mctl_sys_init();
944
945 if (!mctl_channel_init(0, &para))
946 return 0;
947
948 /* dual-channel */
949 if (!mctl_channel_init(1, &para)) {
950 /* disable channel 1 */
951 clrsetbits_le32(&mctl_com->cr, MCTL_CR_CHANNEL_MASK,
952 MCTL_CR_CHANNEL_SINGLE);
953 /* disable channel 1 global clock */
954 clrbits_le32(&mctl_com->cr, MCTL_CCR_CH1_CLK_EN);
955 }
956
957 mctl_com_init(&para);
958
959 /* return the proper RAM size */
960 return DRAMC_get_dram_size() << 20;
961}