Tom Rini | 10e4779 | 2018-05-06 17:58:06 -0400 | [diff] [blame] | 1 | // SPDX-License-Identifier: Intel |
Bin Meng | e159cdf | 2015-02-05 23:42:23 +0800 | [diff] [blame] | 2 | /* |
| 3 | * Copyright (C) 2013, Intel Corporation |
| 4 | * Copyright (C) 2015, Bin Meng <bmeng.cn@gmail.com> |
| 5 | * |
| 6 | * Ported from Intel released Quark UEFI BIOS |
| 7 | * QuarkSocPkg/QuarkNorthCluster/MemoryInit/Pei |
Bin Meng | e159cdf | 2015-02-05 23:42:23 +0800 | [diff] [blame] | 8 | */ |
| 9 | |
| 10 | #include <common.h> |
| 11 | #include <asm/arch/mrc.h> |
| 12 | #include <asm/arch/msg_port.h> |
| 13 | #include "mrc_util.h" |
| 14 | #include "hte.h" |
| 15 | |
| 16 | /** |
| 17 | * Enable HTE to detect all possible errors for the given training parameters |
| 18 | * (per-bit or full byte lane). |
| 19 | */ |
| 20 | static void hte_enable_all_errors(void) |
| 21 | { |
Bin Meng | 15e3f28 | 2015-03-10 18:31:20 +0800 | [diff] [blame] | 22 | msg_port_write(HTE, 0x000200a2, 0xffffffff); |
| 23 | msg_port_write(HTE, 0x000200a3, 0x000000ff); |
| 24 | msg_port_write(HTE, 0x000200a4, 0x00000000); |
Bin Meng | e159cdf | 2015-02-05 23:42:23 +0800 | [diff] [blame] | 25 | } |
| 26 | |
| 27 | /** |
| 28 | * Go and read the HTE register in order to find any error |
| 29 | * |
| 30 | * @return: The errors detected in the HTE status register |
| 31 | */ |
| 32 | static u32 hte_check_errors(void) |
| 33 | { |
Bin Meng | 15e3f28 | 2015-03-10 18:31:20 +0800 | [diff] [blame] | 34 | return msg_port_read(HTE, 0x000200a7); |
Bin Meng | e159cdf | 2015-02-05 23:42:23 +0800 | [diff] [blame] | 35 | } |
| 36 | |
| 37 | /** |
| 38 | * Wait until HTE finishes |
| 39 | */ |
| 40 | static void hte_wait_for_complete(void) |
| 41 | { |
| 42 | u32 tmp; |
| 43 | |
| 44 | ENTERFN(); |
| 45 | |
Bin Meng | 15e3f28 | 2015-03-10 18:31:20 +0800 | [diff] [blame] | 46 | do {} while ((msg_port_read(HTE, 0x00020012) & (1 << 30)) != 0); |
Bin Meng | e159cdf | 2015-02-05 23:42:23 +0800 | [diff] [blame] | 47 | |
| 48 | tmp = msg_port_read(HTE, 0x00020011); |
Bin Meng | 15e3f28 | 2015-03-10 18:31:20 +0800 | [diff] [blame] | 49 | tmp |= (1 << 9); |
| 50 | tmp &= ~((1 << 12) | (1 << 13)); |
Bin Meng | e159cdf | 2015-02-05 23:42:23 +0800 | [diff] [blame] | 51 | msg_port_write(HTE, 0x00020011, tmp); |
| 52 | |
| 53 | LEAVEFN(); |
| 54 | } |
| 55 | |
| 56 | /** |
| 57 | * Clear registers related with errors in the HTE |
| 58 | */ |
| 59 | static void hte_clear_error_regs(void) |
| 60 | { |
| 61 | u32 tmp; |
| 62 | |
| 63 | /* |
| 64 | * Clear all HTE errors and enable error checking |
| 65 | * for burst and chunk. |
| 66 | */ |
Bin Meng | 15e3f28 | 2015-03-10 18:31:20 +0800 | [diff] [blame] | 67 | tmp = msg_port_read(HTE, 0x000200a1); |
| 68 | tmp |= (1 << 8); |
| 69 | msg_port_write(HTE, 0x000200a1, tmp); |
Bin Meng | e159cdf | 2015-02-05 23:42:23 +0800 | [diff] [blame] | 70 | } |
| 71 | |
| 72 | /** |
| 73 | * Execute a basic single-cache-line memory write/read/verify test using simple |
| 74 | * constant pattern, different for READ_TRAIN and WRITE_TRAIN modes. |
| 75 | * |
| 76 | * See hte_basic_write_read() which is the external visible wrapper. |
| 77 | * |
| 78 | * @mrc_params: host structure for all MRC global data |
| 79 | * @addr: memory adress being tested (must hit specific channel/rank) |
| 80 | * @first_run: if set then the HTE registers are configured, otherwise it is |
| 81 | * assumed configuration is done and we just re-run the test |
| 82 | * @mode: READ_TRAIN or WRITE_TRAIN (the difference is in the pattern) |
| 83 | * |
| 84 | * @return: byte lane failure on each bit (for Quark only bit0 and bit1) |
| 85 | */ |
| 86 | static u16 hte_basic_data_cmp(struct mrc_params *mrc_params, u32 addr, |
| 87 | u8 first_run, u8 mode) |
| 88 | { |
| 89 | u32 pattern; |
| 90 | u32 offset; |
| 91 | |
| 92 | if (first_run) { |
Bin Meng | 15e3f28 | 2015-03-10 18:31:20 +0800 | [diff] [blame] | 93 | msg_port_write(HTE, 0x00020020, 0x01b10021); |
Bin Meng | e159cdf | 2015-02-05 23:42:23 +0800 | [diff] [blame] | 94 | msg_port_write(HTE, 0x00020021, 0x06000000); |
| 95 | msg_port_write(HTE, 0x00020022, addr >> 6); |
| 96 | msg_port_write(HTE, 0x00020062, 0x00800015); |
Bin Meng | 15e3f28 | 2015-03-10 18:31:20 +0800 | [diff] [blame] | 97 | msg_port_write(HTE, 0x00020063, 0xaaaaaaaa); |
| 98 | msg_port_write(HTE, 0x00020064, 0xcccccccc); |
| 99 | msg_port_write(HTE, 0x00020065, 0xf0f0f0f0); |
Bin Meng | e159cdf | 2015-02-05 23:42:23 +0800 | [diff] [blame] | 100 | msg_port_write(HTE, 0x00020061, 0x00030008); |
| 101 | |
| 102 | if (mode == WRITE_TRAIN) |
Bin Meng | 15e3f28 | 2015-03-10 18:31:20 +0800 | [diff] [blame] | 103 | pattern = 0xc33c0000; |
Bin Meng | e159cdf | 2015-02-05 23:42:23 +0800 | [diff] [blame] | 104 | else /* READ_TRAIN */ |
Bin Meng | 15e3f28 | 2015-03-10 18:31:20 +0800 | [diff] [blame] | 105 | pattern = 0xaa5555aa; |
Bin Meng | e159cdf | 2015-02-05 23:42:23 +0800 | [diff] [blame] | 106 | |
Bin Meng | 15e3f28 | 2015-03-10 18:31:20 +0800 | [diff] [blame] | 107 | for (offset = 0x80; offset <= 0x8f; offset++) |
Bin Meng | e159cdf | 2015-02-05 23:42:23 +0800 | [diff] [blame] | 108 | msg_port_write(HTE, offset, pattern); |
| 109 | } |
| 110 | |
Bin Meng | 15e3f28 | 2015-03-10 18:31:20 +0800 | [diff] [blame] | 111 | msg_port_write(HTE, 0x000200a1, 0xffff1000); |
Bin Meng | e159cdf | 2015-02-05 23:42:23 +0800 | [diff] [blame] | 112 | msg_port_write(HTE, 0x00020011, 0x00011000); |
| 113 | msg_port_write(HTE, 0x00020011, 0x00011100); |
| 114 | |
| 115 | hte_wait_for_complete(); |
| 116 | |
| 117 | /* |
| 118 | * Return bits 15:8 of HTE_CH0_ERR_XSTAT to check for |
| 119 | * any bytelane errors. |
| 120 | */ |
Bin Meng | 15e3f28 | 2015-03-10 18:31:20 +0800 | [diff] [blame] | 121 | return (hte_check_errors() >> 8) & 0xff; |
Bin Meng | e159cdf | 2015-02-05 23:42:23 +0800 | [diff] [blame] | 122 | } |
| 123 | |
| 124 | /** |
| 125 | * Examine a single-cache-line memory with write/read/verify test using multiple |
| 126 | * data patterns (victim-aggressor algorithm). |
| 127 | * |
| 128 | * See hte_write_stress_bit_lanes() which is the external visible wrapper. |
| 129 | * |
| 130 | * @mrc_params: host structure for all MRC global data |
| 131 | * @addr: memory adress being tested (must hit specific channel/rank) |
| 132 | * @loop_cnt: number of test iterations |
| 133 | * @seed_victim: victim data pattern seed |
| 134 | * @seed_aggressor: aggressor data pattern seed |
| 135 | * @victim_bit: should be 0 as auto-rotate feature is in use |
| 136 | * @first_run: if set then the HTE registers are configured, otherwise it is |
| 137 | * assumed configuration is done and we just re-run the test |
| 138 | * |
| 139 | * @return: byte lane failure on each bit (for Quark only bit0 and bit1) |
| 140 | */ |
| 141 | static u16 hte_rw_data_cmp(struct mrc_params *mrc_params, u32 addr, |
| 142 | u8 loop_cnt, u32 seed_victim, u32 seed_aggressor, |
| 143 | u8 victim_bit, u8 first_run) |
| 144 | { |
| 145 | u32 offset; |
| 146 | u32 tmp; |
| 147 | |
| 148 | if (first_run) { |
| 149 | msg_port_write(HTE, 0x00020020, 0x00910024); |
| 150 | msg_port_write(HTE, 0x00020023, 0x00810024); |
| 151 | msg_port_write(HTE, 0x00020021, 0x06070000); |
| 152 | msg_port_write(HTE, 0x00020024, 0x06070000); |
| 153 | msg_port_write(HTE, 0x00020022, addr >> 6); |
| 154 | msg_port_write(HTE, 0x00020025, addr >> 6); |
Bin Meng | 15e3f28 | 2015-03-10 18:31:20 +0800 | [diff] [blame] | 155 | msg_port_write(HTE, 0x00020062, 0x0000002a); |
Bin Meng | e159cdf | 2015-02-05 23:42:23 +0800 | [diff] [blame] | 156 | msg_port_write(HTE, 0x00020063, seed_victim); |
| 157 | msg_port_write(HTE, 0x00020064, seed_aggressor); |
| 158 | msg_port_write(HTE, 0x00020065, seed_victim); |
| 159 | |
| 160 | /* |
| 161 | * Write the pattern buffers to select the victim bit |
| 162 | * |
| 163 | * Start with bit0 |
| 164 | */ |
Bin Meng | 15e3f28 | 2015-03-10 18:31:20 +0800 | [diff] [blame] | 165 | for (offset = 0x80; offset <= 0x8f; offset++) { |
Bin Meng | e159cdf | 2015-02-05 23:42:23 +0800 | [diff] [blame] | 166 | if ((offset % 8) == victim_bit) |
| 167 | msg_port_write(HTE, offset, 0x55555555); |
| 168 | else |
Bin Meng | 15e3f28 | 2015-03-10 18:31:20 +0800 | [diff] [blame] | 169 | msg_port_write(HTE, offset, 0xcccccccc); |
Bin Meng | e159cdf | 2015-02-05 23:42:23 +0800 | [diff] [blame] | 170 | } |
| 171 | |
| 172 | msg_port_write(HTE, 0x00020061, 0x00000000); |
| 173 | msg_port_write(HTE, 0x00020066, 0x03440000); |
Bin Meng | 15e3f28 | 2015-03-10 18:31:20 +0800 | [diff] [blame] | 174 | msg_port_write(HTE, 0x000200a1, 0xffff1000); |
Bin Meng | e159cdf | 2015-02-05 23:42:23 +0800 | [diff] [blame] | 175 | } |
| 176 | |
| 177 | tmp = 0x10001000 | (loop_cnt << 16); |
| 178 | msg_port_write(HTE, 0x00020011, tmp); |
Bin Meng | 15e3f28 | 2015-03-10 18:31:20 +0800 | [diff] [blame] | 179 | msg_port_write(HTE, 0x00020011, tmp | (1 << 8)); |
Bin Meng | e159cdf | 2015-02-05 23:42:23 +0800 | [diff] [blame] | 180 | |
| 181 | hte_wait_for_complete(); |
| 182 | |
| 183 | /* |
| 184 | * Return bits 15:8 of HTE_CH0_ERR_XSTAT to check for |
| 185 | * any bytelane errors. |
| 186 | */ |
Bin Meng | 15e3f28 | 2015-03-10 18:31:20 +0800 | [diff] [blame] | 187 | return (hte_check_errors() >> 8) & 0xff; |
Bin Meng | e159cdf | 2015-02-05 23:42:23 +0800 | [diff] [blame] | 188 | } |
| 189 | |
| 190 | /** |
| 191 | * Use HW HTE engine to initialize or test all memory attached to a given DUNIT. |
| 192 | * If flag is MRC_MEM_INIT, this routine writes 0s to all memory locations to |
| 193 | * initialize ECC. If flag is MRC_MEM_TEST, this routine will send an 5AA55AA5 |
| 194 | * pattern to all memory locations on the RankMask and then read it back. |
| 195 | * Then it sends an A55AA55A pattern to all memory locations on the RankMask |
| 196 | * and reads it back. |
| 197 | * |
| 198 | * @mrc_params: host structure for all MRC global data |
| 199 | * @flag: MRC_MEM_INIT or MRC_MEM_TEST |
| 200 | * |
| 201 | * @return: errors register showing HTE failures. Also prints out which rank |
| 202 | * failed the HTE test if failure occurs. For rank detection to work, |
| 203 | * the address map must be left in its default state. If MRC changes |
| 204 | * the address map, this function must be modified to change it back |
| 205 | * to default at the beginning, then restore it at the end. |
| 206 | */ |
| 207 | u32 hte_mem_init(struct mrc_params *mrc_params, u8 flag) |
| 208 | { |
| 209 | u32 offset; |
| 210 | int test_num; |
| 211 | int i; |
| 212 | |
| 213 | /* |
| 214 | * Clear out the error registers at the start of each memory |
| 215 | * init or memory test run. |
| 216 | */ |
| 217 | hte_clear_error_regs(); |
| 218 | |
| 219 | msg_port_write(HTE, 0x00020062, 0x00000015); |
| 220 | |
Bin Meng | 15e3f28 | 2015-03-10 18:31:20 +0800 | [diff] [blame] | 221 | for (offset = 0x80; offset <= 0x8f; offset++) |
| 222 | msg_port_write(HTE, offset, ((offset & 1) ? 0xa55a : 0x5aa5)); |
Bin Meng | e159cdf | 2015-02-05 23:42:23 +0800 | [diff] [blame] | 223 | |
| 224 | msg_port_write(HTE, 0x00020021, 0x00000000); |
| 225 | msg_port_write(HTE, 0x00020022, (mrc_params->mem_size >> 6) - 1); |
Bin Meng | 15e3f28 | 2015-03-10 18:31:20 +0800 | [diff] [blame] | 226 | msg_port_write(HTE, 0x00020063, 0xaaaaaaaa); |
| 227 | msg_port_write(HTE, 0x00020064, 0xcccccccc); |
| 228 | msg_port_write(HTE, 0x00020065, 0xf0f0f0f0); |
Bin Meng | e159cdf | 2015-02-05 23:42:23 +0800 | [diff] [blame] | 229 | msg_port_write(HTE, 0x00020066, 0x03000000); |
| 230 | |
| 231 | switch (flag) { |
| 232 | case MRC_MEM_INIT: |
| 233 | /* |
| 234 | * Only 1 write pass through memory is needed |
| 235 | * to initialize ECC |
| 236 | */ |
| 237 | test_num = 1; |
| 238 | break; |
| 239 | case MRC_MEM_TEST: |
| 240 | /* Write/read then write/read with inverted pattern */ |
| 241 | test_num = 4; |
| 242 | break; |
| 243 | default: |
| 244 | DPF(D_INFO, "Unknown parameter for flag: %d\n", flag); |
Bin Meng | 15e3f28 | 2015-03-10 18:31:20 +0800 | [diff] [blame] | 245 | return 0xffffffff; |
Bin Meng | e159cdf | 2015-02-05 23:42:23 +0800 | [diff] [blame] | 246 | } |
| 247 | |
| 248 | DPF(D_INFO, "hte_mem_init"); |
| 249 | |
| 250 | for (i = 0; i < test_num; i++) { |
| 251 | DPF(D_INFO, "."); |
| 252 | |
| 253 | if (i == 0) { |
| 254 | msg_port_write(HTE, 0x00020061, 0x00000000); |
| 255 | msg_port_write(HTE, 0x00020020, 0x00110010); |
| 256 | } else if (i == 1) { |
| 257 | msg_port_write(HTE, 0x00020061, 0x00000000); |
| 258 | msg_port_write(HTE, 0x00020020, 0x00010010); |
| 259 | } else if (i == 2) { |
| 260 | msg_port_write(HTE, 0x00020061, 0x00010100); |
| 261 | msg_port_write(HTE, 0x00020020, 0x00110010); |
| 262 | } else { |
| 263 | msg_port_write(HTE, 0x00020061, 0x00010100); |
| 264 | msg_port_write(HTE, 0x00020020, 0x00010010); |
| 265 | } |
| 266 | |
| 267 | msg_port_write(HTE, 0x00020011, 0x00111000); |
| 268 | msg_port_write(HTE, 0x00020011, 0x00111100); |
| 269 | |
| 270 | hte_wait_for_complete(); |
| 271 | |
| 272 | /* If this is a READ pass, check for errors at the end */ |
| 273 | if ((i % 2) == 1) { |
| 274 | /* Return immediately if error */ |
| 275 | if (hte_check_errors()) |
| 276 | break; |
| 277 | } |
| 278 | } |
| 279 | |
| 280 | DPF(D_INFO, "done\n"); |
| 281 | |
| 282 | return hte_check_errors(); |
| 283 | } |
| 284 | |
| 285 | /** |
| 286 | * Execute a basic single-cache-line memory write/read/verify test using simple |
| 287 | * constant pattern, different for READ_TRAIN and WRITE_TRAIN modes. |
| 288 | * |
| 289 | * @mrc_params: host structure for all MRC global data |
| 290 | * @addr: memory adress being tested (must hit specific channel/rank) |
| 291 | * @first_run: if set then the HTE registers are configured, otherwise it is |
| 292 | * assumed configuration is done and we just re-run the test |
| 293 | * @mode: READ_TRAIN or WRITE_TRAIN (the difference is in the pattern) |
| 294 | * |
| 295 | * @return: byte lane failure on each bit (for Quark only bit0 and bit1) |
| 296 | */ |
| 297 | u16 hte_basic_write_read(struct mrc_params *mrc_params, u32 addr, |
| 298 | u8 first_run, u8 mode) |
| 299 | { |
| 300 | u16 errors; |
| 301 | |
| 302 | ENTERFN(); |
| 303 | |
| 304 | /* Enable all error reporting in preparation for HTE test */ |
| 305 | hte_enable_all_errors(); |
| 306 | hte_clear_error_regs(); |
| 307 | |
| 308 | errors = hte_basic_data_cmp(mrc_params, addr, first_run, mode); |
| 309 | |
| 310 | LEAVEFN(); |
| 311 | |
| 312 | return errors; |
| 313 | } |
| 314 | |
| 315 | /** |
| 316 | * Examine a single-cache-line memory with write/read/verify test using multiple |
| 317 | * data patterns (victim-aggressor algorithm). |
| 318 | * |
| 319 | * @mrc_params: host structure for all MRC global data |
| 320 | * @addr: memory adress being tested (must hit specific channel/rank) |
| 321 | * @first_run: if set then the HTE registers are configured, otherwise it is |
| 322 | * assumed configuration is done and we just re-run the test |
| 323 | * |
| 324 | * @return: byte lane failure on each bit (for Quark only bit0 and bit1) |
| 325 | */ |
| 326 | u16 hte_write_stress_bit_lanes(struct mrc_params *mrc_params, |
| 327 | u32 addr, u8 first_run) |
| 328 | { |
| 329 | u16 errors; |
| 330 | u8 victim_bit = 0; |
| 331 | |
| 332 | ENTERFN(); |
| 333 | |
| 334 | /* Enable all error reporting in preparation for HTE test */ |
| 335 | hte_enable_all_errors(); |
| 336 | hte_clear_error_regs(); |
| 337 | |
| 338 | /* |
| 339 | * Loop through each bit in the bytelane. |
| 340 | * |
| 341 | * Each pass creates a victim bit while keeping all other bits the same |
| 342 | * as aggressors. AVN HTE adds an auto-rotate feature which allows us |
| 343 | * to program the entire victim/aggressor sequence in 1 step. |
| 344 | * |
| 345 | * The victim bit rotates on each pass so no need to have software |
| 346 | * implement a victim bit loop like on VLV. |
| 347 | */ |
| 348 | errors = hte_rw_data_cmp(mrc_params, addr, HTE_LOOP_CNT, |
| 349 | HTE_LFSR_VICTIM_SEED, HTE_LFSR_AGRESSOR_SEED, |
| 350 | victim_bit, first_run); |
| 351 | |
| 352 | LEAVEFN(); |
| 353 | |
| 354 | return errors; |
| 355 | } |
| 356 | |
| 357 | /** |
| 358 | * Execute a basic single-cache-line memory write or read. |
| 359 | * This is just for receive enable / fine write-levelling purpose. |
| 360 | * |
| 361 | * @addr: memory adress being tested (must hit specific channel/rank) |
| 362 | * @first_run: if set then the HTE registers are configured, otherwise it is |
| 363 | * assumed configuration is done and we just re-run the test |
| 364 | * @is_write: when non-zero memory write operation executed, otherwise read |
| 365 | */ |
| 366 | void hte_mem_op(u32 addr, u8 first_run, u8 is_write) |
| 367 | { |
| 368 | u32 offset; |
| 369 | u32 tmp; |
| 370 | |
| 371 | hte_enable_all_errors(); |
| 372 | hte_clear_error_regs(); |
| 373 | |
| 374 | if (first_run) { |
| 375 | tmp = is_write ? 0x01110021 : 0x01010021; |
| 376 | msg_port_write(HTE, 0x00020020, tmp); |
| 377 | |
| 378 | msg_port_write(HTE, 0x00020021, 0x06000000); |
| 379 | msg_port_write(HTE, 0x00020022, addr >> 6); |
| 380 | msg_port_write(HTE, 0x00020062, 0x00800015); |
Bin Meng | 15e3f28 | 2015-03-10 18:31:20 +0800 | [diff] [blame] | 381 | msg_port_write(HTE, 0x00020063, 0xaaaaaaaa); |
| 382 | msg_port_write(HTE, 0x00020064, 0xcccccccc); |
| 383 | msg_port_write(HTE, 0x00020065, 0xf0f0f0f0); |
Bin Meng | e159cdf | 2015-02-05 23:42:23 +0800 | [diff] [blame] | 384 | msg_port_write(HTE, 0x00020061, 0x00030008); |
| 385 | |
Bin Meng | 15e3f28 | 2015-03-10 18:31:20 +0800 | [diff] [blame] | 386 | for (offset = 0x80; offset <= 0x8f; offset++) |
| 387 | msg_port_write(HTE, offset, 0xc33c0000); |
Bin Meng | e159cdf | 2015-02-05 23:42:23 +0800 | [diff] [blame] | 388 | } |
| 389 | |
Bin Meng | 15e3f28 | 2015-03-10 18:31:20 +0800 | [diff] [blame] | 390 | msg_port_write(HTE, 0x000200a1, 0xffff1000); |
Bin Meng | e159cdf | 2015-02-05 23:42:23 +0800 | [diff] [blame] | 391 | msg_port_write(HTE, 0x00020011, 0x00011000); |
| 392 | msg_port_write(HTE, 0x00020011, 0x00011100); |
| 393 | |
| 394 | hte_wait_for_complete(); |
| 395 | } |