blob: 17cabb2ae9952f5be88c467d3feaf5c81f1a7b78 [file] [log] [blame]
Kyungmin Park1d8dca62008-11-19 16:23:06 +01001/*
2 * Copyright (c) International Business Machines Corp., 2006
3 * Copyright (c) Nokia Corporation, 2007
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13 * the GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 *
19 * Author: Artem Bityutskiy (Битюцкий Артём),
20 * Frank Haverkamp
21 */
22
23/*
24 * This file includes UBI initialization and building of UBI devices.
25 *
26 * When UBI is initialized, it attaches all the MTD devices specified as the
27 * module load parameters or the kernel boot parameters. If MTD devices were
28 * specified, UBI does not attach any MTD device, but it is possible to do
29 * later using the "UBI control device".
30 *
31 * At the moment we only attach UBI devices by scanning, which will become a
32 * bottleneck when flashes reach certain large size. Then one may improve UBI
33 * and add other methods, although it does not seem to be easy to do.
34 */
35
36#ifdef UBI_LINUX
37#include <linux/err.h>
38#include <linux/module.h>
39#include <linux/moduleparam.h>
40#include <linux/stringify.h>
41#include <linux/stat.h>
42#include <linux/miscdevice.h>
43#include <linux/log2.h>
44#include <linux/kthread.h>
45#endif
46#include <ubi_uboot.h>
47#include "ubi.h"
48
49/* Maximum length of the 'mtd=' parameter */
50#define MTD_PARAM_LEN_MAX 64
51
52/**
53 * struct mtd_dev_param - MTD device parameter description data structure.
54 * @name: MTD device name or number string
55 * @vid_hdr_offs: VID header offset
56 */
57struct mtd_dev_param
58{
59 char name[MTD_PARAM_LEN_MAX];
60 int vid_hdr_offs;
61};
62
63/* Numbers of elements set in the @mtd_dev_param array */
64static int mtd_devs = 0;
65
66/* MTD devices specification parameters */
67static struct mtd_dev_param mtd_dev_param[UBI_MAX_DEVICES];
68
69/* Root UBI "class" object (corresponds to '/<sysfs>/class/ubi/') */
70struct class *ubi_class;
71
72#ifdef UBI_LINUX
73/* Slab cache for wear-leveling entries */
74struct kmem_cache *ubi_wl_entry_slab;
75
76/* UBI control character device */
77static struct miscdevice ubi_ctrl_cdev = {
78 .minor = MISC_DYNAMIC_MINOR,
79 .name = "ubi_ctrl",
80 .fops = &ubi_ctrl_cdev_operations,
81};
82#endif
83
84/* All UBI devices in system */
85struct ubi_device *ubi_devices[UBI_MAX_DEVICES];
86
87#ifdef UBI_LINUX
88/* Serializes UBI devices creations and removals */
89DEFINE_MUTEX(ubi_devices_mutex);
90
91/* Protects @ubi_devices and @ubi->ref_count */
92static DEFINE_SPINLOCK(ubi_devices_lock);
93
94/* "Show" method for files in '/<sysfs>/class/ubi/' */
95static ssize_t ubi_version_show(struct class *class, char *buf)
96{
97 return sprintf(buf, "%d\n", UBI_VERSION);
98}
99
100/* UBI version attribute ('/<sysfs>/class/ubi/version') */
101static struct class_attribute ubi_version =
102 __ATTR(version, S_IRUGO, ubi_version_show, NULL);
103
104static ssize_t dev_attribute_show(struct device *dev,
105 struct device_attribute *attr, char *buf);
106
107/* UBI device attributes (correspond to files in '/<sysfs>/class/ubi/ubiX') */
108static struct device_attribute dev_eraseblock_size =
109 __ATTR(eraseblock_size, S_IRUGO, dev_attribute_show, NULL);
110static struct device_attribute dev_avail_eraseblocks =
111 __ATTR(avail_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
112static struct device_attribute dev_total_eraseblocks =
113 __ATTR(total_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
114static struct device_attribute dev_volumes_count =
115 __ATTR(volumes_count, S_IRUGO, dev_attribute_show, NULL);
116static struct device_attribute dev_max_ec =
117 __ATTR(max_ec, S_IRUGO, dev_attribute_show, NULL);
118static struct device_attribute dev_reserved_for_bad =
119 __ATTR(reserved_for_bad, S_IRUGO, dev_attribute_show, NULL);
120static struct device_attribute dev_bad_peb_count =
121 __ATTR(bad_peb_count, S_IRUGO, dev_attribute_show, NULL);
122static struct device_attribute dev_max_vol_count =
123 __ATTR(max_vol_count, S_IRUGO, dev_attribute_show, NULL);
124static struct device_attribute dev_min_io_size =
125 __ATTR(min_io_size, S_IRUGO, dev_attribute_show, NULL);
126static struct device_attribute dev_bgt_enabled =
127 __ATTR(bgt_enabled, S_IRUGO, dev_attribute_show, NULL);
128static struct device_attribute dev_mtd_num =
129 __ATTR(mtd_num, S_IRUGO, dev_attribute_show, NULL);
130#endif
131
132/**
133 * ubi_get_device - get UBI device.
134 * @ubi_num: UBI device number
135 *
136 * This function returns UBI device description object for UBI device number
137 * @ubi_num, or %NULL if the device does not exist. This function increases the
138 * device reference count to prevent removal of the device. In other words, the
139 * device cannot be removed if its reference count is not zero.
140 */
141struct ubi_device *ubi_get_device(int ubi_num)
142{
143 struct ubi_device *ubi;
144
145 spin_lock(&ubi_devices_lock);
146 ubi = ubi_devices[ubi_num];
147 if (ubi) {
148 ubi_assert(ubi->ref_count >= 0);
149 ubi->ref_count += 1;
150 get_device(&ubi->dev);
151 }
152 spin_unlock(&ubi_devices_lock);
153
154 return ubi;
155}
156
157/**
158 * ubi_put_device - drop an UBI device reference.
159 * @ubi: UBI device description object
160 */
161void ubi_put_device(struct ubi_device *ubi)
162{
163 spin_lock(&ubi_devices_lock);
164 ubi->ref_count -= 1;
165 put_device(&ubi->dev);
166 spin_unlock(&ubi_devices_lock);
167}
168
169/**
170 * ubi_get_by_major - get UBI device description object by character device
171 * major number.
172 * @major: major number
173 *
174 * This function is similar to 'ubi_get_device()', but it searches the device
175 * by its major number.
176 */
177struct ubi_device *ubi_get_by_major(int major)
178{
179 int i;
180 struct ubi_device *ubi;
181
182 spin_lock(&ubi_devices_lock);
183 for (i = 0; i < UBI_MAX_DEVICES; i++) {
184 ubi = ubi_devices[i];
185 if (ubi && MAJOR(ubi->cdev.dev) == major) {
186 ubi_assert(ubi->ref_count >= 0);
187 ubi->ref_count += 1;
188 get_device(&ubi->dev);
189 spin_unlock(&ubi_devices_lock);
190 return ubi;
191 }
192 }
193 spin_unlock(&ubi_devices_lock);
194
195 return NULL;
196}
197
198/**
199 * ubi_major2num - get UBI device number by character device major number.
200 * @major: major number
201 *
202 * This function searches UBI device number object by its major number. If UBI
203 * device was not found, this function returns -ENODEV, otherwise the UBI device
204 * number is returned.
205 */
206int ubi_major2num(int major)
207{
208 int i, ubi_num = -ENODEV;
209
210 spin_lock(&ubi_devices_lock);
211 for (i = 0; i < UBI_MAX_DEVICES; i++) {
212 struct ubi_device *ubi = ubi_devices[i];
213
214 if (ubi && MAJOR(ubi->cdev.dev) == major) {
215 ubi_num = ubi->ubi_num;
216 break;
217 }
218 }
219 spin_unlock(&ubi_devices_lock);
220
221 return ubi_num;
222}
223
224#ifdef UBI_LINUX
225/* "Show" method for files in '/<sysfs>/class/ubi/ubiX/' */
226static ssize_t dev_attribute_show(struct device *dev,
227 struct device_attribute *attr, char *buf)
228{
229 ssize_t ret;
230 struct ubi_device *ubi;
231
232 /*
233 * The below code looks weird, but it actually makes sense. We get the
234 * UBI device reference from the contained 'struct ubi_device'. But it
235 * is unclear if the device was removed or not yet. Indeed, if the
236 * device was removed before we increased its reference count,
237 * 'ubi_get_device()' will return -ENODEV and we fail.
238 *
239 * Remember, 'struct ubi_device' is freed in the release function, so
240 * we still can use 'ubi->ubi_num'.
241 */
242 ubi = container_of(dev, struct ubi_device, dev);
243 ubi = ubi_get_device(ubi->ubi_num);
244 if (!ubi)
245 return -ENODEV;
246
247 if (attr == &dev_eraseblock_size)
248 ret = sprintf(buf, "%d\n", ubi->leb_size);
249 else if (attr == &dev_avail_eraseblocks)
250 ret = sprintf(buf, "%d\n", ubi->avail_pebs);
251 else if (attr == &dev_total_eraseblocks)
252 ret = sprintf(buf, "%d\n", ubi->good_peb_count);
253 else if (attr == &dev_volumes_count)
254 ret = sprintf(buf, "%d\n", ubi->vol_count - UBI_INT_VOL_COUNT);
255 else if (attr == &dev_max_ec)
256 ret = sprintf(buf, "%d\n", ubi->max_ec);
257 else if (attr == &dev_reserved_for_bad)
258 ret = sprintf(buf, "%d\n", ubi->beb_rsvd_pebs);
259 else if (attr == &dev_bad_peb_count)
260 ret = sprintf(buf, "%d\n", ubi->bad_peb_count);
261 else if (attr == &dev_max_vol_count)
262 ret = sprintf(buf, "%d\n", ubi->vtbl_slots);
263 else if (attr == &dev_min_io_size)
264 ret = sprintf(buf, "%d\n", ubi->min_io_size);
265 else if (attr == &dev_bgt_enabled)
266 ret = sprintf(buf, "%d\n", ubi->thread_enabled);
267 else if (attr == &dev_mtd_num)
268 ret = sprintf(buf, "%d\n", ubi->mtd->index);
269 else
270 ret = -EINVAL;
271
272 ubi_put_device(ubi);
273 return ret;
274}
275
276/* Fake "release" method for UBI devices */
277static void dev_release(struct device *dev) { }
278
279/**
280 * ubi_sysfs_init - initialize sysfs for an UBI device.
281 * @ubi: UBI device description object
282 *
283 * This function returns zero in case of success and a negative error code in
284 * case of failure.
285 */
286static int ubi_sysfs_init(struct ubi_device *ubi)
287{
288 int err;
289
290 ubi->dev.release = dev_release;
291 ubi->dev.devt = ubi->cdev.dev;
292 ubi->dev.class = ubi_class;
293 sprintf(&ubi->dev.bus_id[0], UBI_NAME_STR"%d", ubi->ubi_num);
294 err = device_register(&ubi->dev);
295 if (err)
296 return err;
297
298 err = device_create_file(&ubi->dev, &dev_eraseblock_size);
299 if (err)
300 return err;
301 err = device_create_file(&ubi->dev, &dev_avail_eraseblocks);
302 if (err)
303 return err;
304 err = device_create_file(&ubi->dev, &dev_total_eraseblocks);
305 if (err)
306 return err;
307 err = device_create_file(&ubi->dev, &dev_volumes_count);
308 if (err)
309 return err;
310 err = device_create_file(&ubi->dev, &dev_max_ec);
311 if (err)
312 return err;
313 err = device_create_file(&ubi->dev, &dev_reserved_for_bad);
314 if (err)
315 return err;
316 err = device_create_file(&ubi->dev, &dev_bad_peb_count);
317 if (err)
318 return err;
319 err = device_create_file(&ubi->dev, &dev_max_vol_count);
320 if (err)
321 return err;
322 err = device_create_file(&ubi->dev, &dev_min_io_size);
323 if (err)
324 return err;
325 err = device_create_file(&ubi->dev, &dev_bgt_enabled);
326 if (err)
327 return err;
328 err = device_create_file(&ubi->dev, &dev_mtd_num);
329 return err;
330}
331
332/**
333 * ubi_sysfs_close - close sysfs for an UBI device.
334 * @ubi: UBI device description object
335 */
336static void ubi_sysfs_close(struct ubi_device *ubi)
337{
338 device_remove_file(&ubi->dev, &dev_mtd_num);
339 device_remove_file(&ubi->dev, &dev_bgt_enabled);
340 device_remove_file(&ubi->dev, &dev_min_io_size);
341 device_remove_file(&ubi->dev, &dev_max_vol_count);
342 device_remove_file(&ubi->dev, &dev_bad_peb_count);
343 device_remove_file(&ubi->dev, &dev_reserved_for_bad);
344 device_remove_file(&ubi->dev, &dev_max_ec);
345 device_remove_file(&ubi->dev, &dev_volumes_count);
346 device_remove_file(&ubi->dev, &dev_total_eraseblocks);
347 device_remove_file(&ubi->dev, &dev_avail_eraseblocks);
348 device_remove_file(&ubi->dev, &dev_eraseblock_size);
349 device_unregister(&ubi->dev);
350}
351#endif
352
353/**
354 * kill_volumes - destroy all volumes.
355 * @ubi: UBI device description object
356 */
357static void kill_volumes(struct ubi_device *ubi)
358{
359 int i;
360
361 for (i = 0; i < ubi->vtbl_slots; i++)
362 if (ubi->volumes[i])
363 ubi_free_volume(ubi, ubi->volumes[i]);
364}
365
366/**
367 * uif_init - initialize user interfaces for an UBI device.
368 * @ubi: UBI device description object
369 *
370 * This function returns zero in case of success and a negative error code in
371 * case of failure.
372 */
373static int uif_init(struct ubi_device *ubi)
374{
375 int i, err;
376#ifdef UBI_LINUX
377 dev_t dev;
378#endif
379
380 sprintf(ubi->ubi_name, UBI_NAME_STR "%d", ubi->ubi_num);
381
382 /*
383 * Major numbers for the UBI character devices are allocated
384 * dynamically. Major numbers of volume character devices are
385 * equivalent to ones of the corresponding UBI character device. Minor
386 * numbers of UBI character devices are 0, while minor numbers of
387 * volume character devices start from 1. Thus, we allocate one major
388 * number and ubi->vtbl_slots + 1 minor numbers.
389 */
390 err = alloc_chrdev_region(&dev, 0, ubi->vtbl_slots + 1, ubi->ubi_name);
391 if (err) {
392 ubi_err("cannot register UBI character devices");
393 return err;
394 }
395
396 ubi_assert(MINOR(dev) == 0);
397 cdev_init(&ubi->cdev, &ubi_cdev_operations);
398 dbg_msg("%s major is %u", ubi->ubi_name, MAJOR(dev));
399 ubi->cdev.owner = THIS_MODULE;
400
401 err = cdev_add(&ubi->cdev, dev, 1);
402 if (err) {
403 ubi_err("cannot add character device");
404 goto out_unreg;
405 }
406
407 err = ubi_sysfs_init(ubi);
408 if (err)
409 goto out_sysfs;
410
411 for (i = 0; i < ubi->vtbl_slots; i++)
412 if (ubi->volumes[i]) {
413 err = ubi_add_volume(ubi, ubi->volumes[i]);
414 if (err) {
415 ubi_err("cannot add volume %d", i);
416 goto out_volumes;
417 }
418 }
419
420 return 0;
421
422out_volumes:
423 kill_volumes(ubi);
424out_sysfs:
425 ubi_sysfs_close(ubi);
426 cdev_del(&ubi->cdev);
427out_unreg:
428 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
429 ubi_err("cannot initialize UBI %s, error %d", ubi->ubi_name, err);
430 return err;
431}
432
433/**
434 * uif_close - close user interfaces for an UBI device.
435 * @ubi: UBI device description object
436 */
437static void uif_close(struct ubi_device *ubi)
438{
439 kill_volumes(ubi);
440 ubi_sysfs_close(ubi);
441 cdev_del(&ubi->cdev);
442 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
443}
444
445/**
446 * attach_by_scanning - attach an MTD device using scanning method.
447 * @ubi: UBI device descriptor
448 *
449 * This function returns zero in case of success and a negative error code in
450 * case of failure.
451 *
452 * Note, currently this is the only method to attach UBI devices. Hopefully in
453 * the future we'll have more scalable attaching methods and avoid full media
454 * scanning. But even in this case scanning will be needed as a fall-back
455 * attaching method if there are some on-flash table corruptions.
456 */
457static int attach_by_scanning(struct ubi_device *ubi)
458{
459 int err;
460 struct ubi_scan_info *si;
461
462 si = ubi_scan(ubi);
463 if (IS_ERR(si))
464 return PTR_ERR(si);
465
466 ubi->bad_peb_count = si->bad_peb_count;
467 ubi->good_peb_count = ubi->peb_count - ubi->bad_peb_count;
468 ubi->max_ec = si->max_ec;
469 ubi->mean_ec = si->mean_ec;
470
471 err = ubi_read_volume_table(ubi, si);
472 if (err)
473 goto out_si;
474
475 err = ubi_wl_init_scan(ubi, si);
476 if (err)
477 goto out_vtbl;
478
479 err = ubi_eba_init_scan(ubi, si);
480 if (err)
481 goto out_wl;
482
483 ubi_scan_destroy_si(si);
484 return 0;
485
486out_wl:
487 ubi_wl_close(ubi);
488out_vtbl:
489 vfree(ubi->vtbl);
490out_si:
491 ubi_scan_destroy_si(si);
492 return err;
493}
494
495/**
496 * io_init - initialize I/O unit for a given UBI device.
497 * @ubi: UBI device description object
498 *
499 * If @ubi->vid_hdr_offset or @ubi->leb_start is zero, default offsets are
500 * assumed:
501 * o EC header is always at offset zero - this cannot be changed;
502 * o VID header starts just after the EC header at the closest address
503 * aligned to @io->hdrs_min_io_size;
504 * o data starts just after the VID header at the closest address aligned to
505 * @io->min_io_size
506 *
507 * This function returns zero in case of success and a negative error code in
508 * case of failure.
509 */
510static int io_init(struct ubi_device *ubi)
511{
512 if (ubi->mtd->numeraseregions != 0) {
513 /*
514 * Some flashes have several erase regions. Different regions
515 * may have different eraseblock size and other
516 * characteristics. It looks like mostly multi-region flashes
517 * have one "main" region and one or more small regions to
518 * store boot loader code or boot parameters or whatever. I
519 * guess we should just pick the largest region. But this is
520 * not implemented.
521 */
522 ubi_err("multiple regions, not implemented");
523 return -EINVAL;
524 }
525
526 if (ubi->vid_hdr_offset < 0)
527 return -EINVAL;
528
529 /*
530 * Note, in this implementation we support MTD devices with 0x7FFFFFFF
531 * physical eraseblocks maximum.
532 */
533
534 ubi->peb_size = ubi->mtd->erasesize;
535 ubi->peb_count = ubi->mtd->size / ubi->mtd->erasesize;
536 ubi->flash_size = ubi->mtd->size;
537
538 if (ubi->mtd->block_isbad && ubi->mtd->block_markbad)
539 ubi->bad_allowed = 1;
540
541 ubi->min_io_size = ubi->mtd->writesize;
542 ubi->hdrs_min_io_size = ubi->mtd->writesize >> ubi->mtd->subpage_sft;
543
544 /*
545 * Make sure minimal I/O unit is power of 2. Note, there is no
546 * fundamental reason for this assumption. It is just an optimization
547 * which allows us to avoid costly division operations.
548 */
549 if (!is_power_of_2(ubi->min_io_size)) {
550 ubi_err("min. I/O unit (%d) is not power of 2",
551 ubi->min_io_size);
552 return -EINVAL;
553 }
554
555 ubi_assert(ubi->hdrs_min_io_size > 0);
556 ubi_assert(ubi->hdrs_min_io_size <= ubi->min_io_size);
557 ubi_assert(ubi->min_io_size % ubi->hdrs_min_io_size == 0);
558
559 /* Calculate default aligned sizes of EC and VID headers */
560 ubi->ec_hdr_alsize = ALIGN(UBI_EC_HDR_SIZE, ubi->hdrs_min_io_size);
561 ubi->vid_hdr_alsize = ALIGN(UBI_VID_HDR_SIZE, ubi->hdrs_min_io_size);
562
563 dbg_msg("min_io_size %d", ubi->min_io_size);
564 dbg_msg("hdrs_min_io_size %d", ubi->hdrs_min_io_size);
565 dbg_msg("ec_hdr_alsize %d", ubi->ec_hdr_alsize);
566 dbg_msg("vid_hdr_alsize %d", ubi->vid_hdr_alsize);
567
568 if (ubi->vid_hdr_offset == 0)
569 /* Default offset */
570 ubi->vid_hdr_offset = ubi->vid_hdr_aloffset =
571 ubi->ec_hdr_alsize;
572 else {
573 ubi->vid_hdr_aloffset = ubi->vid_hdr_offset &
574 ~(ubi->hdrs_min_io_size - 1);
575 ubi->vid_hdr_shift = ubi->vid_hdr_offset -
576 ubi->vid_hdr_aloffset;
577 }
578
579 /* Similar for the data offset */
580 ubi->leb_start = ubi->vid_hdr_offset + UBI_EC_HDR_SIZE;
581 ubi->leb_start = ALIGN(ubi->leb_start, ubi->min_io_size);
582
583 dbg_msg("vid_hdr_offset %d", ubi->vid_hdr_offset);
584 dbg_msg("vid_hdr_aloffset %d", ubi->vid_hdr_aloffset);
585 dbg_msg("vid_hdr_shift %d", ubi->vid_hdr_shift);
586 dbg_msg("leb_start %d", ubi->leb_start);
587
588 /* The shift must be aligned to 32-bit boundary */
589 if (ubi->vid_hdr_shift % 4) {
590 ubi_err("unaligned VID header shift %d",
591 ubi->vid_hdr_shift);
592 return -EINVAL;
593 }
594
595 /* Check sanity */
596 if (ubi->vid_hdr_offset < UBI_EC_HDR_SIZE ||
597 ubi->leb_start < ubi->vid_hdr_offset + UBI_VID_HDR_SIZE ||
598 ubi->leb_start > ubi->peb_size - UBI_VID_HDR_SIZE ||
599 ubi->leb_start & (ubi->min_io_size - 1)) {
600 ubi_err("bad VID header (%d) or data offsets (%d)",
601 ubi->vid_hdr_offset, ubi->leb_start);
602 return -EINVAL;
603 }
604
605 /*
606 * It may happen that EC and VID headers are situated in one minimal
607 * I/O unit. In this case we can only accept this UBI image in
608 * read-only mode.
609 */
610 if (ubi->vid_hdr_offset + UBI_VID_HDR_SIZE <= ubi->hdrs_min_io_size) {
611 ubi_warn("EC and VID headers are in the same minimal I/O unit, "
612 "switch to read-only mode");
613 ubi->ro_mode = 1;
614 }
615
616 ubi->leb_size = ubi->peb_size - ubi->leb_start;
617
618 if (!(ubi->mtd->flags & MTD_WRITEABLE)) {
619 ubi_msg("MTD device %d is write-protected, attach in "
620 "read-only mode", ubi->mtd->index);
621 ubi->ro_mode = 1;
622 }
623
624 ubi_msg("physical eraseblock size: %d bytes (%d KiB)",
625 ubi->peb_size, ubi->peb_size >> 10);
626 ubi_msg("logical eraseblock size: %d bytes", ubi->leb_size);
627 ubi_msg("smallest flash I/O unit: %d", ubi->min_io_size);
628 if (ubi->hdrs_min_io_size != ubi->min_io_size)
629 ubi_msg("sub-page size: %d",
630 ubi->hdrs_min_io_size);
631 ubi_msg("VID header offset: %d (aligned %d)",
632 ubi->vid_hdr_offset, ubi->vid_hdr_aloffset);
633 ubi_msg("data offset: %d", ubi->leb_start);
634
635 /*
636 * Note, ideally, we have to initialize ubi->bad_peb_count here. But
637 * unfortunately, MTD does not provide this information. We should loop
638 * over all physical eraseblocks and invoke mtd->block_is_bad() for
639 * each physical eraseblock. So, we skip ubi->bad_peb_count
640 * uninitialized and initialize it after scanning.
641 */
642
643 return 0;
644}
645
646/**
647 * autoresize - re-size the volume which has the "auto-resize" flag set.
648 * @ubi: UBI device description object
649 * @vol_id: ID of the volume to re-size
650 *
651 * This function re-sizes the volume marked by the @UBI_VTBL_AUTORESIZE_FLG in
652 * the volume table to the largest possible size. See comments in ubi-header.h
653 * for more description of the flag. Returns zero in case of success and a
654 * negative error code in case of failure.
655 */
656static int autoresize(struct ubi_device *ubi, int vol_id)
657{
658 struct ubi_volume_desc desc;
659 struct ubi_volume *vol = ubi->volumes[vol_id];
660 int err, old_reserved_pebs = vol->reserved_pebs;
661
662 /*
663 * Clear the auto-resize flag in the volume in-memory copy of the
664 * volume table, and 'ubi_resize_volume()' will propogate this change
665 * to the flash.
666 */
667 ubi->vtbl[vol_id].flags &= ~UBI_VTBL_AUTORESIZE_FLG;
668
669 if (ubi->avail_pebs == 0) {
670 struct ubi_vtbl_record vtbl_rec;
671
672 /*
673 * No avalilable PEBs to re-size the volume, clear the flag on
674 * flash and exit.
675 */
676 memcpy(&vtbl_rec, &ubi->vtbl[vol_id],
677 sizeof(struct ubi_vtbl_record));
678 err = ubi_change_vtbl_record(ubi, vol_id, &vtbl_rec);
679 if (err)
680 ubi_err("cannot clean auto-resize flag for volume %d",
681 vol_id);
682 } else {
683 desc.vol = vol;
684 err = ubi_resize_volume(&desc,
685 old_reserved_pebs + ubi->avail_pebs);
686 if (err)
687 ubi_err("cannot auto-resize volume %d", vol_id);
688 }
689
690 if (err)
691 return err;
692
693 ubi_msg("volume %d (\"%s\") re-sized from %d to %d LEBs", vol_id,
694 vol->name, old_reserved_pebs, vol->reserved_pebs);
695 return 0;
696}
697
698/**
699 * ubi_attach_mtd_dev - attach an MTD device.
700 * @mtd_dev: MTD device description object
701 * @ubi_num: number to assign to the new UBI device
702 * @vid_hdr_offset: VID header offset
703 *
704 * This function attaches MTD device @mtd_dev to UBI and assign @ubi_num number
705 * to the newly created UBI device, unless @ubi_num is %UBI_DEV_NUM_AUTO, in
706 * which case this function finds a vacant device nubert and assings it
707 * automatically. Returns the new UBI device number in case of success and a
708 * negative error code in case of failure.
709 *
710 * Note, the invocations of this function has to be serialized by the
711 * @ubi_devices_mutex.
712 */
713int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num, int vid_hdr_offset)
714{
715 struct ubi_device *ubi;
716 int i, err;
717
718 /*
719 * Check if we already have the same MTD device attached.
720 *
721 * Note, this function assumes that UBI devices creations and deletions
722 * are serialized, so it does not take the &ubi_devices_lock.
723 */
724 for (i = 0; i < UBI_MAX_DEVICES; i++) {
725 ubi = ubi_devices[i];
726 if (ubi && mtd->index == ubi->mtd->index) {
727 dbg_err("mtd%d is already attached to ubi%d",
728 mtd->index, i);
729 return -EEXIST;
730 }
731 }
732
733 /*
734 * Make sure this MTD device is not emulated on top of an UBI volume
735 * already. Well, generally this recursion works fine, but there are
736 * different problems like the UBI module takes a reference to itself
737 * by attaching (and thus, opening) the emulated MTD device. This
738 * results in inability to unload the module. And in general it makes
739 * no sense to attach emulated MTD devices, so we prohibit this.
740 */
741 if (mtd->type == MTD_UBIVOLUME) {
742 ubi_err("refuse attaching mtd%d - it is already emulated on "
743 "top of UBI", mtd->index);
744 return -EINVAL;
745 }
746
747 if (ubi_num == UBI_DEV_NUM_AUTO) {
748 /* Search for an empty slot in the @ubi_devices array */
749 for (ubi_num = 0; ubi_num < UBI_MAX_DEVICES; ubi_num++)
750 if (!ubi_devices[ubi_num])
751 break;
752 if (ubi_num == UBI_MAX_DEVICES) {
753 dbg_err("only %d UBI devices may be created", UBI_MAX_DEVICES);
754 return -ENFILE;
755 }
756 } else {
757 if (ubi_num >= UBI_MAX_DEVICES)
758 return -EINVAL;
759
760 /* Make sure ubi_num is not busy */
761 if (ubi_devices[ubi_num]) {
762 dbg_err("ubi%d already exists", ubi_num);
763 return -EEXIST;
764 }
765 }
766
767 ubi = kzalloc(sizeof(struct ubi_device), GFP_KERNEL);
768 if (!ubi)
769 return -ENOMEM;
770
771 ubi->mtd = mtd;
772 ubi->ubi_num = ubi_num;
773 ubi->vid_hdr_offset = vid_hdr_offset;
774 ubi->autoresize_vol_id = -1;
775
776 mutex_init(&ubi->buf_mutex);
777 mutex_init(&ubi->ckvol_mutex);
778 mutex_init(&ubi->volumes_mutex);
779 spin_lock_init(&ubi->volumes_lock);
780
781 ubi_msg("attaching mtd%d to ubi%d", mtd->index, ubi_num);
782
783 err = io_init(ubi);
784 if (err)
785 goto out_free;
786
787 ubi->peb_buf1 = vmalloc(ubi->peb_size);
788 if (!ubi->peb_buf1)
789 goto out_free;
790
791 ubi->peb_buf2 = vmalloc(ubi->peb_size);
792 if (!ubi->peb_buf2)
793 goto out_free;
794
795#ifdef CONFIG_MTD_UBI_DEBUG
796 mutex_init(&ubi->dbg_buf_mutex);
797 ubi->dbg_peb_buf = vmalloc(ubi->peb_size);
798 if (!ubi->dbg_peb_buf)
799 goto out_free;
800#endif
801
802 err = attach_by_scanning(ubi);
803 if (err) {
804 dbg_err("failed to attach by scanning, error %d", err);
805 goto out_free;
806 }
807
808 if (ubi->autoresize_vol_id != -1) {
809 err = autoresize(ubi, ubi->autoresize_vol_id);
810 if (err)
811 goto out_detach;
812 }
813
814 err = uif_init(ubi);
815 if (err)
816 goto out_detach;
817
818 ubi->bgt_thread = kthread_create(ubi_thread, ubi, ubi->bgt_name);
819 if (IS_ERR(ubi->bgt_thread)) {
820 err = PTR_ERR(ubi->bgt_thread);
821 ubi_err("cannot spawn \"%s\", error %d", ubi->bgt_name,
822 err);
823 goto out_uif;
824 }
825
826 ubi_msg("attached mtd%d to ubi%d", mtd->index, ubi_num);
827 ubi_msg("MTD device name: \"%s\"", mtd->name);
828 ubi_msg("MTD device size: %llu MiB", ubi->flash_size >> 20);
829 ubi_msg("number of good PEBs: %d", ubi->good_peb_count);
830 ubi_msg("number of bad PEBs: %d", ubi->bad_peb_count);
831 ubi_msg("max. allowed volumes: %d", ubi->vtbl_slots);
832 ubi_msg("wear-leveling threshold: %d", CONFIG_MTD_UBI_WL_THRESHOLD);
833 ubi_msg("number of internal volumes: %d", UBI_INT_VOL_COUNT);
834 ubi_msg("number of user volumes: %d",
835 ubi->vol_count - UBI_INT_VOL_COUNT);
836 ubi_msg("available PEBs: %d", ubi->avail_pebs);
837 ubi_msg("total number of reserved PEBs: %d", ubi->rsvd_pebs);
838 ubi_msg("number of PEBs reserved for bad PEB handling: %d",
839 ubi->beb_rsvd_pebs);
840 ubi_msg("max/mean erase counter: %d/%d", ubi->max_ec, ubi->mean_ec);
841
842 /* Enable the background thread */
843 if (!DBG_DISABLE_BGT) {
844 ubi->thread_enabled = 1;
845 wake_up_process(ubi->bgt_thread);
846 }
847
848 ubi_devices[ubi_num] = ubi;
849 return ubi_num;
850
851out_uif:
852 uif_close(ubi);
853out_detach:
854 ubi_eba_close(ubi);
855 ubi_wl_close(ubi);
856 vfree(ubi->vtbl);
857out_free:
858 vfree(ubi->peb_buf1);
859 vfree(ubi->peb_buf2);
860#ifdef CONFIG_MTD_UBI_DEBUG
861 vfree(ubi->dbg_peb_buf);
862#endif
863 kfree(ubi);
864 return err;
865}
866
867/**
868 * ubi_detach_mtd_dev - detach an MTD device.
869 * @ubi_num: UBI device number to detach from
870 * @anyway: detach MTD even if device reference count is not zero
871 *
872 * This function destroys an UBI device number @ubi_num and detaches the
873 * underlying MTD device. Returns zero in case of success and %-EBUSY if the
874 * UBI device is busy and cannot be destroyed, and %-EINVAL if it does not
875 * exist.
876 *
877 * Note, the invocations of this function has to be serialized by the
878 * @ubi_devices_mutex.
879 */
880int ubi_detach_mtd_dev(int ubi_num, int anyway)
881{
882 struct ubi_device *ubi;
883
884 if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES)
885 return -EINVAL;
886
887 spin_lock(&ubi_devices_lock);
888 ubi = ubi_devices[ubi_num];
889 if (!ubi) {
890 spin_unlock(&ubi_devices_lock);
891 return -EINVAL;
892 }
893
894 if (ubi->ref_count) {
895 if (!anyway) {
896 spin_unlock(&ubi_devices_lock);
897 return -EBUSY;
898 }
899 /* This may only happen if there is a bug */
900 ubi_err("%s reference count %d, destroy anyway",
901 ubi->ubi_name, ubi->ref_count);
902 }
903 ubi_devices[ubi_num] = NULL;
904 spin_unlock(&ubi_devices_lock);
905
906 ubi_assert(ubi_num == ubi->ubi_num);
907 dbg_msg("detaching mtd%d from ubi%d", ubi->mtd->index, ubi_num);
908
909 /*
910 * Before freeing anything, we have to stop the background thread to
911 * prevent it from doing anything on this device while we are freeing.
912 */
913 if (ubi->bgt_thread)
914 kthread_stop(ubi->bgt_thread);
915
916 uif_close(ubi);
917 ubi_eba_close(ubi);
918 ubi_wl_close(ubi);
919 vfree(ubi->vtbl);
920 put_mtd_device(ubi->mtd);
921 vfree(ubi->peb_buf1);
922 vfree(ubi->peb_buf2);
923#ifdef CONFIG_MTD_UBI_DEBUG
924 vfree(ubi->dbg_peb_buf);
925#endif
926 ubi_msg("mtd%d is detached from ubi%d", ubi->mtd->index, ubi->ubi_num);
927 kfree(ubi);
928 return 0;
929}
930
931/**
932 * find_mtd_device - open an MTD device by its name or number.
933 * @mtd_dev: name or number of the device
934 *
935 * This function tries to open and MTD device described by @mtd_dev string,
936 * which is first treated as an ASCII number, and if it is not true, it is
937 * treated as MTD device name. Returns MTD device description object in case of
938 * success and a negative error code in case of failure.
939 */
940static struct mtd_info * __init open_mtd_device(const char *mtd_dev)
941{
942 struct mtd_info *mtd;
943 int mtd_num;
944 char *endp;
945
946 mtd_num = simple_strtoul(mtd_dev, &endp, 0);
947 if (*endp != '\0' || mtd_dev == endp) {
948 /*
949 * This does not look like an ASCII integer, probably this is
950 * MTD device name.
951 */
952 mtd = get_mtd_device_nm(mtd_dev);
953 } else
954 mtd = get_mtd_device(NULL, mtd_num);
955
956 return mtd;
957}
958
959int __init ubi_init(void)
960{
961 int err, i, k;
962
963 /* Ensure that EC and VID headers have correct size */
964 BUILD_BUG_ON(sizeof(struct ubi_ec_hdr) != 64);
965 BUILD_BUG_ON(sizeof(struct ubi_vid_hdr) != 64);
966
967 if (mtd_devs > UBI_MAX_DEVICES) {
968 ubi_err("too many MTD devices, maximum is %d", UBI_MAX_DEVICES);
969 return -EINVAL;
970 }
971
972 /* Create base sysfs directory and sysfs files */
973 ubi_class = class_create(THIS_MODULE, UBI_NAME_STR);
974 if (IS_ERR(ubi_class)) {
975 err = PTR_ERR(ubi_class);
976 ubi_err("cannot create UBI class");
977 goto out;
978 }
979
980 err = class_create_file(ubi_class, &ubi_version);
981 if (err) {
982 ubi_err("cannot create sysfs file");
983 goto out_class;
984 }
985
986 err = misc_register(&ubi_ctrl_cdev);
987 if (err) {
988 ubi_err("cannot register device");
989 goto out_version;
990 }
991
992#ifdef UBI_LINUX
993 ubi_wl_entry_slab = kmem_cache_create("ubi_wl_entry_slab",
994 sizeof(struct ubi_wl_entry),
995 0, 0, NULL);
996 if (!ubi_wl_entry_slab)
997 goto out_dev_unreg;
998#endif
999
1000 /* Attach MTD devices */
1001 for (i = 0; i < mtd_devs; i++) {
1002 struct mtd_dev_param *p = &mtd_dev_param[i];
1003 struct mtd_info *mtd;
1004
1005 cond_resched();
1006
1007 mtd = open_mtd_device(p->name);
1008 if (IS_ERR(mtd)) {
1009 err = PTR_ERR(mtd);
1010 goto out_detach;
1011 }
1012
1013 mutex_lock(&ubi_devices_mutex);
1014 err = ubi_attach_mtd_dev(mtd, UBI_DEV_NUM_AUTO,
1015 p->vid_hdr_offs);
1016 mutex_unlock(&ubi_devices_mutex);
1017 if (err < 0) {
1018 put_mtd_device(mtd);
1019 ubi_err("cannot attach mtd%d", mtd->index);
1020 goto out_detach;
1021 }
1022 }
1023
1024 return 0;
1025
1026out_detach:
1027 for (k = 0; k < i; k++)
1028 if (ubi_devices[k]) {
1029 mutex_lock(&ubi_devices_mutex);
1030 ubi_detach_mtd_dev(ubi_devices[k]->ubi_num, 1);
1031 mutex_unlock(&ubi_devices_mutex);
1032 }
1033#ifdef UBI_LINUX
1034 kmem_cache_destroy(ubi_wl_entry_slab);
1035out_dev_unreg:
1036#endif
1037 misc_deregister(&ubi_ctrl_cdev);
1038out_version:
1039 class_remove_file(ubi_class, &ubi_version);
1040out_class:
1041 class_destroy(ubi_class);
1042out:
1043 ubi_err("UBI error: cannot initialize UBI, error %d", err);
1044 return err;
1045}
1046module_init(ubi_init);
1047
1048void __exit ubi_exit(void)
1049{
1050 int i;
1051
1052 for (i = 0; i < UBI_MAX_DEVICES; i++)
1053 if (ubi_devices[i]) {
1054 mutex_lock(&ubi_devices_mutex);
1055 ubi_detach_mtd_dev(ubi_devices[i]->ubi_num, 1);
1056 mutex_unlock(&ubi_devices_mutex);
1057 }
1058 kmem_cache_destroy(ubi_wl_entry_slab);
1059 misc_deregister(&ubi_ctrl_cdev);
1060 class_remove_file(ubi_class, &ubi_version);
1061 class_destroy(ubi_class);
1062}
1063module_exit(ubi_exit);
1064
1065/**
1066 * bytes_str_to_int - convert a string representing number of bytes to an
1067 * integer.
1068 * @str: the string to convert
1069 *
1070 * This function returns positive resulting integer in case of success and a
1071 * negative error code in case of failure.
1072 */
1073static int __init bytes_str_to_int(const char *str)
1074{
1075 char *endp;
1076 unsigned long result;
1077
1078 result = simple_strtoul(str, &endp, 0);
1079 if (str == endp || result < 0) {
1080 printk(KERN_ERR "UBI error: incorrect bytes count: \"%s\"\n",
1081 str);
1082 return -EINVAL;
1083 }
1084
1085 switch (*endp) {
1086 case 'G':
1087 result *= 1024;
1088 case 'M':
1089 result *= 1024;
1090 case 'K':
1091 result *= 1024;
1092 if (endp[1] == 'i' && endp[2] == 'B')
1093 endp += 2;
1094 case '\0':
1095 break;
1096 default:
1097 printk(KERN_ERR "UBI error: incorrect bytes count: \"%s\"\n",
1098 str);
1099 return -EINVAL;
1100 }
1101
1102 return result;
1103}
1104
1105/**
1106 * ubi_mtd_param_parse - parse the 'mtd=' UBI parameter.
1107 * @val: the parameter value to parse
1108 * @kp: not used
1109 *
1110 * This function returns zero in case of success and a negative error code in
1111 * case of error.
1112 */
1113int __init ubi_mtd_param_parse(const char *val, struct kernel_param *kp)
1114{
1115 int i, len;
1116 struct mtd_dev_param *p;
1117 char buf[MTD_PARAM_LEN_MAX];
1118 char *pbuf = &buf[0];
1119 char *tokens[2] = {NULL, NULL};
1120
1121 if (!val)
1122 return -EINVAL;
1123
1124 if (mtd_devs == UBI_MAX_DEVICES) {
1125 printk(KERN_ERR "UBI error: too many parameters, max. is %d\n",
1126 UBI_MAX_DEVICES);
1127 return -EINVAL;
1128 }
1129
1130 len = strnlen(val, MTD_PARAM_LEN_MAX);
1131 if (len == MTD_PARAM_LEN_MAX) {
1132 printk(KERN_ERR "UBI error: parameter \"%s\" is too long, "
1133 "max. is %d\n", val, MTD_PARAM_LEN_MAX);
1134 return -EINVAL;
1135 }
1136
1137 if (len == 0) {
1138 printk(KERN_WARNING "UBI warning: empty 'mtd=' parameter - "
1139 "ignored\n");
1140 return 0;
1141 }
1142
1143 strcpy(buf, val);
1144
1145 /* Get rid of the final newline */
1146 if (buf[len - 1] == '\n')
1147 buf[len - 1] = '\0';
1148
1149 for (i = 0; i < 2; i++)
1150 tokens[i] = strsep(&pbuf, ",");
1151
1152 if (pbuf) {
1153 printk(KERN_ERR "UBI error: too many arguments at \"%s\"\n",
1154 val);
1155 return -EINVAL;
1156 }
1157
1158 p = &mtd_dev_param[mtd_devs];
1159 strcpy(&p->name[0], tokens[0]);
1160
1161 if (tokens[1])
1162 p->vid_hdr_offs = bytes_str_to_int(tokens[1]);
1163
1164 if (p->vid_hdr_offs < 0)
1165 return p->vid_hdr_offs;
1166
1167 mtd_devs += 1;
1168 return 0;
1169}
1170
1171module_param_call(mtd, ubi_mtd_param_parse, NULL, NULL, 000);
1172MODULE_PARM_DESC(mtd, "MTD devices to attach. Parameter format: "
1173 "mtd=<name|num>[,<vid_hdr_offs>].\n"
1174 "Multiple \"mtd\" parameters may be specified.\n"
1175 "MTD devices may be specified by their number or name.\n"
1176 "Optional \"vid_hdr_offs\" parameter specifies UBI VID "
1177 "header position and data starting position to be used "
1178 "by UBI.\n"
1179 "Example: mtd=content,1984 mtd=4 - attach MTD device"
1180 "with name \"content\" using VID header offset 1984, and "
1181 "MTD device number 4 with default VID header offset.");
1182
1183MODULE_VERSION(__stringify(UBI_VERSION));
1184MODULE_DESCRIPTION("UBI - Unsorted Block Images");
1185MODULE_AUTHOR("Artem Bityutskiy");
1186MODULE_LICENSE("GPL");