blob: d887a1e09d0b1d5f4f45e1b3f22d466bbfbc60b9 [file] [log] [blame]
Christophe Kerelloa994a802020-07-31 09:53:40 +02001// SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
2/*
3 * Copyright (C) STMicroelectronics 2020
4 */
5
6#include <common.h>
7#include <clk.h>
8#include <dm.h>
9#include <reset.h>
10#include <linux/bitfield.h>
11#include <linux/err.h>
12#include <linux/iopoll.h>
13#include <linux/ioport.h>
14
15/* FMC2 Controller Registers */
16#define FMC2_BCR1 0x0
17#define FMC2_BTR1 0x4
18#define FMC2_BCR(x) ((x) * 0x8 + FMC2_BCR1)
19#define FMC2_BTR(x) ((x) * 0x8 + FMC2_BTR1)
20#define FMC2_PCSCNTR 0x20
21#define FMC2_BWTR1 0x104
22#define FMC2_BWTR(x) ((x) * 0x8 + FMC2_BWTR1)
23
24/* Register: FMC2_BCR1 */
25#define FMC2_BCR1_CCLKEN BIT(20)
26#define FMC2_BCR1_FMC2EN BIT(31)
27
28/* Register: FMC2_BCRx */
29#define FMC2_BCR_MBKEN BIT(0)
30#define FMC2_BCR_MUXEN BIT(1)
31#define FMC2_BCR_MTYP GENMASK(3, 2)
32#define FMC2_BCR_MWID GENMASK(5, 4)
33#define FMC2_BCR_FACCEN BIT(6)
34#define FMC2_BCR_BURSTEN BIT(8)
35#define FMC2_BCR_WAITPOL BIT(9)
36#define FMC2_BCR_WAITCFG BIT(11)
37#define FMC2_BCR_WREN BIT(12)
38#define FMC2_BCR_WAITEN BIT(13)
39#define FMC2_BCR_EXTMOD BIT(14)
40#define FMC2_BCR_ASYNCWAIT BIT(15)
41#define FMC2_BCR_CPSIZE GENMASK(18, 16)
42#define FMC2_BCR_CBURSTRW BIT(19)
43#define FMC2_BCR_NBLSET GENMASK(23, 22)
44
45/* Register: FMC2_BTRx/FMC2_BWTRx */
46#define FMC2_BXTR_ADDSET GENMASK(3, 0)
47#define FMC2_BXTR_ADDHLD GENMASK(7, 4)
48#define FMC2_BXTR_DATAST GENMASK(15, 8)
49#define FMC2_BXTR_BUSTURN GENMASK(19, 16)
50#define FMC2_BTR_CLKDIV GENMASK(23, 20)
51#define FMC2_BTR_DATLAT GENMASK(27, 24)
52#define FMC2_BXTR_ACCMOD GENMASK(29, 28)
53#define FMC2_BXTR_DATAHLD GENMASK(31, 30)
54
55/* Register: FMC2_PCSCNTR */
56#define FMC2_PCSCNTR_CSCOUNT GENMASK(15, 0)
57#define FMC2_PCSCNTR_CNTBEN(x) BIT((x) + 16)
58
59#define FMC2_MAX_EBI_CE 4
60#define FMC2_MAX_BANKS 5
61
62#define FMC2_BCR_CPSIZE_0 0x0
63#define FMC2_BCR_CPSIZE_128 0x1
64#define FMC2_BCR_CPSIZE_256 0x2
65#define FMC2_BCR_CPSIZE_512 0x3
66#define FMC2_BCR_CPSIZE_1024 0x4
67
68#define FMC2_BCR_MWID_8 0x0
69#define FMC2_BCR_MWID_16 0x1
70
71#define FMC2_BCR_MTYP_SRAM 0x0
72#define FMC2_BCR_MTYP_PSRAM 0x1
73#define FMC2_BCR_MTYP_NOR 0x2
74
75#define FMC2_BXTR_EXTMOD_A 0x0
76#define FMC2_BXTR_EXTMOD_B 0x1
77#define FMC2_BXTR_EXTMOD_C 0x2
78#define FMC2_BXTR_EXTMOD_D 0x3
79
80#define FMC2_BCR_NBLSET_MAX 0x3
81#define FMC2_BXTR_ADDSET_MAX 0xf
82#define FMC2_BXTR_ADDHLD_MAX 0xf
83#define FMC2_BXTR_DATAST_MAX 0xff
84#define FMC2_BXTR_BUSTURN_MAX 0xf
85#define FMC2_BXTR_DATAHLD_MAX 0x3
86#define FMC2_BTR_CLKDIV_MAX 0xf
87#define FMC2_BTR_DATLAT_MAX 0xf
88#define FMC2_PCSCNTR_CSCOUNT_MAX 0xff
89
90#define FMC2_NSEC_PER_SEC 1000000000L
91
92enum stm32_fmc2_ebi_bank {
93 FMC2_EBI1 = 0,
94 FMC2_EBI2,
95 FMC2_EBI3,
96 FMC2_EBI4,
97 FMC2_NAND
98};
99
100enum stm32_fmc2_ebi_register_type {
101 FMC2_REG_BCR = 1,
102 FMC2_REG_BTR,
103 FMC2_REG_BWTR,
104 FMC2_REG_PCSCNTR
105};
106
107enum stm32_fmc2_ebi_transaction_type {
108 FMC2_ASYNC_MODE_1_SRAM = 0,
109 FMC2_ASYNC_MODE_1_PSRAM,
110 FMC2_ASYNC_MODE_A_SRAM,
111 FMC2_ASYNC_MODE_A_PSRAM,
112 FMC2_ASYNC_MODE_2_NOR,
113 FMC2_ASYNC_MODE_B_NOR,
114 FMC2_ASYNC_MODE_C_NOR,
115 FMC2_ASYNC_MODE_D_NOR,
116 FMC2_SYNC_READ_SYNC_WRITE_PSRAM,
117 FMC2_SYNC_READ_ASYNC_WRITE_PSRAM,
118 FMC2_SYNC_READ_SYNC_WRITE_NOR,
119 FMC2_SYNC_READ_ASYNC_WRITE_NOR
120};
121
122enum stm32_fmc2_ebi_buswidth {
123 FMC2_BUSWIDTH_8 = 8,
124 FMC2_BUSWIDTH_16 = 16
125};
126
127enum stm32_fmc2_ebi_cpsize {
128 FMC2_CPSIZE_0 = 0,
129 FMC2_CPSIZE_128 = 128,
130 FMC2_CPSIZE_256 = 256,
131 FMC2_CPSIZE_512 = 512,
132 FMC2_CPSIZE_1024 = 1024
133};
134
135struct stm32_fmc2_ebi {
136 struct clk clk;
137 fdt_addr_t io_base;
138 u8 bank_assigned;
139};
140
141/*
142 * struct stm32_fmc2_prop - STM32 FMC2 EBI property
143 * @name: the device tree binding name of the property
144 * @bprop: indicate that it is a boolean property
145 * @mprop: indicate that it is a mandatory property
146 * @reg_type: the register that have to be modified
147 * @reg_mask: the bit that have to be modified in the selected register
148 * in case of it is a boolean property
149 * @reset_val: the default value that have to be set in case the property
150 * has not been defined in the device tree
151 * @check: this callback ckecks that the property is compliant with the
152 * transaction type selected
153 * @calculate: this callback is called to calculate for exemple a timing
154 * set in nanoseconds in the device tree in clock cycles or in
155 * clock period
156 * @set: this callback applies the values in the registers
157 */
158struct stm32_fmc2_prop {
159 const char *name;
160 bool bprop;
161 bool mprop;
162 int reg_type;
163 u32 reg_mask;
164 u32 reset_val;
165 int (*check)(struct stm32_fmc2_ebi *ebi,
166 const struct stm32_fmc2_prop *prop, int cs);
167 u32 (*calculate)(struct stm32_fmc2_ebi *ebi, int cs, u32 setup);
168 int (*set)(struct stm32_fmc2_ebi *ebi,
169 const struct stm32_fmc2_prop *prop,
170 int cs, u32 setup);
171};
172
173static int stm32_fmc2_ebi_check_mux(struct stm32_fmc2_ebi *ebi,
174 const struct stm32_fmc2_prop *prop,
175 int cs)
176{
177 u32 bcr = readl(ebi->io_base + FMC2_BCR(cs));
178
179 if (bcr & FMC2_BCR_MTYP)
180 return 0;
181
182 return -EINVAL;
183}
184
185static int stm32_fmc2_ebi_check_waitcfg(struct stm32_fmc2_ebi *ebi,
186 const struct stm32_fmc2_prop *prop,
187 int cs)
188{
189 u32 bcr = readl(ebi->io_base + FMC2_BCR(cs));
190 u32 val = FIELD_PREP(FMC2_BCR_MTYP, FMC2_BCR_MTYP_NOR);
191
192 if ((bcr & FMC2_BCR_MTYP) == val && bcr & FMC2_BCR_BURSTEN)
193 return 0;
194
195 return -EINVAL;
196}
197
198static int stm32_fmc2_ebi_check_sync_trans(struct stm32_fmc2_ebi *ebi,
199 const struct stm32_fmc2_prop *prop,
200 int cs)
201{
202 u32 bcr = readl(ebi->io_base + FMC2_BCR(cs));
203
204 if (bcr & FMC2_BCR_BURSTEN)
205 return 0;
206
207 return -EINVAL;
208}
209
210static int stm32_fmc2_ebi_check_async_trans(struct stm32_fmc2_ebi *ebi,
211 const struct stm32_fmc2_prop *prop,
212 int cs)
213{
214 u32 bcr = readl(ebi->io_base + FMC2_BCR(cs));
215
216 if (!(bcr & FMC2_BCR_BURSTEN) || !(bcr & FMC2_BCR_CBURSTRW))
217 return 0;
218
219 return -EINVAL;
220}
221
222static int stm32_fmc2_ebi_check_cpsize(struct stm32_fmc2_ebi *ebi,
223 const struct stm32_fmc2_prop *prop,
224 int cs)
225{
226 u32 bcr = readl(ebi->io_base + FMC2_BCR(cs));
227 u32 val = FIELD_PREP(FMC2_BCR_MTYP, FMC2_BCR_MTYP_PSRAM);
228
229 if ((bcr & FMC2_BCR_MTYP) == val && bcr & FMC2_BCR_BURSTEN)
230 return 0;
231
232 return -EINVAL;
233}
234
235static int stm32_fmc2_ebi_check_address_hold(struct stm32_fmc2_ebi *ebi,
236 const struct stm32_fmc2_prop *prop,
237 int cs)
238{
239 u32 bcr = readl(ebi->io_base + FMC2_BCR(cs));
240 u32 bxtr = prop->reg_type == FMC2_REG_BWTR ?
241 readl(ebi->io_base + FMC2_BWTR(cs)) :
242 readl(ebi->io_base + FMC2_BTR(cs));
243 u32 val = FIELD_PREP(FMC2_BXTR_ACCMOD, FMC2_BXTR_EXTMOD_D);
244
245 if ((!(bcr & FMC2_BCR_BURSTEN) || !(bcr & FMC2_BCR_CBURSTRW)) &&
246 ((bxtr & FMC2_BXTR_ACCMOD) == val || bcr & FMC2_BCR_MUXEN))
247 return 0;
248
249 return -EINVAL;
250}
251
252static int stm32_fmc2_ebi_check_clk_period(struct stm32_fmc2_ebi *ebi,
253 const struct stm32_fmc2_prop *prop,
254 int cs)
255{
256 u32 bcr = readl(ebi->io_base + FMC2_BCR(cs));
257 u32 bcr1 = cs ? readl(ebi->io_base + FMC2_BCR1) : bcr;
258
259 if (bcr & FMC2_BCR_BURSTEN && (!cs || !(bcr1 & FMC2_BCR1_CCLKEN)))
260 return 0;
261
262 return -EINVAL;
263}
264
265static int stm32_fmc2_ebi_check_cclk(struct stm32_fmc2_ebi *ebi,
266 const struct stm32_fmc2_prop *prop,
267 int cs)
268{
269 if (cs)
270 return -EINVAL;
271
272 return stm32_fmc2_ebi_check_sync_trans(ebi, prop, cs);
273}
274
275static u32 stm32_fmc2_ebi_ns_to_clock_cycles(struct stm32_fmc2_ebi *ebi,
276 int cs, u32 setup)
277{
278 unsigned long hclk = clk_get_rate(&ebi->clk);
279 unsigned long hclkp = FMC2_NSEC_PER_SEC / (hclk / 1000);
280
281 return DIV_ROUND_UP(setup * 1000, hclkp);
282}
283
284static u32 stm32_fmc2_ebi_ns_to_clk_period(struct stm32_fmc2_ebi *ebi,
285 int cs, u32 setup)
286{
287 u32 nb_clk_cycles = stm32_fmc2_ebi_ns_to_clock_cycles(ebi, cs, setup);
288 u32 bcr = readl(ebi->io_base + FMC2_BCR1);
289 u32 btr = bcr & FMC2_BCR1_CCLKEN || !cs ?
290 readl(ebi->io_base + FMC2_BTR1) :
291 readl(ebi->io_base + FMC2_BTR(cs));
292 u32 clk_period = FIELD_GET(FMC2_BTR_CLKDIV, btr) + 1;
293
294 return DIV_ROUND_UP(nb_clk_cycles, clk_period);
295}
296
297static int stm32_fmc2_ebi_get_reg(int reg_type, int cs, u32 *reg)
298{
299 switch (reg_type) {
300 case FMC2_REG_BCR:
301 *reg = FMC2_BCR(cs);
302 break;
303 case FMC2_REG_BTR:
304 *reg = FMC2_BTR(cs);
305 break;
306 case FMC2_REG_BWTR:
307 *reg = FMC2_BWTR(cs);
308 break;
309 case FMC2_REG_PCSCNTR:
310 *reg = FMC2_PCSCNTR;
311 break;
312 default:
313 return -EINVAL;
314 }
315
316 return 0;
317}
318
319static int stm32_fmc2_ebi_set_bit_field(struct stm32_fmc2_ebi *ebi,
320 const struct stm32_fmc2_prop *prop,
321 int cs, u32 setup)
322{
323 u32 reg;
324 int ret;
325
326 ret = stm32_fmc2_ebi_get_reg(prop->reg_type, cs, &reg);
327 if (ret)
328 return ret;
329
330 clrsetbits_le32(ebi->io_base + reg, prop->reg_mask,
331 setup ? prop->reg_mask : 0);
332
333 return 0;
334}
335
336static int stm32_fmc2_ebi_set_trans_type(struct stm32_fmc2_ebi *ebi,
337 const struct stm32_fmc2_prop *prop,
338 int cs, u32 setup)
339{
340 u32 bcr_mask, bcr = FMC2_BCR_WREN;
341 u32 btr_mask, btr = 0;
342 u32 bwtr_mask, bwtr = 0;
343
344 bwtr_mask = FMC2_BXTR_ACCMOD;
345 btr_mask = FMC2_BXTR_ACCMOD;
346 bcr_mask = FMC2_BCR_MUXEN | FMC2_BCR_MTYP | FMC2_BCR_FACCEN |
347 FMC2_BCR_WREN | FMC2_BCR_WAITEN | FMC2_BCR_BURSTEN |
348 FMC2_BCR_EXTMOD | FMC2_BCR_CBURSTRW;
349
350 switch (setup) {
351 case FMC2_ASYNC_MODE_1_SRAM:
352 bcr |= FIELD_PREP(FMC2_BCR_MTYP, FMC2_BCR_MTYP_SRAM);
353 /*
354 * MUXEN = 0, MTYP = 0, FACCEN = 0, BURSTEN = 0, WAITEN = 0,
355 * WREN = 1, EXTMOD = 0, CBURSTRW = 0, ACCMOD = 0
356 */
357 break;
358 case FMC2_ASYNC_MODE_1_PSRAM:
359 /*
360 * MUXEN = 0, MTYP = 1, FACCEN = 0, BURSTEN = 0, WAITEN = 0,
361 * WREN = 1, EXTMOD = 0, CBURSTRW = 0, ACCMOD = 0
362 */
363 bcr |= FIELD_PREP(FMC2_BCR_MTYP, FMC2_BCR_MTYP_PSRAM);
364 break;
365 case FMC2_ASYNC_MODE_A_SRAM:
366 /*
367 * MUXEN = 0, MTYP = 0, FACCEN = 0, BURSTEN = 0, WAITEN = 0,
368 * WREN = 1, EXTMOD = 1, CBURSTRW = 0, ACCMOD = 0
369 */
370 bcr |= FIELD_PREP(FMC2_BCR_MTYP, FMC2_BCR_MTYP_SRAM);
371 bcr |= FMC2_BCR_EXTMOD;
372 btr |= FIELD_PREP(FMC2_BXTR_ACCMOD, FMC2_BXTR_EXTMOD_A);
373 bwtr |= FIELD_PREP(FMC2_BXTR_ACCMOD, FMC2_BXTR_EXTMOD_A);
374 break;
375 case FMC2_ASYNC_MODE_A_PSRAM:
376 /*
377 * MUXEN = 0, MTYP = 1, FACCEN = 0, BURSTEN = 0, WAITEN = 0,
378 * WREN = 1, EXTMOD = 1, CBURSTRW = 0, ACCMOD = 0
379 */
380 bcr |= FIELD_PREP(FMC2_BCR_MTYP, FMC2_BCR_MTYP_PSRAM);
381 bcr |= FMC2_BCR_EXTMOD;
382 btr |= FIELD_PREP(FMC2_BXTR_ACCMOD, FMC2_BXTR_EXTMOD_A);
383 bwtr |= FIELD_PREP(FMC2_BXTR_ACCMOD, FMC2_BXTR_EXTMOD_A);
384 break;
385 case FMC2_ASYNC_MODE_2_NOR:
386 /*
387 * MUXEN = 0, MTYP = 2, FACCEN = 1, BURSTEN = 0, WAITEN = 0,
388 * WREN = 1, EXTMOD = 0, CBURSTRW = 0, ACCMOD = 0
389 */
390 bcr |= FIELD_PREP(FMC2_BCR_MTYP, FMC2_BCR_MTYP_NOR);
391 bcr |= FMC2_BCR_FACCEN;
392 break;
393 case FMC2_ASYNC_MODE_B_NOR:
394 /*
395 * MUXEN = 0, MTYP = 2, FACCEN = 1, BURSTEN = 0, WAITEN = 0,
396 * WREN = 1, EXTMOD = 1, CBURSTRW = 0, ACCMOD = 1
397 */
398 bcr |= FIELD_PREP(FMC2_BCR_MTYP, FMC2_BCR_MTYP_NOR);
399 bcr |= FMC2_BCR_FACCEN | FMC2_BCR_EXTMOD;
400 btr |= FIELD_PREP(FMC2_BXTR_ACCMOD, FMC2_BXTR_EXTMOD_B);
401 bwtr |= FIELD_PREP(FMC2_BXTR_ACCMOD, FMC2_BXTR_EXTMOD_B);
402 break;
403 case FMC2_ASYNC_MODE_C_NOR:
404 /*
405 * MUXEN = 0, MTYP = 2, FACCEN = 1, BURSTEN = 0, WAITEN = 0,
406 * WREN = 1, EXTMOD = 1, CBURSTRW = 0, ACCMOD = 2
407 */
408 bcr |= FIELD_PREP(FMC2_BCR_MTYP, FMC2_BCR_MTYP_NOR);
409 bcr |= FMC2_BCR_FACCEN | FMC2_BCR_EXTMOD;
410 btr |= FIELD_PREP(FMC2_BXTR_ACCMOD, FMC2_BXTR_EXTMOD_C);
411 bwtr |= FIELD_PREP(FMC2_BXTR_ACCMOD, FMC2_BXTR_EXTMOD_C);
412 break;
413 case FMC2_ASYNC_MODE_D_NOR:
414 /*
415 * MUXEN = 0, MTYP = 2, FACCEN = 1, BURSTEN = 0, WAITEN = 0,
416 * WREN = 1, EXTMOD = 1, CBURSTRW = 0, ACCMOD = 3
417 */
418 bcr |= FIELD_PREP(FMC2_BCR_MTYP, FMC2_BCR_MTYP_NOR);
419 bcr |= FMC2_BCR_FACCEN | FMC2_BCR_EXTMOD;
420 btr |= FIELD_PREP(FMC2_BXTR_ACCMOD, FMC2_BXTR_EXTMOD_D);
421 bwtr |= FIELD_PREP(FMC2_BXTR_ACCMOD, FMC2_BXTR_EXTMOD_D);
422 break;
423 case FMC2_SYNC_READ_SYNC_WRITE_PSRAM:
424 /*
425 * MUXEN = 0, MTYP = 1, FACCEN = 0, BURSTEN = 1, WAITEN = 0,
426 * WREN = 1, EXTMOD = 0, CBURSTRW = 1, ACCMOD = 0
427 */
428 bcr |= FIELD_PREP(FMC2_BCR_MTYP, FMC2_BCR_MTYP_PSRAM);
429 bcr |= FMC2_BCR_BURSTEN | FMC2_BCR_CBURSTRW;
430 break;
431 case FMC2_SYNC_READ_ASYNC_WRITE_PSRAM:
432 /*
433 * MUXEN = 0, MTYP = 1, FACCEN = 0, BURSTEN = 1, WAITEN = 0,
434 * WREN = 1, EXTMOD = 0, CBURSTRW = 0, ACCMOD = 0
435 */
436 bcr |= FIELD_PREP(FMC2_BCR_MTYP, FMC2_BCR_MTYP_PSRAM);
437 bcr |= FMC2_BCR_BURSTEN;
438 break;
439 case FMC2_SYNC_READ_SYNC_WRITE_NOR:
440 /*
441 * MUXEN = 0, MTYP = 2, FACCEN = 1, BURSTEN = 1, WAITEN = 0,
442 * WREN = 1, EXTMOD = 0, CBURSTRW = 1, ACCMOD = 0
443 */
444 bcr |= FIELD_PREP(FMC2_BCR_MTYP, FMC2_BCR_MTYP_NOR);
445 bcr |= FMC2_BCR_FACCEN | FMC2_BCR_BURSTEN | FMC2_BCR_CBURSTRW;
446 break;
447 case FMC2_SYNC_READ_ASYNC_WRITE_NOR:
448 /*
449 * MUXEN = 0, MTYP = 2, FACCEN = 1, BURSTEN = 1, WAITEN = 0,
450 * WREN = 1, EXTMOD = 0, CBURSTRW = 0, ACCMOD = 0
451 */
452 bcr |= FIELD_PREP(FMC2_BCR_MTYP, FMC2_BCR_MTYP_NOR);
453 bcr |= FMC2_BCR_FACCEN | FMC2_BCR_BURSTEN;
454 break;
455 default:
456 /* Type of transaction not supported */
457 return -EINVAL;
458 }
459
460 if (bcr & FMC2_BCR_EXTMOD)
461 clrsetbits_le32(ebi->io_base + FMC2_BWTR(cs),
462 bwtr_mask, bwtr);
463 clrsetbits_le32(ebi->io_base + FMC2_BTR(cs), btr_mask, btr);
464 clrsetbits_le32(ebi->io_base + FMC2_BCR(cs), bcr_mask, bcr);
465
466 return 0;
467}
468
469static int stm32_fmc2_ebi_set_buswidth(struct stm32_fmc2_ebi *ebi,
470 const struct stm32_fmc2_prop *prop,
471 int cs, u32 setup)
472{
473 u32 val;
474
475 switch (setup) {
476 case FMC2_BUSWIDTH_8:
477 val = FIELD_PREP(FMC2_BCR_MWID, FMC2_BCR_MWID_8);
478 break;
479 case FMC2_BUSWIDTH_16:
480 val = FIELD_PREP(FMC2_BCR_MWID, FMC2_BCR_MWID_16);
481 break;
482 default:
483 /* Buswidth not supported */
484 return -EINVAL;
485 }
486
487 clrsetbits_le32(ebi->io_base + FMC2_BCR(cs), FMC2_BCR_MWID, val);
488
489 return 0;
490}
491
492static int stm32_fmc2_ebi_set_cpsize(struct stm32_fmc2_ebi *ebi,
493 const struct stm32_fmc2_prop *prop,
494 int cs, u32 setup)
495{
496 u32 val;
497
498 switch (setup) {
499 case FMC2_CPSIZE_0:
500 val = FIELD_PREP(FMC2_BCR_CPSIZE, FMC2_BCR_CPSIZE_0);
501 break;
502 case FMC2_CPSIZE_128:
503 val = FIELD_PREP(FMC2_BCR_CPSIZE, FMC2_BCR_CPSIZE_128);
504 break;
505 case FMC2_CPSIZE_256:
506 val = FIELD_PREP(FMC2_BCR_CPSIZE, FMC2_BCR_CPSIZE_256);
507 break;
508 case FMC2_CPSIZE_512:
509 val = FIELD_PREP(FMC2_BCR_CPSIZE, FMC2_BCR_CPSIZE_512);
510 break;
511 case FMC2_CPSIZE_1024:
512 val = FIELD_PREP(FMC2_BCR_CPSIZE, FMC2_BCR_CPSIZE_1024);
513 break;
514 default:
515 /* Cpsize not supported */
516 return -EINVAL;
517 }
518
519 clrsetbits_le32(ebi->io_base + FMC2_BCR(cs), FMC2_BCR_CPSIZE, val);
520
521 return 0;
522}
523
524static int stm32_fmc2_ebi_set_bl_setup(struct stm32_fmc2_ebi *ebi,
525 const struct stm32_fmc2_prop *prop,
526 int cs, u32 setup)
527{
528 u32 val;
529
530 val = min_t(u32, setup, FMC2_BCR_NBLSET_MAX);
531 val = FIELD_PREP(FMC2_BCR_NBLSET, val);
532 clrsetbits_le32(ebi->io_base + FMC2_BCR(cs), FMC2_BCR_NBLSET, val);
533
534 return 0;
535}
536
537static int stm32_fmc2_ebi_set_address_setup(struct stm32_fmc2_ebi *ebi,
538 const struct stm32_fmc2_prop *prop,
539 int cs, u32 setup)
540{
541 u32 bcr = readl(ebi->io_base + FMC2_BCR(cs));
542 u32 bxtr = prop->reg_type == FMC2_REG_BWTR ?
543 readl(ebi->io_base + FMC2_BWTR(cs)) :
544 readl(ebi->io_base + FMC2_BTR(cs));
545 u32 reg, val = FIELD_PREP(FMC2_BXTR_ACCMOD, FMC2_BXTR_EXTMOD_D);
546 int ret;
547
548 ret = stm32_fmc2_ebi_get_reg(prop->reg_type, cs, &reg);
549 if (ret)
550 return ret;
551
552 if ((bxtr & FMC2_BXTR_ACCMOD) == val || bcr & FMC2_BCR_MUXEN)
553 val = clamp_val(setup, 1, FMC2_BXTR_ADDSET_MAX);
554 else
555 val = min_t(u32, setup, FMC2_BXTR_ADDSET_MAX);
556 val = FIELD_PREP(FMC2_BXTR_ADDSET, val);
557 clrsetbits_le32(ebi->io_base + reg, FMC2_BXTR_ADDSET, val);
558
559 return 0;
560}
561
562static int stm32_fmc2_ebi_set_address_hold(struct stm32_fmc2_ebi *ebi,
563 const struct stm32_fmc2_prop *prop,
564 int cs, u32 setup)
565{
566 u32 val, reg;
567 int ret;
568
569 ret = stm32_fmc2_ebi_get_reg(prop->reg_type, cs, &reg);
570 if (ret)
571 return ret;
572
573 val = clamp_val(setup, 1, FMC2_BXTR_ADDHLD_MAX);
574 val = FIELD_PREP(FMC2_BXTR_ADDHLD, val);
575 clrsetbits_le32(ebi->io_base + reg, FMC2_BXTR_ADDHLD, val);
576
577 return 0;
578}
579
580static int stm32_fmc2_ebi_set_data_setup(struct stm32_fmc2_ebi *ebi,
581 const struct stm32_fmc2_prop *prop,
582 int cs, u32 setup)
583{
584 u32 val, reg;
585 int ret;
586
587 ret = stm32_fmc2_ebi_get_reg(prop->reg_type, cs, &reg);
588 if (ret)
589 return ret;
590
591 val = clamp_val(setup, 1, FMC2_BXTR_DATAST_MAX);
592 val = FIELD_PREP(FMC2_BXTR_DATAST, val);
593 clrsetbits_le32(ebi->io_base + reg, FMC2_BXTR_DATAST, val);
594
595 return 0;
596}
597
598static int stm32_fmc2_ebi_set_bus_turnaround(struct stm32_fmc2_ebi *ebi,
599 const struct stm32_fmc2_prop *prop,
600 int cs, u32 setup)
601{
602 u32 val, reg;
603 int ret;
604
605 ret = stm32_fmc2_ebi_get_reg(prop->reg_type, cs, &reg);
606 if (ret)
607 return ret;
608
609 val = setup ? min_t(u32, setup - 1, FMC2_BXTR_BUSTURN_MAX) : 0;
610 val = FIELD_PREP(FMC2_BXTR_BUSTURN, val);
611 clrsetbits_le32(ebi->io_base + reg, FMC2_BXTR_BUSTURN, val);
612
613 return 0;
614}
615
616static int stm32_fmc2_ebi_set_data_hold(struct stm32_fmc2_ebi *ebi,
617 const struct stm32_fmc2_prop *prop,
618 int cs, u32 setup)
619{
620 u32 val, reg;
621 int ret;
622
623 ret = stm32_fmc2_ebi_get_reg(prop->reg_type, cs, &reg);
624 if (ret)
625 return ret;
626
627 if (prop->reg_type == FMC2_REG_BWTR)
628 val = setup ? min_t(u32, setup - 1, FMC2_BXTR_DATAHLD_MAX) : 0;
629 else
630 val = min_t(u32, setup, FMC2_BXTR_DATAHLD_MAX);
631 val = FIELD_PREP(FMC2_BXTR_DATAHLD, val);
632 clrsetbits_le32(ebi->io_base + reg, FMC2_BXTR_DATAHLD, val);
633
634 return 0;
635}
636
637static int stm32_fmc2_ebi_set_clk_period(struct stm32_fmc2_ebi *ebi,
638 const struct stm32_fmc2_prop *prop,
639 int cs, u32 setup)
640{
641 u32 val;
642
643 val = setup ? clamp_val(setup - 1, 1, FMC2_BTR_CLKDIV_MAX) : 1;
644 val = FIELD_PREP(FMC2_BTR_CLKDIV, val);
645 clrsetbits_le32(ebi->io_base + FMC2_BTR(cs), FMC2_BTR_CLKDIV, val);
646
647 return 0;
648}
649
650static int stm32_fmc2_ebi_set_data_latency(struct stm32_fmc2_ebi *ebi,
651 const struct stm32_fmc2_prop *prop,
652 int cs, u32 setup)
653{
654 u32 val;
655
656 val = setup > 1 ? min_t(u32, setup - 2, FMC2_BTR_DATLAT_MAX) : 0;
657 val = FIELD_PREP(FMC2_BTR_DATLAT, val);
658 clrsetbits_le32(ebi->io_base + FMC2_BTR(cs), FMC2_BTR_DATLAT, val);
659
660 return 0;
661}
662
663static int stm32_fmc2_ebi_set_max_low_pulse(struct stm32_fmc2_ebi *ebi,
664 const struct stm32_fmc2_prop *prop,
665 int cs, u32 setup)
666{
667 u32 old_val, new_val, pcscntr;
668
669 if (setup < 1)
670 return 0;
671
672 pcscntr = readl(ebi->io_base + FMC2_PCSCNTR);
673
674 /* Enable counter for the bank */
675 setbits_le32(ebi->io_base + FMC2_PCSCNTR, FMC2_PCSCNTR_CNTBEN(cs));
676
677 new_val = min_t(u32, setup - 1, FMC2_PCSCNTR_CSCOUNT_MAX);
678 old_val = FIELD_GET(FMC2_PCSCNTR_CSCOUNT, pcscntr);
679 if (old_val && new_val > old_val)
680 /* Keep current counter value */
681 return 0;
682
683 new_val = FIELD_PREP(FMC2_PCSCNTR_CSCOUNT, new_val);
684 clrsetbits_le32(ebi->io_base + FMC2_PCSCNTR,
685 FMC2_PCSCNTR_CSCOUNT, new_val);
686
687 return 0;
688}
689
690static const struct stm32_fmc2_prop stm32_fmc2_child_props[] = {
691 /* st,fmc2-ebi-cs-trans-type must be the first property */
692 {
693 .name = "st,fmc2-ebi-cs-transaction-type",
694 .mprop = true,
695 .set = stm32_fmc2_ebi_set_trans_type,
696 },
697 {
698 .name = "st,fmc2-ebi-cs-cclk-enable",
699 .bprop = true,
700 .reg_type = FMC2_REG_BCR,
701 .reg_mask = FMC2_BCR1_CCLKEN,
702 .check = stm32_fmc2_ebi_check_cclk,
703 .set = stm32_fmc2_ebi_set_bit_field,
704 },
705 {
706 .name = "st,fmc2-ebi-cs-mux-enable",
707 .bprop = true,
708 .reg_type = FMC2_REG_BCR,
709 .reg_mask = FMC2_BCR_MUXEN,
710 .check = stm32_fmc2_ebi_check_mux,
711 .set = stm32_fmc2_ebi_set_bit_field,
712 },
713 {
714 .name = "st,fmc2-ebi-cs-buswidth",
715 .reset_val = FMC2_BUSWIDTH_16,
716 .set = stm32_fmc2_ebi_set_buswidth,
717 },
718 {
719 .name = "st,fmc2-ebi-cs-waitpol-high",
720 .bprop = true,
721 .reg_type = FMC2_REG_BCR,
722 .reg_mask = FMC2_BCR_WAITPOL,
723 .set = stm32_fmc2_ebi_set_bit_field,
724 },
725 {
726 .name = "st,fmc2-ebi-cs-waitcfg-enable",
727 .bprop = true,
728 .reg_type = FMC2_REG_BCR,
729 .reg_mask = FMC2_BCR_WAITCFG,
730 .check = stm32_fmc2_ebi_check_waitcfg,
731 .set = stm32_fmc2_ebi_set_bit_field,
732 },
733 {
734 .name = "st,fmc2-ebi-cs-wait-enable",
735 .bprop = true,
736 .reg_type = FMC2_REG_BCR,
737 .reg_mask = FMC2_BCR_WAITEN,
738 .check = stm32_fmc2_ebi_check_sync_trans,
739 .set = stm32_fmc2_ebi_set_bit_field,
740 },
741 {
742 .name = "st,fmc2-ebi-cs-asyncwait-enable",
743 .bprop = true,
744 .reg_type = FMC2_REG_BCR,
745 .reg_mask = FMC2_BCR_ASYNCWAIT,
746 .check = stm32_fmc2_ebi_check_async_trans,
747 .set = stm32_fmc2_ebi_set_bit_field,
748 },
749 {
750 .name = "st,fmc2-ebi-cs-cpsize",
751 .check = stm32_fmc2_ebi_check_cpsize,
752 .set = stm32_fmc2_ebi_set_cpsize,
753 },
754 {
755 .name = "st,fmc2-ebi-cs-byte-lane-setup-ns",
756 .calculate = stm32_fmc2_ebi_ns_to_clock_cycles,
757 .set = stm32_fmc2_ebi_set_bl_setup,
758 },
759 {
760 .name = "st,fmc2-ebi-cs-address-setup-ns",
761 .reg_type = FMC2_REG_BTR,
762 .reset_val = FMC2_BXTR_ADDSET_MAX,
763 .check = stm32_fmc2_ebi_check_async_trans,
764 .calculate = stm32_fmc2_ebi_ns_to_clock_cycles,
765 .set = stm32_fmc2_ebi_set_address_setup,
766 },
767 {
768 .name = "st,fmc2-ebi-cs-address-hold-ns",
769 .reg_type = FMC2_REG_BTR,
770 .reset_val = FMC2_BXTR_ADDHLD_MAX,
771 .check = stm32_fmc2_ebi_check_address_hold,
772 .calculate = stm32_fmc2_ebi_ns_to_clock_cycles,
773 .set = stm32_fmc2_ebi_set_address_hold,
774 },
775 {
776 .name = "st,fmc2-ebi-cs-data-setup-ns",
777 .reg_type = FMC2_REG_BTR,
778 .reset_val = FMC2_BXTR_DATAST_MAX,
779 .check = stm32_fmc2_ebi_check_async_trans,
780 .calculate = stm32_fmc2_ebi_ns_to_clock_cycles,
781 .set = stm32_fmc2_ebi_set_data_setup,
782 },
783 {
784 .name = "st,fmc2-ebi-cs-bus-turnaround-ns",
785 .reg_type = FMC2_REG_BTR,
786 .reset_val = FMC2_BXTR_BUSTURN_MAX + 1,
787 .calculate = stm32_fmc2_ebi_ns_to_clock_cycles,
788 .set = stm32_fmc2_ebi_set_bus_turnaround,
789 },
790 {
791 .name = "st,fmc2-ebi-cs-data-hold-ns",
792 .reg_type = FMC2_REG_BTR,
793 .check = stm32_fmc2_ebi_check_async_trans,
794 .calculate = stm32_fmc2_ebi_ns_to_clock_cycles,
795 .set = stm32_fmc2_ebi_set_data_hold,
796 },
797 {
798 .name = "st,fmc2-ebi-cs-clk-period-ns",
799 .reset_val = FMC2_BTR_CLKDIV_MAX + 1,
800 .check = stm32_fmc2_ebi_check_clk_period,
801 .calculate = stm32_fmc2_ebi_ns_to_clock_cycles,
802 .set = stm32_fmc2_ebi_set_clk_period,
803 },
804 {
805 .name = "st,fmc2-ebi-cs-data-latency-ns",
806 .check = stm32_fmc2_ebi_check_sync_trans,
807 .calculate = stm32_fmc2_ebi_ns_to_clk_period,
808 .set = stm32_fmc2_ebi_set_data_latency,
809 },
810 {
811 .name = "st,fmc2-ebi-cs-write-address-setup-ns",
812 .reg_type = FMC2_REG_BWTR,
813 .reset_val = FMC2_BXTR_ADDSET_MAX,
814 .check = stm32_fmc2_ebi_check_async_trans,
815 .calculate = stm32_fmc2_ebi_ns_to_clock_cycles,
816 .set = stm32_fmc2_ebi_set_address_setup,
817 },
818 {
819 .name = "st,fmc2-ebi-cs-write-address-hold-ns",
820 .reg_type = FMC2_REG_BWTR,
821 .reset_val = FMC2_BXTR_ADDHLD_MAX,
822 .check = stm32_fmc2_ebi_check_address_hold,
823 .calculate = stm32_fmc2_ebi_ns_to_clock_cycles,
824 .set = stm32_fmc2_ebi_set_address_hold,
825 },
826 {
827 .name = "st,fmc2-ebi-cs-write-data-setup-ns",
828 .reg_type = FMC2_REG_BWTR,
829 .reset_val = FMC2_BXTR_DATAST_MAX,
830 .check = stm32_fmc2_ebi_check_async_trans,
831 .calculate = stm32_fmc2_ebi_ns_to_clock_cycles,
832 .set = stm32_fmc2_ebi_set_data_setup,
833 },
834 {
835 .name = "st,fmc2-ebi-cs-write-bus-turnaround-ns",
836 .reg_type = FMC2_REG_BWTR,
837 .reset_val = FMC2_BXTR_BUSTURN_MAX + 1,
838 .calculate = stm32_fmc2_ebi_ns_to_clock_cycles,
839 .set = stm32_fmc2_ebi_set_bus_turnaround,
840 },
841 {
842 .name = "st,fmc2-ebi-cs-write-data-hold-ns",
843 .reg_type = FMC2_REG_BWTR,
844 .check = stm32_fmc2_ebi_check_async_trans,
845 .calculate = stm32_fmc2_ebi_ns_to_clock_cycles,
846 .set = stm32_fmc2_ebi_set_data_hold,
847 },
848 {
849 .name = "st,fmc2-ebi-cs-max-low-pulse-ns",
850 .calculate = stm32_fmc2_ebi_ns_to_clock_cycles,
851 .set = stm32_fmc2_ebi_set_max_low_pulse,
852 },
853};
854
855static int stm32_fmc2_ebi_parse_prop(struct stm32_fmc2_ebi *ebi,
856 ofnode node,
857 const struct stm32_fmc2_prop *prop,
858 int cs)
859{
860 u32 setup = 0;
861
862 if (!prop->set) {
863 pr_err("property %s is not well defined\n", prop->name);
864 return -EINVAL;
865 }
866
867 if (prop->check && prop->check(ebi, prop, cs))
868 /* Skip this property */
869 return 0;
870
871 if (prop->bprop) {
872 bool bprop;
873
874 bprop = ofnode_read_bool(node, prop->name);
875 if (prop->mprop && !bprop) {
876 pr_err("mandatory property %s not defined in the device tree\n",
877 prop->name);
878 return -EINVAL;
879 }
880
881 if (bprop)
882 setup = 1;
883 } else {
884 u32 val;
885 int ret;
886
887 ret = ofnode_read_u32(node, prop->name, &val);
888 if (prop->mprop && ret) {
889 pr_err("mandatory property %s not defined in the device tree\n",
890 prop->name);
891 return ret;
892 }
893
894 if (ret)
895 setup = prop->reset_val;
896 else if (prop->calculate)
897 setup = prop->calculate(ebi, cs, val);
898 else
899 setup = val;
900 }
901
902 return prop->set(ebi, prop, cs, setup);
903}
904
905static void stm32_fmc2_ebi_enable_bank(struct stm32_fmc2_ebi *ebi, int cs)
906{
907 setbits_le32(ebi->io_base + FMC2_BCR(cs), FMC2_BCR_MBKEN);
908}
909
910static void stm32_fmc2_ebi_disable_bank(struct stm32_fmc2_ebi *ebi, int cs)
911{
912 clrbits_le32(ebi->io_base + FMC2_BCR(cs), FMC2_BCR_MBKEN);
913}
914
915/* NWAIT signal can not be connected to EBI controller and NAND controller */
916static bool stm32_fmc2_ebi_nwait_used_by_ctrls(struct stm32_fmc2_ebi *ebi)
917{
918 unsigned int cs;
919 u32 bcr;
920
921 for (cs = 0; cs < FMC2_MAX_EBI_CE; cs++) {
922 if (!(ebi->bank_assigned & BIT(cs)))
923 continue;
924
925 bcr = readl(ebi->io_base + FMC2_BCR(cs));
926 if ((bcr & FMC2_BCR_WAITEN || bcr & FMC2_BCR_ASYNCWAIT) &&
927 ebi->bank_assigned & BIT(FMC2_NAND))
928 return true;
929 }
930
931 return false;
932}
933
934static void stm32_fmc2_ebi_enable(struct stm32_fmc2_ebi *ebi)
935{
936 setbits_le32(ebi->io_base + FMC2_BCR1, FMC2_BCR1_FMC2EN);
937}
938
939static int stm32_fmc2_ebi_setup_cs(struct stm32_fmc2_ebi *ebi,
940 ofnode node, u32 cs)
941{
942 unsigned int i;
943 int ret;
944
945 stm32_fmc2_ebi_disable_bank(ebi, cs);
946
947 for (i = 0; i < ARRAY_SIZE(stm32_fmc2_child_props); i++) {
948 const struct stm32_fmc2_prop *p = &stm32_fmc2_child_props[i];
949
950 ret = stm32_fmc2_ebi_parse_prop(ebi, node, p, cs);
951 if (ret) {
952 pr_err("property %s could not be set: %d\n",
953 p->name, ret);
954 return ret;
955 }
956 }
957
958 stm32_fmc2_ebi_enable_bank(ebi, cs);
959
960 return 0;
961}
962
963static int stm32_fmc2_ebi_parse_dt(struct udevice *dev,
964 struct stm32_fmc2_ebi *ebi)
965{
966 ofnode child;
967 bool child_found = false;
968 u32 bank;
969 int ret;
970
971 dev_for_each_subnode(child, dev) {
972 ret = ofnode_read_u32(child, "reg", &bank);
973 if (ret) {
974 pr_err("could not retrieve reg property: %d\n", ret);
975 return ret;
976 }
977
978 if (bank >= FMC2_MAX_BANKS) {
979 pr_err("invalid reg value: %d\n", bank);
980 return -EINVAL;
981 }
982
983 if (ebi->bank_assigned & BIT(bank)) {
984 pr_err("bank already assigned: %d\n", bank);
985 return -EINVAL;
986 }
987
988 if (bank < FMC2_MAX_EBI_CE) {
989 ret = stm32_fmc2_ebi_setup_cs(ebi, child, bank);
990 if (ret) {
991 pr_err("setup chip select %d failed: %d\n",
992 bank, ret);
993 return ret;
994 }
995 }
996
997 ebi->bank_assigned |= BIT(bank);
998 child_found = true;
999 }
1000
1001 if (!child_found) {
1002 pr_warn("no subnodes found, disable the driver.\n");
1003 return -ENODEV;
1004 }
1005
1006 if (stm32_fmc2_ebi_nwait_used_by_ctrls(ebi)) {
1007 pr_err("NWAIT signal connected to EBI and NAND controllers\n");
1008 return -EINVAL;
1009 }
1010
1011 stm32_fmc2_ebi_enable(ebi);
1012
1013 return 0;
1014}
1015
1016static int stm32_fmc2_ebi_probe(struct udevice *dev)
1017{
1018 struct stm32_fmc2_ebi *ebi = dev_get_priv(dev);
1019 struct reset_ctl reset;
1020 int ret;
1021
1022 ebi->io_base = dev_read_addr(dev);
1023 if (ebi->io_base == FDT_ADDR_T_NONE)
1024 return -EINVAL;
1025
1026 ret = clk_get_by_index(dev, 0, &ebi->clk);
1027 if (ret)
1028 return ret;
1029
1030 ret = clk_enable(&ebi->clk);
1031 if (ret)
1032 return ret;
1033
1034 ret = reset_get_by_index(dev, 0, &reset);
1035 if (!ret) {
1036 reset_assert(&reset);
1037 udelay(2);
1038 reset_deassert(&reset);
1039 }
1040
1041 return stm32_fmc2_ebi_parse_dt(dev, ebi);
1042}
1043
1044static const struct udevice_id stm32_fmc2_ebi_match[] = {
1045 {.compatible = "st,stm32mp1-fmc2-ebi"},
1046 { /* Sentinel */ }
1047};
1048
1049U_BOOT_DRIVER(stm32_fmc2_ebi) = {
1050 .name = "stm32_fmc2_ebi",
1051 .id = UCLASS_NOP,
1052 .of_match = stm32_fmc2_ebi_match,
1053 .probe = stm32_fmc2_ebi_probe,
1054 .priv_auto_alloc_size = sizeof(struct stm32_fmc2_ebi),
1055 .bind = dm_scan_fdt_dev,
1056};