blob: 4549f4dc12a0030e74d99c77b3f6d9b885342ff0 [file] [log] [blame]
Lei Wenb834a392012-09-28 04:26:42 +00001/* deflate.c -- compress data using the deflation algorithm
2 * Copyright (C) 1995-2010 Jean-loup Gailly and Mark Adler
3 * For conditions of distribution and use, see copyright notice in zlib.h
4 */
5
6/*
7 * ALGORITHM
8 *
9 * The "deflation" process depends on being able to identify portions
10 * of the input text which are identical to earlier input (within a
11 * sliding window trailing behind the input currently being processed).
12 *
13 * The most straightforward technique turns out to be the fastest for
14 * most input files: try all possible matches and select the longest.
15 * The key feature of this algorithm is that insertions into the string
16 * dictionary are very simple and thus fast, and deletions are avoided
17 * completely. Insertions are performed at each input character, whereas
18 * string matches are performed only when the previous match ends. So it
19 * is preferable to spend more time in matches to allow very fast string
20 * insertions and avoid deletions. The matching algorithm for small
21 * strings is inspired from that of Rabin & Karp. A brute force approach
22 * is used to find longer strings when a small match has been found.
23 * A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
24 * (by Leonid Broukhis).
25 * A previous version of this file used a more sophisticated algorithm
26 * (by Fiala and Greene) which is guaranteed to run in linear amortized
27 * time, but has a larger average cost, uses more memory and is patented.
28 * However the F&G algorithm may be faster for some highly redundant
29 * files if the parameter max_chain_length (described below) is too large.
30 *
31 * ACKNOWLEDGEMENTS
32 *
33 * The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
34 * I found it in 'freeze' written by Leonid Broukhis.
35 * Thanks to many people for bug reports and testing.
36 *
37 * REFERENCES
38 *
39 * Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
40 * Available in http://www.ietf.org/rfc/rfc1951.txt
41 *
42 * A description of the Rabin and Karp algorithm is given in the book
43 * "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
44 *
45 * Fiala,E.R., and Greene,D.H.
46 * Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
47 *
48 */
49
50/* @(#) $Id$ */
51
52#include "deflate.h"
Simon Glass48b6c6b2019-11-14 12:57:16 -070053#include <u-boot/crc.h>
Lei Wenb834a392012-09-28 04:26:42 +000054
55const char deflate_copyright[] =
56 " deflate 1.2.5 Copyright 1995-2010 Jean-loup Gailly and Mark Adler ";
57/*
58 If you use the zlib library in a product, an acknowledgment is welcome
59 in the documentation of your product. If for some reason you cannot
60 include such an acknowledgment, I would appreciate that you keep this
61 copyright string in the executable of your product.
62 */
63
64/* ===========================================================================
65 * Function prototypes.
66 */
67typedef enum {
68 need_more, /* block not completed, need more input or more output */
69 block_done, /* block flush performed */
70 finish_started, /* finish started, need only more output at next deflate */
71 finish_done /* finish done, accept no more input or output */
72} block_state;
73
74typedef block_state (*compress_func) OF((deflate_state *s, int flush));
75/* Compression function. Returns the block state after the call. */
76
77local void fill_window OF((deflate_state *s));
78local block_state deflate_stored OF((deflate_state *s, int flush));
79local block_state deflate_fast OF((deflate_state *s, int flush));
80#ifndef FASTEST
81local block_state deflate_slow OF((deflate_state *s, int flush));
82#endif
83local block_state deflate_rle OF((deflate_state *s, int flush));
84local block_state deflate_huff OF((deflate_state *s, int flush));
85local void lm_init OF((deflate_state *s));
86local void putShortMSB OF((deflate_state *s, uInt b));
87local void flush_pending OF((z_streamp strm));
88local int read_buf OF((z_streamp strm, Bytef *buf, unsigned size));
89#ifdef ASMV
90 void match_init OF((void)); /* asm code initialization */
91 uInt longest_match OF((deflate_state *s, IPos cur_match));
92#else
93local uInt longest_match OF((deflate_state *s, IPos cur_match));
94#endif
95
96#ifdef DEBUG
97local void check_match OF((deflate_state *s, IPos start, IPos match,
98 int length));
99#endif
100
101/* ===========================================================================
102 * Local data
103 */
104
105#define NIL 0
106/* Tail of hash chains */
107
108#ifndef TOO_FAR
109# define TOO_FAR 4096
110#endif
111/* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
112
113/* Values for max_lazy_match, good_match and max_chain_length, depending on
114 * the desired pack level (0..9). The values given below have been tuned to
115 * exclude worst case performance for pathological files. Better values may be
116 * found for specific files.
117 */
118typedef struct config_s {
119 ush good_length; /* reduce lazy search above this match length */
120 ush max_lazy; /* do not perform lazy search above this match length */
121 ush nice_length; /* quit search above this match length */
122 ush max_chain;
123 compress_func func;
124} config;
125
126#ifdef FASTEST
127local const config configuration_table[2] = {
128/* good lazy nice chain */
129/* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */
130/* 1 */ {4, 4, 8, 4, deflate_fast}}; /* max speed, no lazy matches */
131#else
132local const config configuration_table[10] = {
133/* good lazy nice chain */
134/* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */
135/* 1 */ {4, 4, 8, 4, deflate_fast}, /* max speed, no lazy matches */
136/* 2 */ {4, 5, 16, 8, deflate_fast},
137/* 3 */ {4, 6, 32, 32, deflate_fast},
138
139/* 4 */ {4, 4, 16, 16, deflate_slow}, /* lazy matches */
140/* 5 */ {8, 16, 32, 32, deflate_slow},
141/* 6 */ {8, 16, 128, 128, deflate_slow},
142/* 7 */ {8, 32, 128, 256, deflate_slow},
143/* 8 */ {32, 128, 258, 1024, deflate_slow},
144/* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */
145#endif
146
147/* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
148 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
149 * meaning.
150 */
151
152#define EQUAL 0
153/* result of memcmp for equal strings */
154
155#ifndef NO_DUMMY_DECL
156struct static_tree_desc_s {int dummy;}; /* for buggy compilers */
157#endif
158
159/* ===========================================================================
160 * Update a hash value with the given input byte
161 * IN assertion: all calls to to UPDATE_HASH are made with consecutive
162 * input characters, so that a running hash key can be computed from the
163 * previous key instead of complete recalculation each time.
164 */
165#define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
166
167
168/* ===========================================================================
169 * Insert string str in the dictionary and set match_head to the previous head
170 * of the hash chain (the most recent string with same hash key). Return
171 * the previous length of the hash chain.
172 * If this file is compiled with -DFASTEST, the compression level is forced
173 * to 1, and no hash chains are maintained.
174 * IN assertion: all calls to to INSERT_STRING are made with consecutive
175 * input characters and the first MIN_MATCH bytes of str are valid
176 * (except for the last MIN_MATCH-1 bytes of the input file).
177 */
178#ifdef FASTEST
179#define INSERT_STRING(s, str, match_head) \
180 (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
181 match_head = s->head[s->ins_h], \
182 s->head[s->ins_h] = (Pos)(str))
183#else
184#define INSERT_STRING(s, str, match_head) \
185 (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
186 match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \
187 s->head[s->ins_h] = (Pos)(str))
188#endif
189
190/* ===========================================================================
191 * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
192 * prev[] will be initialized on the fly.
193 */
194#define CLEAR_HASH(s) \
195 s->head[s->hash_size-1] = NIL; \
196 zmemzero((Bytef *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head));
197
198/* ========================================================================= */
199int ZEXPORT deflateInit_(strm, level, version, stream_size)
200 z_streamp strm;
201 int level;
202 const char *version;
203 int stream_size;
204{
205 return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
206 Z_DEFAULT_STRATEGY, version, stream_size);
207 /* To do: ignore strm->next_in if we use it as window */
208}
209
210/* ========================================================================= */
211int ZEXPORT deflateInit2_(strm, level, method, windowBits, memLevel, strategy,
212 version, stream_size)
213 z_streamp strm;
214 int level;
215 int method;
216 int windowBits;
217 int memLevel;
218 int strategy;
219 const char *version;
220 int stream_size;
221{
222 deflate_state *s;
223 int wrap = 1;
224 static const char my_version[] = ZLIB_VERSION;
225
Lei Wenb834a392012-09-28 04:26:42 +0000226 if (version == Z_NULL || version[0] != my_version[0] ||
227 stream_size != sizeof(z_stream)) {
228 return Z_VERSION_ERROR;
229 }
230 if (strm == Z_NULL) return Z_STREAM_ERROR;
231
232 strm->msg = Z_NULL;
233 if (strm->zalloc == (alloc_func)0) {
234 strm->zalloc = zcalloc;
235 strm->opaque = (voidpf)0;
236 }
237 if (strm->zfree == (free_func)0) strm->zfree = zcfree;
238
239#ifdef FASTEST
240 if (level != 0) level = 1;
241#else
242 if (level == Z_DEFAULT_COMPRESSION) level = 6;
243#endif
244
245 if (windowBits < 0) { /* suppress zlib wrapper */
246 wrap = 0;
247 windowBits = -windowBits;
248 }
249#ifdef GZIP
250 else if (windowBits > 15) {
251 wrap = 2; /* write gzip wrapper instead */
252 windowBits -= 16;
253 }
254#endif
255 if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
256 windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||
257 strategy < 0 || strategy > Z_FIXED) {
258 return Z_STREAM_ERROR;
259 }
260 if (windowBits == 8) windowBits = 9; /* until 256-byte window bug fixed */
261 s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
262 if (s == Z_NULL) return Z_MEM_ERROR;
263 strm->state = (struct internal_state FAR *)s;
264 s->strm = strm;
265
266 s->wrap = wrap;
267 s->gzhead = Z_NULL;
268 s->w_bits = windowBits;
269 s->w_size = 1 << s->w_bits;
270 s->w_mask = s->w_size - 1;
271
272 s->hash_bits = memLevel + 7;
273 s->hash_size = 1 << s->hash_bits;
274 s->hash_mask = s->hash_size - 1;
275 s->hash_shift = ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);
276
277 s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
278 s->prev = (Posf *) ZALLOC(strm, s->w_size, sizeof(Pos));
279 s->head = (Posf *) ZALLOC(strm, s->hash_size, sizeof(Pos));
280
281 s->high_water = 0; /* nothing written to s->window yet */
282
283 s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
284
Tom Rinic3411d42022-05-10 14:36:59 -0400285 /* We overlay pending_buf and sym_buf. This works since the average size
286 * for length/distance pairs over any compressed block is assured to be 31
287 * bits or less.
288 *
289 * Analysis: The longest fixed codes are a length code of 8 bits plus 5
290 * extra bits, for lengths 131 to 257. The longest fixed distance codes are
291 * 5 bits plus 13 extra bits, for distances 16385 to 32768. The longest
292 * possible fixed-codes length/distance pair is then 31 bits total.
293 *
294 * sym_buf starts one-fourth of the way into pending_buf. So there are
295 * three bytes in sym_buf for every four bytes in pending_buf. Each symbol
296 * in sym_buf is three bytes -- two for the distance and one for the
297 * literal/length. As each symbol is consumed, the pointer to the next
298 * sym_buf value to read moves forward three bytes. From that symbol, up to
299 * 31 bits are written to pending_buf. The closest the written pending_buf
300 * bits gets to the next sym_buf symbol to read is just before the last
301 * code is written. At that time, 31*(n-2) bits have been written, just
302 * after 24*(n-2) bits have been consumed from sym_buf. sym_buf starts at
303 * 8*n bits into pending_buf. (Note that the symbol buffer fills when n-1
304 * symbols are written.) The closest the writing gets to what is unread is
305 * then n+14 bits. Here n is lit_bufsize, which is 16384 by default, and
306 * can range from 128 to 32768.
307 *
308 * Therefore, at a minimum, there are 142 bits of space between what is
309 * written and what is read in the overlain buffers, so the symbols cannot
310 * be overwritten by the compressed data. That space is actually 139 bits,
311 * due to the three-bit fixed-code block header.
312 *
313 * That covers the case where either Z_FIXED is specified, forcing fixed
314 * codes, or when the use of fixed codes is chosen, because that choice
315 * results in a smaller compressed block than dynamic codes. That latter
316 * condition then assures that the above analysis also covers all dynamic
317 * blocks. A dynamic-code block will only be chosen to be emitted if it has
318 * fewer bits than a fixed-code block would for the same set of symbols.
319 * Therefore its average symbol length is assured to be less than 31. So
320 * the compressed data for a dynamic block also cannot overwrite the
321 * symbols from which it is being constructed.
322 */
323
324 s->pending_buf = (uchf *) ZALLOC(strm, s->lit_bufsize, 4);
325 s->pending_buf_size = (ulg)s->lit_bufsize * 4;
Lei Wenb834a392012-09-28 04:26:42 +0000326
327 if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
328 s->pending_buf == Z_NULL) {
329 s->status = FINISH_STATE;
330 strm->msg = (char*)ERR_MSG(Z_MEM_ERROR);
331 deflateEnd (strm);
332 return Z_MEM_ERROR;
333 }
Tom Rinic3411d42022-05-10 14:36:59 -0400334 s->sym_buf = s->pending_buf + s->lit_bufsize;
335 s->sym_end = (s->lit_bufsize - 1) * 3;
336 /* We avoid equality with lit_bufsize*3 because of wraparound at 64K
337 * on 16 bit machines and because stored blocks are restricted to
338 * 64K-1 bytes.
339 */
Lei Wenb834a392012-09-28 04:26:42 +0000340
341 s->level = level;
342 s->strategy = strategy;
343 s->method = (Byte)method;
344
345 return deflateReset(strm);
346}
347
348/* ========================================================================= */
349int ZEXPORT deflateSetDictionary (strm, dictionary, dictLength)
350 z_streamp strm;
351 const Bytef *dictionary;
352 uInt dictLength;
353{
354 deflate_state *s;
355 uInt length = dictLength;
356 uInt n;
357 IPos hash_head = 0;
358
359 if (strm == Z_NULL || strm->state == Z_NULL || dictionary == Z_NULL ||
360 strm->state->wrap == 2 ||
361 (strm->state->wrap == 1 && strm->state->status != INIT_STATE))
362 return Z_STREAM_ERROR;
363
364 s = strm->state;
365 if (s->wrap)
366 strm->adler = adler32(strm->adler, dictionary, dictLength);
367
368 if (length < MIN_MATCH) return Z_OK;
369 if (length > s->w_size) {
370 length = s->w_size;
371 dictionary += dictLength - length; /* use the tail of the dictionary */
372 }
373 zmemcpy(s->window, dictionary, length);
374 s->strstart = length;
375 s->block_start = (long)length;
376
377 /* Insert all strings in the hash table (except for the last two bytes).
378 * s->lookahead stays null, so s->ins_h will be recomputed at the next
379 * call of fill_window.
380 */
381 s->ins_h = s->window[0];
382 UPDATE_HASH(s, s->ins_h, s->window[1]);
383 for (n = 0; n <= length - MIN_MATCH; n++) {
384 INSERT_STRING(s, n, hash_head);
385 }
386 if (hash_head) hash_head = 0; /* to make compiler happy */
387 return Z_OK;
388}
389
390/* ========================================================================= */
391int ZEXPORT deflateReset (strm)
392 z_streamp strm;
393{
394 deflate_state *s;
395
396 if (strm == Z_NULL || strm->state == Z_NULL ||
397 strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0) {
398 return Z_STREAM_ERROR;
399 }
400
401 strm->total_in = strm->total_out = 0;
402 strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
403 strm->data_type = Z_UNKNOWN;
404
405 s = (deflate_state *)strm->state;
406 s->pending = 0;
407 s->pending_out = s->pending_buf;
408
409 if (s->wrap < 0) {
410 s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */
411 }
412 s->status = s->wrap ? INIT_STATE : BUSY_STATE;
413 strm->adler =
414#ifdef GZIP
415 s->wrap == 2 ? crc32(0L, Z_NULL, 0) :
416#endif
417 adler32(0L, Z_NULL, 0);
418 s->last_flush = Z_NO_FLUSH;
419
420 _tr_init(s);
421 lm_init(s);
422
423 return Z_OK;
424}
425
426/* ========================================================================= */
427int ZEXPORT deflateSetHeader (strm, head)
428 z_streamp strm;
429 gz_headerp head;
430{
431 if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
432 if (strm->state->wrap != 2) return Z_STREAM_ERROR;
433 strm->state->gzhead = head;
434 return Z_OK;
435}
436
437/* ========================================================================= */
438int ZEXPORT deflatePrime (strm, bits, value)
439 z_streamp strm;
440 int bits;
441 int value;
442{
443 if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
444 strm->state->bi_valid = bits;
445 strm->state->bi_buf = (ush)(value & ((1 << bits) - 1));
446 return Z_OK;
447}
448
449/* ========================================================================= */
450int ZEXPORT deflateParams(strm, level, strategy)
451 z_streamp strm;
452 int level;
453 int strategy;
454{
455 deflate_state *s;
456 compress_func func;
457 int err = Z_OK;
458
459 if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
460 s = strm->state;
461
462#ifdef FASTEST
463 if (level != 0) level = 1;
464#else
465 if (level == Z_DEFAULT_COMPRESSION) level = 6;
466#endif
467 if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) {
468 return Z_STREAM_ERROR;
469 }
470 func = configuration_table[s->level].func;
471
472 if ((strategy != s->strategy || func != configuration_table[level].func) &&
473 strm->total_in != 0) {
474 /* Flush the last buffer: */
475 err = deflate(strm, Z_BLOCK);
476 }
477 if (s->level != level) {
478 s->level = level;
479 s->max_lazy_match = configuration_table[level].max_lazy;
480 s->good_match = configuration_table[level].good_length;
481 s->nice_match = configuration_table[level].nice_length;
482 s->max_chain_length = configuration_table[level].max_chain;
483 }
484 s->strategy = strategy;
485 return err;
486}
487
488/* ========================================================================= */
489int ZEXPORT deflateTune(strm, good_length, max_lazy, nice_length, max_chain)
490 z_streamp strm;
491 int good_length;
492 int max_lazy;
493 int nice_length;
494 int max_chain;
495{
496 deflate_state *s;
497
498 if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
499 s = strm->state;
500 s->good_match = good_length;
501 s->max_lazy_match = max_lazy;
502 s->nice_match = nice_length;
503 s->max_chain_length = max_chain;
504 return Z_OK;
505}
506
507/* =========================================================================
508 * For the default windowBits of 15 and memLevel of 8, this function returns
509 * a close to exact, as well as small, upper bound on the compressed size.
510 * They are coded as constants here for a reason--if the #define's are
511 * changed, then this function needs to be changed as well. The return
512 * value for 15 and 8 only works for those exact settings.
513 *
514 * For any setting other than those defaults for windowBits and memLevel,
515 * the value returned is a conservative worst case for the maximum expansion
516 * resulting from using fixed blocks instead of stored blocks, which deflate
517 * can emit on compressed data for some combinations of the parameters.
518 *
519 * This function could be more sophisticated to provide closer upper bounds for
520 * every combination of windowBits and memLevel. But even the conservative
521 * upper bound of about 14% expansion does not seem onerous for output buffer
522 * allocation.
523 */
524uLong ZEXPORT deflateBound(strm, sourceLen)
525 z_streamp strm;
526 uLong sourceLen;
527{
528 deflate_state *s;
529 uLong complen, wraplen;
530 Bytef *str;
531
532 /* conservative upper bound for compressed data */
533 complen = sourceLen +
534 ((sourceLen + 7) >> 3) + ((sourceLen + 63) >> 6) + 5;
535
536 /* if can't get parameters, return conservative bound plus zlib wrapper */
537 if (strm == Z_NULL || strm->state == Z_NULL)
538 return complen + 6;
539
540 /* compute wrapper length */
541 s = strm->state;
542 switch (s->wrap) {
543 case 0: /* raw deflate */
544 wraplen = 0;
545 break;
546 case 1: /* zlib wrapper */
547 wraplen = 6 + (s->strstart ? 4 : 0);
548 break;
549 case 2: /* gzip wrapper */
550 wraplen = 18;
551 if (s->gzhead != Z_NULL) { /* user-supplied gzip header */
552 if (s->gzhead->extra != Z_NULL)
553 wraplen += 2 + s->gzhead->extra_len;
554 str = s->gzhead->name;
555 if (str != Z_NULL)
556 do {
557 wraplen++;
558 } while (*str++);
559 str = s->gzhead->comment;
560 if (str != Z_NULL)
561 do {
562 wraplen++;
563 } while (*str++);
564 if (s->gzhead->hcrc)
565 wraplen += 2;
566 }
567 break;
568 default: /* for compiler happiness */
569 wraplen = 6;
570 }
571
572 /* if not default parameters, return conservative bound */
573 if (s->w_bits != 15 || s->hash_bits != 8 + 7)
574 return complen + wraplen;
575
576 /* default settings: return tight bound for that case */
577 return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) +
578 (sourceLen >> 25) + 13 - 6 + wraplen;
579}
580
581/* =========================================================================
582 * Put a short in the pending buffer. The 16-bit value is put in MSB order.
583 * IN assertion: the stream state is correct and there is enough room in
584 * pending_buf.
585 */
586local void putShortMSB (s, b)
587 deflate_state *s;
588 uInt b;
589{
590 put_byte(s, (Byte)(b >> 8));
591 put_byte(s, (Byte)(b & 0xff));
592}
593
594/* =========================================================================
595 * Flush as much pending output as possible. All deflate() output goes
596 * through this function so some applications may wish to modify it
597 * to avoid allocating a large strm->next_out buffer and copying into it.
598 * (See also read_buf()).
599 */
600local void flush_pending(strm)
601 z_streamp strm;
602{
603 unsigned len = strm->state->pending;
604
605 if (len > strm->avail_out) len = strm->avail_out;
606 if (len == 0) return;
607
608 zmemcpy(strm->next_out, strm->state->pending_out, len);
609 strm->next_out += len;
610 strm->state->pending_out += len;
611 strm->total_out += len;
612 strm->avail_out -= len;
613 strm->state->pending -= len;
614 if (strm->state->pending == 0) {
615 strm->state->pending_out = strm->state->pending_buf;
616 }
617}
618
619/* ========================================================================= */
620int ZEXPORT deflate (strm, flush)
621 z_streamp strm;
622 int flush;
623{
624 int old_flush; /* value of flush param for previous deflate call */
625 deflate_state *s;
626
627 if (strm == Z_NULL || strm->state == Z_NULL ||
628 flush > Z_BLOCK || flush < 0) {
629 return Z_STREAM_ERROR;
630 }
631 s = strm->state;
632
Lei Wen86a36282012-09-28 04:26:45 +0000633 if (s->status == FINISH_STATE && flush != Z_FINISH) {
Lei Wenb834a392012-09-28 04:26:42 +0000634 ERR_RETURN(strm, Z_STREAM_ERROR);
635 }
636 if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
637
638 s->strm = strm; /* just in case */
639 old_flush = s->last_flush;
640 s->last_flush = flush;
641
642 /* Write the header */
643 if (s->status == INIT_STATE) {
644#ifdef GZIP
645 if (s->wrap == 2) {
646 strm->adler = crc32(0L, Z_NULL, 0);
647 put_byte(s, 31);
648 put_byte(s, 139);
649 put_byte(s, 8);
650 if (s->gzhead == Z_NULL) {
651 put_byte(s, 0);
652 put_byte(s, 0);
653 put_byte(s, 0);
654 put_byte(s, 0);
655 put_byte(s, 0);
656 put_byte(s, s->level == 9 ? 2 :
657 (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
658 4 : 0));
659 put_byte(s, OS_CODE);
660 s->status = BUSY_STATE;
661 }
662 else {
663 put_byte(s, (s->gzhead->text ? 1 : 0) +
664 (s->gzhead->hcrc ? 2 : 0) +
665 (s->gzhead->extra == Z_NULL ? 0 : 4) +
666 (s->gzhead->name == Z_NULL ? 0 : 8) +
667 (s->gzhead->comment == Z_NULL ? 0 : 16)
668 );
669 put_byte(s, (Byte)(s->gzhead->time & 0xff));
670 put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff));
671 put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff));
672 put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff));
673 put_byte(s, s->level == 9 ? 2 :
674 (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
675 4 : 0));
676 put_byte(s, s->gzhead->os & 0xff);
677 if (s->gzhead->extra != Z_NULL) {
678 put_byte(s, s->gzhead->extra_len & 0xff);
679 put_byte(s, (s->gzhead->extra_len >> 8) & 0xff);
680 }
681 if (s->gzhead->hcrc)
682 strm->adler = crc32(strm->adler, s->pending_buf,
683 s->pending);
684 s->gzindex = 0;
685 s->status = EXTRA_STATE;
686 }
687 }
688 else
689#endif
690 {
691 uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8;
692 uInt level_flags;
693
694 if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2)
695 level_flags = 0;
696 else if (s->level < 6)
697 level_flags = 1;
698 else if (s->level == 6)
699 level_flags = 2;
700 else
701 level_flags = 3;
702 header |= (level_flags << 6);
703 if (s->strstart != 0) header |= PRESET_DICT;
704 header += 31 - (header % 31);
705
706 s->status = BUSY_STATE;
707 putShortMSB(s, header);
708
709 /* Save the adler32 of the preset dictionary: */
710 if (s->strstart != 0) {
711 putShortMSB(s, (uInt)(strm->adler >> 16));
712 putShortMSB(s, (uInt)(strm->adler & 0xffff));
713 }
714 strm->adler = adler32(0L, Z_NULL, 0);
715 }
716 }
717#ifdef GZIP
718 if (s->status == EXTRA_STATE) {
719 if (s->gzhead->extra != Z_NULL) {
720 uInt beg = s->pending; /* start of bytes to update crc */
721
722 while (s->gzindex < (s->gzhead->extra_len & 0xffff)) {
723 if (s->pending == s->pending_buf_size) {
724 if (s->gzhead->hcrc && s->pending > beg)
725 strm->adler = crc32(strm->adler, s->pending_buf + beg,
726 s->pending - beg);
727 flush_pending(strm);
728 beg = s->pending;
729 if (s->pending == s->pending_buf_size)
730 break;
731 }
732 put_byte(s, s->gzhead->extra[s->gzindex]);
733 s->gzindex++;
734 }
735 if (s->gzhead->hcrc && s->pending > beg)
736 strm->adler = crc32(strm->adler, s->pending_buf + beg,
737 s->pending - beg);
738 if (s->gzindex == s->gzhead->extra_len) {
739 s->gzindex = 0;
740 s->status = NAME_STATE;
741 }
742 }
743 else
744 s->status = NAME_STATE;
745 }
746 if (s->status == NAME_STATE) {
747 if (s->gzhead->name != Z_NULL) {
748 uInt beg = s->pending; /* start of bytes to update crc */
749 int val;
750
751 do {
752 if (s->pending == s->pending_buf_size) {
753 if (s->gzhead->hcrc && s->pending > beg)
754 strm->adler = crc32(strm->adler, s->pending_buf + beg,
755 s->pending - beg);
756 flush_pending(strm);
757 beg = s->pending;
758 if (s->pending == s->pending_buf_size) {
759 val = 1;
760 break;
761 }
762 }
763 val = s->gzhead->name[s->gzindex++];
764 put_byte(s, val);
765 } while (val != 0);
766 if (s->gzhead->hcrc && s->pending > beg)
767 strm->adler = crc32(strm->adler, s->pending_buf + beg,
768 s->pending - beg);
769 if (val == 0) {
770 s->gzindex = 0;
771 s->status = COMMENT_STATE;
772 }
773 }
774 else
775 s->status = COMMENT_STATE;
776 }
777 if (s->status == COMMENT_STATE) {
778 if (s->gzhead->comment != Z_NULL) {
779 uInt beg = s->pending; /* start of bytes to update crc */
780 int val;
781
782 do {
783 if (s->pending == s->pending_buf_size) {
784 if (s->gzhead->hcrc && s->pending > beg)
785 strm->adler = crc32(strm->adler, s->pending_buf + beg,
786 s->pending - beg);
787 flush_pending(strm);
788 beg = s->pending;
789 if (s->pending == s->pending_buf_size) {
790 val = 1;
791 break;
792 }
793 }
794 val = s->gzhead->comment[s->gzindex++];
795 put_byte(s, val);
796 } while (val != 0);
797 if (s->gzhead->hcrc && s->pending > beg)
798 strm->adler = crc32(strm->adler, s->pending_buf + beg,
799 s->pending - beg);
800 if (val == 0)
801 s->status = HCRC_STATE;
802 }
803 else
804 s->status = HCRC_STATE;
805 }
806 if (s->status == HCRC_STATE) {
807 if (s->gzhead->hcrc) {
808 if (s->pending + 2 > s->pending_buf_size)
809 flush_pending(strm);
810 if (s->pending + 2 <= s->pending_buf_size) {
811 put_byte(s, (Byte)(strm->adler & 0xff));
812 put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
813 strm->adler = crc32(0L, Z_NULL, 0);
814 s->status = BUSY_STATE;
815 }
816 }
817 else
818 s->status = BUSY_STATE;
819 }
820#endif
821
822 /* Flush as much pending output as possible */
823 if (s->pending != 0) {
824 flush_pending(strm);
825 if (strm->avail_out == 0) {
826 /* Since avail_out is 0, deflate will be called again with
827 * more output space, but possibly with both pending and
828 * avail_in equal to zero. There won't be anything to do,
829 * but this is not an error situation so make sure we
830 * return OK instead of BUF_ERROR at next call of deflate:
831 */
832 s->last_flush = -1;
833 return Z_OK;
834 }
835
836 /* Make sure there is something to do and avoid duplicate consecutive
837 * flushes. For repeated and useless calls with Z_FINISH, we keep
838 * returning Z_STREAM_END instead of Z_BUF_ERROR.
839 */
840 } else if (strm->avail_in == 0 && flush <= old_flush &&
841 flush != Z_FINISH) {
842 ERR_RETURN(strm, Z_BUF_ERROR);
843 }
844
845 /* User must not provide more input after the first FINISH: */
846 if (s->status == FINISH_STATE && strm->avail_in != 0) {
847 ERR_RETURN(strm, Z_BUF_ERROR);
848 }
849
850 /* Start a new block or continue the current one.
851 */
852 if (strm->avail_in != 0 || s->lookahead != 0 ||
853 (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
854 block_state bstate;
855
856 bstate = s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) :
857 (s->strategy == Z_RLE ? deflate_rle(s, flush) :
858 (*(configuration_table[s->level].func))(s, flush));
859
860 if (bstate == finish_started || bstate == finish_done) {
861 s->status = FINISH_STATE;
862 }
863 if (bstate == need_more || bstate == finish_started) {
864 if (strm->avail_out == 0) {
865 s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
866 }
867 return Z_OK;
868 /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
869 * of deflate should use the same flush parameter to make sure
870 * that the flush is complete. So we don't have to output an
871 * empty block here, this will be done at next call. This also
872 * ensures that for a very small output buffer, we emit at most
873 * one empty block.
874 */
875 }
876 if (bstate == block_done) {
877 if (flush == Z_PARTIAL_FLUSH) {
878 _tr_align(s);
879 } else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */
880 _tr_stored_block(s, (char*)0, 0L, 0);
881 /* For a full flush, this empty block will be recognized
882 * as a special marker by inflate_sync().
883 */
884 if (flush == Z_FULL_FLUSH) {
885 CLEAR_HASH(s); /* forget history */
886 if (s->lookahead == 0) {
887 s->strstart = 0;
888 s->block_start = 0L;
889 }
890 }
891 }
892 flush_pending(strm);
893 if (strm->avail_out == 0) {
894 s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
895 return Z_OK;
896 }
897 }
898 }
899 Assert(strm->avail_out > 0, "bug2");
900
901 if (flush != Z_FINISH) return Z_OK;
902 if (s->wrap <= 0) return Z_STREAM_END;
903
904 /* Write the trailer */
905#ifdef GZIP
906 if (s->wrap == 2) {
907 put_byte(s, (Byte)(strm->adler & 0xff));
908 put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
909 put_byte(s, (Byte)((strm->adler >> 16) & 0xff));
910 put_byte(s, (Byte)((strm->adler >> 24) & 0xff));
911 put_byte(s, (Byte)(strm->total_in & 0xff));
912 put_byte(s, (Byte)((strm->total_in >> 8) & 0xff));
913 put_byte(s, (Byte)((strm->total_in >> 16) & 0xff));
914 put_byte(s, (Byte)((strm->total_in >> 24) & 0xff));
915 }
916 else
917#endif
918 {
919 putShortMSB(s, (uInt)(strm->adler >> 16));
920 putShortMSB(s, (uInt)(strm->adler & 0xffff));
921 }
922 flush_pending(strm);
923 /* If avail_out is zero, the application will call deflate again
924 * to flush the rest.
925 */
926 if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */
927 return s->pending != 0 ? Z_OK : Z_STREAM_END;
928}
929
930/* ========================================================================= */
931int ZEXPORT deflateEnd (strm)
932 z_streamp strm;
933{
934 int status;
935
936 if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
937
938 status = strm->state->status;
939 if (status != INIT_STATE &&
940 status != EXTRA_STATE &&
941 status != NAME_STATE &&
942 status != COMMENT_STATE &&
943 status != HCRC_STATE &&
944 status != BUSY_STATE &&
945 status != FINISH_STATE) {
946 return Z_STREAM_ERROR;
947 }
948
949 /* Deallocate in reverse order of allocations: */
950 TRY_FREE(strm, strm->state->pending_buf);
951 TRY_FREE(strm, strm->state->head);
952 TRY_FREE(strm, strm->state->prev);
953 TRY_FREE(strm, strm->state->window);
954
955 ZFREE(strm, strm->state);
956 strm->state = Z_NULL;
957
958 return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
959}
960
961/* =========================================================================
962 * Copy the source state to the destination state.
963 * To simplify the source, this is not supported for 16-bit MSDOS (which
964 * doesn't have enough memory anyway to duplicate compression states).
965 */
966int ZEXPORT deflateCopy (dest, source)
967 z_streamp dest;
968 z_streamp source;
969{
970#ifdef MAXSEG_64K
971 return Z_STREAM_ERROR;
972#else
973 deflate_state *ds;
974 deflate_state *ss;
Lei Wenb834a392012-09-28 04:26:42 +0000975
976
977 if (source == Z_NULL || dest == Z_NULL || source->state == Z_NULL) {
978 return Z_STREAM_ERROR;
979 }
980
981 ss = source->state;
982
983 zmemcpy(dest, source, sizeof(z_stream));
984
985 ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
986 if (ds == Z_NULL) return Z_MEM_ERROR;
987 dest->state = (struct internal_state FAR *) ds;
988 zmemcpy(ds, ss, sizeof(deflate_state));
989 ds->strm = dest;
990
991 ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
992 ds->prev = (Posf *) ZALLOC(dest, ds->w_size, sizeof(Pos));
993 ds->head = (Posf *) ZALLOC(dest, ds->hash_size, sizeof(Pos));
Tom Rinic3411d42022-05-10 14:36:59 -0400994 ds->pending_buf = (uchf *) ZALLOC(dest, ds->lit_bufsize, 4);
Lei Wenb834a392012-09-28 04:26:42 +0000995
996 if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
997 ds->pending_buf == Z_NULL) {
998 deflateEnd (dest);
999 return Z_MEM_ERROR;
1000 }
1001 /* following zmemcpy do not work for 16-bit MSDOS */
1002 zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
1003 zmemcpy(ds->prev, ss->prev, ds->w_size * sizeof(Pos));
1004 zmemcpy(ds->head, ss->head, ds->hash_size * sizeof(Pos));
1005 zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);
1006
1007 ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
Tom Rinic3411d42022-05-10 14:36:59 -04001008 ds->sym_buf = ds->pending_buf + ds->lit_bufsize;
Lei Wenb834a392012-09-28 04:26:42 +00001009
1010 ds->l_desc.dyn_tree = ds->dyn_ltree;
1011 ds->d_desc.dyn_tree = ds->dyn_dtree;
1012 ds->bl_desc.dyn_tree = ds->bl_tree;
1013
1014 return Z_OK;
1015#endif /* MAXSEG_64K */
1016}
1017
1018/* ===========================================================================
1019 * Read a new buffer from the current input stream, update the adler32
1020 * and total number of bytes read. All deflate() input goes through
1021 * this function so some applications may wish to modify it to avoid
1022 * allocating a large strm->next_in buffer and copying from it.
1023 * (See also flush_pending()).
1024 */
1025local int read_buf(strm, buf, size)
1026 z_streamp strm;
1027 Bytef *buf;
1028 unsigned size;
1029{
1030 unsigned len = strm->avail_in;
1031
1032 if (len > size) len = size;
1033 if (len == 0) return 0;
1034
1035 strm->avail_in -= len;
1036
1037 if (strm->state->wrap == 1) {
1038 strm->adler = adler32(strm->adler, strm->next_in, len);
1039 }
1040#ifdef GZIP
1041 else if (strm->state->wrap == 2) {
1042 strm->adler = crc32(strm->adler, strm->next_in, len);
1043 }
1044#endif
1045 zmemcpy(buf, strm->next_in, len);
1046 strm->next_in += len;
1047 strm->total_in += len;
1048
1049 return (int)len;
1050}
1051
1052/* ===========================================================================
1053 * Initialize the "longest match" routines for a new zlib stream
1054 */
1055local void lm_init (s)
1056 deflate_state *s;
1057{
1058 s->window_size = (ulg)2L*s->w_size;
1059
1060 CLEAR_HASH(s);
1061
1062 /* Set the default configuration parameters:
1063 */
1064 s->max_lazy_match = configuration_table[s->level].max_lazy;
1065 s->good_match = configuration_table[s->level].good_length;
1066 s->nice_match = configuration_table[s->level].nice_length;
1067 s->max_chain_length = configuration_table[s->level].max_chain;
1068
1069 s->strstart = 0;
1070 s->block_start = 0L;
1071 s->lookahead = 0;
1072 s->match_length = s->prev_length = MIN_MATCH-1;
1073 s->match_available = 0;
1074 s->ins_h = 0;
1075#ifndef FASTEST
1076#ifdef ASMV
1077 match_init(); /* initialize the asm code */
1078#endif
1079#endif
1080}
1081
1082#ifndef FASTEST
1083/* ===========================================================================
1084 * Set match_start to the longest match starting at the given string and
1085 * return its length. Matches shorter or equal to prev_length are discarded,
1086 * in which case the result is equal to prev_length and match_start is
1087 * garbage.
1088 * IN assertions: cur_match is the head of the hash chain for the current
1089 * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
1090 * OUT assertion: the match length is not greater than s->lookahead.
1091 */
1092#ifndef ASMV
1093/* For 80x86 and 680x0, an optimized version will be provided in match.asm or
1094 * match.S. The code will be functionally equivalent.
1095 */
1096local uInt longest_match(s, cur_match)
1097 deflate_state *s;
1098 IPos cur_match; /* current match */
1099{
1100 unsigned chain_length = s->max_chain_length;/* max hash chain length */
1101 register Bytef *scan = s->window + s->strstart; /* current string */
1102 register Bytef *match; /* matched string */
1103 register int len; /* length of current match */
1104 int best_len = s->prev_length; /* best match length so far */
1105 int nice_match = s->nice_match; /* stop if match long enough */
1106 IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
1107 s->strstart - (IPos)MAX_DIST(s) : NIL;
1108 /* Stop when cur_match becomes <= limit. To simplify the code,
1109 * we prevent matches with the string of window index 0.
1110 */
1111 Posf *prev = s->prev;
1112 uInt wmask = s->w_mask;
1113
1114#ifdef UNALIGNED_OK
1115 /* Compare two bytes at a time. Note: this is not always beneficial.
1116 * Try with and without -DUNALIGNED_OK to check.
1117 */
1118 register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
1119 register ush scan_start = *(ushf*)scan;
1120 register ush scan_end = *(ushf*)(scan+best_len-1);
1121#else
1122 register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1123 register Byte scan_end1 = scan[best_len-1];
1124 register Byte scan_end = scan[best_len];
1125#endif
1126
1127 /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1128 * It is easy to get rid of this optimization if necessary.
1129 */
1130 Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1131
1132 /* Do not waste too much time if we already have a good match: */
1133 if (s->prev_length >= s->good_match) {
1134 chain_length >>= 2;
1135 }
1136 /* Do not look for matches beyond the end of the input. This is necessary
1137 * to make deflate deterministic.
1138 */
1139 if ((uInt)nice_match > s->lookahead) nice_match = s->lookahead;
1140
1141 Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1142
1143 do {
1144 Assert(cur_match < s->strstart, "no future");
1145 match = s->window + cur_match;
1146
1147 /* Skip to next match if the match length cannot increase
1148 * or if the match length is less than 2. Note that the checks below
1149 * for insufficient lookahead only occur occasionally for performance
1150 * reasons. Therefore uninitialized memory will be accessed, and
1151 * conditional jumps will be made that depend on those values.
1152 * However the length of the match is limited to the lookahead, so
1153 * the output of deflate is not affected by the uninitialized values.
1154 */
1155#if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1156 /* This code assumes sizeof(unsigned short) == 2. Do not use
1157 * UNALIGNED_OK if your compiler uses a different size.
1158 */
1159 if (*(ushf*)(match+best_len-1) != scan_end ||
1160 *(ushf*)match != scan_start) continue;
1161
1162 /* It is not necessary to compare scan[2] and match[2] since they are
1163 * always equal when the other bytes match, given that the hash keys
1164 * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1165 * strstart+3, +5, ... up to strstart+257. We check for insufficient
1166 * lookahead only every 4th comparison; the 128th check will be made
1167 * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
1168 * necessary to put more guard bytes at the end of the window, or
1169 * to check more often for insufficient lookahead.
1170 */
1171 Assert(scan[2] == match[2], "scan[2]?");
1172 scan++, match++;
1173 do {
1174 } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1175 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1176 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1177 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1178 scan < strend);
1179 /* The funny "do {}" generates better code on most compilers */
1180
1181 /* Here, scan <= window+strstart+257 */
1182 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1183 if (*scan == *match) scan++;
1184
1185 len = (MAX_MATCH - 1) - (int)(strend-scan);
1186 scan = strend - (MAX_MATCH-1);
1187
1188#else /* UNALIGNED_OK */
1189
1190 if (match[best_len] != scan_end ||
1191 match[best_len-1] != scan_end1 ||
1192 *match != *scan ||
1193 *++match != scan[1]) continue;
1194
1195 /* The check at best_len-1 can be removed because it will be made
1196 * again later. (This heuristic is not always a win.)
1197 * It is not necessary to compare scan[2] and match[2] since they
1198 * are always equal when the other bytes match, given that
1199 * the hash keys are equal and that HASH_BITS >= 8.
1200 */
1201 scan += 2, match++;
1202 Assert(*scan == *match, "match[2]?");
1203
1204 /* We check for insufficient lookahead only every 8th comparison;
1205 * the 256th check will be made at strstart+258.
1206 */
1207 do {
1208 } while (*++scan == *++match && *++scan == *++match &&
1209 *++scan == *++match && *++scan == *++match &&
1210 *++scan == *++match && *++scan == *++match &&
1211 *++scan == *++match && *++scan == *++match &&
1212 scan < strend);
1213
1214 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1215
1216 len = MAX_MATCH - (int)(strend - scan);
1217 scan = strend - MAX_MATCH;
1218
1219#endif /* UNALIGNED_OK */
1220
1221 if (len > best_len) {
1222 s->match_start = cur_match;
1223 best_len = len;
1224 if (len >= nice_match) break;
1225#ifdef UNALIGNED_OK
1226 scan_end = *(ushf*)(scan+best_len-1);
1227#else
1228 scan_end1 = scan[best_len-1];
1229 scan_end = scan[best_len];
1230#endif
1231 }
1232 } while ((cur_match = prev[cur_match & wmask]) > limit
1233 && --chain_length != 0);
1234
1235 if ((uInt)best_len <= s->lookahead) return (uInt)best_len;
1236 return s->lookahead;
1237}
1238#endif /* ASMV */
1239
1240#else /* FASTEST */
1241
1242/* ---------------------------------------------------------------------------
1243 * Optimized version for FASTEST only
1244 */
1245local uInt longest_match(s, cur_match)
1246 deflate_state *s;
1247 IPos cur_match; /* current match */
1248{
1249 register Bytef *scan = s->window + s->strstart; /* current string */
1250 register Bytef *match; /* matched string */
1251 register int len; /* length of current match */
1252 register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1253
1254 /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1255 * It is easy to get rid of this optimization if necessary.
1256 */
1257 Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1258
1259 Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1260
1261 Assert(cur_match < s->strstart, "no future");
1262
1263 match = s->window + cur_match;
1264
1265 /* Return failure if the match length is less than 2:
1266 */
1267 if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1;
1268
1269 /* The check at best_len-1 can be removed because it will be made
1270 * again later. (This heuristic is not always a win.)
1271 * It is not necessary to compare scan[2] and match[2] since they
1272 * are always equal when the other bytes match, given that
1273 * the hash keys are equal and that HASH_BITS >= 8.
1274 */
1275 scan += 2, match += 2;
1276 Assert(*scan == *match, "match[2]?");
1277
1278 /* We check for insufficient lookahead only every 8th comparison;
1279 * the 256th check will be made at strstart+258.
1280 */
1281 do {
1282 } while (*++scan == *++match && *++scan == *++match &&
1283 *++scan == *++match && *++scan == *++match &&
1284 *++scan == *++match && *++scan == *++match &&
1285 *++scan == *++match && *++scan == *++match &&
1286 scan < strend);
1287
1288 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1289
1290 len = MAX_MATCH - (int)(strend - scan);
1291
1292 if (len < MIN_MATCH) return MIN_MATCH - 1;
1293
1294 s->match_start = cur_match;
1295 return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead;
1296}
1297
1298#endif /* FASTEST */
1299
1300#ifdef DEBUG
1301/* ===========================================================================
1302 * Check that the match at match_start is indeed a match.
1303 */
1304local void check_match(s, start, match, length)
1305 deflate_state *s;
1306 IPos start, match;
1307 int length;
1308{
1309 /* check that the match is indeed a match */
1310 if (zmemcmp(s->window + match,
1311 s->window + start, length) != EQUAL) {
1312 fprintf(stderr, " start %u, match %u, length %d\n",
1313 start, match, length);
1314 do {
1315 fprintf(stderr, "%c%c", s->window[match++], s->window[start++]);
1316 } while (--length != 0);
1317 z_error("invalid match");
1318 }
1319 if (z_verbose > 1) {
1320 fprintf(stderr,"\\[%d,%d]", start-match, length);
Heinrich Schuchardt8239a7f2020-12-28 21:41:40 +01001321 do { putc(s->window[start++]); } while (--length != 0);
Lei Wenb834a392012-09-28 04:26:42 +00001322 }
1323}
1324#else
1325# define check_match(s, start, match, length)
1326#endif /* DEBUG */
1327
1328/* ===========================================================================
1329 * Fill the window when the lookahead becomes insufficient.
1330 * Updates strstart and lookahead.
1331 *
1332 * IN assertion: lookahead < MIN_LOOKAHEAD
1333 * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
1334 * At least one byte has been read, or avail_in == 0; reads are
1335 * performed for at least two bytes (required for the zip translate_eol
1336 * option -- not supported here).
1337 */
1338local void fill_window(s)
1339 deflate_state *s;
1340{
1341 register unsigned n, m;
1342 register Posf *p;
1343 unsigned more; /* Amount of free space at the end of the window. */
1344 uInt wsize = s->w_size;
1345
1346 do {
1347 more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
1348
1349 /* Deal with !@#$% 64K limit: */
1350 if (sizeof(int) <= 2) {
1351 if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
1352 more = wsize;
1353
1354 } else if (more == (unsigned)(-1)) {
1355 /* Very unlikely, but possible on 16 bit machine if
1356 * strstart == 0 && lookahead == 1 (input done a byte at time)
1357 */
1358 more--;
1359 }
1360 }
1361
1362 /* If the window is almost full and there is insufficient lookahead,
1363 * move the upper half to the lower one to make room in the upper half.
1364 */
1365 if (s->strstart >= wsize+MAX_DIST(s)) {
1366
1367 zmemcpy(s->window, s->window+wsize, (unsigned)wsize);
1368 s->match_start -= wsize;
1369 s->strstart -= wsize; /* we now have strstart >= MAX_DIST */
1370 s->block_start -= (long) wsize;
1371
1372 /* Slide the hash table (could be avoided with 32 bit values
1373 at the expense of memory usage). We slide even when level == 0
1374 to keep the hash table consistent if we switch back to level > 0
1375 later. (Using level 0 permanently is not an optimal usage of
1376 zlib, so we don't care about this pathological case.)
1377 */
1378 n = s->hash_size;
1379 p = &s->head[n];
1380 do {
1381 m = *--p;
1382 *p = (Pos)(m >= wsize ? m-wsize : NIL);
1383 } while (--n);
1384
1385 n = wsize;
1386#ifndef FASTEST
1387 p = &s->prev[n];
1388 do {
1389 m = *--p;
1390 *p = (Pos)(m >= wsize ? m-wsize : NIL);
1391 /* If n is not on any hash chain, prev[n] is garbage but
1392 * its value will never be used.
1393 */
1394 } while (--n);
1395#endif
1396 more += wsize;
1397 }
1398 if (s->strm->avail_in == 0) return;
1399
1400 /* If there was no sliding:
1401 * strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
1402 * more == window_size - lookahead - strstart
1403 * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
1404 * => more >= window_size - 2*WSIZE + 2
1405 * In the BIG_MEM or MMAP case (not yet supported),
1406 * window_size == input_size + MIN_LOOKAHEAD &&
1407 * strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
1408 * Otherwise, window_size == 2*WSIZE so more >= 2.
1409 * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
1410 */
1411 Assert(more >= 2, "more < 2");
1412
1413 n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more);
1414 s->lookahead += n;
1415
1416 /* Initialize the hash value now that we have some input: */
1417 if (s->lookahead >= MIN_MATCH) {
1418 s->ins_h = s->window[s->strstart];
1419 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1420#if MIN_MATCH != 3
1421 Call UPDATE_HASH() MIN_MATCH-3 more times
1422#endif
1423 }
1424 /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
1425 * but this is not important since only literal bytes will be emitted.
1426 */
1427
1428 } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
1429
1430 /* If the WIN_INIT bytes after the end of the current data have never been
1431 * written, then zero those bytes in order to avoid memory check reports of
1432 * the use of uninitialized (or uninitialised as Julian writes) bytes by
1433 * the longest match routines. Update the high water mark for the next
1434 * time through here. WIN_INIT is set to MAX_MATCH since the longest match
1435 * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead.
1436 */
1437 if (s->high_water < s->window_size) {
1438 ulg curr = s->strstart + (ulg)(s->lookahead);
1439 ulg init;
1440
1441 if (s->high_water < curr) {
1442 /* Previous high water mark below current data -- zero WIN_INIT
1443 * bytes or up to end of window, whichever is less.
1444 */
1445 init = s->window_size - curr;
1446 if (init > WIN_INIT)
1447 init = WIN_INIT;
1448 zmemzero(s->window + curr, (unsigned)init);
1449 s->high_water = curr + init;
1450 }
1451 else if (s->high_water < (ulg)curr + WIN_INIT) {
1452 /* High water mark at or above current data, but below current data
1453 * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up
1454 * to end of window, whichever is less.
1455 */
1456 init = (ulg)curr + WIN_INIT - s->high_water;
1457 if (init > s->window_size - s->high_water)
1458 init = s->window_size - s->high_water;
1459 zmemzero(s->window + s->high_water, (unsigned)init);
1460 s->high_water += init;
1461 }
1462 }
1463}
1464
1465/* ===========================================================================
1466 * Flush the current block, with given end-of-file flag.
1467 * IN assertion: strstart is set to the end of the current match.
1468 */
1469#define FLUSH_BLOCK_ONLY(s, last) { \
1470 _tr_flush_block(s, (s->block_start >= 0L ? \
1471 (charf *)&s->window[(unsigned)s->block_start] : \
1472 (charf *)Z_NULL), \
1473 (ulg)((long)s->strstart - s->block_start), \
1474 (last)); \
1475 s->block_start = s->strstart; \
1476 flush_pending(s->strm); \
1477 Tracev((stderr,"[FLUSH]")); \
1478}
1479
1480/* Same but force premature exit if necessary. */
1481#define FLUSH_BLOCK(s, last) { \
1482 FLUSH_BLOCK_ONLY(s, last); \
1483 if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \
1484}
1485
1486/* ===========================================================================
1487 * Copy without compression as much as possible from the input stream, return
1488 * the current block state.
1489 * This function does not insert new strings in the dictionary since
1490 * uncompressible data is probably not useful. This function is used
1491 * only for the level=0 compression option.
1492 * NOTE: this function should be optimized to avoid extra copying from
1493 * window to pending_buf.
1494 */
1495local block_state deflate_stored(s, flush)
1496 deflate_state *s;
1497 int flush;
1498{
1499 /* Stored blocks are limited to 0xffff bytes, pending_buf is limited
1500 * to pending_buf_size, and each stored block has a 5 byte header:
1501 */
1502 ulg max_block_size = 0xffff;
1503 ulg max_start;
1504
1505 if (max_block_size > s->pending_buf_size - 5) {
1506 max_block_size = s->pending_buf_size - 5;
1507 }
1508
1509 /* Copy as much as possible from input to output: */
1510 for (;;) {
1511 /* Fill the window as much as possible: */
1512 if (s->lookahead <= 1) {
1513
1514 Assert(s->strstart < s->w_size+MAX_DIST(s) ||
1515 s->block_start >= (long)s->w_size, "slide too late");
1516
1517 fill_window(s);
1518 if (s->lookahead == 0 && flush == Z_NO_FLUSH) return need_more;
1519
1520 if (s->lookahead == 0) break; /* flush the current block */
1521 }
1522 Assert(s->block_start >= 0L, "block gone");
1523
1524 s->strstart += s->lookahead;
1525 s->lookahead = 0;
1526
1527 /* Emit a stored block if pending_buf will be full: */
1528 max_start = s->block_start + max_block_size;
1529 if (s->strstart == 0 || (ulg)s->strstart >= max_start) {
1530 /* strstart == 0 is possible when wraparound on 16-bit machine */
1531 s->lookahead = (uInt)(s->strstart - max_start);
1532 s->strstart = (uInt)max_start;
1533 FLUSH_BLOCK(s, 0);
1534 }
1535 /* Flush if we may have to slide, otherwise block_start may become
1536 * negative and the data will be gone:
1537 */
1538 if (s->strstart - (uInt)s->block_start >= MAX_DIST(s)) {
1539 FLUSH_BLOCK(s, 0);
1540 }
1541 }
1542 FLUSH_BLOCK(s, flush == Z_FINISH);
1543 return flush == Z_FINISH ? finish_done : block_done;
1544}
1545
1546/* ===========================================================================
1547 * Compress as much as possible from the input stream, return the current
1548 * block state.
1549 * This function does not perform lazy evaluation of matches and inserts
1550 * new strings in the dictionary only for unmatched strings or for short
1551 * matches. It is used only for the fast compression options.
1552 */
1553local block_state deflate_fast(s, flush)
1554 deflate_state *s;
1555 int flush;
1556{
1557 IPos hash_head; /* head of the hash chain */
1558 int bflush; /* set if current block must be flushed */
1559
1560 for (;;) {
1561 /* Make sure that we always have enough lookahead, except
1562 * at the end of the input file. We need MAX_MATCH bytes
1563 * for the next match, plus MIN_MATCH bytes to insert the
1564 * string following the next match.
1565 */
1566 if (s->lookahead < MIN_LOOKAHEAD) {
1567 fill_window(s);
1568 if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1569 return need_more;
1570 }
1571 if (s->lookahead == 0) break; /* flush the current block */
1572 }
1573
1574 /* Insert the string window[strstart .. strstart+2] in the
1575 * dictionary, and set hash_head to the head of the hash chain:
1576 */
1577 hash_head = NIL;
1578 if (s->lookahead >= MIN_MATCH) {
1579 INSERT_STRING(s, s->strstart, hash_head);
1580 }
1581
1582 /* Find the longest match, discarding those <= prev_length.
1583 * At this point we have always match_length < MIN_MATCH
1584 */
1585 if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
1586 /* To simplify the code, we prevent matches with the string
1587 * of window index 0 (in particular we have to avoid a match
1588 * of the string with itself at the start of the input file).
1589 */
1590 s->match_length = longest_match (s, hash_head);
1591 /* longest_match() sets match_start */
1592 }
1593 if (s->match_length >= MIN_MATCH) {
1594 check_match(s, s->strstart, s->match_start, s->match_length);
1595
1596 _tr_tally_dist(s, s->strstart - s->match_start,
1597 s->match_length - MIN_MATCH, bflush);
1598
1599 s->lookahead -= s->match_length;
1600
1601 /* Insert new strings in the hash table only if the match length
1602 * is not too large. This saves time but degrades compression.
1603 */
1604#ifndef FASTEST
1605 if (s->match_length <= s->max_insert_length &&
1606 s->lookahead >= MIN_MATCH) {
1607 s->match_length--; /* string at strstart already in table */
1608 do {
1609 s->strstart++;
1610 INSERT_STRING(s, s->strstart, hash_head);
1611 /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1612 * always MIN_MATCH bytes ahead.
1613 */
1614 } while (--s->match_length != 0);
1615 s->strstart++;
1616 } else
1617#endif
1618 {
1619 s->strstart += s->match_length;
1620 s->match_length = 0;
1621 s->ins_h = s->window[s->strstart];
1622 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1623#if MIN_MATCH != 3
1624 Call UPDATE_HASH() MIN_MATCH-3 more times
1625#endif
1626 /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1627 * matter since it will be recomputed at next deflate call.
1628 */
1629 }
1630 } else {
1631 /* No match, output a literal byte */
1632 Tracevv((stderr,"%c", s->window[s->strstart]));
1633 _tr_tally_lit (s, s->window[s->strstart], bflush);
1634 s->lookahead--;
1635 s->strstart++;
1636 }
1637 if (bflush) FLUSH_BLOCK(s, 0);
1638 }
1639 FLUSH_BLOCK(s, flush == Z_FINISH);
1640 return flush == Z_FINISH ? finish_done : block_done;
1641}
1642
1643#ifndef FASTEST
1644/* ===========================================================================
1645 * Same as above, but achieves better compression. We use a lazy
1646 * evaluation for matches: a match is finally adopted only if there is
1647 * no better match at the next window position.
1648 */
1649local block_state deflate_slow(s, flush)
1650 deflate_state *s;
1651 int flush;
1652{
1653 IPos hash_head; /* head of hash chain */
1654 int bflush; /* set if current block must be flushed */
1655
1656 /* Process the input block. */
1657 for (;;) {
1658 /* Make sure that we always have enough lookahead, except
1659 * at the end of the input file. We need MAX_MATCH bytes
1660 * for the next match, plus MIN_MATCH bytes to insert the
1661 * string following the next match.
1662 */
1663 if (s->lookahead < MIN_LOOKAHEAD) {
1664 fill_window(s);
1665 if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1666 return need_more;
1667 }
1668 if (s->lookahead == 0) break; /* flush the current block */
1669 }
1670
1671 /* Insert the string window[strstart .. strstart+2] in the
1672 * dictionary, and set hash_head to the head of the hash chain:
1673 */
1674 hash_head = NIL;
1675 if (s->lookahead >= MIN_MATCH) {
1676 INSERT_STRING(s, s->strstart, hash_head);
1677 }
1678
1679 /* Find the longest match, discarding those <= prev_length.
1680 */
1681 s->prev_length = s->match_length, s->prev_match = s->match_start;
1682 s->match_length = MIN_MATCH-1;
1683
1684 if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
1685 s->strstart - hash_head <= MAX_DIST(s)) {
1686 /* To simplify the code, we prevent matches with the string
1687 * of window index 0 (in particular we have to avoid a match
1688 * of the string with itself at the start of the input file).
1689 */
1690 s->match_length = longest_match (s, hash_head);
1691 /* longest_match() sets match_start */
1692
1693 if (s->match_length <= 5 && (s->strategy == Z_FILTERED
1694#if TOO_FAR <= 32767
1695 || (s->match_length == MIN_MATCH &&
1696 s->strstart - s->match_start > TOO_FAR)
1697#endif
1698 )) {
1699
1700 /* If prev_match is also MIN_MATCH, match_start is garbage
1701 * but we will ignore the current match anyway.
1702 */
1703 s->match_length = MIN_MATCH-1;
1704 }
1705 }
1706 /* If there was a match at the previous step and the current
1707 * match is not better, output the previous match:
1708 */
1709 if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
1710 uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
1711 /* Do not insert strings in hash table beyond this. */
1712
1713 check_match(s, s->strstart-1, s->prev_match, s->prev_length);
1714
1715 _tr_tally_dist(s, s->strstart -1 - s->prev_match,
1716 s->prev_length - MIN_MATCH, bflush);
1717
1718 /* Insert in hash table all strings up to the end of the match.
1719 * strstart-1 and strstart are already inserted. If there is not
1720 * enough lookahead, the last two strings are not inserted in
1721 * the hash table.
1722 */
1723 s->lookahead -= s->prev_length-1;
1724 s->prev_length -= 2;
1725 do {
1726 if (++s->strstart <= max_insert) {
1727 INSERT_STRING(s, s->strstart, hash_head);
1728 }
1729 } while (--s->prev_length != 0);
1730 s->match_available = 0;
1731 s->match_length = MIN_MATCH-1;
1732 s->strstart++;
1733
1734 if (bflush) FLUSH_BLOCK(s, 0);
1735
1736 } else if (s->match_available) {
1737 /* If there was no match at the previous position, output a
1738 * single literal. If there was a match but the current match
1739 * is longer, truncate the previous match to a single literal.
1740 */
1741 Tracevv((stderr,"%c", s->window[s->strstart-1]));
1742 _tr_tally_lit(s, s->window[s->strstart-1], bflush);
1743 if (bflush) {
1744 FLUSH_BLOCK_ONLY(s, 0);
1745 }
1746 s->strstart++;
1747 s->lookahead--;
1748 if (s->strm->avail_out == 0) return need_more;
1749 } else {
1750 /* There is no previous match to compare with, wait for
1751 * the next step to decide.
1752 */
1753 s->match_available = 1;
1754 s->strstart++;
1755 s->lookahead--;
1756 }
1757 }
1758 Assert (flush != Z_NO_FLUSH, "no flush?");
1759 if (s->match_available) {
1760 Tracevv((stderr,"%c", s->window[s->strstart-1]));
1761 _tr_tally_lit(s, s->window[s->strstart-1], bflush);
1762 s->match_available = 0;
1763 }
1764 FLUSH_BLOCK(s, flush == Z_FINISH);
1765 return flush == Z_FINISH ? finish_done : block_done;
1766}
1767#endif /* FASTEST */
1768
1769/* ===========================================================================
1770 * For Z_RLE, simply look for runs of bytes, generate matches only of distance
1771 * one. Do not maintain a hash table. (It will be regenerated if this run of
1772 * deflate switches away from Z_RLE.)
1773 */
1774local block_state deflate_rle(s, flush)
1775 deflate_state *s;
1776 int flush;
1777{
1778 int bflush; /* set if current block must be flushed */
1779 uInt prev; /* byte at distance one to match */
1780 Bytef *scan, *strend; /* scan goes up to strend for length of run */
1781
1782 for (;;) {
1783 /* Make sure that we always have enough lookahead, except
1784 * at the end of the input file. We need MAX_MATCH bytes
1785 * for the longest encodable run.
1786 */
1787 if (s->lookahead < MAX_MATCH) {
1788 fill_window(s);
1789 if (s->lookahead < MAX_MATCH && flush == Z_NO_FLUSH) {
1790 return need_more;
1791 }
1792 if (s->lookahead == 0) break; /* flush the current block */
1793 }
1794
1795 /* See how many times the previous byte repeats */
1796 s->match_length = 0;
1797 if (s->lookahead >= MIN_MATCH && s->strstart > 0) {
1798 scan = s->window + s->strstart - 1;
1799 prev = *scan;
1800 if (prev == *++scan && prev == *++scan && prev == *++scan) {
1801 strend = s->window + s->strstart + MAX_MATCH;
1802 do {
1803 } while (prev == *++scan && prev == *++scan &&
1804 prev == *++scan && prev == *++scan &&
1805 prev == *++scan && prev == *++scan &&
1806 prev == *++scan && prev == *++scan &&
1807 scan < strend);
1808 s->match_length = MAX_MATCH - (int)(strend - scan);
1809 if (s->match_length > s->lookahead)
1810 s->match_length = s->lookahead;
1811 }
1812 }
1813
1814 /* Emit match if have run of MIN_MATCH or longer, else emit literal */
1815 if (s->match_length >= MIN_MATCH) {
1816 check_match(s, s->strstart, s->strstart - 1, s->match_length);
1817
1818 _tr_tally_dist(s, 1, s->match_length - MIN_MATCH, bflush);
1819
1820 s->lookahead -= s->match_length;
1821 s->strstart += s->match_length;
1822 s->match_length = 0;
1823 } else {
1824 /* No match, output a literal byte */
1825 Tracevv((stderr,"%c", s->window[s->strstart]));
1826 _tr_tally_lit (s, s->window[s->strstart], bflush);
1827 s->lookahead--;
1828 s->strstart++;
1829 }
1830 if (bflush) FLUSH_BLOCK(s, 0);
1831 }
1832 FLUSH_BLOCK(s, flush == Z_FINISH);
1833 return flush == Z_FINISH ? finish_done : block_done;
1834}
1835
1836/* ===========================================================================
1837 * For Z_HUFFMAN_ONLY, do not look for matches. Do not maintain a hash table.
1838 * (It will be regenerated if this run of deflate switches away from Huffman.)
1839 */
1840local block_state deflate_huff(s, flush)
1841 deflate_state *s;
1842 int flush;
1843{
1844 int bflush; /* set if current block must be flushed */
1845
1846 for (;;) {
1847 /* Make sure that we have a literal to write. */
1848 if (s->lookahead == 0) {
1849 fill_window(s);
1850 if (s->lookahead == 0) {
1851 if (flush == Z_NO_FLUSH)
1852 return need_more;
1853 break; /* flush the current block */
1854 }
1855 }
1856
1857 /* Output a literal byte */
1858 s->match_length = 0;
1859 Tracevv((stderr,"%c", s->window[s->strstart]));
1860 _tr_tally_lit (s, s->window[s->strstart], bflush);
1861 s->lookahead--;
1862 s->strstart++;
1863 if (bflush) FLUSH_BLOCK(s, 0);
1864 }
1865 FLUSH_BLOCK(s, flush == Z_FINISH);
1866 return flush == Z_FINISH ? finish_done : block_done;
1867}