blob: faa6da42d580aa99c015504adbb72d8f76a60a63 [file] [log] [blame]
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +01001// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Copyright © 2010-2015 Broadcom Corporation
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 */
14
15#include <common.h>
16#include <asm/io.h>
17#include <memalign.h>
18#include <nand.h>
19#include <clk.h>
20#include <linux/ioport.h>
21#include <linux/completion.h>
22#include <linux/errno.h>
23#include <linux/log2.h>
24#include <asm/processor.h>
25#include <dm.h>
26
27#include "brcmnand.h"
28#include "brcmnand_compat.h"
29
30/*
31 * This flag controls if WP stays on between erase/write commands to mitigate
32 * flash corruption due to power glitches. Values:
33 * 0: NAND_WP is not used or not available
34 * 1: NAND_WP is set by default, cleared for erase/write operations
35 * 2: NAND_WP is always cleared
36 */
37static int wp_on = 1;
38module_param(wp_on, int, 0444);
39
40/***********************************************************************
41 * Definitions
42 ***********************************************************************/
43
44#define DRV_NAME "brcmnand"
45
46#define CMD_NULL 0x00
47#define CMD_PAGE_READ 0x01
48#define CMD_SPARE_AREA_READ 0x02
49#define CMD_STATUS_READ 0x03
50#define CMD_PROGRAM_PAGE 0x04
51#define CMD_PROGRAM_SPARE_AREA 0x05
52#define CMD_COPY_BACK 0x06
53#define CMD_DEVICE_ID_READ 0x07
54#define CMD_BLOCK_ERASE 0x08
55#define CMD_FLASH_RESET 0x09
56#define CMD_BLOCKS_LOCK 0x0a
57#define CMD_BLOCKS_LOCK_DOWN 0x0b
58#define CMD_BLOCKS_UNLOCK 0x0c
59#define CMD_READ_BLOCKS_LOCK_STATUS 0x0d
60#define CMD_PARAMETER_READ 0x0e
61#define CMD_PARAMETER_CHANGE_COL 0x0f
62#define CMD_LOW_LEVEL_OP 0x10
63
64struct brcm_nand_dma_desc {
65 u32 next_desc;
66 u32 next_desc_ext;
67 u32 cmd_irq;
68 u32 dram_addr;
69 u32 dram_addr_ext;
70 u32 tfr_len;
71 u32 total_len;
72 u32 flash_addr;
73 u32 flash_addr_ext;
74 u32 cs;
75 u32 pad2[5];
76 u32 status_valid;
77} __packed;
78
79/* Bitfields for brcm_nand_dma_desc::status_valid */
80#define FLASH_DMA_ECC_ERROR (1 << 8)
81#define FLASH_DMA_CORR_ERROR (1 << 9)
82
83/* 512B flash cache in the NAND controller HW */
84#define FC_SHIFT 9U
85#define FC_BYTES 512U
86#define FC_WORDS (FC_BYTES >> 2)
87
88#define BRCMNAND_MIN_PAGESIZE 512
89#define BRCMNAND_MIN_BLOCKSIZE (8 * 1024)
90#define BRCMNAND_MIN_DEVSIZE (4ULL * 1024 * 1024)
91
92#define NAND_CTRL_RDY (INTFC_CTLR_READY | INTFC_FLASH_READY)
93#define NAND_POLL_STATUS_TIMEOUT_MS 100
94
95/* Controller feature flags */
96enum {
97 BRCMNAND_HAS_1K_SECTORS = BIT(0),
98 BRCMNAND_HAS_PREFETCH = BIT(1),
99 BRCMNAND_HAS_CACHE_MODE = BIT(2),
100 BRCMNAND_HAS_WP = BIT(3),
101};
102
103struct brcmnand_controller {
104#ifndef __UBOOT__
105 struct device *dev;
106#else
107 struct udevice *dev;
108#endif /* __UBOOT__ */
109 struct nand_hw_control controller;
110 void __iomem *nand_base;
111 void __iomem *nand_fc; /* flash cache */
112 void __iomem *flash_dma_base;
113 unsigned int irq;
114 unsigned int dma_irq;
115 int nand_version;
Philippe Reynes7f28cf62019-03-15 15:14:37 +0100116 int parameter_page_big_endian;
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +0100117
118 /* Some SoCs provide custom interrupt status register(s) */
119 struct brcmnand_soc *soc;
120
121 /* Some SoCs have a gateable clock for the controller */
122 struct clk *clk;
123
124 int cmd_pending;
125 bool dma_pending;
126 struct completion done;
127 struct completion dma_done;
128
129 /* List of NAND hosts (one for each chip-select) */
130 struct list_head host_list;
131
132 struct brcm_nand_dma_desc *dma_desc;
133 dma_addr_t dma_pa;
134
135 /* in-memory cache of the FLASH_CACHE, used only for some commands */
136 u8 flash_cache[FC_BYTES];
137
138 /* Controller revision details */
139 const u16 *reg_offsets;
140 unsigned int reg_spacing; /* between CS1, CS2, ... regs */
141 const u8 *cs_offsets; /* within each chip-select */
142 const u8 *cs0_offsets; /* within CS0, if different */
143 unsigned int max_block_size;
144 const unsigned int *block_sizes;
145 unsigned int max_page_size;
146 const unsigned int *page_sizes;
147 unsigned int max_oob;
148 u32 features;
149
150 /* for low-power standby/resume only */
151 u32 nand_cs_nand_select;
152 u32 nand_cs_nand_xor;
153 u32 corr_stat_threshold;
154 u32 flash_dma_mode;
155};
156
157struct brcmnand_cfg {
158 u64 device_size;
159 unsigned int block_size;
160 unsigned int page_size;
161 unsigned int spare_area_size;
162 unsigned int device_width;
163 unsigned int col_adr_bytes;
164 unsigned int blk_adr_bytes;
165 unsigned int ful_adr_bytes;
166 unsigned int sector_size_1k;
167 unsigned int ecc_level;
168 /* use for low-power standby/resume only */
169 u32 acc_control;
170 u32 config;
171 u32 config_ext;
172 u32 timing_1;
173 u32 timing_2;
174};
175
176struct brcmnand_host {
177 struct list_head node;
178
179 struct nand_chip chip;
180#ifndef __UBOOT__
181 struct platform_device *pdev;
182#else
183 struct udevice *pdev;
184#endif /* __UBOOT__ */
185 int cs;
186
187 unsigned int last_cmd;
188 unsigned int last_byte;
189 u64 last_addr;
190 struct brcmnand_cfg hwcfg;
191 struct brcmnand_controller *ctrl;
192};
193
194enum brcmnand_reg {
195 BRCMNAND_CMD_START = 0,
196 BRCMNAND_CMD_EXT_ADDRESS,
197 BRCMNAND_CMD_ADDRESS,
198 BRCMNAND_INTFC_STATUS,
199 BRCMNAND_CS_SELECT,
200 BRCMNAND_CS_XOR,
201 BRCMNAND_LL_OP,
202 BRCMNAND_CS0_BASE,
203 BRCMNAND_CS1_BASE, /* CS1 regs, if non-contiguous */
204 BRCMNAND_CORR_THRESHOLD,
205 BRCMNAND_CORR_THRESHOLD_EXT,
206 BRCMNAND_UNCORR_COUNT,
207 BRCMNAND_CORR_COUNT,
208 BRCMNAND_CORR_EXT_ADDR,
209 BRCMNAND_CORR_ADDR,
210 BRCMNAND_UNCORR_EXT_ADDR,
211 BRCMNAND_UNCORR_ADDR,
212 BRCMNAND_SEMAPHORE,
213 BRCMNAND_ID,
214 BRCMNAND_ID_EXT,
215 BRCMNAND_LL_RDATA,
216 BRCMNAND_OOB_READ_BASE,
217 BRCMNAND_OOB_READ_10_BASE, /* offset 0x10, if non-contiguous */
218 BRCMNAND_OOB_WRITE_BASE,
219 BRCMNAND_OOB_WRITE_10_BASE, /* offset 0x10, if non-contiguous */
220 BRCMNAND_FC_BASE,
221};
222
223/* BRCMNAND v4.0 */
224static const u16 brcmnand_regs_v40[] = {
225 [BRCMNAND_CMD_START] = 0x04,
226 [BRCMNAND_CMD_EXT_ADDRESS] = 0x08,
227 [BRCMNAND_CMD_ADDRESS] = 0x0c,
228 [BRCMNAND_INTFC_STATUS] = 0x6c,
229 [BRCMNAND_CS_SELECT] = 0x14,
230 [BRCMNAND_CS_XOR] = 0x18,
231 [BRCMNAND_LL_OP] = 0x178,
232 [BRCMNAND_CS0_BASE] = 0x40,
233 [BRCMNAND_CS1_BASE] = 0xd0,
234 [BRCMNAND_CORR_THRESHOLD] = 0x84,
235 [BRCMNAND_CORR_THRESHOLD_EXT] = 0,
236 [BRCMNAND_UNCORR_COUNT] = 0,
237 [BRCMNAND_CORR_COUNT] = 0,
238 [BRCMNAND_CORR_EXT_ADDR] = 0x70,
239 [BRCMNAND_CORR_ADDR] = 0x74,
240 [BRCMNAND_UNCORR_EXT_ADDR] = 0x78,
241 [BRCMNAND_UNCORR_ADDR] = 0x7c,
242 [BRCMNAND_SEMAPHORE] = 0x58,
243 [BRCMNAND_ID] = 0x60,
244 [BRCMNAND_ID_EXT] = 0x64,
245 [BRCMNAND_LL_RDATA] = 0x17c,
246 [BRCMNAND_OOB_READ_BASE] = 0x20,
247 [BRCMNAND_OOB_READ_10_BASE] = 0x130,
248 [BRCMNAND_OOB_WRITE_BASE] = 0x30,
249 [BRCMNAND_OOB_WRITE_10_BASE] = 0,
250 [BRCMNAND_FC_BASE] = 0x200,
251};
252
253/* BRCMNAND v5.0 */
254static const u16 brcmnand_regs_v50[] = {
255 [BRCMNAND_CMD_START] = 0x04,
256 [BRCMNAND_CMD_EXT_ADDRESS] = 0x08,
257 [BRCMNAND_CMD_ADDRESS] = 0x0c,
258 [BRCMNAND_INTFC_STATUS] = 0x6c,
259 [BRCMNAND_CS_SELECT] = 0x14,
260 [BRCMNAND_CS_XOR] = 0x18,
261 [BRCMNAND_LL_OP] = 0x178,
262 [BRCMNAND_CS0_BASE] = 0x40,
263 [BRCMNAND_CS1_BASE] = 0xd0,
264 [BRCMNAND_CORR_THRESHOLD] = 0x84,
265 [BRCMNAND_CORR_THRESHOLD_EXT] = 0,
266 [BRCMNAND_UNCORR_COUNT] = 0,
267 [BRCMNAND_CORR_COUNT] = 0,
268 [BRCMNAND_CORR_EXT_ADDR] = 0x70,
269 [BRCMNAND_CORR_ADDR] = 0x74,
270 [BRCMNAND_UNCORR_EXT_ADDR] = 0x78,
271 [BRCMNAND_UNCORR_ADDR] = 0x7c,
272 [BRCMNAND_SEMAPHORE] = 0x58,
273 [BRCMNAND_ID] = 0x60,
274 [BRCMNAND_ID_EXT] = 0x64,
275 [BRCMNAND_LL_RDATA] = 0x17c,
276 [BRCMNAND_OOB_READ_BASE] = 0x20,
277 [BRCMNAND_OOB_READ_10_BASE] = 0x130,
278 [BRCMNAND_OOB_WRITE_BASE] = 0x30,
279 [BRCMNAND_OOB_WRITE_10_BASE] = 0x140,
280 [BRCMNAND_FC_BASE] = 0x200,
281};
282
283/* BRCMNAND v6.0 - v7.1 */
284static const u16 brcmnand_regs_v60[] = {
285 [BRCMNAND_CMD_START] = 0x04,
286 [BRCMNAND_CMD_EXT_ADDRESS] = 0x08,
287 [BRCMNAND_CMD_ADDRESS] = 0x0c,
288 [BRCMNAND_INTFC_STATUS] = 0x14,
289 [BRCMNAND_CS_SELECT] = 0x18,
290 [BRCMNAND_CS_XOR] = 0x1c,
291 [BRCMNAND_LL_OP] = 0x20,
292 [BRCMNAND_CS0_BASE] = 0x50,
293 [BRCMNAND_CS1_BASE] = 0,
294 [BRCMNAND_CORR_THRESHOLD] = 0xc0,
295 [BRCMNAND_CORR_THRESHOLD_EXT] = 0xc4,
296 [BRCMNAND_UNCORR_COUNT] = 0xfc,
297 [BRCMNAND_CORR_COUNT] = 0x100,
298 [BRCMNAND_CORR_EXT_ADDR] = 0x10c,
299 [BRCMNAND_CORR_ADDR] = 0x110,
300 [BRCMNAND_UNCORR_EXT_ADDR] = 0x114,
301 [BRCMNAND_UNCORR_ADDR] = 0x118,
302 [BRCMNAND_SEMAPHORE] = 0x150,
303 [BRCMNAND_ID] = 0x194,
304 [BRCMNAND_ID_EXT] = 0x198,
305 [BRCMNAND_LL_RDATA] = 0x19c,
306 [BRCMNAND_OOB_READ_BASE] = 0x200,
307 [BRCMNAND_OOB_READ_10_BASE] = 0,
308 [BRCMNAND_OOB_WRITE_BASE] = 0x280,
309 [BRCMNAND_OOB_WRITE_10_BASE] = 0,
310 [BRCMNAND_FC_BASE] = 0x400,
311};
312
313/* BRCMNAND v7.1 */
314static const u16 brcmnand_regs_v71[] = {
315 [BRCMNAND_CMD_START] = 0x04,
316 [BRCMNAND_CMD_EXT_ADDRESS] = 0x08,
317 [BRCMNAND_CMD_ADDRESS] = 0x0c,
318 [BRCMNAND_INTFC_STATUS] = 0x14,
319 [BRCMNAND_CS_SELECT] = 0x18,
320 [BRCMNAND_CS_XOR] = 0x1c,
321 [BRCMNAND_LL_OP] = 0x20,
322 [BRCMNAND_CS0_BASE] = 0x50,
323 [BRCMNAND_CS1_BASE] = 0,
324 [BRCMNAND_CORR_THRESHOLD] = 0xdc,
325 [BRCMNAND_CORR_THRESHOLD_EXT] = 0xe0,
326 [BRCMNAND_UNCORR_COUNT] = 0xfc,
327 [BRCMNAND_CORR_COUNT] = 0x100,
328 [BRCMNAND_CORR_EXT_ADDR] = 0x10c,
329 [BRCMNAND_CORR_ADDR] = 0x110,
330 [BRCMNAND_UNCORR_EXT_ADDR] = 0x114,
331 [BRCMNAND_UNCORR_ADDR] = 0x118,
332 [BRCMNAND_SEMAPHORE] = 0x150,
333 [BRCMNAND_ID] = 0x194,
334 [BRCMNAND_ID_EXT] = 0x198,
335 [BRCMNAND_LL_RDATA] = 0x19c,
336 [BRCMNAND_OOB_READ_BASE] = 0x200,
337 [BRCMNAND_OOB_READ_10_BASE] = 0,
338 [BRCMNAND_OOB_WRITE_BASE] = 0x280,
339 [BRCMNAND_OOB_WRITE_10_BASE] = 0,
340 [BRCMNAND_FC_BASE] = 0x400,
341};
342
343/* BRCMNAND v7.2 */
344static const u16 brcmnand_regs_v72[] = {
345 [BRCMNAND_CMD_START] = 0x04,
346 [BRCMNAND_CMD_EXT_ADDRESS] = 0x08,
347 [BRCMNAND_CMD_ADDRESS] = 0x0c,
348 [BRCMNAND_INTFC_STATUS] = 0x14,
349 [BRCMNAND_CS_SELECT] = 0x18,
350 [BRCMNAND_CS_XOR] = 0x1c,
351 [BRCMNAND_LL_OP] = 0x20,
352 [BRCMNAND_CS0_BASE] = 0x50,
353 [BRCMNAND_CS1_BASE] = 0,
354 [BRCMNAND_CORR_THRESHOLD] = 0xdc,
355 [BRCMNAND_CORR_THRESHOLD_EXT] = 0xe0,
356 [BRCMNAND_UNCORR_COUNT] = 0xfc,
357 [BRCMNAND_CORR_COUNT] = 0x100,
358 [BRCMNAND_CORR_EXT_ADDR] = 0x10c,
359 [BRCMNAND_CORR_ADDR] = 0x110,
360 [BRCMNAND_UNCORR_EXT_ADDR] = 0x114,
361 [BRCMNAND_UNCORR_ADDR] = 0x118,
362 [BRCMNAND_SEMAPHORE] = 0x150,
363 [BRCMNAND_ID] = 0x194,
364 [BRCMNAND_ID_EXT] = 0x198,
365 [BRCMNAND_LL_RDATA] = 0x19c,
366 [BRCMNAND_OOB_READ_BASE] = 0x200,
367 [BRCMNAND_OOB_READ_10_BASE] = 0,
368 [BRCMNAND_OOB_WRITE_BASE] = 0x400,
369 [BRCMNAND_OOB_WRITE_10_BASE] = 0,
370 [BRCMNAND_FC_BASE] = 0x600,
371};
372
373enum brcmnand_cs_reg {
374 BRCMNAND_CS_CFG_EXT = 0,
375 BRCMNAND_CS_CFG,
376 BRCMNAND_CS_ACC_CONTROL,
377 BRCMNAND_CS_TIMING1,
378 BRCMNAND_CS_TIMING2,
379};
380
381/* Per chip-select offsets for v7.1 */
382static const u8 brcmnand_cs_offsets_v71[] = {
383 [BRCMNAND_CS_ACC_CONTROL] = 0x00,
384 [BRCMNAND_CS_CFG_EXT] = 0x04,
385 [BRCMNAND_CS_CFG] = 0x08,
386 [BRCMNAND_CS_TIMING1] = 0x0c,
387 [BRCMNAND_CS_TIMING2] = 0x10,
388};
389
390/* Per chip-select offsets for pre v7.1, except CS0 on <= v5.0 */
391static const u8 brcmnand_cs_offsets[] = {
392 [BRCMNAND_CS_ACC_CONTROL] = 0x00,
393 [BRCMNAND_CS_CFG_EXT] = 0x04,
394 [BRCMNAND_CS_CFG] = 0x04,
395 [BRCMNAND_CS_TIMING1] = 0x08,
396 [BRCMNAND_CS_TIMING2] = 0x0c,
397};
398
399/* Per chip-select offset for <= v5.0 on CS0 only */
400static const u8 brcmnand_cs_offsets_cs0[] = {
401 [BRCMNAND_CS_ACC_CONTROL] = 0x00,
402 [BRCMNAND_CS_CFG_EXT] = 0x08,
403 [BRCMNAND_CS_CFG] = 0x08,
404 [BRCMNAND_CS_TIMING1] = 0x10,
405 [BRCMNAND_CS_TIMING2] = 0x14,
406};
407
408/*
409 * Bitfields for the CFG and CFG_EXT registers. Pre-v7.1 controllers only had
410 * one config register, but once the bitfields overflowed, newer controllers
411 * (v7.1 and newer) added a CFG_EXT register and shuffled a few fields around.
412 */
413enum {
414 CFG_BLK_ADR_BYTES_SHIFT = 8,
415 CFG_COL_ADR_BYTES_SHIFT = 12,
416 CFG_FUL_ADR_BYTES_SHIFT = 16,
417 CFG_BUS_WIDTH_SHIFT = 23,
418 CFG_BUS_WIDTH = BIT(CFG_BUS_WIDTH_SHIFT),
419 CFG_DEVICE_SIZE_SHIFT = 24,
420
421 /* Only for pre-v7.1 (with no CFG_EXT register) */
422 CFG_PAGE_SIZE_SHIFT = 20,
423 CFG_BLK_SIZE_SHIFT = 28,
424
425 /* Only for v7.1+ (with CFG_EXT register) */
426 CFG_EXT_PAGE_SIZE_SHIFT = 0,
427 CFG_EXT_BLK_SIZE_SHIFT = 4,
428};
429
430/* BRCMNAND_INTFC_STATUS */
431enum {
432 INTFC_FLASH_STATUS = GENMASK(7, 0),
433
434 INTFC_ERASED = BIT(27),
435 INTFC_OOB_VALID = BIT(28),
436 INTFC_CACHE_VALID = BIT(29),
437 INTFC_FLASH_READY = BIT(30),
438 INTFC_CTLR_READY = BIT(31),
439};
440
441static inline u32 nand_readreg(struct brcmnand_controller *ctrl, u32 offs)
442{
443 return brcmnand_readl(ctrl->nand_base + offs);
444}
445
446static inline void nand_writereg(struct brcmnand_controller *ctrl, u32 offs,
447 u32 val)
448{
449 brcmnand_writel(val, ctrl->nand_base + offs);
450}
451
452static int brcmnand_revision_init(struct brcmnand_controller *ctrl)
453{
454 static const unsigned int block_sizes_v6[] = { 8, 16, 128, 256, 512, 1024, 2048, 0 };
455 static const unsigned int block_sizes_v4[] = { 16, 128, 8, 512, 256, 1024, 2048, 0 };
456 static const unsigned int page_sizes[] = { 512, 2048, 4096, 8192, 0 };
457
458 ctrl->nand_version = nand_readreg(ctrl, 0) & 0xffff;
459
460 /* Only support v4.0+? */
461 if (ctrl->nand_version < 0x0400) {
462 dev_err(ctrl->dev, "version %#x not supported\n",
463 ctrl->nand_version);
464 return -ENODEV;
465 }
466
467 /* Register offsets */
468 if (ctrl->nand_version >= 0x0702)
469 ctrl->reg_offsets = brcmnand_regs_v72;
470 else if (ctrl->nand_version >= 0x0701)
471 ctrl->reg_offsets = brcmnand_regs_v71;
472 else if (ctrl->nand_version >= 0x0600)
473 ctrl->reg_offsets = brcmnand_regs_v60;
474 else if (ctrl->nand_version >= 0x0500)
475 ctrl->reg_offsets = brcmnand_regs_v50;
476 else if (ctrl->nand_version >= 0x0400)
477 ctrl->reg_offsets = brcmnand_regs_v40;
478
479 /* Chip-select stride */
480 if (ctrl->nand_version >= 0x0701)
481 ctrl->reg_spacing = 0x14;
482 else
483 ctrl->reg_spacing = 0x10;
484
485 /* Per chip-select registers */
486 if (ctrl->nand_version >= 0x0701) {
487 ctrl->cs_offsets = brcmnand_cs_offsets_v71;
488 } else {
489 ctrl->cs_offsets = brcmnand_cs_offsets;
490
491 /* v5.0 and earlier has a different CS0 offset layout */
492 if (ctrl->nand_version <= 0x0500)
493 ctrl->cs0_offsets = brcmnand_cs_offsets_cs0;
494 }
495
496 /* Page / block sizes */
497 if (ctrl->nand_version >= 0x0701) {
498 /* >= v7.1 use nice power-of-2 values! */
499 ctrl->max_page_size = 16 * 1024;
500 ctrl->max_block_size = 2 * 1024 * 1024;
501 } else {
502 ctrl->page_sizes = page_sizes;
503 if (ctrl->nand_version >= 0x0600)
504 ctrl->block_sizes = block_sizes_v6;
505 else
506 ctrl->block_sizes = block_sizes_v4;
507
508 if (ctrl->nand_version < 0x0400) {
509 ctrl->max_page_size = 4096;
510 ctrl->max_block_size = 512 * 1024;
511 }
512 }
513
514 /* Maximum spare area sector size (per 512B) */
515 if (ctrl->nand_version >= 0x0702)
516 ctrl->max_oob = 128;
517 else if (ctrl->nand_version >= 0x0600)
518 ctrl->max_oob = 64;
519 else if (ctrl->nand_version >= 0x0500)
520 ctrl->max_oob = 32;
521 else
522 ctrl->max_oob = 16;
523
524 /* v6.0 and newer (except v6.1) have prefetch support */
525 if (ctrl->nand_version >= 0x0600 && ctrl->nand_version != 0x0601)
526 ctrl->features |= BRCMNAND_HAS_PREFETCH;
527
528 /*
529 * v6.x has cache mode, but it's implemented differently. Ignore it for
530 * now.
531 */
532 if (ctrl->nand_version >= 0x0700)
533 ctrl->features |= BRCMNAND_HAS_CACHE_MODE;
534
535 if (ctrl->nand_version >= 0x0500)
536 ctrl->features |= BRCMNAND_HAS_1K_SECTORS;
537
538 if (ctrl->nand_version >= 0x0700)
539 ctrl->features |= BRCMNAND_HAS_WP;
540#ifndef __UBOOT__
541 else if (of_property_read_bool(ctrl->dev->of_node, "brcm,nand-has-wp"))
542#else
543 else if (dev_read_bool(ctrl->dev, "brcm,nand-has-wp"))
544#endif /* __UBOOT__ */
545 ctrl->features |= BRCMNAND_HAS_WP;
546
547 return 0;
548}
549
550static inline u32 brcmnand_read_reg(struct brcmnand_controller *ctrl,
551 enum brcmnand_reg reg)
552{
553 u16 offs = ctrl->reg_offsets[reg];
554
555 if (offs)
556 return nand_readreg(ctrl, offs);
557 else
558 return 0;
559}
560
561static inline void brcmnand_write_reg(struct brcmnand_controller *ctrl,
562 enum brcmnand_reg reg, u32 val)
563{
564 u16 offs = ctrl->reg_offsets[reg];
565
566 if (offs)
567 nand_writereg(ctrl, offs, val);
568}
569
570static inline void brcmnand_rmw_reg(struct brcmnand_controller *ctrl,
571 enum brcmnand_reg reg, u32 mask, unsigned
572 int shift, u32 val)
573{
574 u32 tmp = brcmnand_read_reg(ctrl, reg);
575
576 tmp &= ~mask;
577 tmp |= val << shift;
578 brcmnand_write_reg(ctrl, reg, tmp);
579}
580
581static inline u32 brcmnand_read_fc(struct brcmnand_controller *ctrl, int word)
582{
583 return __raw_readl(ctrl->nand_fc + word * 4);
584}
585
586static inline void brcmnand_write_fc(struct brcmnand_controller *ctrl,
587 int word, u32 val)
588{
589 __raw_writel(val, ctrl->nand_fc + word * 4);
590}
591
592static inline u16 brcmnand_cs_offset(struct brcmnand_controller *ctrl, int cs,
593 enum brcmnand_cs_reg reg)
594{
595 u16 offs_cs0 = ctrl->reg_offsets[BRCMNAND_CS0_BASE];
596 u16 offs_cs1 = ctrl->reg_offsets[BRCMNAND_CS1_BASE];
597 u8 cs_offs;
598
599 if (cs == 0 && ctrl->cs0_offsets)
600 cs_offs = ctrl->cs0_offsets[reg];
601 else
602 cs_offs = ctrl->cs_offsets[reg];
603
604 if (cs && offs_cs1)
605 return offs_cs1 + (cs - 1) * ctrl->reg_spacing + cs_offs;
606
607 return offs_cs0 + cs * ctrl->reg_spacing + cs_offs;
608}
609
610static inline u32 brcmnand_count_corrected(struct brcmnand_controller *ctrl)
611{
612 if (ctrl->nand_version < 0x0600)
613 return 1;
614 return brcmnand_read_reg(ctrl, BRCMNAND_CORR_COUNT);
615}
616
617static void brcmnand_wr_corr_thresh(struct brcmnand_host *host, u8 val)
618{
619 struct brcmnand_controller *ctrl = host->ctrl;
620 unsigned int shift = 0, bits;
621 enum brcmnand_reg reg = BRCMNAND_CORR_THRESHOLD;
622 int cs = host->cs;
623
624 if (ctrl->nand_version >= 0x0702)
625 bits = 7;
626 else if (ctrl->nand_version >= 0x0600)
627 bits = 6;
628 else if (ctrl->nand_version >= 0x0500)
629 bits = 5;
630 else
631 bits = 4;
632
633 if (ctrl->nand_version >= 0x0702) {
634 if (cs >= 4)
635 reg = BRCMNAND_CORR_THRESHOLD_EXT;
636 shift = (cs % 4) * bits;
637 } else if (ctrl->nand_version >= 0x0600) {
638 if (cs >= 5)
639 reg = BRCMNAND_CORR_THRESHOLD_EXT;
640 shift = (cs % 5) * bits;
641 }
642 brcmnand_rmw_reg(ctrl, reg, (bits - 1) << shift, shift, val);
643}
644
645static inline int brcmnand_cmd_shift(struct brcmnand_controller *ctrl)
646{
647 if (ctrl->nand_version < 0x0602)
648 return 24;
649 return 0;
650}
651
652/***********************************************************************
653 * NAND ACC CONTROL bitfield
654 *
655 * Some bits have remained constant throughout hardware revision, while
656 * others have shifted around.
657 ***********************************************************************/
658
659/* Constant for all versions (where supported) */
660enum {
661 /* See BRCMNAND_HAS_CACHE_MODE */
662 ACC_CONTROL_CACHE_MODE = BIT(22),
663
664 /* See BRCMNAND_HAS_PREFETCH */
665 ACC_CONTROL_PREFETCH = BIT(23),
666
667 ACC_CONTROL_PAGE_HIT = BIT(24),
668 ACC_CONTROL_WR_PREEMPT = BIT(25),
669 ACC_CONTROL_PARTIAL_PAGE = BIT(26),
670 ACC_CONTROL_RD_ERASED = BIT(27),
671 ACC_CONTROL_FAST_PGM_RDIN = BIT(28),
672 ACC_CONTROL_WR_ECC = BIT(30),
673 ACC_CONTROL_RD_ECC = BIT(31),
674};
675
676static inline u32 brcmnand_spare_area_mask(struct brcmnand_controller *ctrl)
677{
678 if (ctrl->nand_version >= 0x0702)
679 return GENMASK(7, 0);
680 else if (ctrl->nand_version >= 0x0600)
681 return GENMASK(6, 0);
682 else
683 return GENMASK(5, 0);
684}
685
686#define NAND_ACC_CONTROL_ECC_SHIFT 16
687#define NAND_ACC_CONTROL_ECC_EXT_SHIFT 13
688
689static inline u32 brcmnand_ecc_level_mask(struct brcmnand_controller *ctrl)
690{
691 u32 mask = (ctrl->nand_version >= 0x0600) ? 0x1f : 0x0f;
692
693 mask <<= NAND_ACC_CONTROL_ECC_SHIFT;
694
695 /* v7.2 includes additional ECC levels */
696 if (ctrl->nand_version >= 0x0702)
697 mask |= 0x7 << NAND_ACC_CONTROL_ECC_EXT_SHIFT;
698
699 return mask;
700}
701
702static void brcmnand_set_ecc_enabled(struct brcmnand_host *host, int en)
703{
704 struct brcmnand_controller *ctrl = host->ctrl;
705 u16 offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_ACC_CONTROL);
706 u32 acc_control = nand_readreg(ctrl, offs);
707 u32 ecc_flags = ACC_CONTROL_WR_ECC | ACC_CONTROL_RD_ECC;
708
709 if (en) {
710 acc_control |= ecc_flags; /* enable RD/WR ECC */
711 acc_control |= host->hwcfg.ecc_level
712 << NAND_ACC_CONTROL_ECC_SHIFT;
713 } else {
714 acc_control &= ~ecc_flags; /* disable RD/WR ECC */
715 acc_control &= ~brcmnand_ecc_level_mask(ctrl);
716 }
717
718 nand_writereg(ctrl, offs, acc_control);
719}
720
721static inline int brcmnand_sector_1k_shift(struct brcmnand_controller *ctrl)
722{
723 if (ctrl->nand_version >= 0x0702)
724 return 9;
725 else if (ctrl->nand_version >= 0x0600)
726 return 7;
727 else if (ctrl->nand_version >= 0x0500)
728 return 6;
729 else
730 return -1;
731}
732
733static int brcmnand_get_sector_size_1k(struct brcmnand_host *host)
734{
735 struct brcmnand_controller *ctrl = host->ctrl;
736 int shift = brcmnand_sector_1k_shift(ctrl);
737 u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
738 BRCMNAND_CS_ACC_CONTROL);
739
740 if (shift < 0)
741 return 0;
742
743 return (nand_readreg(ctrl, acc_control_offs) >> shift) & 0x1;
744}
745
746static void brcmnand_set_sector_size_1k(struct brcmnand_host *host, int val)
747{
748 struct brcmnand_controller *ctrl = host->ctrl;
749 int shift = brcmnand_sector_1k_shift(ctrl);
750 u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
751 BRCMNAND_CS_ACC_CONTROL);
752 u32 tmp;
753
754 if (shift < 0)
755 return;
756
757 tmp = nand_readreg(ctrl, acc_control_offs);
758 tmp &= ~(1 << shift);
759 tmp |= (!!val) << shift;
760 nand_writereg(ctrl, acc_control_offs, tmp);
761}
762
763/***********************************************************************
764 * CS_NAND_SELECT
765 ***********************************************************************/
766
767enum {
768 CS_SELECT_NAND_WP = BIT(29),
769 CS_SELECT_AUTO_DEVICE_ID_CFG = BIT(30),
770};
771
772static int bcmnand_ctrl_poll_status(struct brcmnand_controller *ctrl,
773 u32 mask, u32 expected_val,
774 unsigned long timeout_ms)
775{
776#ifndef __UBOOT__
777 unsigned long limit;
778 u32 val;
779
780 if (!timeout_ms)
781 timeout_ms = NAND_POLL_STATUS_TIMEOUT_MS;
782
783 limit = jiffies + msecs_to_jiffies(timeout_ms);
784 do {
785 val = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS);
786 if ((val & mask) == expected_val)
787 return 0;
788
789 cpu_relax();
790 } while (time_after(limit, jiffies));
791#else
792 unsigned long base, limit;
793 u32 val;
794
795 if (!timeout_ms)
796 timeout_ms = NAND_POLL_STATUS_TIMEOUT_MS;
797
798 base = get_timer(0);
799 limit = CONFIG_SYS_HZ * timeout_ms / 1000;
800 do {
801 val = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS);
802 if ((val & mask) == expected_val)
803 return 0;
804
805 cpu_relax();
806 } while (get_timer(base) < limit);
807#endif /* __UBOOT__ */
808
809 dev_warn(ctrl->dev, "timeout on status poll (expected %x got %x)\n",
810 expected_val, val & mask);
811
812 return -ETIMEDOUT;
813}
814
815static inline void brcmnand_set_wp(struct brcmnand_controller *ctrl, bool en)
816{
817 u32 val = en ? CS_SELECT_NAND_WP : 0;
818
819 brcmnand_rmw_reg(ctrl, BRCMNAND_CS_SELECT, CS_SELECT_NAND_WP, 0, val);
820}
821
822/***********************************************************************
823 * Flash DMA
824 ***********************************************************************/
825
826enum flash_dma_reg {
827 FLASH_DMA_REVISION = 0x00,
828 FLASH_DMA_FIRST_DESC = 0x04,
829 FLASH_DMA_FIRST_DESC_EXT = 0x08,
830 FLASH_DMA_CTRL = 0x0c,
831 FLASH_DMA_MODE = 0x10,
832 FLASH_DMA_STATUS = 0x14,
833 FLASH_DMA_INTERRUPT_DESC = 0x18,
834 FLASH_DMA_INTERRUPT_DESC_EXT = 0x1c,
835 FLASH_DMA_ERROR_STATUS = 0x20,
836 FLASH_DMA_CURRENT_DESC = 0x24,
837 FLASH_DMA_CURRENT_DESC_EXT = 0x28,
838};
839
840static inline bool has_flash_dma(struct brcmnand_controller *ctrl)
841{
842 return ctrl->flash_dma_base;
843}
844
845static inline bool flash_dma_buf_ok(const void *buf)
846{
847#ifndef __UBOOT__
848 return buf && !is_vmalloc_addr(buf) &&
849 likely(IS_ALIGNED((uintptr_t)buf, 4));
850#else
851 return buf && likely(IS_ALIGNED((uintptr_t)buf, 4));
852#endif /* __UBOOT__ */
853}
854
855static inline void flash_dma_writel(struct brcmnand_controller *ctrl, u8 offs,
856 u32 val)
857{
858 brcmnand_writel(val, ctrl->flash_dma_base + offs);
859}
860
861static inline u32 flash_dma_readl(struct brcmnand_controller *ctrl, u8 offs)
862{
863 return brcmnand_readl(ctrl->flash_dma_base + offs);
864}
865
866/* Low-level operation types: command, address, write, or read */
867enum brcmnand_llop_type {
868 LL_OP_CMD,
869 LL_OP_ADDR,
870 LL_OP_WR,
871 LL_OP_RD,
872};
873
874/***********************************************************************
875 * Internal support functions
876 ***********************************************************************/
877
878static inline bool is_hamming_ecc(struct brcmnand_controller *ctrl,
879 struct brcmnand_cfg *cfg)
880{
881 if (ctrl->nand_version <= 0x0701)
882 return cfg->sector_size_1k == 0 && cfg->spare_area_size == 16 &&
883 cfg->ecc_level == 15;
884 else
885 return cfg->sector_size_1k == 0 && ((cfg->spare_area_size == 16 &&
886 cfg->ecc_level == 15) ||
887 (cfg->spare_area_size == 28 && cfg->ecc_level == 16));
888}
889
890/*
891 * Set mtd->ooblayout to the appropriate mtd_ooblayout_ops given
892 * the layout/configuration.
893 * Returns -ERRCODE on failure.
894 */
895static int brcmnand_hamming_ooblayout_ecc(struct mtd_info *mtd, int section,
896 struct mtd_oob_region *oobregion)
897{
898 struct nand_chip *chip = mtd_to_nand(mtd);
899 struct brcmnand_host *host = nand_get_controller_data(chip);
900 struct brcmnand_cfg *cfg = &host->hwcfg;
901 int sas = cfg->spare_area_size << cfg->sector_size_1k;
902 int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
903
904 if (section >= sectors)
905 return -ERANGE;
906
907 oobregion->offset = (section * sas) + 6;
908 oobregion->length = 3;
909
910 return 0;
911}
912
913static int brcmnand_hamming_ooblayout_free(struct mtd_info *mtd, int section,
914 struct mtd_oob_region *oobregion)
915{
916 struct nand_chip *chip = mtd_to_nand(mtd);
917 struct brcmnand_host *host = nand_get_controller_data(chip);
918 struct brcmnand_cfg *cfg = &host->hwcfg;
919 int sas = cfg->spare_area_size << cfg->sector_size_1k;
920 int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
921
922 if (section >= sectors * 2)
923 return -ERANGE;
924
925 oobregion->offset = (section / 2) * sas;
926
927 if (section & 1) {
928 oobregion->offset += 9;
929 oobregion->length = 7;
930 } else {
931 oobregion->length = 6;
932
933 /* First sector of each page may have BBI */
934 if (!section) {
935 /*
936 * Small-page NAND use byte 6 for BBI while large-page
937 * NAND use byte 0.
938 */
939 if (cfg->page_size > 512)
940 oobregion->offset++;
941 oobregion->length--;
942 }
943 }
944
945 return 0;
946}
947
948static const struct mtd_ooblayout_ops brcmnand_hamming_ooblayout_ops = {
949 .ecc = brcmnand_hamming_ooblayout_ecc,
950 .free = brcmnand_hamming_ooblayout_free,
951};
952
953static int brcmnand_bch_ooblayout_ecc(struct mtd_info *mtd, int section,
954 struct mtd_oob_region *oobregion)
955{
956 struct nand_chip *chip = mtd_to_nand(mtd);
957 struct brcmnand_host *host = nand_get_controller_data(chip);
958 struct brcmnand_cfg *cfg = &host->hwcfg;
959 int sas = cfg->spare_area_size << cfg->sector_size_1k;
960 int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
961
962 if (section >= sectors)
963 return -ERANGE;
964
965 oobregion->offset = (section * (sas + 1)) - chip->ecc.bytes;
966 oobregion->length = chip->ecc.bytes;
967
968 return 0;
969}
970
971static int brcmnand_bch_ooblayout_free_lp(struct mtd_info *mtd, int section,
972 struct mtd_oob_region *oobregion)
973{
974 struct nand_chip *chip = mtd_to_nand(mtd);
975 struct brcmnand_host *host = nand_get_controller_data(chip);
976 struct brcmnand_cfg *cfg = &host->hwcfg;
977 int sas = cfg->spare_area_size << cfg->sector_size_1k;
978 int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
979
980 if (section >= sectors)
981 return -ERANGE;
982
983 if (sas <= chip->ecc.bytes)
984 return 0;
985
986 oobregion->offset = section * sas;
987 oobregion->length = sas - chip->ecc.bytes;
988
989 if (!section) {
990 oobregion->offset++;
991 oobregion->length--;
992 }
993
994 return 0;
995}
996
997static int brcmnand_bch_ooblayout_free_sp(struct mtd_info *mtd, int section,
998 struct mtd_oob_region *oobregion)
999{
1000 struct nand_chip *chip = mtd_to_nand(mtd);
1001 struct brcmnand_host *host = nand_get_controller_data(chip);
1002 struct brcmnand_cfg *cfg = &host->hwcfg;
1003 int sas = cfg->spare_area_size << cfg->sector_size_1k;
1004
1005 if (section > 1 || sas - chip->ecc.bytes < 6 ||
1006 (section && sas - chip->ecc.bytes == 6))
1007 return -ERANGE;
1008
1009 if (!section) {
1010 oobregion->offset = 0;
1011 oobregion->length = 5;
1012 } else {
1013 oobregion->offset = 6;
1014 oobregion->length = sas - chip->ecc.bytes - 6;
1015 }
1016
1017 return 0;
1018}
1019
1020static const struct mtd_ooblayout_ops brcmnand_bch_lp_ooblayout_ops = {
1021 .ecc = brcmnand_bch_ooblayout_ecc,
1022 .free = brcmnand_bch_ooblayout_free_lp,
1023};
1024
1025static const struct mtd_ooblayout_ops brcmnand_bch_sp_ooblayout_ops = {
1026 .ecc = brcmnand_bch_ooblayout_ecc,
1027 .free = brcmnand_bch_ooblayout_free_sp,
1028};
1029
1030static int brcmstb_choose_ecc_layout(struct brcmnand_host *host)
1031{
1032 struct brcmnand_cfg *p = &host->hwcfg;
1033 struct mtd_info *mtd = nand_to_mtd(&host->chip);
1034 struct nand_ecc_ctrl *ecc = &host->chip.ecc;
1035 unsigned int ecc_level = p->ecc_level;
1036 int sas = p->spare_area_size << p->sector_size_1k;
1037 int sectors = p->page_size / (512 << p->sector_size_1k);
1038
1039 if (p->sector_size_1k)
1040 ecc_level <<= 1;
1041
1042 if (is_hamming_ecc(host->ctrl, p)) {
1043 ecc->bytes = 3 * sectors;
1044 mtd_set_ooblayout(mtd, &brcmnand_hamming_ooblayout_ops);
1045 return 0;
1046 }
1047
1048 /*
1049 * CONTROLLER_VERSION:
1050 * < v5.0: ECC_REQ = ceil(BCH_T * 13/8)
1051 * >= v5.0: ECC_REQ = ceil(BCH_T * 14/8)
1052 * But we will just be conservative.
1053 */
1054 ecc->bytes = DIV_ROUND_UP(ecc_level * 14, 8);
1055 if (p->page_size == 512)
1056 mtd_set_ooblayout(mtd, &brcmnand_bch_sp_ooblayout_ops);
1057 else
1058 mtd_set_ooblayout(mtd, &brcmnand_bch_lp_ooblayout_ops);
1059
1060 if (ecc->bytes >= sas) {
1061 dev_err(&host->pdev->dev,
1062 "error: ECC too large for OOB (ECC bytes %d, spare sector %d)\n",
1063 ecc->bytes, sas);
1064 return -EINVAL;
1065 }
1066
1067 return 0;
1068}
1069
1070static void brcmnand_wp(struct mtd_info *mtd, int wp)
1071{
1072 struct nand_chip *chip = mtd_to_nand(mtd);
1073 struct brcmnand_host *host = nand_get_controller_data(chip);
1074 struct brcmnand_controller *ctrl = host->ctrl;
1075
1076 if ((ctrl->features & BRCMNAND_HAS_WP) && wp_on == 1) {
1077 static int old_wp = -1;
1078 int ret;
1079
1080 if (old_wp != wp) {
1081 dev_dbg(ctrl->dev, "WP %s\n", wp ? "on" : "off");
1082 old_wp = wp;
1083 }
1084
1085 /*
1086 * make sure ctrl/flash ready before and after
1087 * changing state of #WP pin
1088 */
1089 ret = bcmnand_ctrl_poll_status(ctrl, NAND_CTRL_RDY |
1090 NAND_STATUS_READY,
1091 NAND_CTRL_RDY |
1092 NAND_STATUS_READY, 0);
1093 if (ret)
1094 return;
1095
1096 brcmnand_set_wp(ctrl, wp);
1097 nand_status_op(chip, NULL);
1098 /* NAND_STATUS_WP 0x00 = protected, 0x80 = not protected */
1099 ret = bcmnand_ctrl_poll_status(ctrl,
1100 NAND_CTRL_RDY |
1101 NAND_STATUS_READY |
1102 NAND_STATUS_WP,
1103 NAND_CTRL_RDY |
1104 NAND_STATUS_READY |
1105 (wp ? 0 : NAND_STATUS_WP), 0);
1106#ifndef __UBOOT__
1107 if (ret)
1108 dev_err_ratelimited(&host->pdev->dev,
1109 "nand #WP expected %s\n",
1110 wp ? "on" : "off");
1111#else
1112 if (ret)
1113 dev_err(&host->pdev->dev,
1114 "nand #WP expected %s\n",
1115 wp ? "on" : "off");
1116#endif /* __UBOOT__ */
1117 }
1118}
1119
1120/* Helper functions for reading and writing OOB registers */
1121static inline u8 oob_reg_read(struct brcmnand_controller *ctrl, u32 offs)
1122{
1123 u16 offset0, offset10, reg_offs;
1124
1125 offset0 = ctrl->reg_offsets[BRCMNAND_OOB_READ_BASE];
1126 offset10 = ctrl->reg_offsets[BRCMNAND_OOB_READ_10_BASE];
1127
1128 if (offs >= ctrl->max_oob)
1129 return 0x77;
1130
1131 if (offs >= 16 && offset10)
1132 reg_offs = offset10 + ((offs - 0x10) & ~0x03);
1133 else
1134 reg_offs = offset0 + (offs & ~0x03);
1135
1136 return nand_readreg(ctrl, reg_offs) >> (24 - ((offs & 0x03) << 3));
1137}
1138
1139static inline void oob_reg_write(struct brcmnand_controller *ctrl, u32 offs,
1140 u32 data)
1141{
1142 u16 offset0, offset10, reg_offs;
1143
1144 offset0 = ctrl->reg_offsets[BRCMNAND_OOB_WRITE_BASE];
1145 offset10 = ctrl->reg_offsets[BRCMNAND_OOB_WRITE_10_BASE];
1146
1147 if (offs >= ctrl->max_oob)
1148 return;
1149
1150 if (offs >= 16 && offset10)
1151 reg_offs = offset10 + ((offs - 0x10) & ~0x03);
1152 else
1153 reg_offs = offset0 + (offs & ~0x03);
1154
1155 nand_writereg(ctrl, reg_offs, data);
1156}
1157
1158/*
1159 * read_oob_from_regs - read data from OOB registers
1160 * @ctrl: NAND controller
1161 * @i: sub-page sector index
1162 * @oob: buffer to read to
1163 * @sas: spare area sector size (i.e., OOB size per FLASH_CACHE)
1164 * @sector_1k: 1 for 1KiB sectors, 0 for 512B, other values are illegal
1165 */
1166static int read_oob_from_regs(struct brcmnand_controller *ctrl, int i, u8 *oob,
1167 int sas, int sector_1k)
1168{
1169 int tbytes = sas << sector_1k;
1170 int j;
1171
1172 /* Adjust OOB values for 1K sector size */
1173 if (sector_1k && (i & 0x01))
1174 tbytes = max(0, tbytes - (int)ctrl->max_oob);
1175 tbytes = min_t(int, tbytes, ctrl->max_oob);
1176
1177 for (j = 0; j < tbytes; j++)
1178 oob[j] = oob_reg_read(ctrl, j);
1179 return tbytes;
1180}
1181
1182/*
1183 * write_oob_to_regs - write data to OOB registers
1184 * @i: sub-page sector index
1185 * @oob: buffer to write from
1186 * @sas: spare area sector size (i.e., OOB size per FLASH_CACHE)
1187 * @sector_1k: 1 for 1KiB sectors, 0 for 512B, other values are illegal
1188 */
1189static int write_oob_to_regs(struct brcmnand_controller *ctrl, int i,
1190 const u8 *oob, int sas, int sector_1k)
1191{
1192 int tbytes = sas << sector_1k;
1193 int j;
1194
1195 /* Adjust OOB values for 1K sector size */
1196 if (sector_1k && (i & 0x01))
1197 tbytes = max(0, tbytes - (int)ctrl->max_oob);
1198 tbytes = min_t(int, tbytes, ctrl->max_oob);
1199
1200 for (j = 0; j < tbytes; j += 4)
1201 oob_reg_write(ctrl, j,
1202 (oob[j + 0] << 24) |
1203 (oob[j + 1] << 16) |
1204 (oob[j + 2] << 8) |
1205 (oob[j + 3] << 0));
1206 return tbytes;
1207}
1208
1209#ifndef __UBOOT__
1210static irqreturn_t brcmnand_ctlrdy_irq(int irq, void *data)
1211{
1212 struct brcmnand_controller *ctrl = data;
1213
1214 /* Discard all NAND_CTLRDY interrupts during DMA */
1215 if (ctrl->dma_pending)
1216 return IRQ_HANDLED;
1217
1218 complete(&ctrl->done);
1219 return IRQ_HANDLED;
1220}
1221
1222/* Handle SoC-specific interrupt hardware */
1223static irqreturn_t brcmnand_irq(int irq, void *data)
1224{
1225 struct brcmnand_controller *ctrl = data;
1226
1227 if (ctrl->soc->ctlrdy_ack(ctrl->soc))
1228 return brcmnand_ctlrdy_irq(irq, data);
1229
1230 return IRQ_NONE;
1231}
1232
1233static irqreturn_t brcmnand_dma_irq(int irq, void *data)
1234{
1235 struct brcmnand_controller *ctrl = data;
1236
1237 complete(&ctrl->dma_done);
1238
1239 return IRQ_HANDLED;
1240}
1241#endif /* __UBOOT__ */
1242
1243static void brcmnand_send_cmd(struct brcmnand_host *host, int cmd)
1244{
1245 struct brcmnand_controller *ctrl = host->ctrl;
1246 int ret;
1247
1248 dev_dbg(ctrl->dev, "send native cmd %d addr_lo 0x%x\n", cmd,
1249 brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS));
1250 BUG_ON(ctrl->cmd_pending != 0);
1251 ctrl->cmd_pending = cmd;
1252
1253 ret = bcmnand_ctrl_poll_status(ctrl, NAND_CTRL_RDY, NAND_CTRL_RDY, 0);
1254 WARN_ON(ret);
1255
1256 mb(); /* flush previous writes */
1257 brcmnand_write_reg(ctrl, BRCMNAND_CMD_START,
1258 cmd << brcmnand_cmd_shift(ctrl));
1259}
1260
1261/***********************************************************************
1262 * NAND MTD API: read/program/erase
1263 ***********************************************************************/
1264
1265static void brcmnand_cmd_ctrl(struct mtd_info *mtd, int dat,
1266 unsigned int ctrl)
1267{
1268 /* intentionally left blank */
1269}
1270
1271static int brcmnand_waitfunc(struct mtd_info *mtd, struct nand_chip *this)
1272{
1273 struct nand_chip *chip = mtd_to_nand(mtd);
1274 struct brcmnand_host *host = nand_get_controller_data(chip);
1275 struct brcmnand_controller *ctrl = host->ctrl;
1276
1277#ifndef __UBOOT__
1278 unsigned long timeo = msecs_to_jiffies(100);
1279
1280 dev_dbg(ctrl->dev, "wait on native cmd %d\n", ctrl->cmd_pending);
1281 if (ctrl->cmd_pending &&
1282 wait_for_completion_timeout(&ctrl->done, timeo) <= 0) {
1283 u32 cmd = brcmnand_read_reg(ctrl, BRCMNAND_CMD_START)
1284 >> brcmnand_cmd_shift(ctrl);
1285
1286 dev_err_ratelimited(ctrl->dev,
1287 "timeout waiting for command %#02x\n", cmd);
1288 dev_err_ratelimited(ctrl->dev, "intfc status %08x\n",
1289 brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS));
1290 }
1291#else
1292 unsigned long timeo = 100; /* 100 msec */
1293 int ret;
1294
1295 dev_dbg(ctrl->dev, "wait on native cmd %d\n", ctrl->cmd_pending);
1296
1297 ret = bcmnand_ctrl_poll_status(ctrl, NAND_CTRL_RDY, NAND_CTRL_RDY, timeo);
1298 WARN_ON(ret);
1299#endif /* __UBOOT__ */
1300
1301 ctrl->cmd_pending = 0;
1302 return brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) &
1303 INTFC_FLASH_STATUS;
1304}
1305
1306enum {
1307 LLOP_RE = BIT(16),
1308 LLOP_WE = BIT(17),
1309 LLOP_ALE = BIT(18),
1310 LLOP_CLE = BIT(19),
1311 LLOP_RETURN_IDLE = BIT(31),
1312
1313 LLOP_DATA_MASK = GENMASK(15, 0),
1314};
1315
1316static int brcmnand_low_level_op(struct brcmnand_host *host,
1317 enum brcmnand_llop_type type, u32 data,
1318 bool last_op)
1319{
1320 struct mtd_info *mtd = nand_to_mtd(&host->chip);
1321 struct nand_chip *chip = &host->chip;
1322 struct brcmnand_controller *ctrl = host->ctrl;
1323 u32 tmp;
1324
1325 tmp = data & LLOP_DATA_MASK;
1326 switch (type) {
1327 case LL_OP_CMD:
1328 tmp |= LLOP_WE | LLOP_CLE;
1329 break;
1330 case LL_OP_ADDR:
1331 /* WE | ALE */
1332 tmp |= LLOP_WE | LLOP_ALE;
1333 break;
1334 case LL_OP_WR:
1335 /* WE */
1336 tmp |= LLOP_WE;
1337 break;
1338 case LL_OP_RD:
1339 /* RE */
1340 tmp |= LLOP_RE;
1341 break;
1342 }
1343 if (last_op)
1344 /* RETURN_IDLE */
1345 tmp |= LLOP_RETURN_IDLE;
1346
1347 dev_dbg(ctrl->dev, "ll_op cmd %#x\n", tmp);
1348
1349 brcmnand_write_reg(ctrl, BRCMNAND_LL_OP, tmp);
1350 (void)brcmnand_read_reg(ctrl, BRCMNAND_LL_OP);
1351
1352 brcmnand_send_cmd(host, CMD_LOW_LEVEL_OP);
1353 return brcmnand_waitfunc(mtd, chip);
1354}
1355
1356static void brcmnand_cmdfunc(struct mtd_info *mtd, unsigned command,
1357 int column, int page_addr)
1358{
1359 struct nand_chip *chip = mtd_to_nand(mtd);
1360 struct brcmnand_host *host = nand_get_controller_data(chip);
1361 struct brcmnand_controller *ctrl = host->ctrl;
1362 u64 addr = (u64)page_addr << chip->page_shift;
1363 int native_cmd = 0;
1364
1365 if (command == NAND_CMD_READID || command == NAND_CMD_PARAM ||
1366 command == NAND_CMD_RNDOUT)
1367 addr = (u64)column;
1368 /* Avoid propagating a negative, don't-care address */
1369 else if (page_addr < 0)
1370 addr = 0;
1371
1372 dev_dbg(ctrl->dev, "cmd 0x%x addr 0x%llx\n", command,
1373 (unsigned long long)addr);
1374
1375 host->last_cmd = command;
1376 host->last_byte = 0;
1377 host->last_addr = addr;
1378
1379 switch (command) {
1380 case NAND_CMD_RESET:
1381 native_cmd = CMD_FLASH_RESET;
1382 break;
1383 case NAND_CMD_STATUS:
1384 native_cmd = CMD_STATUS_READ;
1385 break;
1386 case NAND_CMD_READID:
1387 native_cmd = CMD_DEVICE_ID_READ;
1388 break;
1389 case NAND_CMD_READOOB:
1390 native_cmd = CMD_SPARE_AREA_READ;
1391 break;
1392 case NAND_CMD_ERASE1:
1393 native_cmd = CMD_BLOCK_ERASE;
1394 brcmnand_wp(mtd, 0);
1395 break;
1396 case NAND_CMD_PARAM:
1397 native_cmd = CMD_PARAMETER_READ;
1398 break;
1399 case NAND_CMD_SET_FEATURES:
1400 case NAND_CMD_GET_FEATURES:
1401 brcmnand_low_level_op(host, LL_OP_CMD, command, false);
1402 brcmnand_low_level_op(host, LL_OP_ADDR, column, false);
1403 break;
1404 case NAND_CMD_RNDOUT:
1405 native_cmd = CMD_PARAMETER_CHANGE_COL;
1406 addr &= ~((u64)(FC_BYTES - 1));
1407 /*
1408 * HW quirk: PARAMETER_CHANGE_COL requires SECTOR_SIZE_1K=0
1409 * NB: hwcfg.sector_size_1k may not be initialized yet
1410 */
1411 if (brcmnand_get_sector_size_1k(host)) {
1412 host->hwcfg.sector_size_1k =
1413 brcmnand_get_sector_size_1k(host);
1414 brcmnand_set_sector_size_1k(host, 0);
1415 }
1416 break;
1417 }
1418
1419 if (!native_cmd)
1420 return;
1421
1422 brcmnand_write_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS,
1423 (host->cs << 16) | ((addr >> 32) & 0xffff));
1424 (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS);
1425 brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS, lower_32_bits(addr));
1426 (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
1427
1428 brcmnand_send_cmd(host, native_cmd);
1429 brcmnand_waitfunc(mtd, chip);
1430
1431 if (native_cmd == CMD_PARAMETER_READ ||
1432 native_cmd == CMD_PARAMETER_CHANGE_COL) {
1433 /* Copy flash cache word-wise */
1434 u32 *flash_cache = (u32 *)ctrl->flash_cache;
1435 int i;
1436
1437 brcmnand_soc_data_bus_prepare(ctrl->soc, true);
1438
1439 /*
1440 * Must cache the FLASH_CACHE now, since changes in
1441 * SECTOR_SIZE_1K may invalidate it
1442 */
Philippe Reynes7f28cf62019-03-15 15:14:37 +01001443 for (i = 0; i < FC_WORDS; i++) {
1444 u32 fc;
1445
1446 fc = brcmnand_read_fc(ctrl, i);
1447
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +01001448 /*
1449 * Flash cache is big endian for parameter pages, at
1450 * least on STB SoCs
1451 */
Philippe Reynes7f28cf62019-03-15 15:14:37 +01001452 if (ctrl->parameter_page_big_endian)
1453 flash_cache[i] = be32_to_cpu(fc);
1454 else
1455 flash_cache[i] = le32_to_cpu(fc);
1456 }
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +01001457
1458 brcmnand_soc_data_bus_unprepare(ctrl->soc, true);
1459
1460 /* Cleanup from HW quirk: restore SECTOR_SIZE_1K */
1461 if (host->hwcfg.sector_size_1k)
1462 brcmnand_set_sector_size_1k(host,
1463 host->hwcfg.sector_size_1k);
1464 }
1465
1466 /* Re-enable protection is necessary only after erase */
1467 if (command == NAND_CMD_ERASE1)
1468 brcmnand_wp(mtd, 1);
1469}
1470
1471static uint8_t brcmnand_read_byte(struct mtd_info *mtd)
1472{
1473 struct nand_chip *chip = mtd_to_nand(mtd);
1474 struct brcmnand_host *host = nand_get_controller_data(chip);
1475 struct brcmnand_controller *ctrl = host->ctrl;
1476 uint8_t ret = 0;
1477 int addr, offs;
1478
1479 switch (host->last_cmd) {
1480 case NAND_CMD_READID:
1481 if (host->last_byte < 4)
1482 ret = brcmnand_read_reg(ctrl, BRCMNAND_ID) >>
1483 (24 - (host->last_byte << 3));
1484 else if (host->last_byte < 8)
1485 ret = brcmnand_read_reg(ctrl, BRCMNAND_ID_EXT) >>
1486 (56 - (host->last_byte << 3));
1487 break;
1488
1489 case NAND_CMD_READOOB:
1490 ret = oob_reg_read(ctrl, host->last_byte);
1491 break;
1492
1493 case NAND_CMD_STATUS:
1494 ret = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) &
1495 INTFC_FLASH_STATUS;
1496 if (wp_on) /* hide WP status */
1497 ret |= NAND_STATUS_WP;
1498 break;
1499
1500 case NAND_CMD_PARAM:
1501 case NAND_CMD_RNDOUT:
1502 addr = host->last_addr + host->last_byte;
1503 offs = addr & (FC_BYTES - 1);
1504
1505 /* At FC_BYTES boundary, switch to next column */
1506 if (host->last_byte > 0 && offs == 0)
1507 nand_change_read_column_op(chip, addr, NULL, 0, false);
1508
1509 ret = ctrl->flash_cache[offs];
1510 break;
1511 case NAND_CMD_GET_FEATURES:
1512 if (host->last_byte >= ONFI_SUBFEATURE_PARAM_LEN) {
1513 ret = 0;
1514 } else {
1515 bool last = host->last_byte ==
1516 ONFI_SUBFEATURE_PARAM_LEN - 1;
1517 brcmnand_low_level_op(host, LL_OP_RD, 0, last);
1518 ret = brcmnand_read_reg(ctrl, BRCMNAND_LL_RDATA) & 0xff;
1519 }
1520 }
1521
1522 dev_dbg(ctrl->dev, "read byte = 0x%02x\n", ret);
1523 host->last_byte++;
1524
1525 return ret;
1526}
1527
1528static void brcmnand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
1529{
1530 int i;
1531
1532 for (i = 0; i < len; i++, buf++)
1533 *buf = brcmnand_read_byte(mtd);
1534}
1535
1536static void brcmnand_write_buf(struct mtd_info *mtd, const uint8_t *buf,
1537 int len)
1538{
1539 int i;
1540 struct nand_chip *chip = mtd_to_nand(mtd);
1541 struct brcmnand_host *host = nand_get_controller_data(chip);
1542
1543 switch (host->last_cmd) {
1544 case NAND_CMD_SET_FEATURES:
1545 for (i = 0; i < len; i++)
1546 brcmnand_low_level_op(host, LL_OP_WR, buf[i],
1547 (i + 1) == len);
1548 break;
1549 default:
1550 BUG();
1551 break;
1552 }
1553}
1554
1555/**
1556 * Construct a FLASH_DMA descriptor as part of a linked list. You must know the
1557 * following ahead of time:
1558 * - Is this descriptor the beginning or end of a linked list?
1559 * - What is the (DMA) address of the next descriptor in the linked list?
1560 */
1561#ifndef __UBOOT__
1562static int brcmnand_fill_dma_desc(struct brcmnand_host *host,
1563 struct brcm_nand_dma_desc *desc, u64 addr,
1564 dma_addr_t buf, u32 len, u8 dma_cmd,
1565 bool begin, bool end,
1566 dma_addr_t next_desc)
1567{
1568 memset(desc, 0, sizeof(*desc));
1569 /* Descriptors are written in native byte order (wordwise) */
1570 desc->next_desc = lower_32_bits(next_desc);
1571 desc->next_desc_ext = upper_32_bits(next_desc);
1572 desc->cmd_irq = (dma_cmd << 24) |
1573 (end ? (0x03 << 8) : 0) | /* IRQ | STOP */
1574 (!!begin) | ((!!end) << 1); /* head, tail */
1575#ifdef CONFIG_CPU_BIG_ENDIAN
1576 desc->cmd_irq |= 0x01 << 12;
1577#endif
1578 desc->dram_addr = lower_32_bits(buf);
1579 desc->dram_addr_ext = upper_32_bits(buf);
1580 desc->tfr_len = len;
1581 desc->total_len = len;
1582 desc->flash_addr = lower_32_bits(addr);
1583 desc->flash_addr_ext = upper_32_bits(addr);
1584 desc->cs = host->cs;
1585 desc->status_valid = 0x01;
1586 return 0;
1587}
1588
1589/**
1590 * Kick the FLASH_DMA engine, with a given DMA descriptor
1591 */
1592static void brcmnand_dma_run(struct brcmnand_host *host, dma_addr_t desc)
1593{
1594 struct brcmnand_controller *ctrl = host->ctrl;
1595 unsigned long timeo = msecs_to_jiffies(100);
1596
1597 flash_dma_writel(ctrl, FLASH_DMA_FIRST_DESC, lower_32_bits(desc));
1598 (void)flash_dma_readl(ctrl, FLASH_DMA_FIRST_DESC);
1599 flash_dma_writel(ctrl, FLASH_DMA_FIRST_DESC_EXT, upper_32_bits(desc));
1600 (void)flash_dma_readl(ctrl, FLASH_DMA_FIRST_DESC_EXT);
1601
1602 /* Start FLASH_DMA engine */
1603 ctrl->dma_pending = true;
1604 mb(); /* flush previous writes */
1605 flash_dma_writel(ctrl, FLASH_DMA_CTRL, 0x03); /* wake | run */
1606
1607 if (wait_for_completion_timeout(&ctrl->dma_done, timeo) <= 0) {
1608 dev_err(ctrl->dev,
1609 "timeout waiting for DMA; status %#x, error status %#x\n",
1610 flash_dma_readl(ctrl, FLASH_DMA_STATUS),
1611 flash_dma_readl(ctrl, FLASH_DMA_ERROR_STATUS));
1612 }
1613 ctrl->dma_pending = false;
1614 flash_dma_writel(ctrl, FLASH_DMA_CTRL, 0); /* force stop */
1615}
1616
1617static int brcmnand_dma_trans(struct brcmnand_host *host, u64 addr, u32 *buf,
1618 u32 len, u8 dma_cmd)
1619{
1620 struct brcmnand_controller *ctrl = host->ctrl;
1621 dma_addr_t buf_pa;
1622 int dir = dma_cmd == CMD_PAGE_READ ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1623
1624 buf_pa = dma_map_single(ctrl->dev, buf, len, dir);
1625 if (dma_mapping_error(ctrl->dev, buf_pa)) {
1626 dev_err(ctrl->dev, "unable to map buffer for DMA\n");
1627 return -ENOMEM;
1628 }
1629
1630 brcmnand_fill_dma_desc(host, ctrl->dma_desc, addr, buf_pa, len,
1631 dma_cmd, true, true, 0);
1632
1633 brcmnand_dma_run(host, ctrl->dma_pa);
1634
1635 dma_unmap_single(ctrl->dev, buf_pa, len, dir);
1636
1637 if (ctrl->dma_desc->status_valid & FLASH_DMA_ECC_ERROR)
1638 return -EBADMSG;
1639 else if (ctrl->dma_desc->status_valid & FLASH_DMA_CORR_ERROR)
1640 return -EUCLEAN;
1641
1642 return 0;
1643}
1644#endif /* __UBOOT__ */
1645
1646/*
1647 * Assumes proper CS is already set
1648 */
1649static int brcmnand_read_by_pio(struct mtd_info *mtd, struct nand_chip *chip,
1650 u64 addr, unsigned int trans, u32 *buf,
1651 u8 *oob, u64 *err_addr)
1652{
1653 struct brcmnand_host *host = nand_get_controller_data(chip);
1654 struct brcmnand_controller *ctrl = host->ctrl;
1655 int i, j, ret = 0;
1656
1657 /* Clear error addresses */
1658 brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_ADDR, 0);
1659 brcmnand_write_reg(ctrl, BRCMNAND_CORR_ADDR, 0);
1660 brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_EXT_ADDR, 0);
1661 brcmnand_write_reg(ctrl, BRCMNAND_CORR_EXT_ADDR, 0);
1662
1663 brcmnand_write_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS,
1664 (host->cs << 16) | ((addr >> 32) & 0xffff));
1665 (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS);
1666
1667 for (i = 0; i < trans; i++, addr += FC_BYTES) {
1668 brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS,
1669 lower_32_bits(addr));
1670 (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
1671 /* SPARE_AREA_READ does not use ECC, so just use PAGE_READ */
1672 brcmnand_send_cmd(host, CMD_PAGE_READ);
1673 brcmnand_waitfunc(mtd, chip);
1674
1675 if (likely(buf)) {
1676 brcmnand_soc_data_bus_prepare(ctrl->soc, false);
1677
1678 for (j = 0; j < FC_WORDS; j++, buf++)
1679 *buf = brcmnand_read_fc(ctrl, j);
1680
1681 brcmnand_soc_data_bus_unprepare(ctrl->soc, false);
1682 }
1683
1684 if (oob)
1685 oob += read_oob_from_regs(ctrl, i, oob,
1686 mtd->oobsize / trans,
1687 host->hwcfg.sector_size_1k);
1688
1689 if (!ret) {
1690 *err_addr = brcmnand_read_reg(ctrl,
1691 BRCMNAND_UNCORR_ADDR) |
1692 ((u64)(brcmnand_read_reg(ctrl,
1693 BRCMNAND_UNCORR_EXT_ADDR)
1694 & 0xffff) << 32);
1695 if (*err_addr)
1696 ret = -EBADMSG;
1697 }
1698
1699 if (!ret) {
1700 *err_addr = brcmnand_read_reg(ctrl,
1701 BRCMNAND_CORR_ADDR) |
1702 ((u64)(brcmnand_read_reg(ctrl,
1703 BRCMNAND_CORR_EXT_ADDR)
1704 & 0xffff) << 32);
1705 if (*err_addr)
1706 ret = -EUCLEAN;
1707 }
1708 }
1709
1710 return ret;
1711}
1712
1713/*
1714 * Check a page to see if it is erased (w/ bitflips) after an uncorrectable ECC
1715 * error
1716 *
1717 * Because the HW ECC signals an ECC error if an erase paged has even a single
1718 * bitflip, we must check each ECC error to see if it is actually an erased
1719 * page with bitflips, not a truly corrupted page.
1720 *
1721 * On a real error, return a negative error code (-EBADMSG for ECC error), and
1722 * buf will contain raw data.
1723 * Otherwise, buf gets filled with 0xffs and return the maximum number of
1724 * bitflips-per-ECC-sector to the caller.
1725 *
1726 */
1727static int brcmstb_nand_verify_erased_page(struct mtd_info *mtd,
1728 struct nand_chip *chip, void *buf, u64 addr)
1729{
1730 int i, sas;
1731 void *oob = chip->oob_poi;
1732 int bitflips = 0;
1733 int page = addr >> chip->page_shift;
1734 int ret;
1735
1736 if (!buf) {
1737#ifndef __UBOOT__
1738 buf = chip->data_buf;
1739#else
1740 buf = chip->buffers->databuf;
1741#endif
1742 /* Invalidate page cache */
1743 chip->pagebuf = -1;
1744 }
1745
1746 sas = mtd->oobsize / chip->ecc.steps;
1747
1748 /* read without ecc for verification */
1749 ret = chip->ecc.read_page_raw(mtd, chip, buf, true, page);
1750 if (ret)
1751 return ret;
1752
1753 for (i = 0; i < chip->ecc.steps; i++, oob += sas) {
1754 ret = nand_check_erased_ecc_chunk(buf, chip->ecc.size,
1755 oob, sas, NULL, 0,
1756 chip->ecc.strength);
1757 if (ret < 0)
1758 return ret;
1759
1760 bitflips = max(bitflips, ret);
1761 }
1762
1763 return bitflips;
1764}
1765
1766static int brcmnand_read(struct mtd_info *mtd, struct nand_chip *chip,
1767 u64 addr, unsigned int trans, u32 *buf, u8 *oob)
1768{
1769 struct brcmnand_host *host = nand_get_controller_data(chip);
1770 struct brcmnand_controller *ctrl = host->ctrl;
1771 u64 err_addr = 0;
1772 int err;
1773 bool retry = true;
1774
1775 dev_dbg(ctrl->dev, "read %llx -> %p\n", (unsigned long long)addr, buf);
1776
1777try_dmaread:
1778 brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_COUNT, 0);
1779
1780#ifndef __UBOOT__
1781 if (has_flash_dma(ctrl) && !oob && flash_dma_buf_ok(buf)) {
1782 err = brcmnand_dma_trans(host, addr, buf, trans * FC_BYTES,
1783 CMD_PAGE_READ);
1784 if (err) {
1785 if (mtd_is_bitflip_or_eccerr(err))
1786 err_addr = addr;
1787 else
1788 return -EIO;
1789 }
1790 } else {
1791 if (oob)
1792 memset(oob, 0x99, mtd->oobsize);
1793
1794 err = brcmnand_read_by_pio(mtd, chip, addr, trans, buf,
1795 oob, &err_addr);
1796 }
1797#else
1798 if (oob)
1799 memset(oob, 0x99, mtd->oobsize);
1800
1801 err = brcmnand_read_by_pio(mtd, chip, addr, trans, buf,
1802 oob, &err_addr);
1803#endif /* __UBOOT__ */
1804
1805 if (mtd_is_eccerr(err)) {
1806 /*
1807 * On controller version and 7.0, 7.1 , DMA read after a
1808 * prior PIO read that reported uncorrectable error,
1809 * the DMA engine captures this error following DMA read
1810 * cleared only on subsequent DMA read, so just retry once
1811 * to clear a possible false error reported for current DMA
1812 * read
1813 */
1814 if ((ctrl->nand_version == 0x0700) ||
1815 (ctrl->nand_version == 0x0701)) {
1816 if (retry) {
1817 retry = false;
1818 goto try_dmaread;
1819 }
1820 }
1821
1822 /*
1823 * Controller version 7.2 has hw encoder to detect erased page
1824 * bitflips, apply sw verification for older controllers only
1825 */
1826 if (ctrl->nand_version < 0x0702) {
1827 err = brcmstb_nand_verify_erased_page(mtd, chip, buf,
1828 addr);
1829 /* erased page bitflips corrected */
1830 if (err >= 0)
1831 return err;
1832 }
1833
1834 dev_dbg(ctrl->dev, "uncorrectable error at 0x%llx\n",
1835 (unsigned long long)err_addr);
1836 mtd->ecc_stats.failed++;
1837 /* NAND layer expects zero on ECC errors */
1838 return 0;
1839 }
1840
1841 if (mtd_is_bitflip(err)) {
1842 unsigned int corrected = brcmnand_count_corrected(ctrl);
1843
1844 dev_dbg(ctrl->dev, "corrected error at 0x%llx\n",
1845 (unsigned long long)err_addr);
1846 mtd->ecc_stats.corrected += corrected;
1847 /* Always exceed the software-imposed threshold */
1848 return max(mtd->bitflip_threshold, corrected);
1849 }
1850
1851 return 0;
1852}
1853
1854static int brcmnand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1855 uint8_t *buf, int oob_required, int page)
1856{
1857 struct brcmnand_host *host = nand_get_controller_data(chip);
1858 u8 *oob = oob_required ? (u8 *)chip->oob_poi : NULL;
1859
1860 nand_read_page_op(chip, page, 0, NULL, 0);
1861
1862 return brcmnand_read(mtd, chip, host->last_addr,
1863 mtd->writesize >> FC_SHIFT, (u32 *)buf, oob);
1864}
1865
1866static int brcmnand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1867 uint8_t *buf, int oob_required, int page)
1868{
1869 struct brcmnand_host *host = nand_get_controller_data(chip);
1870 u8 *oob = oob_required ? (u8 *)chip->oob_poi : NULL;
1871 int ret;
1872
1873 nand_read_page_op(chip, page, 0, NULL, 0);
1874
1875 brcmnand_set_ecc_enabled(host, 0);
1876 ret = brcmnand_read(mtd, chip, host->last_addr,
1877 mtd->writesize >> FC_SHIFT, (u32 *)buf, oob);
1878 brcmnand_set_ecc_enabled(host, 1);
1879 return ret;
1880}
1881
1882static int brcmnand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
1883 int page)
1884{
1885 return brcmnand_read(mtd, chip, (u64)page << chip->page_shift,
1886 mtd->writesize >> FC_SHIFT,
1887 NULL, (u8 *)chip->oob_poi);
1888}
1889
1890static int brcmnand_read_oob_raw(struct mtd_info *mtd, struct nand_chip *chip,
1891 int page)
1892{
1893 struct brcmnand_host *host = nand_get_controller_data(chip);
1894
1895 brcmnand_set_ecc_enabled(host, 0);
1896 brcmnand_read(mtd, chip, (u64)page << chip->page_shift,
1897 mtd->writesize >> FC_SHIFT,
1898 NULL, (u8 *)chip->oob_poi);
1899 brcmnand_set_ecc_enabled(host, 1);
1900 return 0;
1901}
1902
1903static int brcmnand_write(struct mtd_info *mtd, struct nand_chip *chip,
1904 u64 addr, const u32 *buf, u8 *oob)
1905{
1906 struct brcmnand_host *host = nand_get_controller_data(chip);
1907 struct brcmnand_controller *ctrl = host->ctrl;
1908 unsigned int i, j, trans = mtd->writesize >> FC_SHIFT;
1909 int status, ret = 0;
1910
1911 dev_dbg(ctrl->dev, "write %llx <- %p\n", (unsigned long long)addr, buf);
1912
1913 if (unlikely((unsigned long)buf & 0x03)) {
1914 dev_warn(ctrl->dev, "unaligned buffer: %p\n", buf);
1915 buf = (u32 *)((unsigned long)buf & ~0x03);
1916 }
1917
1918 brcmnand_wp(mtd, 0);
1919
1920 for (i = 0; i < ctrl->max_oob; i += 4)
1921 oob_reg_write(ctrl, i, 0xffffffff);
1922
1923#ifndef __UBOOT__
1924 if (has_flash_dma(ctrl) && !oob && flash_dma_buf_ok(buf)) {
1925 if (brcmnand_dma_trans(host, addr, (u32 *)buf,
1926 mtd->writesize, CMD_PROGRAM_PAGE))
1927 ret = -EIO;
1928 goto out;
1929 }
1930#endif /* __UBOOT__ */
1931
1932 brcmnand_write_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS,
1933 (host->cs << 16) | ((addr >> 32) & 0xffff));
1934 (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS);
1935
1936 for (i = 0; i < trans; i++, addr += FC_BYTES) {
1937 /* full address MUST be set before populating FC */
1938 brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS,
1939 lower_32_bits(addr));
1940 (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
1941
1942 if (buf) {
1943 brcmnand_soc_data_bus_prepare(ctrl->soc, false);
1944
1945 for (j = 0; j < FC_WORDS; j++, buf++)
1946 brcmnand_write_fc(ctrl, j, *buf);
1947
1948 brcmnand_soc_data_bus_unprepare(ctrl->soc, false);
1949 } else if (oob) {
1950 for (j = 0; j < FC_WORDS; j++)
1951 brcmnand_write_fc(ctrl, j, 0xffffffff);
1952 }
1953
1954 if (oob) {
1955 oob += write_oob_to_regs(ctrl, i, oob,
1956 mtd->oobsize / trans,
1957 host->hwcfg.sector_size_1k);
1958 }
1959
1960 /* we cannot use SPARE_AREA_PROGRAM when PARTIAL_PAGE_EN=0 */
1961 brcmnand_send_cmd(host, CMD_PROGRAM_PAGE);
1962 status = brcmnand_waitfunc(mtd, chip);
1963
1964 if (status & NAND_STATUS_FAIL) {
1965 dev_info(ctrl->dev, "program failed at %llx\n",
1966 (unsigned long long)addr);
1967 ret = -EIO;
1968 goto out;
1969 }
1970 }
1971out:
1972 brcmnand_wp(mtd, 1);
1973 return ret;
1974}
1975
1976static int brcmnand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1977 const uint8_t *buf, int oob_required, int page)
1978{
1979 struct brcmnand_host *host = nand_get_controller_data(chip);
1980 void *oob = oob_required ? chip->oob_poi : NULL;
1981
1982 nand_prog_page_begin_op(chip, page, 0, NULL, 0);
1983 brcmnand_write(mtd, chip, host->last_addr, (const u32 *)buf, oob);
1984
1985 return nand_prog_page_end_op(chip);
1986}
1987
1988static int brcmnand_write_page_raw(struct mtd_info *mtd,
1989 struct nand_chip *chip, const uint8_t *buf,
1990 int oob_required, int page)
1991{
1992 struct brcmnand_host *host = nand_get_controller_data(chip);
1993 void *oob = oob_required ? chip->oob_poi : NULL;
1994
1995 nand_prog_page_begin_op(chip, page, 0, NULL, 0);
1996 brcmnand_set_ecc_enabled(host, 0);
1997 brcmnand_write(mtd, chip, host->last_addr, (const u32 *)buf, oob);
1998 brcmnand_set_ecc_enabled(host, 1);
1999
2000 return nand_prog_page_end_op(chip);
2001}
2002
2003static int brcmnand_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
2004 int page)
2005{
2006 return brcmnand_write(mtd, chip, (u64)page << chip->page_shift,
2007 NULL, chip->oob_poi);
2008}
2009
2010static int brcmnand_write_oob_raw(struct mtd_info *mtd, struct nand_chip *chip,
2011 int page)
2012{
2013 struct brcmnand_host *host = nand_get_controller_data(chip);
2014 int ret;
2015
2016 brcmnand_set_ecc_enabled(host, 0);
2017 ret = brcmnand_write(mtd, chip, (u64)page << chip->page_shift, NULL,
2018 (u8 *)chip->oob_poi);
2019 brcmnand_set_ecc_enabled(host, 1);
2020
2021 return ret;
2022}
2023
2024/***********************************************************************
2025 * Per-CS setup (1 NAND device)
2026 ***********************************************************************/
2027
2028static int brcmnand_set_cfg(struct brcmnand_host *host,
2029 struct brcmnand_cfg *cfg)
2030{
2031 struct brcmnand_controller *ctrl = host->ctrl;
2032 struct nand_chip *chip = &host->chip;
2033 u16 cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
2034 u16 cfg_ext_offs = brcmnand_cs_offset(ctrl, host->cs,
2035 BRCMNAND_CS_CFG_EXT);
2036 u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
2037 BRCMNAND_CS_ACC_CONTROL);
2038 u8 block_size = 0, page_size = 0, device_size = 0;
2039 u32 tmp;
2040
2041 if (ctrl->block_sizes) {
2042 int i, found;
2043
2044 for (i = 0, found = 0; ctrl->block_sizes[i]; i++)
2045 if (ctrl->block_sizes[i] * 1024 == cfg->block_size) {
2046 block_size = i;
2047 found = 1;
2048 }
2049 if (!found) {
2050 dev_warn(ctrl->dev, "invalid block size %u\n",
2051 cfg->block_size);
2052 return -EINVAL;
2053 }
2054 } else {
2055 block_size = ffs(cfg->block_size) - ffs(BRCMNAND_MIN_BLOCKSIZE);
2056 }
2057
2058 if (cfg->block_size < BRCMNAND_MIN_BLOCKSIZE || (ctrl->max_block_size &&
2059 cfg->block_size > ctrl->max_block_size)) {
2060 dev_warn(ctrl->dev, "invalid block size %u\n",
2061 cfg->block_size);
2062 block_size = 0;
2063 }
2064
2065 if (ctrl->page_sizes) {
2066 int i, found;
2067
2068 for (i = 0, found = 0; ctrl->page_sizes[i]; i++)
2069 if (ctrl->page_sizes[i] == cfg->page_size) {
2070 page_size = i;
2071 found = 1;
2072 }
2073 if (!found) {
2074 dev_warn(ctrl->dev, "invalid page size %u\n",
2075 cfg->page_size);
2076 return -EINVAL;
2077 }
2078 } else {
2079 page_size = ffs(cfg->page_size) - ffs(BRCMNAND_MIN_PAGESIZE);
2080 }
2081
2082 if (cfg->page_size < BRCMNAND_MIN_PAGESIZE || (ctrl->max_page_size &&
2083 cfg->page_size > ctrl->max_page_size)) {
2084 dev_warn(ctrl->dev, "invalid page size %u\n", cfg->page_size);
2085 return -EINVAL;
2086 }
2087
2088 if (fls64(cfg->device_size) < fls64(BRCMNAND_MIN_DEVSIZE)) {
2089 dev_warn(ctrl->dev, "invalid device size 0x%llx\n",
2090 (unsigned long long)cfg->device_size);
2091 return -EINVAL;
2092 }
2093 device_size = fls64(cfg->device_size) - fls64(BRCMNAND_MIN_DEVSIZE);
2094
2095 tmp = (cfg->blk_adr_bytes << CFG_BLK_ADR_BYTES_SHIFT) |
2096 (cfg->col_adr_bytes << CFG_COL_ADR_BYTES_SHIFT) |
2097 (cfg->ful_adr_bytes << CFG_FUL_ADR_BYTES_SHIFT) |
2098 (!!(cfg->device_width == 16) << CFG_BUS_WIDTH_SHIFT) |
2099 (device_size << CFG_DEVICE_SIZE_SHIFT);
2100 if (cfg_offs == cfg_ext_offs) {
2101 tmp |= (page_size << CFG_PAGE_SIZE_SHIFT) |
2102 (block_size << CFG_BLK_SIZE_SHIFT);
2103 nand_writereg(ctrl, cfg_offs, tmp);
2104 } else {
2105 nand_writereg(ctrl, cfg_offs, tmp);
2106 tmp = (page_size << CFG_EXT_PAGE_SIZE_SHIFT) |
2107 (block_size << CFG_EXT_BLK_SIZE_SHIFT);
2108 nand_writereg(ctrl, cfg_ext_offs, tmp);
2109 }
2110
2111 tmp = nand_readreg(ctrl, acc_control_offs);
2112 tmp &= ~brcmnand_ecc_level_mask(ctrl);
2113 tmp |= cfg->ecc_level << NAND_ACC_CONTROL_ECC_SHIFT;
2114 tmp &= ~brcmnand_spare_area_mask(ctrl);
2115 tmp |= cfg->spare_area_size;
2116 nand_writereg(ctrl, acc_control_offs, tmp);
2117
2118 brcmnand_set_sector_size_1k(host, cfg->sector_size_1k);
2119
2120 /* threshold = ceil(BCH-level * 0.75) */
2121 brcmnand_wr_corr_thresh(host, DIV_ROUND_UP(chip->ecc.strength * 3, 4));
2122
2123 return 0;
2124}
2125
2126static void brcmnand_print_cfg(struct brcmnand_host *host,
2127 char *buf, struct brcmnand_cfg *cfg)
2128{
2129 buf += sprintf(buf,
2130 "%lluMiB total, %uKiB blocks, %u%s pages, %uB OOB, %u-bit",
2131 (unsigned long long)cfg->device_size >> 20,
2132 cfg->block_size >> 10,
2133 cfg->page_size >= 1024 ? cfg->page_size >> 10 : cfg->page_size,
2134 cfg->page_size >= 1024 ? "KiB" : "B",
2135 cfg->spare_area_size, cfg->device_width);
2136
2137 /* Account for Hamming ECC and for BCH 512B vs 1KiB sectors */
2138 if (is_hamming_ecc(host->ctrl, cfg))
2139 sprintf(buf, ", Hamming ECC");
2140 else if (cfg->sector_size_1k)
2141 sprintf(buf, ", BCH-%u (1KiB sector)", cfg->ecc_level << 1);
2142 else
2143 sprintf(buf, ", BCH-%u", cfg->ecc_level);
2144}
2145
2146/*
2147 * Minimum number of bytes to address a page. Calculated as:
2148 * roundup(log2(size / page-size) / 8)
2149 *
2150 * NB: the following does not "round up" for non-power-of-2 'size'; but this is
2151 * OK because many other things will break if 'size' is irregular...
2152 */
2153static inline int get_blk_adr_bytes(u64 size, u32 writesize)
2154{
2155 return ALIGN(ilog2(size) - ilog2(writesize), 8) >> 3;
2156}
2157
2158static int brcmnand_setup_dev(struct brcmnand_host *host)
2159{
2160 struct mtd_info *mtd = nand_to_mtd(&host->chip);
2161 struct nand_chip *chip = &host->chip;
2162 struct brcmnand_controller *ctrl = host->ctrl;
2163 struct brcmnand_cfg *cfg = &host->hwcfg;
2164 char msg[128];
2165 u32 offs, tmp, oob_sector;
2166 int ret;
2167
2168 memset(cfg, 0, sizeof(*cfg));
2169
2170#ifndef __UBOOT__
2171 ret = of_property_read_u32(nand_get_flash_node(chip),
2172 "brcm,nand-oob-sector-size",
2173 &oob_sector);
2174#else
2175 ret = ofnode_read_u32(nand_get_flash_node(chip),
2176 "brcm,nand-oob-sector-size",
2177 &oob_sector);
2178#endif /* __UBOOT__ */
2179 if (ret) {
2180 /* Use detected size */
2181 cfg->spare_area_size = mtd->oobsize /
2182 (mtd->writesize >> FC_SHIFT);
2183 } else {
2184 cfg->spare_area_size = oob_sector;
2185 }
2186 if (cfg->spare_area_size > ctrl->max_oob)
2187 cfg->spare_area_size = ctrl->max_oob;
2188 /*
2189 * Set oobsize to be consistent with controller's spare_area_size, as
2190 * the rest is inaccessible.
2191 */
2192 mtd->oobsize = cfg->spare_area_size * (mtd->writesize >> FC_SHIFT);
2193
2194 cfg->device_size = mtd->size;
2195 cfg->block_size = mtd->erasesize;
2196 cfg->page_size = mtd->writesize;
2197 cfg->device_width = (chip->options & NAND_BUSWIDTH_16) ? 16 : 8;
2198 cfg->col_adr_bytes = 2;
2199 cfg->blk_adr_bytes = get_blk_adr_bytes(mtd->size, mtd->writesize);
2200
2201 if (chip->ecc.mode != NAND_ECC_HW) {
2202 dev_err(ctrl->dev, "only HW ECC supported; selected: %d\n",
2203 chip->ecc.mode);
2204 return -EINVAL;
2205 }
2206
2207 if (chip->ecc.algo == NAND_ECC_UNKNOWN) {
2208 if (chip->ecc.strength == 1 && chip->ecc.size == 512)
2209 /* Default to Hamming for 1-bit ECC, if unspecified */
2210 chip->ecc.algo = NAND_ECC_HAMMING;
2211 else
2212 /* Otherwise, BCH */
2213 chip->ecc.algo = NAND_ECC_BCH;
2214 }
2215
2216 if (chip->ecc.algo == NAND_ECC_HAMMING && (chip->ecc.strength != 1 ||
2217 chip->ecc.size != 512)) {
2218 dev_err(ctrl->dev, "invalid Hamming params: %d bits per %d bytes\n",
2219 chip->ecc.strength, chip->ecc.size);
2220 return -EINVAL;
2221 }
2222
2223 switch (chip->ecc.size) {
2224 case 512:
2225 if (chip->ecc.algo == NAND_ECC_HAMMING)
2226 cfg->ecc_level = 15;
2227 else
2228 cfg->ecc_level = chip->ecc.strength;
2229 cfg->sector_size_1k = 0;
2230 break;
2231 case 1024:
2232 if (!(ctrl->features & BRCMNAND_HAS_1K_SECTORS)) {
2233 dev_err(ctrl->dev, "1KB sectors not supported\n");
2234 return -EINVAL;
2235 }
2236 if (chip->ecc.strength & 0x1) {
2237 dev_err(ctrl->dev,
2238 "odd ECC not supported with 1KB sectors\n");
2239 return -EINVAL;
2240 }
2241
2242 cfg->ecc_level = chip->ecc.strength >> 1;
2243 cfg->sector_size_1k = 1;
2244 break;
2245 default:
2246 dev_err(ctrl->dev, "unsupported ECC size: %d\n",
2247 chip->ecc.size);
2248 return -EINVAL;
2249 }
2250
2251 cfg->ful_adr_bytes = cfg->blk_adr_bytes;
2252 if (mtd->writesize > 512)
2253 cfg->ful_adr_bytes += cfg->col_adr_bytes;
2254 else
2255 cfg->ful_adr_bytes += 1;
2256
2257 ret = brcmnand_set_cfg(host, cfg);
2258 if (ret)
2259 return ret;
2260
2261 brcmnand_set_ecc_enabled(host, 1);
2262
2263 brcmnand_print_cfg(host, msg, cfg);
2264 dev_info(ctrl->dev, "detected %s\n", msg);
2265
2266 /* Configure ACC_CONTROL */
2267 offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_ACC_CONTROL);
2268 tmp = nand_readreg(ctrl, offs);
2269 tmp &= ~ACC_CONTROL_PARTIAL_PAGE;
2270 tmp &= ~ACC_CONTROL_RD_ERASED;
2271
2272 /* We need to turn on Read from erased paged protected by ECC */
2273 if (ctrl->nand_version >= 0x0702)
2274 tmp |= ACC_CONTROL_RD_ERASED;
2275 tmp &= ~ACC_CONTROL_FAST_PGM_RDIN;
2276 if (ctrl->features & BRCMNAND_HAS_PREFETCH)
2277 tmp &= ~ACC_CONTROL_PREFETCH;
2278
2279 nand_writereg(ctrl, offs, tmp);
2280
2281 return 0;
2282}
2283
2284#ifndef __UBOOT__
2285static int brcmnand_init_cs(struct brcmnand_host *host, struct device_node *dn)
2286#else
2287static int brcmnand_init_cs(struct brcmnand_host *host, ofnode dn)
2288#endif
2289{
2290 struct brcmnand_controller *ctrl = host->ctrl;
2291#ifndef __UBOOT__
2292 struct platform_device *pdev = host->pdev;
2293#else
2294 struct udevice *pdev = host->pdev;
2295#endif /* __UBOOT__ */
2296 struct mtd_info *mtd;
2297 struct nand_chip *chip;
2298 int ret;
2299 u16 cfg_offs;
2300
2301#ifndef __UBOOT__
2302 ret = of_property_read_u32(dn, "reg", &host->cs);
2303#else
2304 ret = ofnode_read_s32(dn, "reg", &host->cs);
2305#endif
2306 if (ret) {
2307 dev_err(&pdev->dev, "can't get chip-select\n");
2308 return -ENXIO;
2309 }
2310
2311 mtd = nand_to_mtd(&host->chip);
2312 chip = &host->chip;
2313
2314 nand_set_flash_node(chip, dn);
2315 nand_set_controller_data(chip, host);
2316#ifndef __UBOOT__
2317 mtd->name = devm_kasprintf(&pdev->dev, GFP_KERNEL, "brcmnand.%d",
2318 host->cs);
2319#else
2320 mtd->name = devm_kasprintf(pdev, GFP_KERNEL, "brcmnand.%d",
2321 host->cs);
2322#endif /* __UBOOT__ */
2323 if (!mtd->name)
2324 return -ENOMEM;
2325
2326 mtd->owner = THIS_MODULE;
2327#ifndef __UBOOT__
2328 mtd->dev.parent = &pdev->dev;
2329#else
2330 mtd->dev->parent = pdev;
2331#endif /* __UBOOT__ */
2332
2333 chip->IO_ADDR_R = (void __iomem *)0xdeadbeef;
2334 chip->IO_ADDR_W = (void __iomem *)0xdeadbeef;
2335
2336 chip->cmd_ctrl = brcmnand_cmd_ctrl;
2337 chip->cmdfunc = brcmnand_cmdfunc;
2338 chip->waitfunc = brcmnand_waitfunc;
2339 chip->read_byte = brcmnand_read_byte;
2340 chip->read_buf = brcmnand_read_buf;
2341 chip->write_buf = brcmnand_write_buf;
2342
2343 chip->ecc.mode = NAND_ECC_HW;
2344 chip->ecc.read_page = brcmnand_read_page;
2345 chip->ecc.write_page = brcmnand_write_page;
2346 chip->ecc.read_page_raw = brcmnand_read_page_raw;
2347 chip->ecc.write_page_raw = brcmnand_write_page_raw;
2348 chip->ecc.write_oob_raw = brcmnand_write_oob_raw;
2349 chip->ecc.read_oob_raw = brcmnand_read_oob_raw;
2350 chip->ecc.read_oob = brcmnand_read_oob;
2351 chip->ecc.write_oob = brcmnand_write_oob;
2352
2353 chip->controller = &ctrl->controller;
2354
2355 /*
2356 * The bootloader might have configured 16bit mode but
2357 * NAND READID command only works in 8bit mode. We force
2358 * 8bit mode here to ensure that NAND READID commands works.
2359 */
2360 cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
2361 nand_writereg(ctrl, cfg_offs,
2362 nand_readreg(ctrl, cfg_offs) & ~CFG_BUS_WIDTH);
2363
2364 ret = nand_scan_ident(mtd, 1, NULL);
2365 if (ret)
2366 return ret;
2367
2368 chip->options |= NAND_NO_SUBPAGE_WRITE;
2369 /*
2370 * Avoid (for instance) kmap()'d buffers from JFFS2, which we can't DMA
2371 * to/from, and have nand_base pass us a bounce buffer instead, as
2372 * needed.
2373 */
2374 chip->options |= NAND_USE_BOUNCE_BUFFER;
2375
2376 if (chip->bbt_options & NAND_BBT_USE_FLASH)
2377 chip->bbt_options |= NAND_BBT_NO_OOB;
2378
2379 if (brcmnand_setup_dev(host))
2380 return -ENXIO;
2381
2382 chip->ecc.size = host->hwcfg.sector_size_1k ? 1024 : 512;
2383 /* only use our internal HW threshold */
2384 mtd->bitflip_threshold = 1;
2385
2386 ret = brcmstb_choose_ecc_layout(host);
2387 if (ret)
2388 return ret;
2389
2390 ret = nand_scan_tail(mtd);
2391 if (ret)
2392 return ret;
2393
2394#ifndef __UBOOT__
2395 ret = mtd_device_register(mtd, NULL, 0);
2396 if (ret)
2397 nand_cleanup(chip);
2398#else
2399 ret = nand_register(0, mtd);
2400#endif /* __UBOOT__ */
2401
2402 return ret;
2403}
2404
2405#ifndef __UBOOT__
2406static void brcmnand_save_restore_cs_config(struct brcmnand_host *host,
2407 int restore)
2408{
2409 struct brcmnand_controller *ctrl = host->ctrl;
2410 u16 cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
2411 u16 cfg_ext_offs = brcmnand_cs_offset(ctrl, host->cs,
2412 BRCMNAND_CS_CFG_EXT);
2413 u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
2414 BRCMNAND_CS_ACC_CONTROL);
2415 u16 t1_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_TIMING1);
2416 u16 t2_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_TIMING2);
2417
2418 if (restore) {
2419 nand_writereg(ctrl, cfg_offs, host->hwcfg.config);
2420 if (cfg_offs != cfg_ext_offs)
2421 nand_writereg(ctrl, cfg_ext_offs,
2422 host->hwcfg.config_ext);
2423 nand_writereg(ctrl, acc_control_offs, host->hwcfg.acc_control);
2424 nand_writereg(ctrl, t1_offs, host->hwcfg.timing_1);
2425 nand_writereg(ctrl, t2_offs, host->hwcfg.timing_2);
2426 } else {
2427 host->hwcfg.config = nand_readreg(ctrl, cfg_offs);
2428 if (cfg_offs != cfg_ext_offs)
2429 host->hwcfg.config_ext =
2430 nand_readreg(ctrl, cfg_ext_offs);
2431 host->hwcfg.acc_control = nand_readreg(ctrl, acc_control_offs);
2432 host->hwcfg.timing_1 = nand_readreg(ctrl, t1_offs);
2433 host->hwcfg.timing_2 = nand_readreg(ctrl, t2_offs);
2434 }
2435}
2436
2437static int brcmnand_suspend(struct device *dev)
2438{
2439 struct brcmnand_controller *ctrl = dev_get_drvdata(dev);
2440 struct brcmnand_host *host;
2441
2442 list_for_each_entry(host, &ctrl->host_list, node)
2443 brcmnand_save_restore_cs_config(host, 0);
2444
2445 ctrl->nand_cs_nand_select = brcmnand_read_reg(ctrl, BRCMNAND_CS_SELECT);
2446 ctrl->nand_cs_nand_xor = brcmnand_read_reg(ctrl, BRCMNAND_CS_XOR);
2447 ctrl->corr_stat_threshold =
2448 brcmnand_read_reg(ctrl, BRCMNAND_CORR_THRESHOLD);
2449
2450 if (has_flash_dma(ctrl))
2451 ctrl->flash_dma_mode = flash_dma_readl(ctrl, FLASH_DMA_MODE);
2452
2453 return 0;
2454}
2455
2456static int brcmnand_resume(struct device *dev)
2457{
2458 struct brcmnand_controller *ctrl = dev_get_drvdata(dev);
2459 struct brcmnand_host *host;
2460
2461 if (has_flash_dma(ctrl)) {
2462 flash_dma_writel(ctrl, FLASH_DMA_MODE, ctrl->flash_dma_mode);
2463 flash_dma_writel(ctrl, FLASH_DMA_ERROR_STATUS, 0);
2464 }
2465
2466 brcmnand_write_reg(ctrl, BRCMNAND_CS_SELECT, ctrl->nand_cs_nand_select);
2467 brcmnand_write_reg(ctrl, BRCMNAND_CS_XOR, ctrl->nand_cs_nand_xor);
2468 brcmnand_write_reg(ctrl, BRCMNAND_CORR_THRESHOLD,
2469 ctrl->corr_stat_threshold);
2470 if (ctrl->soc) {
2471 /* Clear/re-enable interrupt */
2472 ctrl->soc->ctlrdy_ack(ctrl->soc);
2473 ctrl->soc->ctlrdy_set_enabled(ctrl->soc, true);
2474 }
2475
2476 list_for_each_entry(host, &ctrl->host_list, node) {
2477 struct nand_chip *chip = &host->chip;
2478
2479 brcmnand_save_restore_cs_config(host, 1);
2480
2481 /* Reset the chip, required by some chips after power-up */
2482 nand_reset_op(chip);
2483 }
2484
2485 return 0;
2486}
2487
2488const struct dev_pm_ops brcmnand_pm_ops = {
2489 .suspend = brcmnand_suspend,
2490 .resume = brcmnand_resume,
2491};
2492EXPORT_SYMBOL_GPL(brcmnand_pm_ops);
2493
2494static const struct of_device_id brcmnand_of_match[] = {
2495 { .compatible = "brcm,brcmnand-v4.0" },
2496 { .compatible = "brcm,brcmnand-v5.0" },
2497 { .compatible = "brcm,brcmnand-v6.0" },
2498 { .compatible = "brcm,brcmnand-v6.1" },
2499 { .compatible = "brcm,brcmnand-v6.2" },
2500 { .compatible = "brcm,brcmnand-v7.0" },
2501 { .compatible = "brcm,brcmnand-v7.1" },
2502 { .compatible = "brcm,brcmnand-v7.2" },
2503 {},
2504};
2505MODULE_DEVICE_TABLE(of, brcmnand_of_match);
2506#endif /* __UBOOT__ */
2507
2508/***********************************************************************
2509 * Platform driver setup (per controller)
2510 ***********************************************************************/
2511
2512#ifndef __UBOOT__
2513int brcmnand_probe(struct platform_device *pdev, struct brcmnand_soc *soc)
2514#else
2515int brcmnand_probe(struct udevice *dev, struct brcmnand_soc *soc)
2516#endif /* __UBOOT__ */
2517{
2518#ifndef __UBOOT__
2519 struct device *dev = &pdev->dev;
2520 struct device_node *dn = dev->of_node, *child;
2521#else
2522 ofnode child;
2523 struct udevice *pdev = dev;
2524#endif /* __UBOOT__ */
2525 struct brcmnand_controller *ctrl;
2526#ifndef __UBOOT__
2527 struct resource *res;
2528#else
2529 struct resource res;
2530#endif /* __UBOOT__ */
2531 int ret;
2532
2533#ifndef __UBOOT__
2534 /* We only support device-tree instantiation */
2535 if (!dn)
2536 return -ENODEV;
2537
2538 if (!of_match_node(brcmnand_of_match, dn))
2539 return -ENODEV;
2540#endif /* __UBOOT__ */
2541
2542 ctrl = devm_kzalloc(dev, sizeof(*ctrl), GFP_KERNEL);
2543 if (!ctrl)
2544 return -ENOMEM;
2545
2546#ifndef __UBOOT__
2547 dev_set_drvdata(dev, ctrl);
2548#else
2549 /*
2550 * in u-boot, the data for the driver is allocated before probing
2551 * so to keep the reference to ctrl, we store it in the variable soc
2552 */
2553 soc->ctrl = ctrl;
2554#endif /* __UBOOT__ */
2555 ctrl->dev = dev;
2556
2557 init_completion(&ctrl->done);
2558 init_completion(&ctrl->dma_done);
2559 nand_hw_control_init(&ctrl->controller);
2560 INIT_LIST_HEAD(&ctrl->host_list);
2561
Philippe Reynes7f28cf62019-03-15 15:14:37 +01002562 /* Is parameter page in big endian ? */
2563 ctrl->parameter_page_big_endian =
2564 dev_read_u32_default(dev, "parameter-page-big-endian", 1);
2565
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +01002566 /* NAND register range */
2567#ifndef __UBOOT__
2568 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2569 ctrl->nand_base = devm_ioremap_resource(dev, res);
2570#else
2571 dev_read_resource(pdev, 0, &res);
2572 ctrl->nand_base = devm_ioremap(pdev, res.start, resource_size(&res));
2573#endif
2574 if (IS_ERR(ctrl->nand_base))
2575 return PTR_ERR(ctrl->nand_base);
2576
2577 /* Enable clock before using NAND registers */
2578 ctrl->clk = devm_clk_get(dev, "nand");
2579 if (!IS_ERR(ctrl->clk)) {
2580 ret = clk_prepare_enable(ctrl->clk);
2581 if (ret)
2582 return ret;
2583 } else {
2584 ret = PTR_ERR(ctrl->clk);
2585 if (ret == -EPROBE_DEFER)
2586 return ret;
2587
2588 ctrl->clk = NULL;
2589 }
2590
2591 /* Initialize NAND revision */
2592 ret = brcmnand_revision_init(ctrl);
2593 if (ret)
2594 goto err;
2595
2596 /*
2597 * Most chips have this cache at a fixed offset within 'nand' block.
2598 * Some must specify this region separately.
2599 */
2600#ifndef __UBOOT__
2601 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand-cache");
2602 if (res) {
2603 ctrl->nand_fc = devm_ioremap_resource(dev, res);
2604 if (IS_ERR(ctrl->nand_fc)) {
2605 ret = PTR_ERR(ctrl->nand_fc);
2606 goto err;
2607 }
2608 } else {
2609 ctrl->nand_fc = ctrl->nand_base +
2610 ctrl->reg_offsets[BRCMNAND_FC_BASE];
2611 }
2612#else
2613 if (!dev_read_resource_byname(pdev, "nand-cache", &res)) {
2614 ctrl->nand_fc = devm_ioremap(dev, res.start,
2615 resource_size(&res));
2616 if (IS_ERR(ctrl->nand_fc)) {
2617 ret = PTR_ERR(ctrl->nand_fc);
2618 goto err;
2619 }
2620 } else {
2621 ctrl->nand_fc = ctrl->nand_base +
2622 ctrl->reg_offsets[BRCMNAND_FC_BASE];
2623 }
2624#endif
2625
2626#ifndef __UBOOT__
2627 /* FLASH_DMA */
2628 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "flash-dma");
2629 if (res) {
2630 ctrl->flash_dma_base = devm_ioremap_resource(dev, res);
2631 if (IS_ERR(ctrl->flash_dma_base)) {
2632 ret = PTR_ERR(ctrl->flash_dma_base);
2633 goto err;
2634 }
2635
2636 flash_dma_writel(ctrl, FLASH_DMA_MODE, 1); /* linked-list */
2637 flash_dma_writel(ctrl, FLASH_DMA_ERROR_STATUS, 0);
2638
2639 /* Allocate descriptor(s) */
2640 ctrl->dma_desc = dmam_alloc_coherent(dev,
2641 sizeof(*ctrl->dma_desc),
2642 &ctrl->dma_pa, GFP_KERNEL);
2643 if (!ctrl->dma_desc) {
2644 ret = -ENOMEM;
2645 goto err;
2646 }
2647
2648 ctrl->dma_irq = platform_get_irq(pdev, 1);
2649 if ((int)ctrl->dma_irq < 0) {
2650 dev_err(dev, "missing FLASH_DMA IRQ\n");
2651 ret = -ENODEV;
2652 goto err;
2653 }
2654
2655 ret = devm_request_irq(dev, ctrl->dma_irq,
2656 brcmnand_dma_irq, 0, DRV_NAME,
2657 ctrl);
2658 if (ret < 0) {
2659 dev_err(dev, "can't allocate IRQ %d: error %d\n",
2660 ctrl->dma_irq, ret);
2661 goto err;
2662 }
2663
2664 dev_info(dev, "enabling FLASH_DMA\n");
2665 }
2666#endif /* __UBOOT__ */
2667
2668 /* Disable automatic device ID config, direct addressing */
2669 brcmnand_rmw_reg(ctrl, BRCMNAND_CS_SELECT,
2670 CS_SELECT_AUTO_DEVICE_ID_CFG | 0xff, 0, 0);
2671 /* Disable XOR addressing */
2672 brcmnand_rmw_reg(ctrl, BRCMNAND_CS_XOR, 0xff, 0, 0);
2673
Philippe Reynes77669af2019-03-15 15:14:38 +01002674 /* Read the write-protect configuration in the device tree */
2675 wp_on = dev_read_u32_default(dev, "write-protect", wp_on);
2676
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +01002677 if (ctrl->features & BRCMNAND_HAS_WP) {
2678 /* Permanently disable write protection */
2679 if (wp_on == 2)
2680 brcmnand_set_wp(ctrl, false);
2681 } else {
2682 wp_on = 0;
2683 }
2684
2685#ifndef __UBOOT__
2686 /* IRQ */
2687 ctrl->irq = platform_get_irq(pdev, 0);
2688 if ((int)ctrl->irq < 0) {
2689 dev_err(dev, "no IRQ defined\n");
2690 ret = -ENODEV;
2691 goto err;
2692 }
2693
2694 /*
2695 * Some SoCs integrate this controller (e.g., its interrupt bits) in
2696 * interesting ways
2697 */
2698 if (soc) {
2699 ctrl->soc = soc;
2700
2701 ret = devm_request_irq(dev, ctrl->irq, brcmnand_irq, 0,
2702 DRV_NAME, ctrl);
2703
2704 /* Enable interrupt */
2705 ctrl->soc->ctlrdy_ack(ctrl->soc);
2706 ctrl->soc->ctlrdy_set_enabled(ctrl->soc, true);
2707 } else {
2708 /* Use standard interrupt infrastructure */
2709 ret = devm_request_irq(dev, ctrl->irq, brcmnand_ctlrdy_irq, 0,
2710 DRV_NAME, ctrl);
2711 }
2712 if (ret < 0) {
2713 dev_err(dev, "can't allocate IRQ %d: error %d\n",
2714 ctrl->irq, ret);
2715 goto err;
2716 }
2717#endif /* __UBOOT__ */
2718
2719#ifndef __UBOOT__
2720 for_each_available_child_of_node(dn, child) {
2721 if (of_device_is_compatible(child, "brcm,nandcs")) {
2722 struct brcmnand_host *host;
2723
2724 host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
2725 if (!host) {
2726 of_node_put(child);
2727 ret = -ENOMEM;
2728 goto err;
2729 }
2730 host->pdev = pdev;
2731 host->ctrl = ctrl;
2732
2733 ret = brcmnand_init_cs(host, child);
2734 if (ret) {
2735 devm_kfree(dev, host);
2736 continue; /* Try all chip-selects */
2737 }
2738
2739 list_add_tail(&host->node, &ctrl->host_list);
2740 }
2741 }
2742#else
2743 ofnode_for_each_subnode(child, dev_ofnode(dev)) {
2744 if (ofnode_device_is_compatible(child, "brcm,nandcs")) {
2745 struct brcmnand_host *host;
2746
2747 host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
2748 if (!host) {
2749 ret = -ENOMEM;
2750 goto err;
2751 }
2752 host->pdev = pdev;
2753 host->ctrl = ctrl;
2754
2755 ret = brcmnand_init_cs(host, child);
2756 if (ret) {
2757 devm_kfree(dev, host);
2758 continue; /* Try all chip-selects */
2759 }
2760
2761 list_add_tail(&host->node, &ctrl->host_list);
2762 }
2763 }
2764#endif /* __UBOOT__ */
2765
2766err:
2767#ifndef __UBOOT__
2768 clk_disable_unprepare(ctrl->clk);
2769#else
2770 if (ctrl->clk)
2771 clk_disable(ctrl->clk);
2772#endif /* __UBOOT__ */
2773 return ret;
2774
2775}
2776EXPORT_SYMBOL_GPL(brcmnand_probe);
2777
2778#ifndef __UBOOT__
2779int brcmnand_remove(struct platform_device *pdev)
2780{
2781 struct brcmnand_controller *ctrl = dev_get_drvdata(&pdev->dev);
2782 struct brcmnand_host *host;
2783
2784 list_for_each_entry(host, &ctrl->host_list, node)
2785 nand_release(nand_to_mtd(&host->chip));
2786
2787 clk_disable_unprepare(ctrl->clk);
2788
2789 dev_set_drvdata(&pdev->dev, NULL);
2790
2791 return 0;
2792}
2793#else
2794int brcmnand_remove(struct udevice *pdev)
2795{
2796 return 0;
2797}
2798#endif /* __UBOOT__ */
2799EXPORT_SYMBOL_GPL(brcmnand_remove);
2800
2801MODULE_LICENSE("GPL v2");
2802MODULE_AUTHOR("Kevin Cernekee");
2803MODULE_AUTHOR("Brian Norris");
2804MODULE_DESCRIPTION("NAND driver for Broadcom chips");
2805MODULE_ALIAS("platform:brcmnand");