blob: 76abfeac44339c4280c21c3296047b94d45792b0 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2021 - 2022, Xilinx Inc.
* Copyright (C) 2022 - 2023, Advanced Micro Devices, Inc.
*
* Xilinx displayport(DP) Tx Subsytem driver
*/
#include <clk.h>
#include <cpu_func.h>
#include <dm.h>
#include <errno.h>
#include <generic-phy.h>
#include <stdlib.h>
#include <video.h>
#include <wait_bit.h>
#include <dm/device_compat.h>
#include <asm/io.h>
#include <linux/delay.h>
#include <linux/ioport.h>
#include <dm/device_compat.h>
#include <asm/global_data.h>
#include "zynqmp_dpsub.h"
DECLARE_GLOBAL_DATA_PTR;
/* Maximum supported resolution */
#define WIDTH 1024
#define HEIGHT 768
static struct dp_dma dp_dma;
static struct dp_dma_descriptor cur_desc __aligned(256);
static void dma_init_video_descriptor(struct udevice *dev)
{
struct zynqmp_dpsub_priv *dp_sub = dev_get_priv(dev);
struct dp_dma_frame_buffer *frame_buffer = &dp_sub->frame_buffer;
cur_desc.control = DPDMA_DESC_PREAMBLE | DPDMA_DESC_IGNR_DONE |
DPDMA_DESC_LAST_FRAME;
cur_desc.dscr_id = 0;
cur_desc.xfer_size = frame_buffer->size;
cur_desc.line_size_stride = ((frame_buffer->stride >> 4) <<
DPDMA_DESCRIPTOR_LINE_SIZE_STRIDE_SHIFT) |
(frame_buffer->line_size);
cur_desc.addr_ext = (((u32)(frame_buffer->address >>
DPDMA_DESCRIPTOR_SRC_ADDR_WIDTH) <<
DPDMA_DESCRIPTOR_ADDR_EXT_SRC_ADDR_EXT_SHIFT) |
(upper_32_bits((u64)&cur_desc)));
cur_desc.next_desr = lower_32_bits((u64)&cur_desc);
cur_desc.src_addr = lower_32_bits((u64)video_get_fb());
}
static void dma_set_descriptor_address(struct udevice *dev)
{
struct zynqmp_dpsub_priv *dp_sub = dev_get_priv(dev);
flush_dcache_range((u64)&cur_desc,
ALIGN(((u64)&cur_desc + sizeof(cur_desc)),
CONFIG_SYS_CACHELINE_SIZE));
writel(upper_32_bits((u64)&cur_desc), dp_sub->dp_dma->base_addr +
DPDMA_CH3_DSCR_STRT_ADDRE);
writel(lower_32_bits((u64)&cur_desc), dp_sub->dp_dma->base_addr +
DPDMA_CH3_DSCR_STRT_ADDR);
}
static void dma_setup_channel(struct udevice *dev)
{
dma_init_video_descriptor(dev);
dma_set_descriptor_address(dev);
}
static void dma_set_channel_state(struct udevice *dev)
{
u32 mask = 0, regval = 0;
struct zynqmp_dpsub_priv *dp_sub = dev_get_priv(dev);
mask = DPDMA_CH_CNTL_EN_MASK | DPDMA_CH_CNTL_PAUSE_MASK;
regval = DPDMA_CH_CNTL_EN_MASK;
clrsetbits_le32(dp_sub->dp_dma->base_addr + DPDMA_CH3_CNTL,
mask, regval);
}
static void dma_trigger(struct udevice *dev)
{
struct zynqmp_dpsub_priv *dp_sub = dev_get_priv(dev);
u32 trigger;
trigger = DPDMA_GBL_TRG_CH3_MASK;
dp_sub->dp_dma->gfx.trigger_status = DPDMA_TRIGGER_DONE;
writel(trigger, dp_sub->dp_dma->base_addr + DPDMA_GBL);
}
static void dma_vsync_intr_handler(struct udevice *dev)
{
struct zynqmp_dpsub_priv *dp_sub = dev_get_priv(dev);
dma_setup_channel(dev);
dma_set_channel_state(dev);
dma_trigger(dev);
/* Clear VSync Interrupt */
writel(DPDMA_ISR_VSYNC_INT_MASK, dp_sub->dp_dma->base_addr + DPDMA_ISR);
}
/**
* wait_phy_ready() - Wait for the DisplayPort PHY to come out of reset
* @dev: The DP device
*
* Return: 0 if wait succeeded, -ve if error occurred
*/
static int wait_phy_ready(struct udevice *dev)
{
struct zynqmp_dpsub_priv *dp_sub = dev_get_priv(dev);
u32 timeout = 100, phy_status;
u8 phy_ready_mask = DP_PHY_STATUS_RESET_LANE_0_DONE_MASK |
DP_PHY_STATUS_GT_PLL_LOCK_MASK;
/* Wait until the PHY is ready. */
do {
udelay(20);
phy_status = readl(dp_sub->base_addr + DP_PHY_STATUS);
phy_status &= phy_ready_mask;
/* Protect against an infinite loop. */
if (!timeout--)
return -ETIMEDOUT;
} while (phy_status != phy_ready_mask);
return 0;
}
static int init_dp_tx(struct udevice *dev)
{
u32 status, phyval, regval, rate;
struct zynqmp_dpsub_priv *dp_sub = dev_get_priv(dev);
phyval = readl(dp_sub->base_addr + DP_PHY_CONFIG);
writel(DP_SOFT_RESET_EN, dp_sub->base_addr + DP_SOFT_RESET);
status = readl(dp_sub->base_addr + DP_SOFT_RESET);
writel(DP_DISABLE, dp_sub->base_addr + DP_ENABLE);
regval = (readl(dp_sub->base_addr + DP_AUX_CLK_DIVIDER) &
~DP_AUX_CLK_DIVIDER_VAL_MASK) |
(60 << 8) |
(dp_sub->clock / 1000000);
writel(regval, dp_sub->base_addr + DP_AUX_CLK_DIVIDER);
writel(DP_PHY_CLOCK_SELECT_540GBPS, dp_sub->base_addr + DP_PHY_CLOCK_SELECT);
regval = phyval & ~DP_PHY_CONFIG_GT_ALL_RESET_MASK;
writel(regval, dp_sub->base_addr + DP_PHY_CONFIG);
status = wait_phy_ready(dev);
if (status)
return -EINVAL;
writel(DP_ENABLE, dp_sub->base_addr + DP_ENABLE);
rate = ~DP_INTR_HPD_PULSE_DETECTED_MASK & ~DP_INTR_HPD_EVENT_MASK
& ~DP_INTR_HPD_IRQ_MASK;
writel(rate, dp_sub->base_addr + DP_INTR_MASK);
return 0;
}
static int set_nonlive_gfx_format(struct udevice *dev, enum av_buf_video_format format)
{
struct zynqmp_dpsub_priv *dp_sub = dev_get_priv(dev);
struct av_buf_vid_attribute *ptr = (struct av_buf_vid_attribute *)avbuf_supported_formats;
while (1) {
dev_dbg(dev, "Format %d\n", ptr->video_format);
if (!ptr->video_format)
return -EINVAL;
if (ptr->video_format == format) {
dp_sub->non_live_graphics = ptr;
break;
}
ptr++;
}
dev_dbg(dev, "Video format found. BPP %d\n", dp_sub->non_live_graphics->bpp);
return 0;
}
/* DP dma setup */
static void set_qos(struct udevice *dev, u8 qos)
{
struct zynqmp_dpsub_priv *dp_sub = dev_get_priv(dev);
u8 index;
u32 regval = 0, mask;
regval = (((u32)qos << DPDMA_CH_CNTL_QOS_DATA_RD_SHIFT) |
((u32)qos << DPDMA_CH_CNTL_QOS_DSCR_RD_SHIFT) |
((u32)qos << DPDMA_CH_CNTL_QOS_DSCR_WR_SHIFT));
mask = DPDMA_CH_CNTL_QOS_DATA_RD_MASK |
DPDMA_CH_CNTL_QOS_DSCR_RD_MASK |
DPDMA_CH_CNTL_QOS_DSCR_WR_MASK;
for (index = 0; index <= DPDMA_AUDIO_CHANNEL1; index++) {
clrsetbits_le32(dp_sub->dp_dma->base_addr +
DPDMA_CH0_CNTL +
(DPDMA_CH_OFFSET * (u32)index),
mask, regval);
}
}
static void enable_gfx_buffers(struct udevice *dev, u8 enable)
{
struct zynqmp_dpsub_priv *dp_sub = dev_get_priv(dev);
u32 regval = 0;
regval = (0xF << AVBUF_CHBUF3_BURST_LEN_SHIFT) |
AVBUF_CHBUF3_FLUSH_MASK;
writel(regval, dp_sub->base_addr + AVBUF_CHBUF3);
if (enable) {
regval = (0xF << AVBUF_CHBUF3_BURST_LEN_SHIFT) |
AVBUF_CHBUF0_EN_MASK;
writel(regval, dp_sub->base_addr + AVBUF_CHBUF3);
}
}
static void avbuf_video_select(struct udevice *dev, enum av_buf_video_stream vid_stream,
enum av_buf_gfx_stream gfx_stream)
{
struct zynqmp_dpsub_priv *dp_sub = dev_get_priv(dev);
dp_sub->av_mode.video_src = vid_stream;
dp_sub->av_mode.gfx_src = gfx_stream;
clrsetbits_le32(dp_sub->base_addr +
AVBUF_BUF_OUTPUT_AUD_VID_SELECT,
AVBUF_BUF_OUTPUT_AUD_VID_SELECT_VID_STREAM2_SEL_MASK |
AVBUF_BUF_OUTPUT_AUD_VID_SELECT_VID_STREAM1_SEL_MASK,
vid_stream | gfx_stream);
}
static void config_gfx_pipeline(struct udevice *dev)
{
struct zynqmp_dpsub_priv *dp_sub = dev_get_priv(dev);
u16 *csc_matrix, *offset_matrix;
u32 regval = 0, index = 0, *scaling_factors = NULL;
u16 rgb_coeffs[] = { 0x1000, 0x0000, 0x0000,
0x0000, 0x1000, 0x0000,
0x0000, 0x0000, 0x1000 };
u16 rgb_offset[] = { 0x0000, 0x0000, 0x0000 };
struct av_buf_vid_attribute *video = dp_sub->non_live_graphics;
scaling_factors = video->sf;
clrsetbits_le32(dp_sub->base_addr + AVBUF_BUF_FORMAT,
AVBUF_BUF_FORMAT_NL_GRAPHX_FORMAT_MASK,
(video->value) << AVBUF_BUF_FORMAT_NL_GRAPHX_FORMAT_SHIFT);
for (index = 0; index < 3; index++) {
writel(scaling_factors[index], dp_sub->base_addr +
AVBUF_BUF_GRAPHICS_COMP0_SCALE_FACTOR + (index * 4));
}
regval = (video->is_rgb << AVBUF_V_BLEND_LAYER0_CONTROL_RGB_MODE_SHIFT) |
video->sampling_en;
writel(regval, dp_sub->base_addr + AVBUF_V_BLEND_LAYER1_CONTROL);
if (video->is_rgb) {
csc_matrix = rgb_coeffs;
offset_matrix = rgb_offset;
}
/* Program Colorspace conversion coefficients */
for (index = 9; index < 12; index++) {
writel(offset_matrix[index - 9], dp_sub->base_addr +
AVBUF_V_BLEND_IN2CSC_COEFF0 + (index * 4));
}
/* Program Colorspace conversion matrix */
for (index = 0; index < 9; index++) {
writel(csc_matrix[index], dp_sub->base_addr +
AVBUF_V_BLEND_IN2CSC_COEFF0 + (index * 4));
}
}
static void set_blender_alpha(struct udevice *dev, u8 alpha, u8 enable)
{
struct zynqmp_dpsub_priv *dp_sub = dev_get_priv(dev);
u32 regval;
regval = enable;
regval |= alpha << AVBUF_V_BLEND_SET_GLOBAL_ALPHA_REG_VALUE_SHIFT;
writel(regval, dp_sub->base_addr +
AVBUF_V_BLEND_SET_GLOBAL_ALPHA_REG);
}
static void config_output_video(struct udevice *dev)
{
struct zynqmp_dpsub_priv *dp_sub = dev_get_priv(dev);
u32 regval = 0, index;
u16 rgb_coeffs[] = { 0x1000, 0x0000, 0x0000,
0x0000, 0x1000, 0x0000,
0x0000, 0x0000, 0x1000 };
u16 rgb_offset[] = { 0x0000, 0x0000, 0x0000 };
u16 *matrix_coeff = rgb_coeffs, *matrix_offset = rgb_offset;
struct av_buf_vid_attribute *output_video = dp_sub->non_live_graphics;
regval |= output_video->sampling_en <<
AVBUF_V_BLEND_OUTPUT_VID_FORMAT_EN_DOWNSAMPLE_SHIFT;
regval |= output_video->value;
writel(regval, dp_sub->base_addr + AVBUF_V_BLEND_OUTPUT_VID_FORMAT);
for (index = 0; index < 9; index++) {
writel(matrix_coeff[index], dp_sub->base_addr +
AVBUF_V_BLEND_RGB2YCBCR_COEFF0 + (index * 4));
}
for (index = 0; index < 3; index++) {
writel((matrix_offset[index] <<
AVBUF_V_BLEND_LUMA_IN1CSC_OFFSET_POST_OFFSET_SHIFT),
dp_sub->base_addr +
AVBUF_V_BLEND_LUMA_OUTCSC_OFFSET
+ (index * 4));
}
set_blender_alpha(dev, 0, 0);
}
static void config_msa_sync_clk_mode(struct udevice *dev, u8 enable)
{
struct zynqmp_dpsub_priv *dp_sub = dev_get_priv(dev);
struct main_stream_attributes *msa_config;
msa_config = &dp_sub->msa_config;
msa_config->synchronous_clock_mode = enable;
if (enable == 1) {
msa_config->misc0 |= (1 <<
DP_MAIN_STREAM_MISC0_COMPONENT_FORMAT_SHIFT);
} else {
msa_config->misc0 &= ~(1 <<
DP_MAIN_STREAM_MISC0_COMPONENT_FORMAT_SHIFT);
}
}
static void av_buf_soft_reset(struct udevice *dev)
{
struct zynqmp_dpsub_priv *dp_sub = dev_get_priv(dev);
writel(AVBUF_BUF_SRST_REG_VID_RST_MASK,
dp_sub->base_addr + AVBUF_BUF_SRST_REG);
writel(0, dp_sub->base_addr + AVBUF_BUF_SRST_REG);
}
static void set_video_clk_source(struct udevice *dev, u8 video_clk, u8 audio_clk)
{
struct zynqmp_dpsub_priv *dp_sub = dev_get_priv(dev);
u32 regval = 0;
if (dp_sub->av_mode.video_src != AVBUF_VIDSTREAM1_LIVE &&
dp_sub->av_mode.gfx_src != AVBUF_VIDSTREAM2_LIVE_GFX) {
regval = 1 << AVBUF_BUF_AUD_VID_CLK_SOURCE_VID_TIMING_SRC_SHIFT;
} else if (dp_sub->av_mode.video_src == AVBUF_VIDSTREAM1_LIVE ||
dp_sub->av_mode.gfx_src == AVBUF_VIDSTREAM2_LIVE_GFX) {
video_clk = AVBUF_PL_CLK;
}
regval |= (video_clk << AVBUF_BUF_AUD_VID_CLK_SOURCE_VID_CLK_SRC_SHIFT) |
(audio_clk << AVBUF_BUF_AUD_VID_CLK_SOURCE_AUD_CLK_SRC_SHIFT);
writel(regval, dp_sub->base_addr + AVBUF_BUF_AUD_VID_CLK_SOURCE);
av_buf_soft_reset(dev);
}
static int init_dpdma_subsys(struct udevice *dev)
{
struct zynqmp_dpsub_priv *dp_sub = dev_get_priv(dev);
dp_sub->dp_dma->base_addr = DPDMA_BASE_ADDRESS;
dp_sub->dp_dma->gfx.channel.cur = NULL;
dp_sub->dp_dma->gfx.trigger_status = DPDMA_TRIGGER_DONE;
set_qos(dev, 11);
return 0;
}
/**
* is_dp_connected() - Check if there is a connected RX device
* @dev: The DP device
*
*
* Return: true if a connected RX device was detected, false otherwise
*/
static bool is_dp_connected(struct udevice *dev)
{
struct zynqmp_dpsub_priv *dp_sub = dev_get_priv(dev);
u32 status;
u8 retries = 0;
do {
status = readl(dp_sub->base_addr +
DP_INTERRUPT_SIG_STATE)
& DP_INTERRUPT_SIG_STATE_HPD_STATE_MASK;
if (retries > DP_IS_CONNECTED_MAX_TIMEOUT_COUNT)
return 0;
retries++;
udelay(1000);
} while (status == 0);
return 1;
}
/**
* aux_wait_ready() - Wait until another request is no longer in progress
* @dev: The DP device
*
* Return: 0 if wait succeeded, -ve if error occurred
*/
static int aux_wait_ready(struct udevice *dev)
{
struct zynqmp_dpsub_priv *dp_sub = dev_get_priv(dev);
u32 status, timeout = 100;
do {
status = readl(dp_sub->base_addr +
DP_INTERRUPT_SIG_STATE);
if (!timeout--)
return -ETIMEDOUT;
udelay(20);
} while (status & DP_REPLY_STATUS_REPLY_IN_PROGRESS_MASK);
return 0;
}
/**
* aux_wait_reply() - Wait for reply on AUX channel
* @dev: The DP device
*
* Wait for a reply indicating that the most recent AUX request
* has been received by the RX device.
*
* Return: 0 if wait succeeded, -ve if error occurred
*/
static int aux_wait_reply(struct udevice *dev)
{
struct zynqmp_dpsub_priv *dp_sub = dev_get_priv(dev);
u32 timeout = DP_AUX_MAX_WAIT, status;
while (timeout > 0) {
status = readl(dp_sub->base_addr + DP_REPLY_STATUS);
if (status & DP_REPLY_STATUS_REPLY_ERROR_MASK)
return -ETIMEDOUT;
if ((status & DP_REPLY_STATUS_REPLY_RECEIVED_MASK) &&
!(status & DP_REPLY_STATUS_REQUEST_IN_PROGRESS_MASK) &&
!(status & DP_REPLY_STATUS_REPLY_IN_PROGRESS_MASK)) {
return 0;
}
timeout--;
udelay(20);
}
return -ETIMEDOUT;
}
/**
* aux_request_send() - Send request on the AUX channel
* @dev: The DP device
* @request: The request to send
*
* Submit the supplied AUX request to the RX device over the AUX
* channel by writing the command, the destination address, (the write buffer
* for write commands), and the data size to the DisplayPort TX core.
*
* This is the lower-level sending routine, which is called by aux_request().
*
* Return: 0 if request was sent successfully, -ve on error
*/
static int aux_request_send(struct udevice *dev, struct aux_transaction *request)
{
struct zynqmp_dpsub_priv *dp_sub = dev_get_priv(dev);
u32 timeout_count = 0, status;
u8 index;
do {
status = readl(dp_sub->base_addr +
DP_REPLY_STATUS);
udelay(20);
timeout_count++;
if (timeout_count >= DP_AUX_MAX_TIMEOUT_COUNT)
return -ETIMEDOUT;
} while ((status & DP_REPLY_STATUS_REQUEST_IN_PROGRESS_MASK) ||
(status & DP_REPLY_STATUS_REPLY_IN_PROGRESS_MASK));
/* Set the address for the request. */
writel(request->address, dp_sub->base_addr + DP_AUX_ADDRESS);
if (request->cmd_code == DP_AUX_CMD_WRITE ||
request->cmd_code == DP_AUX_CMD_I2C_WRITE ||
request->cmd_code == DP_AUX_CMD_I2C_WRITE_MOT) {
/* Feed write data into the DisplayPort TX core's write FIFO. */
for (index = 0; index < request->num_bytes; index++) {
writel(request->data[index],
dp_sub->base_addr +
DP_AUX_WRITE_FIFO);
}
}
status = ((request->cmd_code << DP_AUX_CMD_SHIFT) |
((request->num_bytes - 1) &
DP_AUX_CMD_NBYTES_TRANSFER_MASK));
/* Submit the command and the data size. */
writel(((request->cmd_code << DP_AUX_CMD_SHIFT) |
((request->num_bytes - 1) & DP_AUX_CMD_NBYTES_TRANSFER_MASK)),
dp_sub->base_addr + DP_AUX_CMD);
/* Check for a reply from the RX device to the submitted request. */
status = aux_wait_reply(dev);
if (status)
/* Waiting for a reply timed out. */
return -ETIMEDOUT;
/* Analyze the reply. */
status = readl(dp_sub->base_addr + DP_AUX_REPLY_CODE);
if (status == DP_AUX_REPLY_CODE_DEFER ||
status == DP_AUX_REPLY_CODE_I2C_DEFER) {
/* The request was deferred. */
return -EAGAIN;
} else if (status == DP_AUX_REPLY_CODE_NACK ||
status == DP_AUX_REPLY_CODE_I2C_NACK) {
/* The request was not acknowledged. */
return -EIO;
}
/* The request was acknowledged. */
if (request->cmd_code == DP_AUX_CMD_READ ||
request->cmd_code == DP_AUX_CMD_I2C_READ ||
request->cmd_code == DP_AUX_CMD_I2C_READ_MOT) {
/* Wait until all data has been received. */
timeout_count = 0;
do {
status = readl(dp_sub->base_addr +
DP_REPLY_DATA_COUNT);
udelay(100);
timeout_count++;
if (timeout_count >= DP_AUX_MAX_TIMEOUT_COUNT)
return -ETIMEDOUT;
} while (status != request->num_bytes);
/* Obtain the read data from the reply FIFO. */
for (index = 0; index < request->num_bytes; index++) {
request->data[index] = readl(dp_sub->base_addr +
DP_AUX_REPLY_DATA);
}
}
return 0;
}
/**
* aux_request() - Submit request on the AUX channel
* @dev: The DP device
* @request: The request to submit
*
* Submit the supplied AUX request to the RX device over the AUX
* channel. If waiting for a reply times out, or if the DisplayPort TX core
* indicates that the request was deferred, the request is sent again (up to a
* maximum specified by DP_AUX_MAX_DEFER_COUNT|DP_AUX_MAX_TIMEOUT_COUNT).
*
* Return: 0 if request was submitted successfully, -ve on error
*/
static int aux_request(struct udevice *dev, struct aux_transaction *request)
{
u32 status, defer_count = 0, timeout_count = 0;
do {
status = aux_wait_ready(dev);
if (status) {
/* The RX device isn't ready yet. */
timeout_count++;
continue;
}
/* Send the request. */
status = aux_request_send(dev, request);
if (status == -EAGAIN) {
/* The request was deferred. */
defer_count++;
} else if (status == -ETIMEDOUT) {
/* Waiting for a reply timed out. */
timeout_count++;
} else {
return status;
}
udelay(100);
} while ((defer_count < DP_AUX_MAX_DEFER_COUNT) &&
(timeout_count < DP_AUX_MAX_TIMEOUT_COUNT));
/* The request was not successfully received by the RX device. */
return -ETIMEDOUT;
}
/**
* aux_common() - Common (read/write) AUX communication transmission
* @dev: The DP device
* @cmd_type: Command code of the transaction
* @address: The DPCD address of the transaction
* @num_bytes: Number of bytes in the payload data
* @data: The payload data of the AUX command
*
* Common sequence of submitting an AUX command for AUX read, AUX write,
* I2C-over-AUX read, and I2C-over-AUX write transactions. If required, the
* reads and writes are split into multiple requests, each acting on a maximum
* of 16 bytes.
*
* Return: 0 if OK, -ve on error
*/
static int aux_common(struct udevice *dev, u32 cmd_type, u32 address,
u32 num_bytes, u8 *data)
{
u32 status, bytes_left;
struct aux_transaction request;
if (!is_dp_connected(dev))
return -ENODEV;
/*
* Set the start address for AUX transactions. For I2C transactions,
* this is the address of the I2C bus.
*/
request.address = address;
bytes_left = num_bytes;
while (bytes_left > 0) {
request.cmd_code = cmd_type;
if (cmd_type == DP_AUX_CMD_READ ||
cmd_type == DP_AUX_CMD_WRITE) {
/* Increment address for normal AUX transactions. */
request.address = address + (num_bytes - bytes_left);
}
/* Increment the pointer to the supplied data buffer. */
request.data = &data[num_bytes - bytes_left];
if (bytes_left > 16)
request.num_bytes = 16;
else
request.num_bytes = bytes_left;
bytes_left -= request.num_bytes;
if (cmd_type == DP_AUX_CMD_I2C_READ && bytes_left > 0) {
/*
* Middle of a transaction I2C read request. Override
* the command code that was set to CmdType.
*/
request.cmd_code = DP_AUX_CMD_I2C_READ_MOT;
} else if (cmd_type == DP_AUX_CMD_I2C_WRITE && bytes_left > 0) {
/*
* Middle of a transaction I2C write request. Override
* the command code that was set to CmdType.
*/
request.cmd_code = DP_AUX_CMD_I2C_WRITE_MOT;
}
status = aux_request(dev, &request);
if (status)
return status;
}
return 0;
}
/**
* aux_write() - Issue AUX write request
* @dev: The DP device
* @dpcd_address: The DPCD address to write to
* @bytes_to_write: Number of bytes to write
* @write_data: Buffer containig data to be written
*
* Issue a write request over the AUX channel that will write to
* the RX device's DisplayPort Configuration data (DPCD) address space. The
* write message will be divided into multiple transactions which write a
* maximum of 16 bytes each.
*
* Return: 0 if write operation was successful, -ve on error
*/
static int aux_write(struct udevice *dev, u32 dpcd_address, u32 bytes_to_write,
void *write_data)
{
return aux_common(dev, DP_AUX_CMD_WRITE, dpcd_address,
bytes_to_write, (u8 *)write_data);
}
/**
* aux_read() - Issue AUX read request
* @dev: The DP device
* @dpcd_address: The DPCD address to read from
* @bytes_to_read: Number of bytes to read
* @read_data: Buffer to receive the read data
*
* Issue a read request over the AUX channel that will read from the RX
* device's DisplayPort Configuration data (DPCD) address space. The read
* message will be divided into multiple transactions which read a maximum of
* 16 bytes each.
*
* Return: 0 if read operation was successful, -ve on error
*/
static int aux_read(struct udevice *dev, u32 dpcd_address, u32 bytes_to_read, void *read_data)
{
return aux_common(dev, DP_AUX_CMD_READ, dpcd_address,
bytes_to_read, (u8 *)read_data);
}
static int dp_tx_wakeup(struct udevice *dev)
{
u32 status;
u8 aux_data;
aux_data = 0x1;
status = aux_write(dev, DP_DPCD_SET_POWER_DP_PWR_VOLTAGE, 1, &aux_data);
if (status)
debug("! 1st power wake-up - AUX write failed.\n");
status = aux_write(dev, DP_DPCD_SET_POWER_DP_PWR_VOLTAGE, 1, &aux_data);
if (status)
debug("! 2nd power wake-up - AUX write failed.\n");
return status;
}
/**
* enable_main_link() - Switch on main link for a device
* @dev: The DP device
*/
static void enable_main_link(struct udevice *dev, u8 enable)
{
struct zynqmp_dpsub_priv *dp_sub = dev_get_priv(dev);
/* Reset the scrambler. */
writel(1, dp_sub->base_addr + DP_FORCE_SCRAMBLER_RESET);
/* Enable the main stream. */
writel(enable, dp_sub->base_addr + DP_ENABLE_MAIN_STREAM);
}
/**
* get_rx_capabilities() - Check if capabilities of RX device are valid for TX
* device
* @dev: The DP device
*
* Return: 0 if the capabilities of the RX device are valid for the TX device,
* -ve if not, of an error occurred during capability determination
*/
static int get_rx_capabilities(struct udevice *dev)
{
struct zynqmp_dpsub_priv *dp_sub = dev_get_priv(dev);
u8 rx_max_link_rate, rx_max_lane_count, *dpcd = NULL;
u32 status;
struct link_config *link_config = NULL;
dpcd = dp_sub->dpcd_rx_caps;
link_config = &dp_sub->link_config;
status = aux_read(dev, DP_DPCD_RECEIVER_CAP_FIELD_START, 16, dpcd);
if (status)
return status;
rx_max_link_rate = dpcd[DP_DPCD_MAX_LINK_RATE];
rx_max_lane_count = dpcd[DP_DPCD_MAX_LANE_COUNT] & DP_DPCD_MAX_LANE_COUNT_MASK;
link_config->max_link_rate = (rx_max_link_rate > DP_0_LINK_RATE) ?
DP_0_LINK_RATE : rx_max_link_rate;
link_config->max_lane_count = (rx_max_lane_count > DP_0_LANE_COUNT) ?
DP_0_LANE_COUNT : rx_max_lane_count;
link_config->support_enhanced_framing_mode = dpcd[DP_DPCD_MAX_LANE_COUNT] &
DP_DPCD_ENHANCED_FRAME_SUPPORT_MASK;
link_config->support_downspread_control = dpcd[DP_DPCD_MAX_DOWNSPREAD] &
DP_DPCD_MAX_DOWNSPREAD_MASK;
return 0;
}
/**
* set_enhanced_frame_mode() - Enable/Disable enhanced frame mode
* @dev: The DP device
* @enable: Flag to determine whether to enable (1) or disable (0) the enhanced
* frame mode
*
* Enable or disable the enhanced framing symbol sequence for
* both the DisplayPort TX core and the RX device.
*
* Return: 0 if enabling/disabling the enhanced frame mode was successful, -ve
* on error
*/
static int set_enhanced_frame_mode(struct udevice *dev, u8 enable)
{
struct zynqmp_dpsub_priv *dp_sub = dev_get_priv(dev);
u32 status;
u8 regval;
dp_sub->link_config.enhanced_framing_mode = enable;
/* Write enhanced frame mode enable to the DisplayPort TX core. */
writel(dp_sub->link_config.enhanced_framing_mode,
dp_sub->base_addr + DP_ENHANCED_FRAME_EN);
/* Preserve the current RX device settings. */
status = aux_read(dev, DP_DPCD_LANE_COUNT_SET, 0x1, &regval);
if (status)
return status;
if (dp_sub->link_config.enhanced_framing_mode)
regval |= DP_DPCD_ENHANCED_FRAME_EN_MASK;
else
regval &= ~DP_DPCD_ENHANCED_FRAME_EN_MASK;
/* Write enhanced frame mode enable to the RX device. */
return aux_write(dev, DP_DPCD_LANE_COUNT_SET, 0x1, &regval);
}
/**
* set_lane_count() - Set the lane count
* @dev: The DP device
* @lane_count: Lane count to set
*
* Set the number of lanes to be used by the main link for both
* the DisplayPort TX core and the RX device.
*
* Return: 0 if setting the lane count was successful, -ve on error
*/
static int set_lane_count(struct udevice *dev, u8 lane_count)
{
struct zynqmp_dpsub_priv *dp_sub = dev_get_priv(dev);
u32 status;
u8 regval;
dp_sub->link_config.lane_count = lane_count;
/* Write the new lane count to the DisplayPort TX core. */
writel(dp_sub->link_config.lane_count,
dp_sub->base_addr + DP_LANE_COUNT_SET);
/* Preserve the current RX device settings. */
status = aux_read(dev, DP_DPCD_LANE_COUNT_SET, 0x1, &regval);
if (status)
return status;
regval &= ~DP_DPCD_LANE_COUNT_SET_MASK;
regval |= dp_sub->link_config.lane_count;
/* Write the new lane count to the RX device. */
return aux_write(dev, DP_DPCD_LANE_COUNT_SET, 0x1, &regval);
}
/**
* set_clk_speed() - Set DP phy clock speed
* @dev: The DP device
* @speed: The clock frquency to set (one of PHY_CLOCK_SELECT_*)
*
* Set the clock frequency for the DisplayPort PHY corresponding to a desired
* data rate.
*
* Return: 0 if setting the DP phy clock speed was successful, -ve on error
*/
static int set_clk_speed(struct udevice *dev, u32 speed)
{
struct zynqmp_dpsub_priv *dp_sub = dev_get_priv(dev);
u32 regval;
/* Disable the DisplayPort TX core first. */
regval = readl(dp_sub->base_addr + DP_ENABLE);
writel(0, dp_sub->base_addr + DP_ENABLE);
/* Change speed of the feedback clock. */
writel(speed, dp_sub->base_addr + DP_PHY_CLOCK_SELECT);
/* Re-enable the DisplayPort TX core if it was previously enabled. */
if (regval)
writel(regval, dp_sub->base_addr + DP_ENABLE);
/* Wait until the PHY is ready. */
return wait_phy_ready(dev);
}
/**
* set_link_rate() - Set the link rate
* @dev: The DP device
* @link_rate: The link rate to set (one of LINK_BW_SET_*)
*
* Set the data rate to be used by the main link for both the DisplayPort TX
* core and the RX device.
*
* Return: 0 if setting the link rate was successful, -ve on error
*/
static int set_link_rate(struct udevice *dev, u8 link_rate)
{
struct zynqmp_dpsub_priv *dp_sub = dev_get_priv(dev);
u32 status;
/* Write a corresponding clock frequency to the DisplayPort TX core. */
switch (link_rate) {
case DP_LINK_BW_SET_162GBPS:
status = set_clk_speed(dev, DP_PHY_CLOCK_SELECT_162GBPS);
break;
case DP_LINK_BW_SET_270GBPS:
status = set_clk_speed(dev, DP_PHY_CLOCK_SELECT_270GBPS);
break;
case DP_LINK_BW_SET_540GBPS:
status = set_clk_speed(dev, DP_PHY_CLOCK_SELECT_540GBPS);
break;
default:
status = -EINVAL;
break;
}
if (status)
return status;
dp_sub->link_config.link_rate = link_rate;
/* Write new link rate to the DisplayPort TX core. */
writel(dp_sub->link_config.link_rate,
dp_sub->base_addr +
DP_LINK_BW_SET);
/* Write new link rate to the RX device. */
return aux_write(dev, DP_DPCD_LINK_BW_SET, 0x1,
&dp_sub->link_config.link_rate);
}
static int set_downspread(struct udevice *dev, u8 enable)
{
struct zynqmp_dpsub_priv *dp_sub = dev_get_priv(dev);
u32 status;
u8 regval;
dp_sub->link_config.support_downspread_control = enable;
/* Write downspread enable to the DisplayPort TX core. */
writel(dp_sub->link_config.support_downspread_control,
dp_sub->base_addr + DP_DOWNSPREAD_CTRL);
/* Preserve the current RX device settings. */
status = aux_read(dev, DP_DPCD_DOWNSPREAD_CTRL, 0x1, &regval);
if (status)
return status;
if (dp_sub->link_config.support_downspread_control)
regval |= DP_DPCD_SPREAD_AMP_MASK;
else
regval &= ~DP_DPCD_SPREAD_AMP_MASK;
/* Write downspread enable to the RX device. */
return aux_write(dev, DP_DPCD_DOWNSPREAD_CTRL, 0x1, &regval);
}
static void set_serdes_vswing_preemp(struct udevice *dev)
{
struct zynqmp_dpsub_priv *dp_sub = dev_get_priv(dev);
u8 index;
u8 vs_level_rx = dp_sub->link_config.vs_level;
u8 pe_level_rx = dp_sub->link_config.pe_level;
for (index = 0; index < dp_sub->link_config.lane_count; index++) {
/* Write new voltage swing levels to the TX registers. */
writel(vs[pe_level_rx][vs_level_rx], (ulong)SERDES_BASEADDR +
SERDES_L0_TX_MARGININGF + index * SERDES_LANE_OFFSET);
/* Write new pre-emphasis levels to the TX registers. */
writel(pe[pe_level_rx][vs_level_rx], (ulong)SERDES_BASEADDR +
SERDES_L0_TX_DEEMPHASIS + index * SERDES_LANE_OFFSET);
}
}
/**
* set_vswing_preemp() - Build AUX data to set voltage swing and pre-emphasis
* @dev: The DP device
* @aux_data: Buffer to receive the built AUX data
*
* Build AUX data to set current voltage swing and pre-emphasis level settings;
* the necessary data is taken from the link_config structure.
*/
static void set_vswing_preemp(struct udevice *dev, u8 *aux_data)
{
struct zynqmp_dpsub_priv *dp_sub = dev_get_priv(dev);
u8 data = 0;
u8 vs_level_rx = dp_sub->link_config.vs_level;
u8 pe_level_rx = dp_sub->link_config.pe_level;
if (vs_level_rx >= DP_MAXIMUM_VS_LEVEL)
data |= DP_DPCD_TRAINING_LANEX_SET_MAX_VS_MASK;
/* The maximum pre-emphasis level has been reached. */
if (pe_level_rx >= DP_MAXIMUM_PE_LEVEL)
data |= DP_DPCD_TRAINING_LANEX_SET_MAX_PE_MASK;
/* Set up the data buffer for writing to the RX device. */
data |= (pe_level_rx << DP_DPCD_TRAINING_LANEX_SET_PE_SHIFT) |
vs_level_rx;
memset(aux_data, data, 4);
set_serdes_vswing_preemp(dev);
}
static int set_training_pattern(struct udevice *dev, u32 pattern)
{
struct zynqmp_dpsub_priv *dp_sub = dev_get_priv(dev);
u8 aux_data[5];
writel(pattern, dp_sub->base_addr + TRAINING_PATTERN_SET);
aux_data[0] = pattern;
switch (pattern) {
case TRAINING_PATTERN_SET_OFF:
writel(0, dp_sub->base_addr + SCRAMBLING_DISABLE);
dp_sub->link_config.scrambler_en = 1;
break;
case TRAINING_PATTERN_SET_TP1:
case TRAINING_PATTERN_SET_TP2:
case TRAINING_PATTERN_SET_TP3:
aux_data[0] |= DP_DPCD_TP_SET_SCRAMB_DIS_MASK;
writel(1, dp_sub->base_addr + SCRAMBLING_DISABLE);
dp_sub->link_config.scrambler_en = 0;
break;
default:
break;
}
/*
* Make the adjustments to both the DisplayPort TX core and the RX
* device.
*/
set_vswing_preemp(dev, &aux_data[1]);
/*
* Write the voltage swing and pre-emphasis levels for each lane to the
* RX device.
*/
if (pattern == TRAINING_PATTERN_SET_OFF)
return aux_write(dev, DP_DPCD_TP_SET, 1, aux_data);
else
return aux_write(dev, DP_DPCD_TP_SET, 5, aux_data);
}
static int get_lane_status_adj_reqs(struct udevice *dev)
{
struct zynqmp_dpsub_priv *dp_sub = dev_get_priv(dev);
u32 status;
u8 aux_data[8];
status = aux_read(dev, DP_DPCD_SINK_COUNT, 8, aux_data);
if (status)
return status;
/* Save XDPPSU_DPCD_SINK_COUNT contents. */
dp_sub->sink_count =
((aux_data[0] & DP_DPCD_SINK_COUNT_HIGH_MASK) >>
DP_DPCD_SINK_COUNT_HIGH_LOW_SHIFT) |
(aux_data[0] & DP_DPCD_SINK_COUNT_LOW_MASK);
memcpy(dp_sub->lane_status_ajd_reqs, &aux_data[2], 6);
return 0;
}
/**
* check_clock_recovery() - Check clock recovery success
* @dev: The LogiCore DP TX device in question
* @lane_count: The number of lanes for which to check clock recovery success
*
* Check if the RX device's DisplayPort Configuration data (DPCD) indicates
* that the clock recovery sequence during link training was successful - the
* RX device's link clock and data recovery unit has realized and maintained
* the frequency lock for all lanes currently in use.
*
* Return: 0 if clock recovery was successful on all lanes in question, -ve if
* not
*/
static int check_clock_recovery(struct udevice *dev, u8 lane_count)
{
struct zynqmp_dpsub_priv *dp_sub = dev_get_priv(dev);
u8 *lane_status = dp_sub->lane_status_ajd_reqs;
switch (lane_count) {
case DP_LANE_COUNT_SET_2:
if (!(lane_status[0] & DP_DPCD_STATUS_LANE_1_CR_DONE_MASK))
return -EINVAL;
case DP_LANE_COUNT_SET_1:
if (!(lane_status[0] & DP_DPCD_STATUS_LANE_0_CR_DONE_MASK))
return -EINVAL;
default:
/* All (LaneCount) lanes have achieved clock recovery. */
break;
}
return 0;
}
/**
* adj_vswing_preemp() - Adjust voltage swing and pre-emphasis
* @dev: The DP device
*
* Set new voltage swing and pre-emphasis levels using the
* adjustment requests obtained from the RX device.
*
* Return: 0 if voltage swing and pre-emphasis could be adjusted successfully,
* -ve on error
*/
static int adj_vswing_preemp(struct udevice *dev)
{
struct zynqmp_dpsub_priv *dp_sub = dev_get_priv(dev);
u8 index, vs_level_adj_req[4], pe_level_adj_req[4];
u8 aux_data[4];
u8 *adj_reqs = &dp_sub->lane_status_ajd_reqs[4];
/*
* Analyze the adjustment requests for changes in voltage swing and
* pre-emphasis levels.
*/
vs_level_adj_req[0] = adj_reqs[0] & DP_DPCD_ADJ_REQ_LANE_0_2_VS_MASK;
vs_level_adj_req[1] = (adj_reqs[0] & DP_DPCD_ADJ_REQ_LANE_1_3_VS_MASK) >>
DP_DPCD_ADJ_REQ_LANE_1_3_VS_SHIFT;
pe_level_adj_req[0] = (adj_reqs[0] & DP_DPCD_ADJ_REQ_LANE_0_2_PE_MASK) >>
DP_DPCD_ADJ_REQ_LANE_0_2_PE_SHIFT;
pe_level_adj_req[1] = (adj_reqs[0] & DP_DPCD_ADJ_REQ_LANE_1_3_PE_MASK) >>
DP_DPCD_ADJ_REQ_LANE_1_3_PE_SHIFT;
/*
* Change the drive settings to match the adjustment requests. Use the
* greatest level requested.
*/
dp_sub->link_config.vs_level = 0;
dp_sub->link_config.pe_level = 0;
for (index = 0; index < dp_sub->link_config.lane_count; index++) {
if (vs_level_adj_req[index] > dp_sub->link_config.vs_level)
dp_sub->link_config.vs_level = vs_level_adj_req[index];
if (pe_level_adj_req[index] > dp_sub->link_config.pe_level)
dp_sub->link_config.pe_level = pe_level_adj_req[index];
}
if (dp_sub->link_config.pe_level > DP_MAXIMUM_PE_LEVEL)
dp_sub->link_config.pe_level = DP_MAXIMUM_PE_LEVEL;
if (dp_sub->link_config.vs_level > DP_MAXIMUM_VS_LEVEL)
dp_sub->link_config.vs_level = DP_MAXIMUM_VS_LEVEL;
if (dp_sub->link_config.pe_level >
(4 - dp_sub->link_config.vs_level)) {
dp_sub->link_config.pe_level =
4 - dp_sub->link_config.vs_level;
}
/*
* Make the adjustments to both the DisplayPort TX core and the RX
* device.
*/
set_vswing_preemp(dev, aux_data);
/*
* Write the voltage swing and pre-emphasis levels for each lane to the
* RX device.
*/
return aux_write(dev, DP_DPCD_TRAINING_LANE0_SET, 2, aux_data);
}
/**
* get_training_delay() - Get training delay
* @dev: The DP device
* @training_state: The training state for which the required training delay
* should be queried
*
* Determine what the RX device's required training delay is for
* link training.
*
* Return: The training delay in us
*/
static u32 get_training_delay(struct udevice *dev)
{
struct zynqmp_dpsub_priv *dp_sub = dev_get_priv(dev);
u8 *dpcd = dp_sub->dpcd_rx_caps;
if (dpcd[DP_DPCD_TRAIN_AUX_RD_INTERVAL])
return 400 * dpcd[DP_DPCD_TRAIN_AUX_RD_INTERVAL] * 10;
return 400;
}
/**
* training_state_clock_recovery() - Run clock recovery part of link training
* @dev: The DP device
*
* Run the clock recovery sequence as part of link training. The
* sequence is as follows:
*
* 0) Start signaling at the minimum voltage swing, pre-emphasis, and
* post- cursor levels.
* 1) Transmit training pattern 1 over the main link with symbol
* scrambling disabled.
* 2) The clock recovery loop. If clock recovery is unsuccessful after
* MaxIterations loop iterations, return.
* 2a) Wait for at least the period of time specified in the RX device's
* DisplayPort Configuration data (DPCD) register,
* TRAINING_AUX_RD_INTERVAL.
* 2b) Check if all lanes have achieved clock recovery lock. If so,
* return.
* 2c) Check if the same voltage swing level has been used 5 consecutive
* times or if the maximum level has been reached. If so, return.
* 2d) Adjust the voltage swing, pre-emphasis, and post-cursor levels as
* requested by the RX device.
* 2e) Loop back to 2a.
*
* For a more detailed description of the clock recovery sequence, see section
* 3.5.1.2.1 of the DisplayPort 1.2a specification document.
*
* Return: The next state machine state to advance to
*/
static enum link_training_states training_state_clock_recovery(struct udevice *dev)
{
struct zynqmp_dpsub_priv *dp_sub = dev_get_priv(dev);
u32 status, delay_us;
u8 prev_vs_level = 0, same_vs_level_count = 0;
struct link_config *link_config = &dp_sub->link_config;
delay_us = get_training_delay(dev);
/* Start CRLock. */
/* Start from minimal voltage swing and pre-emphasis levels. */
dp_sub->link_config.vs_level = 0;
dp_sub->link_config.pe_level = 0;
/* Transmit training pattern 1. */
status = set_training_pattern(dev, TRAINING_PATTERN_SET_TP1);
if (status)
return TS_FAILURE;
while (1) {
/* Wait delay specified in TRAINING_AUX_RD_INTERVAL. */
udelay(delay_us);
/* Get lane and adjustment requests. */
status = get_lane_status_adj_reqs(dev);
if (status)
/* The AUX read failed. */
return TS_FAILURE;
/*
* Check if all lanes have realized and maintained the frequency
* lock and get adjustment requests.
*/
status = check_clock_recovery(dev, dp_sub->link_config.lane_count);
if (status == 0)
return TS_CHANNEL_EQUALIZATION;
/*
* Check if the same voltage swing for each lane has been used 5
* consecutive times.
*/
if (prev_vs_level == link_config->vs_level) {
same_vs_level_count++;
} else {
same_vs_level_count = 0;
prev_vs_level = link_config->vs_level;
}
if (same_vs_level_count >= 5)
break;
/* Only try maximum voltage swing once. */
if (link_config->vs_level == DP_MAXIMUM_VS_LEVEL)
break;
/* Adjust the drive settings as requested by the RX device. */
status = adj_vswing_preemp(dev);
if (status)
/* The AUX write failed. */
return TS_FAILURE;
}
return TS_ADJUST_LINK_RATE;
}
/**
* check_channel_equalization() - Check channel equalization success
* @dev: The DP device
* @lane_count: The number of lanes for which to check channel equalization
* success
*
* Check if the RX device's DisplayPort Configuration data (DPCD) indicates
* that the channel equalization sequence during link training was successful -
* the RX device has achieved channel equalization, symbol lock, and interlane
* alignment for all lanes currently in use.
*
* Return: 0 if channel equalization was successful on all lanes in question,
* -ve if not
*/
static int check_channel_equalization(struct udevice *dev, u8 lane_count)
{
struct zynqmp_dpsub_priv *dp_sub = dev_get_priv(dev);
u8 *lane_status = dp_sub->lane_status_ajd_reqs;
/* Check that all LANEx_CHANNEL_EQ_DONE bits are set. */
switch (lane_count) {
case DP_LANE_COUNT_SET_2:
if (!(lane_status[0] & DP_DPCD_STATUS_LANE_1_CE_DONE_MASK))
return -EINVAL;
case DP_LANE_COUNT_SET_1:
if (!(lane_status[0] & DP_DPCD_STATUS_LANE_0_CE_DONE_MASK))
return -EINVAL;
default:
/* All (LaneCount) lanes have achieved channel equalization. */
break;
}
/* Check that all LANEx_SYMBOL_LOCKED bits are set. */
switch (lane_count) {
case DP_LANE_COUNT_SET_2:
if (!(lane_status[0] & DP_DPCD_STATUS_LANE_1_SL_DONE_MASK))
return -EINVAL;
case DP_LANE_COUNT_SET_1:
if (!(lane_status[0] & DP_DPCD_STATUS_LANE_0_SL_DONE_MASK))
return -EINVAL;
default:
/* All (LaneCount) lanes have achieved symbol lock. */
break;
}
/* Check that interlane alignment is done. */
if (!(lane_status[2] & DP_DPCD_LANE_ALIGN_STATUS_UPDATED_IA_DONE_MASK))
return -EINVAL;
return 0;
}
/**
* training_state_channel_equalization() - Run channel equalization part of
* link training
* @dev: The DP device
*
* Run the channel equalization sequence as part of link
* training. The sequence is as follows:
*
* 0) Start signaling with the same drive settings used at the end of the
* clock recovery sequence.
* 1) Transmit training pattern 2 (or 3) over the main link with symbol
* scrambling disabled.
* 2) The channel equalization loop. If channel equalization is
* unsuccessful after 5 loop iterations, return.
* 2a) Wait for at least the period of time specified in the RX device's
* DisplayPort Configuration data (DPCD) register,
* TRAINING_AUX_RD_INTERVAL.
* 2b) Check if all lanes have achieved channel equalization, symbol lock,
* and interlane alignment. If so, return.
* 2c) Check if the same voltage swing level has been used 5 consecutive
* times or if the maximum level has been reached. If so, return.
* 2d) Adjust the voltage swing, pre-emphasis, and post-cursor levels as
* requested by the RX device.
* 2e) Loop back to 2a.
*
* For a more detailed description of the channel equalization sequence, see
* section 3.5.1.2.2 of the DisplayPort 1.2a specification document.
*
* Return: The next state machine state to advance to
*/
static enum link_training_states training_state_channel_equalization(struct udevice *dev)
{
struct zynqmp_dpsub_priv *dp_sub = dev_get_priv(dev);
u32 status, delay_us = 400, iteration_count = 0;
/* Write the current drive settings. */
/* Transmit training pattern 2/3. */
if (dp_sub->dpcd_rx_caps[DP_DPCD_MAX_LANE_COUNT] &
DP_DPCD_TPS3_SUPPORT_MASK)
status = set_training_pattern(dev, TRAINING_PATTERN_SET_TP3);
else
status = set_training_pattern(dev, TRAINING_PATTERN_SET_TP2);
if (status)
return TS_FAILURE;
while (iteration_count < 5) {
/* Wait delay specified in TRAINING_AUX_RD_INTERVAL. */
udelay(delay_us);
/* Get lane and adjustment requests. */
status = get_lane_status_adj_reqs(dev);
if (status)
/* The AUX read failed. */
return TS_FAILURE;
/* Adjust the drive settings as requested by the RX device. */
status = adj_vswing_preemp(dev);
if (status)
/* The AUX write failed. */
return TS_FAILURE;
/* Check that all lanes still have their clocks locked. */
status = check_clock_recovery(dev, dp_sub->link_config.lane_count);
if (status)
break;
/*
* Check that all lanes have accomplished channel
* equalization, symbol lock, and interlane alignment.
*/
status = check_channel_equalization(dev, dp_sub->link_config.lane_count);
if (status == 0)
return TS_SUCCESS;
iteration_count++;
}
/*
* Tried 5 times with no success. Try a reduced bitrate first, then
* reduce the number of lanes.
*/
return TS_ADJUST_LINK_RATE;
}
static int check_lane_align(struct udevice *dev)
{
struct zynqmp_dpsub_priv *dp_sub = dev_get_priv(dev);
u8 *lane_status = dp_sub->lane_status_ajd_reqs;
if (!(lane_status[2] & DP_DPCD_LANE_ALIGN_STATUS_UPDATED_IA_DONE_MASK))
return -EINVAL;
return 0;
}
/**
* check_link_status() - Check status of link
* @dev: The DP device
* @lane_count: The lane count to use for the check
*
* Check if the receiver's DisplayPort Configuration data (DPCD) indicates the
* receiver has achieved and maintained clock recovery, channel equalization,
* symbol lock, and interlane alignment for all lanes currently in use.
*
* Return: 0 if the link status is OK, -ve if a error occurred during checking
*/
static int check_link_status(struct udevice *dev, u8 lane_count)
{
u32 status;
status = get_lane_status_adj_reqs(dev);
if (status)
/* The AUX read failed. */
return status;
/* Check if the link needs training. */
if ((check_clock_recovery(dev, lane_count) == 0) &&
(check_channel_equalization(dev, lane_count) == 0) &&
(check_lane_align(dev) == 0)) {
return 0;
}
return -EINVAL;
}
/**
* run_training() - Run link training
* @dev: The DP device
*
* Run the link training process. It is implemented as a state machine, with
* each state returning the next state. First, the clock recovery sequence will
* be run; if successful, the channel equalization sequence will run. If either
* the clock recovery or channel equalization sequence failed, the link rate or
* the number of lanes used will be reduced and training will be re-attempted.
* If training fails at the minimal data rate, 1.62 Gbps with a single lane,
* training will no longer re-attempt and fail.
*
* There are undocumented timeout constraints in the link training process. In
* DP v1.2a spec, Chapter 3.5.1.2.2 a 10ms limit for the complete training
* process is mentioned. Which individual timeouts are derived and implemented
* by sink manufacturers is unknown. So each step should be as short as
* possible and link training should start as soon as possible after HPD.
*
* Return: 0 if the training sequence ran successfully, -ve if a error occurred
* or the training failed
*/
static int run_training(struct udevice *dev)
{
struct zynqmp_dpsub_priv *dp_sub = dev_get_priv(dev);
u32 status;
enum link_training_states training_state = TS_CLOCK_RECOVERY;
while (1) {
switch (training_state) {
case TS_CLOCK_RECOVERY:
training_state = training_state_clock_recovery(dev);
break;
case TS_CHANNEL_EQUALIZATION:
training_state = training_state_channel_equalization(dev);
break;
default:
break;
}
if (training_state == TS_SUCCESS)
break;
else if (training_state == TS_FAILURE)
return -EINVAL;
if (training_state == TS_ADJUST_LANE_COUNT ||
training_state == TS_ADJUST_LINK_RATE) {
status = set_training_pattern(dev, TRAINING_PATTERN_SET_OFF);
if (status)
return -EINVAL;
}
}
/* Final status check. */
return check_link_status(dev, dp_sub->link_config.lane_count);
}
void reset_dp_phy(struct udevice *dev, u32 reset)
{
struct zynqmp_dpsub_priv *dp_sub = dev_get_priv(dev);
u32 phyval, regval;
writel(0, dp_sub->base_addr + DP_ENABLE);
phyval = readl(dp_sub->base_addr + DP_PHY_CONFIG);
regval = phyval | reset;
writel(regval, dp_sub->base_addr + DP_PHY_CONFIG);
/* Remove the reset. */
writel(phyval, dp_sub->base_addr + DP_PHY_CONFIG);
/* Wait for the PHY to be ready. */
wait_phy_ready(dev);
writel(1, dp_sub->base_addr + DP_ENABLE);
}
/**
* establish_link() - Establish a link
* @dev: The DP device
*
* Check if the link needs training and run the training sequence if training
* is required.
*
* Return: 0 if the link was established successfully, -ve on error
*/
static int establish_link(struct udevice *dev)
{
struct zynqmp_dpsub_priv *dp_sub = dev_get_priv(dev);
u32 status, re_enable_main_link;
reset_dp_phy(dev, DP_PHY_CONFIG_TX_PHY_8B10BEN_MASK |
DP_PHY_CONFIG_PHY_RESET_MASK);
re_enable_main_link = readl(dp_sub->base_addr + DP_ENABLE_MAIN_STREAM);
if (re_enable_main_link)
enable_main_link(dev, 0);
status = run_training(dev);
if (status)
return status;
status = set_training_pattern(dev, TRAINING_PATTERN_SET_OFF);
if (status)
return status;
if (re_enable_main_link)
enable_main_link(dev, 1);
return check_link_status(dev, dp_sub->link_config.lane_count);
}
static int dp_hpd_train(struct udevice *dev)
{
struct zynqmp_dpsub_priv *dp_sub = dev_get_priv(dev);
struct link_config *link_config = &dp_sub->link_config;
u32 status;
status = get_rx_capabilities(dev);
if (status) {
debug("! Error getting RX caps.\n");
return status;
}
status = set_enhanced_frame_mode(dev, link_config->support_enhanced_framing_mode ? 1 : 0);
if (status) {
debug("! EFM set failed.\n");
return status;
}
status = set_lane_count(dev, (dp_sub->use_max_lane_count) ?
link_config->max_lane_count : dp_sub->lane_count);
if (status) {
debug("! Lane count set failed.\n");
return status;
}
status = set_link_rate(dev, (dp_sub->use_max_link_rate) ?
link_config->max_link_rate : dp_sub->link_rate);
if (status) {
debug("! Link rate set failed.\n");
return status;
}
status = set_downspread(dev, link_config->support_downspread_control);
if (status) {
debug("! Setting downspread failed.\n");
return status;
}
debug("Lane count =%d\n", dp_sub->link_config.lane_count);
debug("Link rate =%d\n", dp_sub->link_config.link_rate);
debug("Starting Training...\n");
status = establish_link(dev);
if (status == 0)
debug("! Training succeeded.\n");
else
debug("! Training failed.\n");
return status;
}
static void display_gfx_frame_buffer(struct udevice *dev)
{
struct zynqmp_dpsub_priv *dp_sub = dev_get_priv(dev);
if (!dp_sub->dp_dma->gfx.channel.cur)
dp_sub->dp_dma->gfx.trigger_status = DPDMA_TRIGGER_EN;
}
static void set_color_encode(struct udevice *dev)
{
struct zynqmp_dpsub_priv *dp_sub = dev_get_priv(dev);
struct main_stream_attributes *msa_config = &dp_sub->msa_config;
msa_config->y_cb_cr_colorimetry = 0;
msa_config->dynamic_range = 0;
msa_config->component_format = 0;
msa_config->misc0 = 0;
msa_config->misc1 = 0;
msa_config->component_format = DP_MAIN_STREAM_MISC0_COMPONENT_FORMAT_RGB;
}
static void config_msa_recalculate(struct udevice *dev)
{
struct zynqmp_dpsub_priv *dp_sub = dev_get_priv(dev);
u32 video_bw, link_bw, words_per_line;
u8 bits_per_pixel;
struct main_stream_attributes *msa_config;
struct link_config *link_config;
msa_config = &dp_sub->msa_config;
link_config = &dp_sub->link_config;
msa_config->user_pixel_width = 1;
/* Compute the rest of the MSA values. */
msa_config->n_vid = 27 * 1000 * link_config->link_rate;
msa_config->h_start = msa_config->vid_timing_mode.video_timing.h_sync_width +
msa_config->vid_timing_mode.video_timing.h_back_porch;
msa_config->v_start = msa_config->vid_timing_mode.video_timing.f0_pv_sync_width +
msa_config->vid_timing_mode.video_timing.f0_pv_back_porch;
/* Miscellaneous attributes. */
if (msa_config->bits_per_color == 6)
msa_config->misc0 = DP_MAIN_STREAM_MISC0_BDC_6BPC;
else if (msa_config->bits_per_color == 8)
msa_config->misc0 = DP_MAIN_STREAM_MISC0_BDC_8BPC;
else if (msa_config->bits_per_color == 10)
msa_config->misc0 = DP_MAIN_STREAM_MISC0_BDC_10BPC;
else if (msa_config->bits_per_color == 12)
msa_config->misc0 = DP_MAIN_STREAM_MISC0_BDC_12BPC;
else if (msa_config->bits_per_color == 16)
msa_config->misc0 = DP_MAIN_STREAM_MISC0_BDC_16BPC;
msa_config->misc0 <<= DP_MAIN_STREAM_MISC0_BDC_SHIFT;
/* Need to set this. */
msa_config->misc0 |= msa_config->component_format <<
DP_MAIN_STREAM_MISC0_COMPONENT_FORMAT_SHIFT;
msa_config->misc0 |= msa_config->dynamic_range <<
DP_MAIN_STREAM_MISC0_DYNAMIC_RANGE_SHIFT;
msa_config->misc0 |= msa_config->y_cb_cr_colorimetry <<
DP_MAIN_STREAM_MISC0_YCBCR_COLORIMETRY_SHIFT;
msa_config->misc0 |= msa_config->synchronous_clock_mode;
/*
* Determine the number of bits per pixel for the specified color
* component format.
*/
if (msa_config->misc1 == DP_MAIN_STREAM_MISC1_Y_ONLY_EN_MASK)
bits_per_pixel = msa_config->bits_per_color;
else if (msa_config->component_format ==
DP_MAIN_STREAM_MISC0_COMPONENT_FORMAT_YCBCR422)
/* YCbCr422 color component format. */
bits_per_pixel = msa_config->bits_per_color * 2;
else
/* RGB or YCbCr 4:4:4 color component format. */
bits_per_pixel = msa_config->bits_per_color * 3;
/* Calculate the data per lane. */
words_per_line = msa_config->vid_timing_mode.video_timing.h_active * bits_per_pixel;
if (words_per_line % 16)
words_per_line += 16;
words_per_line /= 16;
msa_config->data_per_lane = words_per_line - link_config->lane_count;
if (words_per_line % link_config->lane_count)
msa_config->data_per_lane += (words_per_line % link_config->lane_count);
/* Allocate a fixed size for single-stream transport (SST) operation. */
msa_config->transfer_unit_size = 64;
/*
* Calculate the average number of bytes per transfer unit.
* Note: Both the integer and the fractional part is stored in
* AvgBytesPerTU.
*/
video_bw = ((msa_config->pixel_clock_hz / 1000) * bits_per_pixel) / 8;
link_bw = (link_config->lane_count * link_config->link_rate * 27);
msa_config->avg_bytes_per_tu = ((10 *
(video_bw * msa_config->transfer_unit_size)
/ link_bw) + 5) / 10;
/*
* The number of initial wait cycles at the start of a new line by the
* framing logic. This allows enough data to be buffered in the input
* FIFO before video is sent.
*/
if ((msa_config->avg_bytes_per_tu / 1000) <= 4)
msa_config->init_wait = 64;
else
msa_config->init_wait = msa_config->transfer_unit_size -
(msa_config->avg_bytes_per_tu / 1000);
}
static void set_msa_bpc(struct udevice *dev, u8 bits_per_color)
{
struct zynqmp_dpsub_priv *dp_sub = dev_get_priv(dev);
dp_sub->msa_config.bits_per_color = bits_per_color;
/* Calculate the rest of the MSA values. */
config_msa_recalculate(dev);
}
const struct video_timing_mode *get_video_mode_data(enum video_mode vm_id)
{
if (vm_id < VIDC_VM_NUM_SUPPORTED)
return &vidc_video_timing_modes[vm_id];
return NULL;
}
static u64 get_pixelclk_by_vmid(enum video_mode vm_id)
{
const struct video_timing_mode *vm;
u64 clk_hz;
vm = get_video_mode_data(vm_id);
/* For progressive mode, use only frame 0 vertical total. */
clk_hz = vm->video_timing.f0_pv_total;
/* Multiply the number of pixels by the frame rate. */
clk_hz *= vm->frame_rate;
/*
* Multiply the vertical total by the horizontal total for number of
* pixels.
*/
clk_hz *= vm->video_timing.h_total;
return clk_hz;
}
/**
* config_msa_video_mode() - Enable video output
* @dev: The DP device
* @msa: The MSA values to set for the device
*
* Return: 0 if the video was enabled successfully, -ve on error
*/
static void config_msa_video_mode(struct udevice *dev, enum video_mode videomode)
{
struct zynqmp_dpsub_priv *dp_sub = dev_get_priv(dev);
struct main_stream_attributes *msa_config;
msa_config = &dp_sub->msa_config;
/* Configure the MSA values from the display monitor DMT table. */
msa_config->vid_timing_mode.vid_mode = vidc_video_timing_modes[videomode].vid_mode;
msa_config->vid_timing_mode.frame_rate = vidc_video_timing_modes[videomode].frame_rate;
msa_config->vid_timing_mode.video_timing.h_active =
vidc_video_timing_modes[videomode].video_timing.h_active;
msa_config->vid_timing_mode.video_timing.h_front_porch =
vidc_video_timing_modes[videomode].video_timing.h_front_porch;
msa_config->vid_timing_mode.video_timing.h_sync_width =
vidc_video_timing_modes[videomode].video_timing.h_sync_width;
msa_config->vid_timing_mode.video_timing.h_back_porch =
vidc_video_timing_modes[videomode].video_timing.h_back_porch;
msa_config->vid_timing_mode.video_timing.h_total =
vidc_video_timing_modes[videomode].video_timing.h_total;
msa_config->vid_timing_mode.video_timing.h_sync_polarity =
vidc_video_timing_modes[videomode].video_timing.h_sync_polarity;
msa_config->vid_timing_mode.video_timing.v_active =
vidc_video_timing_modes[videomode].video_timing.v_active;
msa_config->vid_timing_mode.video_timing.f0_pv_front_porch =
vidc_video_timing_modes[videomode].video_timing.f0_pv_front_porch;
msa_config->vid_timing_mode.video_timing.f0_pv_sync_width =
vidc_video_timing_modes[videomode].video_timing.f0_pv_sync_width;
msa_config->vid_timing_mode.video_timing.f0_pv_back_porch =
vidc_video_timing_modes[videomode].video_timing.f0_pv_back_porch;
msa_config->vid_timing_mode.video_timing.f0_pv_total =
vidc_video_timing_modes[videomode].video_timing.f0_pv_total;
msa_config->vid_timing_mode.video_timing.f1_v_front_porch =
vidc_video_timing_modes[videomode].video_timing.f1_v_front_porch;
msa_config->vid_timing_mode.video_timing.f1_v_sync_width =
vidc_video_timing_modes[videomode].video_timing.f1_v_sync_width;
msa_config->vid_timing_mode.video_timing.f1_v_back_porch =
vidc_video_timing_modes[videomode].video_timing.f1_v_back_porch;
msa_config->vid_timing_mode.video_timing.f1_v_total =
vidc_video_timing_modes[videomode].video_timing.f1_v_total;
msa_config->vid_timing_mode.video_timing.v_sync_polarity =
vidc_video_timing_modes[videomode].video_timing.v_sync_polarity;
msa_config->pixel_clock_hz = get_pixelclk_by_vmid(msa_config->vid_timing_mode.vid_mode);
/* Calculate the rest of the MSA values. */
config_msa_recalculate(dev);
}
static void set_pixel_clock(u64 freq_hz)
{
u64 ext_divider, vco, vco_int_frac;
u32 pll_assigned, frac_int_fb_div, fraction, regpll = 0;
u8 pll;
pll_assigned = readl(CLK_FPD_BASEADDR + VIDEO_REF_CTRL) & VIDEO_REF_CTRL_SRCSEL_MASK;
if (pll_assigned)
pll = VPLL;
ext_divider = PLL_OUT_FREQ / freq_hz;
vco = freq_hz * ext_divider * 2;
vco_int_frac = (vco * INPUT_FREQ_PRECISION * SHIFT_DECIMAL) /
AVBUF_INPUT_REF_CLK;
frac_int_fb_div = vco_int_frac >> PRECISION;
fraction = vco_int_frac & AVBUF_DECIMAL;
regpll |= ENABLE_BIT << PLL_CTRL_BYPASS_SHIFT;
regpll |= frac_int_fb_div << PLL_CTRL_FBDIV_SHIFT;
regpll |= (1 << PLL_CTRL_DIV2_SHIFT);
regpll |= (PSS_REF_CLK << PLL_CTRL_PRE_SRC_SHIFT);
writel(regpll, CLK_FPD_BASEADDR + VPLL_CTRL);
regpll = 0;
regpll |= VPLL_CFG_CP << PLL_CFG_CP_SHIFT;
regpll |= VPLL_CFG_RES << PLL_CFG_RES_SHIFT;
regpll |= VPLL_CFG_LFHF << PLL_CFG_LFHF_SHIFT;
regpll |= VPLL_CFG_LOCK_DLY << PLL_CFG_LOCK_DLY_SHIFT;
regpll |= VPLL_CFG_LOCK_CNT << PLL_CFG_LOCK_CNT_SHIFT;
writel(regpll, CLK_FPD_BASEADDR + VPLL_CFG);
regpll = (1U << PLL_FRAC_CFG_ENABLED_SHIFT) |
(fraction << PLL_FRAC_CFG_DATA_SHIFT);
writel(regpll, CLK_FPD_BASEADDR + VPLL_FRAC_CFG);
clrsetbits_le32(CLK_FPD_BASEADDR + VPLL_CTRL,
PLL_CTRL_RESET_MASK,
(ENABLE_BIT << PLL_CTRL_RESET_SHIFT));
/* Deassert reset to the PLL. */
clrsetbits_le32(CLK_FPD_BASEADDR + VPLL_CTRL,
PLL_CTRL_RESET_MASK,
(DISABLE_BIT << PLL_CTRL_RESET_SHIFT));
while (!(readl(CLK_FPD_BASEADDR + PLL_STATUS) &
(1 << PLL_STATUS_VPLL_LOCK)))
;
/* Deassert Bypass. */
clrsetbits_le32(CLK_FPD_BASEADDR + VPLL_CTRL,
PLL_CTRL_BYPASS_MASK,
(DISABLE_BIT << PLL_CTRL_BYPASS_SHIFT));
udelay(1);
clrsetbits_le32(CLK_FPD_BASEADDR + VIDEO_REF_CTRL,
VIDEO_REF_CTRL_CLKACT_MASK,
(DISABLE_BIT << VIDEO_REF_CTRL_CLKACT_SHIFT));
clrsetbits_le32(CLK_FPD_BASEADDR + VIDEO_REF_CTRL,
VIDEO_REF_CTRL_DIVISOR1_MASK,
(ENABLE_BIT << VIDEO_REF_CTRL_DIVISOR1_SHIFT));
clrsetbits_le32(CLK_FPD_BASEADDR + VIDEO_REF_CTRL,
VIDEO_REF_CTRL_DIVISOR0_MASK,
(ext_divider << VIDEO_REF_CTRL_DIVISOR0_SHIFT));
clrsetbits_le32(CLK_FPD_BASEADDR + VIDEO_REF_CTRL,
VIDEO_REF_CTRL_CLKACT_MASK,
(ENABLE_BIT << VIDEO_REF_CTRL_CLKACT_SHIFT));
}
/**
* set_msa_values() - Set MSA values
* @dev: The DP device
*
* Set the main stream attributes registers of the DisplayPort TX
* core with the values specified in the main stream attributes configuration
* structure.
*/
static void set_msa_values(struct udevice *dev)
{
struct zynqmp_dpsub_priv *dp_sub = dev_get_priv(dev);
struct main_stream_attributes *msa_config;
msa_config = &dp_sub->msa_config;
/*
* Set the main stream attributes to the associated DisplayPort TX core
* registers.
*/
writel(msa_config->vid_timing_mode.video_timing.h_total,
dp_sub->base_addr + DP_MAIN_STREAM_HTOTAL);
writel(msa_config->vid_timing_mode.video_timing.f0_pv_total,
dp_sub->base_addr + DP_MAIN_STREAM_VTOTAL);
writel(msa_config->vid_timing_mode.video_timing.h_sync_polarity |
(msa_config->vid_timing_mode.video_timing.v_sync_polarity
<< DP_MAIN_STREAM_POLARITY_VSYNC_POL_SHIFT),
dp_sub->base_addr + DP_MAIN_STREAM_POLARITY);
writel(msa_config->vid_timing_mode.video_timing.h_sync_width,
dp_sub->base_addr + DP_MAIN_STREAM_HSWIDTH);
writel(msa_config->vid_timing_mode.video_timing.f0_pv_sync_width,
dp_sub->base_addr + DP_MAIN_STREAM_VSWIDTH);
writel(msa_config->vid_timing_mode.video_timing.h_active,
dp_sub->base_addr + DP_MAIN_STREAM_HRES);
writel(msa_config->vid_timing_mode.video_timing.v_active,
dp_sub->base_addr + DP_MAIN_STREAM_VRES);
writel(msa_config->h_start, dp_sub->base_addr + DP_MAIN_STREAM_HSTART);
writel(msa_config->v_start, dp_sub->base_addr + DP_MAIN_STREAM_VSTART);
writel(msa_config->misc0, dp_sub->base_addr + DP_MAIN_STREAM_MISC0);
writel(msa_config->misc1, dp_sub->base_addr + DP_MAIN_STREAM_MISC1);
writel(msa_config->pixel_clock_hz / 1000, dp_sub->base_addr + DP_M_VID);
writel(msa_config->n_vid, dp_sub->base_addr + DP_N_VID);
writel(msa_config->user_pixel_width, dp_sub->base_addr + DP_USER_PIXEL_WIDTH);
writel(msa_config->data_per_lane, dp_sub->base_addr + DP_USER_DATA_COUNT_PER_LANE);
/*
* Set the transfer unit values to the associated DisplayPort TX core
* registers.
*/
writel(msa_config->transfer_unit_size, dp_sub->base_addr + DP_TU_SIZE);
writel(msa_config->avg_bytes_per_tu / 1000,
dp_sub->base_addr + DP_MIN_BYTES_PER_TU);
writel((msa_config->avg_bytes_per_tu % 1000) * 1000,
dp_sub->base_addr + DP_FRAC_BYTES_PER_TU);
writel(msa_config->init_wait, dp_sub->base_addr + DP_INIT_WAIT);
}
static void setup_video_stream(struct udevice *dev)
{
struct zynqmp_dpsub_priv *dp_sub = dev_get_priv(dev);
struct main_stream_attributes *msa_config = &dp_sub->msa_config;
set_color_encode(dev);
set_msa_bpc(dev, dp_sub->bpc);
config_msa_video_mode(dev, dp_sub->video_mode);
/* Set pixel clock. */
dp_sub->pix_clk = msa_config->pixel_clock_hz;
set_pixel_clock(dp_sub->pix_clk);
/* Reset the transmitter. */
writel(1, dp_sub->base_addr + DP_SOFT_RESET);
udelay(10);
writel(0, dp_sub->base_addr + DP_SOFT_RESET);
set_msa_values(dev);
/* Issuing a soft-reset (AV_BUF_SRST_REG). */
writel(3, dp_sub->base_addr + AVBUF_BUF_SRST_REG); // Assert reset.
udelay(10);
writel(0, dp_sub->base_addr + AVBUF_BUF_SRST_REG); // De-ssert reset.
enable_main_link(dev, 1);
debug("DONE!\n");
}
static int dp_tx_start_link_training(struct udevice *dev)
{
u32 status;
struct zynqmp_dpsub_priv *dp_sub = dev_get_priv(dev);
enable_main_link(dev, 0);
if (!is_dp_connected(dev)) {
debug("! Disconnected.\n");
return -ENODEV;
}
status = dp_tx_wakeup(dev);
if (status) {
debug("! Wakeup failed.\n");
return -EIO;
}
do {
mdelay(100);
status = dp_hpd_train(dev);
if (status == -EINVAL) {
debug("Lost connection\n\r");
return -EIO;
} else if (status) {
continue;
}
display_gfx_frame_buffer(dev);
setup_video_stream(dev);
status = check_link_status(dev, dp_sub->link_config.lane_count);
if (status == -EINVAL)
return -EIO;
} while (status != 0);
return 0;
}
static void init_run_config(struct udevice *dev)
{
struct zynqmp_dpsub_priv *dp_sub = dev_get_priv(dev);
dp_sub->dp_dma = &dp_dma;
dp_sub->video_mode = VIDC_VM_1024x768_60_P;
dp_sub->bpc = VIDC_BPC_8;
dp_sub->color_encode = DP_CENC_RGB;
dp_sub->use_max_cfg_caps = 1;
dp_sub->lane_count = LANE_COUNT_1;
dp_sub->link_rate = LINK_RATE_540GBPS;
dp_sub->en_sync_clk_mode = 0;
dp_sub->use_max_lane_count = 1;
dp_sub->use_max_link_rate = 1;
}
static int dpdma_setup(struct udevice *dev)
{
int status;
struct zynqmp_dpsub_priv *dp_sub = dev_get_priv(dev);
writel(DPDMA_ISR_VSYNC_INT_MASK, dp_sub->dp_dma->base_addr + DPDMA_IEN);
status = wait_for_bit_le32((u32 *)dp_sub->dp_dma->base_addr + DPDMA_ISR,
DPDMA_ISR_VSYNC_INT_MASK, false, 1000, false);
if (status) {
debug("%s: INTR TIMEDOUT\n", __func__);
return status;
}
debug("INTR dma_vsync_intr_handler called...\n");
dma_vsync_intr_handler(dev);
return 0;
}
static int zynqmp_dpsub_init(struct udevice *dev)
{
int status;
struct zynqmp_dpsub_priv *dp_sub = dev_get_priv(dev);
/* Initialize the dpdma configuration */
status = init_dpdma_subsys(dev);
if (status)
return -EINVAL;
config_msa_sync_clk_mode(dev, dp_sub->en_sync_clk_mode);
set_video_clk_source(dev, AVBUF_PS_CLK, AVBUF_PS_CLK);
return 0;
}
static int dp_tx_run(struct udevice *dev)
{
u32 interrupt_signal_state, interrupt_status, hpd_state, hpd_event;
u32 hpd_pulse_detected, hpd_duration, status;
int attempts = 0;
struct zynqmp_dpsub_priv *dp_sub = dev_get_priv(dev);
/* Continuously poll for HPD events. */
while (attempts < 5) {
/* Read interrupt registers. */
interrupt_signal_state = readl(dp_sub->base_addr + DP_INTERRUPT_SIG_STATE);
interrupt_status = readl(dp_sub->base_addr + DP_INTR_STATUS);
/* Check for HPD events. */
hpd_state = interrupt_signal_state & DP_INTERRUPT_SIG_STATE_HPD_STATE_MASK;
hpd_event = interrupt_status & DP_INTR_HPD_EVENT_MASK;
hpd_pulse_detected = interrupt_status & DP_INTR_HPD_PULSE_DETECTED_MASK;
if (hpd_pulse_detected)
hpd_duration = readl(dp_sub->base_addr + DP_HPD_DURATION);
else
attempts++;
/* HPD event handling. */
if (hpd_state && hpd_event) {
debug("+===> HPD connection event detected.\n");
/* Initiate link training. */
status = dp_tx_start_link_training(dev);
if (status) {
debug("Link training failed\n");
return status;
}
return 0;
} else if (hpd_state && hpd_pulse_detected && (hpd_duration >= 250)) {
debug("===> HPD pulse detected.\n");
/* Re-train if needed. */
status = dp_tx_start_link_training(dev);
if (status) {
debug("HPD pulse detection failed\n");
return status;
}
return 0;
} else if (!hpd_state && hpd_event) {
debug("+===> HPD disconnection event detected.\n\n");
/* Disable main link. */
enable_main_link(dev, 0);
break;
}
}
return -EINVAL;
}
static int zynqmp_dpsub_probe(struct udevice *dev)
{
struct video_priv *uc_priv = dev_get_uclass_priv(dev);
struct zynqmp_dpsub_priv *priv = dev_get_priv(dev);
struct clk clk;
int ret;
int mode = RGBA8888;
ret = clk_get_by_name(dev, "dp_apb_clk", &clk);
if (ret < 0) {
dev_err(dev, "failed to get clock\n");
return ret;
}
priv->clock = clk_get_rate(&clk);
if (IS_ERR_VALUE(priv->clock)) {
dev_err(dev, "failed to get rate\n");
return priv->clock;
}
ret = clk_enable(&clk);
if (ret) {
dev_err(dev, "failed to enable clock\n");
return ret;
}
dev_dbg(dev, "Base addr 0x%x, clock %d\n", (u32)priv->base_addr,
priv->clock);
/* Initialize the DisplayPort TX core. */
ret = init_dp_tx(dev);
if (ret)
return -EINVAL;
/* Initialize the runtime configuration */
init_run_config(dev);
/* Set the format graphics frame for Video Pipeline */
ret = set_nonlive_gfx_format(dev, mode);
if (ret)
return ret;
uc_priv->bpix = ffs(priv->non_live_graphics->bpp) - 1;
dev_dbg(dev, "BPP in bits %d, bpix %d\n",
priv->non_live_graphics->bpp, uc_priv->bpix);
uc_priv->xsize = vidc_video_timing_modes[priv->video_mode].video_timing.h_active;
uc_priv->ysize = vidc_video_timing_modes[priv->video_mode].video_timing.v_active;
/* Calculated by core but need it for my own setup */
uc_priv->line_length = uc_priv->xsize * VNBYTES(uc_priv->bpix);
/* Will be calculated again in video_post_probe() but I need that value now */
uc_priv->fb_size = uc_priv->line_length * uc_priv->ysize;
switch (mode) {
case RGBA8888:
uc_priv->format = VIDEO_RGBA8888;
break;
default:
debug("Unsupported mode\n");
return -EINVAL;
}
video_set_flush_dcache(dev, true);
debug("Video: WIDTH[%d]xHEIGHT[%d]xBPP[%d/%d] -- line length %d\n", uc_priv->xsize,
uc_priv->ysize, uc_priv->bpix, VNBYTES(uc_priv->bpix), uc_priv->line_length);
enable_gfx_buffers(dev, 1);
avbuf_video_select(dev, AVBUF_VIDSTREAM1_NONE, AVBUF_VIDSTREAM2_NONLIVE_GFX);
config_gfx_pipeline(dev);
config_output_video(dev);
ret = zynqmp_dpsub_init(dev);
if (ret)
return ret;
/* Populate the FrameBuffer structure with the frame attributes */
priv->frame_buffer.stride = uc_priv->line_length;
priv->frame_buffer.line_size = priv->frame_buffer.stride;
priv->frame_buffer.size = priv->frame_buffer.line_size * uc_priv->ysize;
ret = dp_tx_run(dev);
if (ret)
return ret;
return dpdma_setup(dev);
}
static int zynqmp_dpsub_bind(struct udevice *dev)
{
struct video_uc_plat *plat = dev_get_uclass_plat(dev);
/* This is maximum size to allocate - it depends on BPP setting */
plat->size = WIDTH * HEIGHT * 4;
/* plat->align is not defined that's why 1MB alignment is used */
/*
* plat->base can be used for allocating own location for FB
* if not defined then it is allocated by u-boot itself
*/
return 0;
}
static int zynqmp_dpsub_of_to_plat(struct udevice *dev)
{
struct zynqmp_dpsub_priv *priv = dev_get_priv(dev);
struct resource res;
int ret;
ret = dev_read_resource_byname(dev, "dp", &res);
if (ret)
return ret;
priv->base_addr = res.start;
return 0;
}
static const struct udevice_id zynqmp_dpsub_ids[] = {
{ .compatible = "xlnx,zynqmp-dpsub-1.7" },
{ }
};
U_BOOT_DRIVER(zynqmp_dpsub_video) = {
.name = "zynqmp_dpsub_video",
.id = UCLASS_VIDEO,
.of_match = zynqmp_dpsub_ids,
.plat_auto = sizeof(struct video_uc_plat),
.bind = zynqmp_dpsub_bind,
.probe = zynqmp_dpsub_probe,
.priv_auto = sizeof(struct zynqmp_dpsub_priv),
.of_to_plat = zynqmp_dpsub_of_to_plat,
};