remoteproc: pru: Add support for various PRU cores on K3 AM65x SoCs

The K3 AM65x family of SoCs have the next generation of the PRU-ICSS
processor subsystem, commonly referred to as ICSSG. Each ICSSG processor
subsystem on AM65x SR1.0 contains two primary PRU cores and two new
auxiliary PRU cores called RTUs. The AM65x SR2.0 SoCs have a revised
ICSSG IP that is based off the subsequent IP revision used on J721E
SoCs. This IP instance has two new custom auxiliary PRU cores called
Transmit PRUs (Tx_PRUs) in addition to the existing PRUs and RTUs.

Each RTU and Tx_PRU cores have their own dedicated IRAM (smaller than
a PRU), Control and debug feature sets, but is different in terms of
sub-modules integrated around it and does not have the full capabilities
associated with a PRU core. The RTU core is typically used to aid a
PRU core in accelerating data transfers, while the Tx_PRU cores is
normally used to control the TX L2 FIFO if enabled in Ethernet
applications. Both can also be used to run independent applications.
The RTU and Tx_PRU cores though share the same Data RAMs as the PRU
cores, so the memories have to be partitioned carefully between different
applications. The new cores also support a new sub-module called Task
Manager to support two different context thread executions.
The driver currently supports the AM65xx SoC

Signed-off-by: Keerthy <j-keerthy@ti.com>
Signed-off-by: Suman Anna <s-anna@ti.com>
Signed-off-by: Murali Karicheri <m-karicheri2@ti.com>
Signed-off-by: Roger Quadros <rogerq@ti.com>
Signed-off-by: Lokesh Vutla <lokeshvutla@ti.com>
Link: https://lore.kernel.org/r/20210622063431.3151-3-lokeshvutla@ti.com
diff --git a/drivers/remoteproc/pru_rproc.c b/drivers/remoteproc/pru_rproc.c
new file mode 100644
index 0000000..924070a
--- /dev/null
+++ b/drivers/remoteproc/pru_rproc.c
@@ -0,0 +1,461 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * PRU-RTU remoteproc driver for various SoCs
+ *
+ * Copyright (C) 2018 Texas Instruments Incorporated - http://www.ti.com/
+ *	Keerthy <j-keerthy@ti.com>
+ */
+
+#include <common.h>
+#include <dm.h>
+#include <elf.h>
+#include <dm/of_access.h>
+#include <remoteproc.h>
+#include <errno.h>
+#include <clk.h>
+#include <reset.h>
+#include <regmap.h>
+#include <syscon.h>
+#include <asm/io.h>
+#include <power-domain.h>
+#include <linux/pruss_driver.h>
+#include <dm/device_compat.h>
+
+/* PRU_ICSS_PRU_CTRL registers */
+#define PRU_CTRL_CTRL		0x0000
+#define PRU_CTRL_STS		0x0004
+#define PRU_CTRL_WAKEUP_EN	0x0008
+#define PRU_CTRL_CYCLE		0x000C
+#define PRU_CTRL_STALL		0x0010
+#define PRU_CTRL_CTBIR0		0x0020
+#define PRU_CTRL_CTBIR1		0x0024
+#define PRU_CTRL_CTPPR0		0x0028
+#define PRU_CTRL_CTPPR1		0x002C
+
+/* CTRL register bit-fields */
+#define CTRL_CTRL_SOFT_RST_N	BIT(0)
+#define CTRL_CTRL_EN		BIT(1)
+#define CTRL_CTRL_SLEEPING	BIT(2)
+#define CTRL_CTRL_CTR_EN	BIT(3)
+#define CTRL_CTRL_SINGLE_STEP	BIT(8)
+#define CTRL_CTRL_RUNSTATE	BIT(15)
+
+#define RPROC_FLAGS_SHIFT	16
+#define RPROC_FLAGS_NONE	0
+#define RPROC_FLAGS_ELF_PHDR	BIT(0 + RPROC_FLAGS_SHIFT)
+#define RPROC_FLAGS_ELF_SHDR	BIT(1 + RPROC_FLAGS_SHIFT)
+
+/**
+ * enum pru_mem - PRU core memory range identifiers
+ */
+enum pru_mem {
+	PRU_MEM_IRAM = 0,
+	PRU_MEM_CTRL,
+	PRU_MEM_DEBUG,
+	PRU_MEM_MAX,
+};
+
+struct pru_privdata {
+	phys_addr_t pru_iram;
+	phys_addr_t pru_ctrl;
+	phys_addr_t pru_debug;
+	fdt_size_t pru_iramsz;
+	fdt_size_t pru_ctrlsz;
+	fdt_size_t pru_debugsz;
+	const char *fw_name;
+	u32 iram_da;
+	u32 pdram_da;
+	u32 sdram_da;
+	u32 shrdram_da;
+	u32 bootaddr;
+	int id;
+	struct pruss *prusspriv;
+};
+
+static inline u32 pru_control_read_reg(struct pru_privdata *pru, unsigned int reg)
+{
+	return readl(pru->pru_ctrl + reg);
+}
+
+static inline
+void pru_control_write_reg(struct pru_privdata *pru, unsigned int reg, u32 val)
+{
+	writel(val, pru->pru_ctrl + reg);
+}
+
+static inline
+void pru_control_set_reg(struct pru_privdata *pru, unsigned int reg,
+			 u32 mask, u32 set)
+{
+	u32 val;
+
+	val = pru_control_read_reg(pru, reg);
+	val &= ~mask;
+	val |= (set & mask);
+	pru_control_write_reg(pru, reg, val);
+}
+
+/**
+ * pru_rproc_set_ctable() - set the constant table index for the PRU
+ * @rproc: the rproc instance of the PRU
+ * @c: constant table index to set
+ * @addr: physical address to set it to
+ */
+static int pru_rproc_set_ctable(struct pru_privdata *pru, enum pru_ctable_idx c, u32 addr)
+{
+	unsigned int reg;
+	u32 mask, set;
+	u16 idx;
+	u16 idx_mask;
+
+	/* pointer is 16 bit and index is 8-bit so mask out the rest */
+	idx_mask = (c >= PRU_C28) ? 0xFFFF : 0xFF;
+
+	/* ctable uses bit 8 and upwards only */
+	idx = (addr >> 8) & idx_mask;
+
+	/* configurable ctable (i.e. C24) starts at PRU_CTRL_CTBIR0 */
+	reg = PRU_CTRL_CTBIR0 + 4 * (c >> 1);
+	mask = idx_mask << (16 * (c & 1));
+	set = idx << (16 * (c & 1));
+
+	pru_control_set_reg(pru, reg, mask, set);
+
+	return 0;
+}
+
+/**
+ * pru_start() - start the pru processor
+ * @dev:	corresponding k3 remote processor device
+ *
+ * Return: 0 if all goes good, else appropriate error message.
+ */
+static int pru_start(struct udevice *dev)
+{
+	struct pru_privdata *priv;
+	int val = 0;
+
+	priv = dev_get_priv(dev);
+
+	pru_rproc_set_ctable(priv, PRU_C28, 0x100 << 8);
+
+	val = CTRL_CTRL_EN | ((priv->bootaddr >> 2) << 16);
+	writel(val, priv->pru_ctrl + PRU_CTRL_CTRL);
+
+	return 0;
+}
+
+/**
+ * pru_stop() - Stop pru processor
+ * @dev:	corresponding k3 remote processor device
+ *
+ * Return: 0 if all goes good, else appropriate error message.
+ */
+static int pru_stop(struct udevice *dev)
+{
+	struct pru_privdata *priv;
+	int val = 0;
+
+	priv = dev_get_priv(dev);
+
+	val = readl(priv->pru_ctrl + PRU_CTRL_CTRL);
+	val &= ~CTRL_CTRL_EN;
+	writel(val, priv->pru_ctrl + PRU_CTRL_CTRL);
+
+	return 0;
+}
+
+/**
+ * pru_init() - Initialize the remote processor
+ * @dev:	rproc device pointer
+ *
+ * Return: 0 if all went ok, else return appropriate error
+ */
+static int pru_init(struct udevice *dev)
+{
+	return 0;
+}
+
+/*
+ * Convert PRU device address (data spaces only) to kernel virtual address
+ *
+ * Each PRU has access to all data memories within the PRUSS, accessible at
+ * different ranges. So, look through both its primary and secondary Data
+ * RAMs as well as any shared Data RAM to convert a PRU device address to
+ * kernel virtual address. Data RAM0 is primary Data RAM for PRU0 and Data
+ * RAM1 is primary Data RAM for PRU1.
+ */
+static void *pru_d_da_to_pa(struct pru_privdata *priv, u32 da, int len)
+{
+	u32 offset;
+	void *pa = NULL;
+	phys_addr_t dram0, dram1, shrdram2;
+	u32 dram0sz, dram1sz, shrdram2sz;
+
+	if (len <= 0)
+		return NULL;
+
+	dram0 = priv->prusspriv->mem_regions[PRUSS_MEM_DRAM0].pa;
+	dram1 = priv->prusspriv->mem_regions[PRUSS_MEM_DRAM1].pa;
+	shrdram2 = priv->prusspriv->mem_regions[PRUSS_MEM_SHRD_RAM2].pa;
+	dram0sz = priv->prusspriv->mem_regions[PRUSS_MEM_DRAM0].size;
+	dram1sz = priv->prusspriv->mem_regions[PRUSS_MEM_DRAM1].size;
+	shrdram2sz = priv->prusspriv->mem_regions[PRUSS_MEM_SHRD_RAM2].size;
+
+	/* PRU1 has its local RAM addresses reversed */
+	if (priv->id == 1) {
+		dram1 = dram0;
+		dram1sz = dram0sz;
+
+		dram0 =  priv->prusspriv->mem_regions[PRUSS_MEM_DRAM1].pa;
+		dram0sz = priv->prusspriv->mem_regions[PRUSS_MEM_DRAM1].size;
+	}
+
+	if (da >= priv->pdram_da && da + len <= priv->pdram_da + dram0sz) {
+		offset = da - priv->pdram_da;
+		pa = (__force void *)(dram0 + offset);
+	} else if (da >= priv->sdram_da &&
+		   da + len <= priv->sdram_da + dram1sz) {
+		offset = da - priv->sdram_da;
+		pa = (__force void *)(dram1 + offset);
+	} else if (da >= priv->shrdram_da &&
+		   da + len <= priv->shrdram_da + shrdram2sz) {
+		offset = da - priv->shrdram_da;
+		pa = (__force void *)(shrdram2 + offset);
+	}
+
+	return pa;
+}
+
+/*
+ * Convert PRU device address (instruction space) to kernel virtual address
+ *
+ * A PRU does not have an unified address space. Each PRU has its very own
+ * private Instruction RAM, and its device address is identical to that of
+ * its primary Data RAM device address.
+ */
+static void *pru_i_da_to_pa(struct pru_privdata *priv, u32 da, int len)
+{
+	u32 offset;
+	void *pa = NULL;
+
+	if (len <= 0)
+		return NULL;
+
+	if (da >= priv->iram_da &&
+	    da + len <= priv->iram_da + priv->pru_iramsz) {
+		offset = da - priv->iram_da;
+		pa = (__force void *)(priv->pru_iram + offset);
+	}
+
+	return pa;
+}
+
+/* PRU-specific address translator */
+static void *pru_da_to_pa(struct pru_privdata *priv, u64 da, int len, u32 flags)
+{
+	void *pa;
+	u32 exec_flag;
+
+	exec_flag = ((flags & RPROC_FLAGS_ELF_SHDR) ? flags & SHF_EXECINSTR :
+		     ((flags & RPROC_FLAGS_ELF_PHDR) ? flags & PF_X : 0));
+
+	if (exec_flag)
+		pa = pru_i_da_to_pa(priv, da, len);
+	else
+		pa = pru_d_da_to_pa(priv, da, len);
+
+	return pa;
+}
+
+/*
+ * Custom memory copy implementation for ICSSG PRU/RTU Cores
+ *
+ * The ICSSG PRU/RTU cores have a memory copying issue with IRAM memories, that
+ * is not seen on previous generation SoCs. The data is reflected properly in
+ * the IRAM memories only for integer (4-byte) copies. Any unaligned copies
+ * result in all the other pre-existing bytes zeroed out within that 4-byte
+ * boundary, thereby resulting in wrong text/code in the IRAMs. Also, the
+ * IRAM memory port interface does not allow any 8-byte copies (as commonly
+ * used by ARM64 memcpy implementation) and throws an exception. The DRAM
+ * memory ports do not show this behavior. Use this custom copying function
+ * to properly load the PRU/RTU firmware images on all memories for simplicity.
+ *
+ * TODO: Improve the function to deal with additional corner cases like
+ * unaligned copy sizes or sub-integer trailing bytes when the need arises.
+ */
+static int pru_rproc_memcpy(void *dest, void *src, size_t count)
+{
+	const int *s = src;
+	int *d = dest;
+	int size = count / 4;
+	int *tmp_src = NULL;
+
+	/* limited to 4-byte aligned addresses and copy sizes */
+	if ((long)dest % 4 || count % 4)
+		return -EINVAL;
+
+	/* src offsets in ELF firmware image can be non-aligned */
+	if ((long)src % 4) {
+		tmp_src = malloc(count);
+		if (!tmp_src)
+			return -ENOMEM;
+
+		memcpy(tmp_src, src, count);
+		s = tmp_src;
+	}
+
+	while (size--)
+		*d++ = *s++;
+
+	kfree(tmp_src);
+
+	return 0;
+}
+
+/**
+ * pru_load() - Load pru firmware
+ * @dev:	corresponding k3 remote processor device
+ * @addr:	Address on the RAM from which firmware is to be loaded
+ * @size:	Size of the pru firmware in bytes
+ *
+ * Return: 0 if all goes good, else appropriate error message.
+ */
+static int pru_load(struct udevice *dev, ulong addr, ulong size)
+{
+	struct pru_privdata *priv;
+	Elf32_Ehdr *ehdr;
+	Elf32_Phdr *phdr;
+	int i, ret = 0;
+
+	priv = dev_get_priv(dev);
+
+	ehdr = (Elf32_Ehdr *)addr;
+	phdr = (Elf32_Phdr *)(addr + ehdr->e_phoff);
+
+	/* go through the available ELF segments */
+	for (i = 0; i < ehdr->e_phnum; i++, phdr++) {
+		u32 da = phdr->p_paddr;
+		u32 memsz = phdr->p_memsz;
+		u32 filesz = phdr->p_filesz;
+		u32 offset = phdr->p_offset;
+		void *ptr;
+
+		if (phdr->p_type != PT_LOAD)
+			continue;
+
+		dev_dbg(dev, "phdr: type %d da 0x%x memsz 0x%x filesz 0x%x\n",
+			phdr->p_type, da, memsz, filesz);
+
+		if (filesz > memsz) {
+			dev_dbg(dev, "bad phdr filesz 0x%x memsz 0x%x\n",
+				filesz, memsz);
+			ret = -EINVAL;
+			break;
+		}
+
+		if (offset + filesz > size) {
+			dev_dbg(dev, "truncated fw: need 0x%x avail 0x%zx\n",
+				offset + filesz, size);
+			ret = -EINVAL;
+			break;
+		}
+
+		/* grab the kernel address for this device address */
+		ptr = pru_da_to_pa(priv, da, memsz,
+				   RPROC_FLAGS_ELF_PHDR | phdr->p_flags);
+		if (!ptr) {
+			dev_dbg(dev, "bad phdr da 0x%x mem 0x%x\n", da, memsz);
+			ret = -EINVAL;
+			break;
+		}
+
+		/* skip the memzero logic performed by remoteproc ELF loader */
+		if (!phdr->p_filesz)
+			continue;
+
+		ret = pru_rproc_memcpy(ptr,
+				       (void *)addr + phdr->p_offset, filesz);
+		if (ret) {
+			dev_dbg(dev, "PRU custom memory copy failed for da 0x%x memsz 0x%x\n",
+				da, memsz);
+			break;
+		}
+	}
+
+	priv->bootaddr = ehdr->e_entry;
+
+	return ret;
+}
+
+static const struct dm_rproc_ops pru_ops = {
+	.init = pru_init,
+	.start = pru_start,
+	.stop = pru_stop,
+	.load = pru_load,
+};
+
+static void pru_set_id(struct pru_privdata *priv, struct udevice *dev)
+{
+	u32 mask2 = 0x38000;
+
+	if (device_is_compatible(dev, "ti,am654-rtu"))
+		mask2 = 0x6000;
+
+	if (device_is_compatible(dev, "ti,am654-tx-pru"))
+		mask2 = 0xc000;
+
+	if ((priv->pru_iram & mask2) == mask2)
+		priv->id = 1;
+	else
+		priv->id = 0;
+}
+
+/**
+ * pru_probe() - Basic probe
+ * @dev:	corresponding k3 remote processor device
+ *
+ * Return: 0 if all goes good, else appropriate error message.
+ */
+static int pru_probe(struct udevice *dev)
+{
+	struct pru_privdata *priv;
+	ofnode node;
+
+	node = dev_ofnode(dev);
+
+	priv = dev_get_priv(dev);
+	priv->prusspriv = dev_get_priv(dev->parent);
+
+	priv->pru_iram = devfdt_get_addr_size_index(dev, PRU_MEM_IRAM,
+						    &priv->pru_iramsz);
+	priv->pru_ctrl = devfdt_get_addr_size_index(dev, PRU_MEM_CTRL,
+						    &priv->pru_ctrlsz);
+	priv->pru_debug = devfdt_get_addr_size_index(dev, PRU_MEM_DEBUG,
+						     &priv->pru_debugsz);
+
+	priv->iram_da = 0;
+	priv->pdram_da = 0;
+	priv->sdram_da = 0x2000;
+	priv->shrdram_da = 0x10000;
+
+	pru_set_id(priv, dev);
+
+	return 0;
+}
+
+static const struct udevice_id pru_ids[] = {
+	{ .compatible = "ti,am654-pru"},
+	{ .compatible = "ti,am654-rtu"},
+	{ .compatible = "ti,am654-tx-pru" },
+	{}
+};
+
+U_BOOT_DRIVER(pru) = {
+	.name = "pru",
+	.of_match = pru_ids,
+	.id = UCLASS_REMOTEPROC,
+	.ops = &pru_ops,
+	.probe = pru_probe,
+	.priv_auto = sizeof(struct pru_privdata),
+};