Driver/DDR: Moving Freescale DDR driver to a common driver

Freescale DDR driver has been used for mpc83xx, mpc85xx, mpc86xx SoCs.
The similar DDR controllers will be used for ARM-based SoCs.

Signed-off-by: York Sun <yorksun@freescale.com>
diff --git a/drivers/ddr/fsl/main.c b/drivers/ddr/fsl/main.c
new file mode 100644
index 0000000..c1cdbdf
--- /dev/null
+++ b/drivers/ddr/fsl/main.c
@@ -0,0 +1,718 @@
+/*
+ * Copyright 2008-2012 Freescale Semiconductor, Inc.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * Version 2 as published by the Free Software Foundation.
+ */
+
+/*
+ * Generic driver for Freescale DDR/DDR2/DDR3 memory controller.
+ * Based on code from spd_sdram.c
+ * Author: James Yang [at freescale.com]
+ */
+
+#include <common.h>
+#include <i2c.h>
+#include <fsl_ddr_sdram.h>
+#include <asm/fsl_law.h>
+
+#include <fsl_ddr.h>
+
+void fsl_ddr_set_lawbar(
+		const common_timing_params_t *memctl_common_params,
+		unsigned int memctl_interleaved,
+		unsigned int ctrl_num);
+void fsl_ddr_set_intl3r(const unsigned int granule_size);
+
+#if defined(SPD_EEPROM_ADDRESS) || \
+    defined(SPD_EEPROM_ADDRESS1) || defined(SPD_EEPROM_ADDRESS2) || \
+    defined(SPD_EEPROM_ADDRESS3) || defined(SPD_EEPROM_ADDRESS4)
+#if (CONFIG_NUM_DDR_CONTROLLERS == 1) && (CONFIG_DIMM_SLOTS_PER_CTLR == 1)
+u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
+	[0][0] = SPD_EEPROM_ADDRESS,
+};
+#elif (CONFIG_NUM_DDR_CONTROLLERS == 1) && (CONFIG_DIMM_SLOTS_PER_CTLR == 2)
+u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
+	[0][0] = SPD_EEPROM_ADDRESS1,	/* controller 1 */
+	[0][1] = SPD_EEPROM_ADDRESS2,	/* controller 1 */
+};
+#elif (CONFIG_NUM_DDR_CONTROLLERS == 2) && (CONFIG_DIMM_SLOTS_PER_CTLR == 1)
+u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
+	[0][0] = SPD_EEPROM_ADDRESS1,	/* controller 1 */
+	[1][0] = SPD_EEPROM_ADDRESS2,	/* controller 2 */
+};
+#elif (CONFIG_NUM_DDR_CONTROLLERS == 2) && (CONFIG_DIMM_SLOTS_PER_CTLR == 2)
+u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
+	[0][0] = SPD_EEPROM_ADDRESS1,	/* controller 1 */
+	[0][1] = SPD_EEPROM_ADDRESS2,	/* controller 1 */
+	[1][0] = SPD_EEPROM_ADDRESS3,	/* controller 2 */
+	[1][1] = SPD_EEPROM_ADDRESS4,	/* controller 2 */
+};
+#elif (CONFIG_NUM_DDR_CONTROLLERS == 3) && (CONFIG_DIMM_SLOTS_PER_CTLR == 1)
+u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
+	[0][0] = SPD_EEPROM_ADDRESS1,	/* controller 1 */
+	[1][0] = SPD_EEPROM_ADDRESS2,	/* controller 2 */
+	[2][0] = SPD_EEPROM_ADDRESS3,	/* controller 3 */
+};
+#elif (CONFIG_NUM_DDR_CONTROLLERS == 3) && (CONFIG_DIMM_SLOTS_PER_CTLR == 2)
+u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
+	[0][0] = SPD_EEPROM_ADDRESS1,	/* controller 1 */
+	[0][1] = SPD_EEPROM_ADDRESS2,	/* controller 1 */
+	[1][0] = SPD_EEPROM_ADDRESS3,	/* controller 2 */
+	[1][1] = SPD_EEPROM_ADDRESS4,	/* controller 2 */
+	[2][0] = SPD_EEPROM_ADDRESS5,	/* controller 3 */
+	[2][1] = SPD_EEPROM_ADDRESS6,	/* controller 3 */
+};
+
+#endif
+
+static void __get_spd(generic_spd_eeprom_t *spd, u8 i2c_address)
+{
+	int ret;
+
+	i2c_set_bus_num(CONFIG_SYS_SPD_BUS_NUM);
+
+	ret = i2c_read(i2c_address, 0, 1, (uchar *)spd,
+				sizeof(generic_spd_eeprom_t));
+
+	if (ret) {
+		if (i2c_address ==
+#ifdef SPD_EEPROM_ADDRESS
+				SPD_EEPROM_ADDRESS
+#elif defined(SPD_EEPROM_ADDRESS1)
+				SPD_EEPROM_ADDRESS1
+#endif
+				) {
+			printf("DDR: failed to read SPD from address %u\n",
+				i2c_address);
+		} else {
+			debug("DDR: failed to read SPD from address %u\n",
+				i2c_address);
+		}
+		memset(spd, 0, sizeof(generic_spd_eeprom_t));
+	}
+}
+
+__attribute__((weak, alias("__get_spd")))
+void get_spd(generic_spd_eeprom_t *spd, u8 i2c_address);
+
+void fsl_ddr_get_spd(generic_spd_eeprom_t *ctrl_dimms_spd,
+		      unsigned int ctrl_num)
+{
+	unsigned int i;
+	unsigned int i2c_address = 0;
+
+	if (ctrl_num >= CONFIG_NUM_DDR_CONTROLLERS) {
+		printf("%s unexpected ctrl_num = %u\n", __FUNCTION__, ctrl_num);
+		return;
+	}
+
+	for (i = 0; i < CONFIG_DIMM_SLOTS_PER_CTLR; i++) {
+		i2c_address = spd_i2c_addr[ctrl_num][i];
+		get_spd(&(ctrl_dimms_spd[i]), i2c_address);
+	}
+}
+#else
+void fsl_ddr_get_spd(generic_spd_eeprom_t *ctrl_dimms_spd,
+		      unsigned int ctrl_num)
+{
+}
+#endif /* SPD_EEPROM_ADDRESSx */
+
+/*
+ * ASSUMPTIONS:
+ *    - Same number of CONFIG_DIMM_SLOTS_PER_CTLR on each controller
+ *    - Same memory data bus width on all controllers
+ *
+ * NOTES:
+ *
+ * The memory controller and associated documentation use confusing
+ * terminology when referring to the orgranization of DRAM.
+ *
+ * Here is a terminology translation table:
+ *
+ * memory controller/documention  |industry   |this code  |signals
+ * -------------------------------|-----------|-----------|-----------------
+ * physical bank/bank		  |rank       |rank	  |chip select (CS)
+ * logical bank/sub-bank	  |bank       |bank	  |bank address (BA)
+ * page/row			  |row	      |page	  |row address
+ * ???				  |column     |column	  |column address
+ *
+ * The naming confusion is further exacerbated by the descriptions of the
+ * memory controller interleaving feature, where accesses are interleaved
+ * _BETWEEN_ two seperate memory controllers.  This is configured only in
+ * CS0_CONFIG[INTLV_CTL] of each memory controller.
+ *
+ * memory controller documentation | number of chip selects
+ *				   | per memory controller supported
+ * --------------------------------|-----------------------------------------
+ * cache line interleaving	   | 1 (CS0 only)
+ * page interleaving		   | 1 (CS0 only)
+ * bank interleaving		   | 1 (CS0 only)
+ * superbank interleraving	   | depends on bank (chip select)
+ *				   |   interleraving [rank interleaving]
+ *				   |   mode used on every memory controller
+ *
+ * Even further confusing is the existence of the interleaving feature
+ * _WITHIN_ each memory controller.  The feature is referred to in
+ * documentation as chip select interleaving or bank interleaving,
+ * although it is configured in the DDR_SDRAM_CFG field.
+ *
+ * Name of field		| documentation name	| this code
+ * -----------------------------|-----------------------|------------------
+ * DDR_SDRAM_CFG[BA_INTLV_CTL]	| Bank (chip select)	| rank interleaving
+ *				|  interleaving
+ */
+
+const char *step_string_tbl[] = {
+	"STEP_GET_SPD",
+	"STEP_COMPUTE_DIMM_PARMS",
+	"STEP_COMPUTE_COMMON_PARMS",
+	"STEP_GATHER_OPTS",
+	"STEP_ASSIGN_ADDRESSES",
+	"STEP_COMPUTE_REGS",
+	"STEP_PROGRAM_REGS",
+	"STEP_ALL"
+};
+
+const char * step_to_string(unsigned int step) {
+
+	unsigned int s = __ilog2(step);
+
+	if ((1 << s) != step)
+		return step_string_tbl[7];
+
+	return step_string_tbl[s];
+}
+
+static unsigned long long __step_assign_addresses(fsl_ddr_info_t *pinfo,
+			  unsigned int dbw_cap_adj[])
+{
+	int i, j;
+	unsigned long long total_mem, current_mem_base, total_ctlr_mem;
+	unsigned long long rank_density, ctlr_density = 0;
+
+	/*
+	 * If a reduced data width is requested, but the SPD
+	 * specifies a physically wider device, adjust the
+	 * computed dimm capacities accordingly before
+	 * assigning addresses.
+	 */
+	for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
+		unsigned int found = 0;
+
+		switch (pinfo->memctl_opts[i].data_bus_width) {
+		case 2:
+			/* 16-bit */
+			for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
+				unsigned int dw;
+				if (!pinfo->dimm_params[i][j].n_ranks)
+					continue;
+				dw = pinfo->dimm_params[i][j].primary_sdram_width;
+				if ((dw == 72 || dw == 64)) {
+					dbw_cap_adj[i] = 2;
+					break;
+				} else if ((dw == 40 || dw == 32)) {
+					dbw_cap_adj[i] = 1;
+					break;
+				}
+			}
+			break;
+
+		case 1:
+			/* 32-bit */
+			for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
+				unsigned int dw;
+				dw = pinfo->dimm_params[i][j].data_width;
+				if (pinfo->dimm_params[i][j].n_ranks
+				    && (dw == 72 || dw == 64)) {
+					/*
+					 * FIXME: can't really do it
+					 * like this because this just
+					 * further reduces the memory
+					 */
+					found = 1;
+					break;
+				}
+			}
+			if (found) {
+				dbw_cap_adj[i] = 1;
+			}
+			break;
+
+		case 0:
+			/* 64-bit */
+			break;
+
+		default:
+			printf("unexpected data bus width "
+				"specified controller %u\n", i);
+			return 1;
+		}
+		debug("dbw_cap_adj[%d]=%d\n", i, dbw_cap_adj[i]);
+	}
+
+	current_mem_base = 0ull;
+	total_mem = 0;
+	if (pinfo->memctl_opts[0].memctl_interleaving) {
+		rank_density = pinfo->dimm_params[0][0].rank_density >>
+					dbw_cap_adj[0];
+		switch (pinfo->memctl_opts[0].ba_intlv_ctl &
+					FSL_DDR_CS0_CS1_CS2_CS3) {
+		case FSL_DDR_CS0_CS1_CS2_CS3:
+			ctlr_density = 4 * rank_density;
+			break;
+		case FSL_DDR_CS0_CS1:
+		case FSL_DDR_CS0_CS1_AND_CS2_CS3:
+			ctlr_density = 2 * rank_density;
+			break;
+		case FSL_DDR_CS2_CS3:
+		default:
+			ctlr_density = rank_density;
+			break;
+		}
+		debug("rank density is 0x%llx, ctlr density is 0x%llx\n",
+			rank_density, ctlr_density);
+		for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
+			if (pinfo->memctl_opts[i].memctl_interleaving) {
+				switch (pinfo->memctl_opts[i].memctl_interleaving_mode) {
+				case FSL_DDR_CACHE_LINE_INTERLEAVING:
+				case FSL_DDR_PAGE_INTERLEAVING:
+				case FSL_DDR_BANK_INTERLEAVING:
+				case FSL_DDR_SUPERBANK_INTERLEAVING:
+					total_ctlr_mem = 2 * ctlr_density;
+					break;
+				case FSL_DDR_3WAY_1KB_INTERLEAVING:
+				case FSL_DDR_3WAY_4KB_INTERLEAVING:
+				case FSL_DDR_3WAY_8KB_INTERLEAVING:
+					total_ctlr_mem = 3 * ctlr_density;
+					break;
+				case FSL_DDR_4WAY_1KB_INTERLEAVING:
+				case FSL_DDR_4WAY_4KB_INTERLEAVING:
+				case FSL_DDR_4WAY_8KB_INTERLEAVING:
+					total_ctlr_mem = 4 * ctlr_density;
+					break;
+				default:
+					panic("Unknown interleaving mode");
+				}
+				pinfo->common_timing_params[i].base_address =
+							current_mem_base;
+				pinfo->common_timing_params[i].total_mem =
+							total_ctlr_mem;
+				total_mem = current_mem_base + total_ctlr_mem;
+				debug("ctrl %d base 0x%llx\n", i, current_mem_base);
+				debug("ctrl %d total 0x%llx\n", i, total_ctlr_mem);
+			} else {
+				/* when 3rd controller not interleaved */
+				current_mem_base = total_mem;
+				total_ctlr_mem = 0;
+				pinfo->common_timing_params[i].base_address =
+							current_mem_base;
+				for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
+					unsigned long long cap =
+						pinfo->dimm_params[i][j].capacity >> dbw_cap_adj[i];
+					pinfo->dimm_params[i][j].base_address =
+						current_mem_base;
+					debug("ctrl %d dimm %d base 0x%llx\n", i, j, current_mem_base);
+					current_mem_base += cap;
+					total_ctlr_mem += cap;
+				}
+				debug("ctrl %d total 0x%llx\n", i, total_ctlr_mem);
+				pinfo->common_timing_params[i].total_mem =
+							total_ctlr_mem;
+				total_mem += total_ctlr_mem;
+			}
+		}
+	} else {
+		/*
+		 * Simple linear assignment if memory
+		 * controllers are not interleaved.
+		 */
+		for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
+			total_ctlr_mem = 0;
+			pinfo->common_timing_params[i].base_address =
+						current_mem_base;
+			for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
+				/* Compute DIMM base addresses. */
+				unsigned long long cap =
+					pinfo->dimm_params[i][j].capacity >> dbw_cap_adj[i];
+				pinfo->dimm_params[i][j].base_address =
+					current_mem_base;
+				debug("ctrl %d dimm %d base 0x%llx\n", i, j, current_mem_base);
+				current_mem_base += cap;
+				total_ctlr_mem += cap;
+			}
+			debug("ctrl %d total 0x%llx\n", i, total_ctlr_mem);
+			pinfo->common_timing_params[i].total_mem =
+							total_ctlr_mem;
+			total_mem += total_ctlr_mem;
+		}
+	}
+	debug("Total mem by %s is 0x%llx\n", __func__, total_mem);
+
+	return total_mem;
+}
+
+/* Use weak function to allow board file to override the address assignment */
+__attribute__((weak, alias("__step_assign_addresses")))
+unsigned long long step_assign_addresses(fsl_ddr_info_t *pinfo,
+			  unsigned int dbw_cap_adj[]);
+
+unsigned long long
+fsl_ddr_compute(fsl_ddr_info_t *pinfo, unsigned int start_step,
+				       unsigned int size_only)
+{
+	unsigned int i, j;
+	unsigned long long total_mem = 0;
+	int assert_reset;
+
+	fsl_ddr_cfg_regs_t *ddr_reg = pinfo->fsl_ddr_config_reg;
+	common_timing_params_t *timing_params = pinfo->common_timing_params;
+	assert_reset = board_need_mem_reset();
+
+	/* data bus width capacity adjust shift amount */
+	unsigned int dbw_capacity_adjust[CONFIG_NUM_DDR_CONTROLLERS];
+
+	for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
+		dbw_capacity_adjust[i] = 0;
+	}
+
+	debug("starting at step %u (%s)\n",
+	      start_step, step_to_string(start_step));
+
+	switch (start_step) {
+	case STEP_GET_SPD:
+#if defined(CONFIG_DDR_SPD) || defined(CONFIG_SPD_EEPROM)
+		/* STEP 1:  Gather all DIMM SPD data */
+		for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
+			fsl_ddr_get_spd(pinfo->spd_installed_dimms[i], i);
+		}
+
+	case STEP_COMPUTE_DIMM_PARMS:
+		/* STEP 2:  Compute DIMM parameters from SPD data */
+
+		for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
+			for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
+				unsigned int retval;
+				generic_spd_eeprom_t *spd =
+					&(pinfo->spd_installed_dimms[i][j]);
+				dimm_params_t *pdimm =
+					&(pinfo->dimm_params[i][j]);
+
+				retval = compute_dimm_parameters(spd, pdimm, i);
+#ifdef CONFIG_SYS_DDR_RAW_TIMING
+				if (!i && !j && retval) {
+					printf("SPD error on controller %d! "
+					"Trying fallback to raw timing "
+					"calculation\n", i);
+					fsl_ddr_get_dimm_params(pdimm, i, j);
+				}
+#else
+				if (retval == 2) {
+					printf("Error: compute_dimm_parameters"
+					" non-zero returned FATAL value "
+					"for memctl=%u dimm=%u\n", i, j);
+					return 0;
+				}
+#endif
+				if (retval) {
+					debug("Warning: compute_dimm_parameters"
+					" non-zero return value for memctl=%u "
+					"dimm=%u\n", i, j);
+				}
+			}
+		}
+
+#elif defined(CONFIG_SYS_DDR_RAW_TIMING)
+	case STEP_COMPUTE_DIMM_PARMS:
+		for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
+			for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
+				dimm_params_t *pdimm =
+					&(pinfo->dimm_params[i][j]);
+				fsl_ddr_get_dimm_params(pdimm, i, j);
+			}
+		}
+		debug("Filling dimm parameters from board specific file\n");
+#endif
+	case STEP_COMPUTE_COMMON_PARMS:
+		/*
+		 * STEP 3: Compute a common set of timing parameters
+		 * suitable for all of the DIMMs on each memory controller
+		 */
+		for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
+			debug("Computing lowest common DIMM"
+				" parameters for memctl=%u\n", i);
+			compute_lowest_common_dimm_parameters(
+				pinfo->dimm_params[i],
+				&timing_params[i],
+				CONFIG_DIMM_SLOTS_PER_CTLR);
+		}
+
+	case STEP_GATHER_OPTS:
+		/* STEP 4:  Gather configuration requirements from user */
+		for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
+			debug("Reloading memory controller "
+				"configuration options for memctl=%u\n", i);
+			/*
+			 * This "reloads" the memory controller options
+			 * to defaults.  If the user "edits" an option,
+			 * next_step points to the step after this,
+			 * which is currently STEP_ASSIGN_ADDRESSES.
+			 */
+			populate_memctl_options(
+					timing_params[i].all_dimms_registered,
+					&pinfo->memctl_opts[i],
+					pinfo->dimm_params[i], i);
+			/*
+			 * For RDIMMs, JEDEC spec requires clocks to be stable
+			 * before reset signal is deasserted. For the boards
+			 * using fixed parameters, this function should be
+			 * be called from board init file.
+			 */
+			if (timing_params[i].all_dimms_registered)
+				assert_reset = 1;
+		}
+		if (assert_reset) {
+			debug("Asserting mem reset\n");
+			board_assert_mem_reset();
+		}
+
+	case STEP_ASSIGN_ADDRESSES:
+		/* STEP 5:  Assign addresses to chip selects */
+		check_interleaving_options(pinfo);
+		total_mem = step_assign_addresses(pinfo, dbw_capacity_adjust);
+
+	case STEP_COMPUTE_REGS:
+		/* STEP 6:  compute controller register values */
+		debug("FSL Memory ctrl register computation\n");
+		for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
+			if (timing_params[i].ndimms_present == 0) {
+				memset(&ddr_reg[i], 0,
+					sizeof(fsl_ddr_cfg_regs_t));
+				continue;
+			}
+
+			compute_fsl_memctl_config_regs(
+					&pinfo->memctl_opts[i],
+					&ddr_reg[i], &timing_params[i],
+					pinfo->dimm_params[i],
+					dbw_capacity_adjust[i],
+					size_only);
+		}
+
+	default:
+		break;
+	}
+
+	{
+		/*
+		 * Compute the amount of memory available just by
+		 * looking for the highest valid CSn_BNDS value.
+		 * This allows us to also experiment with using
+		 * only CS0 when using dual-rank DIMMs.
+		 */
+		unsigned int max_end = 0;
+
+		for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
+			for (j = 0; j < CONFIG_CHIP_SELECTS_PER_CTRL; j++) {
+				fsl_ddr_cfg_regs_t *reg = &ddr_reg[i];
+				if (reg->cs[j].config & 0x80000000) {
+					unsigned int end;
+					/*
+					 * 0xfffffff is a special value we put
+					 * for unused bnds
+					 */
+					if (reg->cs[j].bnds == 0xffffffff)
+						continue;
+					end = reg->cs[j].bnds & 0xffff;
+					if (end > max_end) {
+						max_end = end;
+					}
+				}
+			}
+		}
+
+		total_mem = 1 + (((unsigned long long)max_end << 24ULL)
+				    | 0xFFFFFFULL);
+	}
+
+	return total_mem;
+}
+
+/*
+ * fsl_ddr_sdram() -- this is the main function to be called by
+ *	initdram() in the board file.
+ *
+ * It returns amount of memory configured in bytes.
+ */
+phys_size_t fsl_ddr_sdram(void)
+{
+	unsigned int i;
+	unsigned int law_memctl = LAW_TRGT_IF_DDR_1;
+	unsigned long long total_memory;
+	fsl_ddr_info_t info;
+	int deassert_reset;
+
+	/* Reset info structure. */
+	memset(&info, 0, sizeof(fsl_ddr_info_t));
+
+	/* Compute it once normally. */
+#ifdef CONFIG_FSL_DDR_INTERACTIVE
+	if (tstc() && (getc() == 'd')) {	/* we got a key press of 'd' */
+		total_memory = fsl_ddr_interactive(&info, 0);
+	} else if (fsl_ddr_interactive_env_var_exists()) {
+		total_memory = fsl_ddr_interactive(&info, 1);
+	} else
+#endif
+		total_memory = fsl_ddr_compute(&info, STEP_GET_SPD, 0);
+
+	/* setup 3-way interleaving before enabling DDRC */
+	if (info.memctl_opts[0].memctl_interleaving) {
+		switch (info.memctl_opts[0].memctl_interleaving_mode) {
+		case FSL_DDR_3WAY_1KB_INTERLEAVING:
+		case FSL_DDR_3WAY_4KB_INTERLEAVING:
+		case FSL_DDR_3WAY_8KB_INTERLEAVING:
+			fsl_ddr_set_intl3r(
+				info.memctl_opts[0].memctl_interleaving_mode);
+			break;
+		default:
+			break;
+		}
+	}
+
+	/*
+	 * Program configuration registers.
+	 * JEDEC specs requires clocks to be stable before deasserting reset
+	 * for RDIMMs. Clocks start after chip select is enabled and clock
+	 * control register is set. During step 1, all controllers have their
+	 * registers set but not enabled. Step 2 proceeds after deasserting
+	 * reset through board FPGA or GPIO.
+	 * For non-registered DIMMs, initialization can go through but it is
+	 * also OK to follow the same flow.
+	 */
+	deassert_reset = board_need_mem_reset();
+	for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
+		if (info.common_timing_params[i].all_dimms_registered)
+			deassert_reset = 1;
+	}
+	for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
+		debug("Programming controller %u\n", i);
+		if (info.common_timing_params[i].ndimms_present == 0) {
+			debug("No dimms present on controller %u; "
+					"skipping programming\n", i);
+			continue;
+		}
+		/*
+		 * The following call with step = 1 returns before enabling
+		 * the controller. It has to finish with step = 2 later.
+		 */
+		fsl_ddr_set_memctl_regs(&(info.fsl_ddr_config_reg[i]), i,
+					deassert_reset ? 1 : 0);
+	}
+	if (deassert_reset) {
+		/* Use board FPGA or GPIO to deassert reset signal */
+		debug("Deasserting mem reset\n");
+		board_deassert_mem_reset();
+		for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
+			/* Call with step = 2 to continue initialization */
+			fsl_ddr_set_memctl_regs(&(info.fsl_ddr_config_reg[i]),
+						i, 2);
+		}
+	}
+
+	/* program LAWs */
+	for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
+		if (info.memctl_opts[i].memctl_interleaving) {
+			switch (info.memctl_opts[i].memctl_interleaving_mode) {
+			case FSL_DDR_CACHE_LINE_INTERLEAVING:
+			case FSL_DDR_PAGE_INTERLEAVING:
+			case FSL_DDR_BANK_INTERLEAVING:
+			case FSL_DDR_SUPERBANK_INTERLEAVING:
+				if (i == 0) {
+					law_memctl = LAW_TRGT_IF_DDR_INTRLV;
+					fsl_ddr_set_lawbar(&info.common_timing_params[i],
+						law_memctl, i);
+				} else if (i == 2) {
+					law_memctl = LAW_TRGT_IF_DDR_INTLV_34;
+					fsl_ddr_set_lawbar(&info.common_timing_params[i],
+						law_memctl, i);
+				}
+				break;
+			case FSL_DDR_3WAY_1KB_INTERLEAVING:
+			case FSL_DDR_3WAY_4KB_INTERLEAVING:
+			case FSL_DDR_3WAY_8KB_INTERLEAVING:
+				law_memctl = LAW_TRGT_IF_DDR_INTLV_123;
+				if (i == 0) {
+					fsl_ddr_set_lawbar(&info.common_timing_params[i],
+						law_memctl, i);
+				}
+				break;
+			case FSL_DDR_4WAY_1KB_INTERLEAVING:
+			case FSL_DDR_4WAY_4KB_INTERLEAVING:
+			case FSL_DDR_4WAY_8KB_INTERLEAVING:
+				law_memctl = LAW_TRGT_IF_DDR_INTLV_1234;
+				if (i == 0)
+					fsl_ddr_set_lawbar(&info.common_timing_params[i],
+						law_memctl, i);
+				/* place holder for future 4-way interleaving */
+				break;
+			default:
+				break;
+			}
+		} else {
+			switch (i) {
+			case 0:
+				law_memctl = LAW_TRGT_IF_DDR_1;
+				break;
+			case 1:
+				law_memctl = LAW_TRGT_IF_DDR_2;
+				break;
+			case 2:
+				law_memctl = LAW_TRGT_IF_DDR_3;
+				break;
+			case 3:
+				law_memctl = LAW_TRGT_IF_DDR_4;
+				break;
+			default:
+				break;
+			}
+			fsl_ddr_set_lawbar(&info.common_timing_params[i],
+					law_memctl, i);
+		}
+	}
+
+	debug("total_memory by %s = %llu\n", __func__, total_memory);
+
+#if !defined(CONFIG_PHYS_64BIT)
+	/* Check for 4G or more.  Bad. */
+	if (total_memory >= (1ull << 32)) {
+		puts("Detected ");
+		print_size(total_memory, " of memory\n");
+		printf("       This U-Boot only supports < 4G of DDR\n");
+		printf("       You could rebuild it with CONFIG_PHYS_64BIT\n");
+		printf("       "); /* re-align to match init_func_ram print */
+		total_memory = CONFIG_MAX_MEM_MAPPED;
+	}
+#endif
+
+	return total_memory;
+}
+
+/*
+ * fsl_ddr_sdram_size() - This function only returns the size of the total
+ * memory without setting ddr control registers.
+ */
+phys_size_t
+fsl_ddr_sdram_size(void)
+{
+	fsl_ddr_info_t  info;
+	unsigned long long total_memory = 0;
+
+	memset(&info, 0 , sizeof(fsl_ddr_info_t));
+
+	/* Compute it once normally. */
+	total_memory = fsl_ddr_compute(&info, STEP_GET_SPD, 1);
+
+	return total_memory;
+}