| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * Copyright (c) 2014 Google, Inc |
| * Written by Simon Glass <sjg@chromium.org> |
| */ |
| |
| #define LOG_CATEGORY UCLASS_PCI |
| |
| #include <common.h> |
| #include <dm.h> |
| #include <errno.h> |
| #include <init.h> |
| #include <log.h> |
| #include <malloc.h> |
| #include <pci.h> |
| #include <asm/global_data.h> |
| #include <asm/io.h> |
| #include <dm/device-internal.h> |
| #include <dm/lists.h> |
| #include <dm/uclass-internal.h> |
| #if defined(CONFIG_X86) && defined(CONFIG_HAVE_FSP) |
| #include <asm/fsp/fsp_support.h> |
| #endif |
| #include <dt-bindings/pci/pci.h> |
| #include <linux/delay.h> |
| #include "pci_internal.h" |
| |
| DECLARE_GLOBAL_DATA_PTR; |
| |
| int pci_get_bus(int busnum, struct udevice **busp) |
| { |
| int ret; |
| |
| ret = uclass_get_device_by_seq(UCLASS_PCI, busnum, busp); |
| |
| /* Since buses may not be numbered yet try a little harder with bus 0 */ |
| if (ret == -ENODEV) { |
| ret = uclass_first_device_err(UCLASS_PCI, busp); |
| if (ret) |
| return ret; |
| ret = uclass_get_device_by_seq(UCLASS_PCI, busnum, busp); |
| } |
| |
| return ret; |
| } |
| |
| struct udevice *pci_get_controller(struct udevice *dev) |
| { |
| while (device_is_on_pci_bus(dev)) |
| dev = dev->parent; |
| |
| return dev; |
| } |
| |
| pci_dev_t dm_pci_get_bdf(const struct udevice *dev) |
| { |
| struct pci_child_plat *pplat = dev_get_parent_plat(dev); |
| struct udevice *bus = dev->parent; |
| |
| /* |
| * This error indicates that @dev is a device on an unprobed PCI bus. |
| * The bus likely has bus=seq == -1, so the PCI_ADD_BUS() macro below |
| * will produce a bad BDF> |
| * |
| * A common cause of this problem is that this function is called in the |
| * of_to_plat() method of @dev. Accessing the PCI bus in that |
| * method is not allowed, since it has not yet been probed. To fix this, |
| * move that access to the probe() method of @dev instead. |
| */ |
| if (!device_active(bus)) |
| log_err("PCI: Device '%s' on unprobed bus '%s'\n", dev->name, |
| bus->name); |
| return PCI_ADD_BUS(dev_seq(bus), pplat->devfn); |
| } |
| |
| /** |
| * pci_get_bus_max() - returns the bus number of the last active bus |
| * |
| * Return: last bus number, or -1 if no active buses |
| */ |
| static int pci_get_bus_max(void) |
| { |
| struct udevice *bus; |
| struct uclass *uc; |
| int ret = -1; |
| |
| ret = uclass_get(UCLASS_PCI, &uc); |
| uclass_foreach_dev(bus, uc) { |
| if (dev_seq(bus) > ret) |
| ret = dev_seq(bus); |
| } |
| |
| debug("%s: ret=%d\n", __func__, ret); |
| |
| return ret; |
| } |
| |
| int pci_last_busno(void) |
| { |
| return pci_get_bus_max(); |
| } |
| |
| int pci_get_ff(enum pci_size_t size) |
| { |
| switch (size) { |
| case PCI_SIZE_8: |
| return 0xff; |
| case PCI_SIZE_16: |
| return 0xffff; |
| default: |
| return 0xffffffff; |
| } |
| } |
| |
| static void pci_dev_find_ofnode(struct udevice *bus, phys_addr_t bdf, |
| ofnode *rnode) |
| { |
| struct fdt_pci_addr addr; |
| ofnode node; |
| int ret; |
| |
| dev_for_each_subnode(node, bus) { |
| ret = ofnode_read_pci_addr(node, FDT_PCI_SPACE_CONFIG, "reg", |
| &addr); |
| if (ret) |
| continue; |
| |
| if (PCI_MASK_BUS(addr.phys_hi) != PCI_MASK_BUS(bdf)) |
| continue; |
| |
| *rnode = node; |
| break; |
| } |
| }; |
| |
| int pci_bus_find_devfn(const struct udevice *bus, pci_dev_t find_devfn, |
| struct udevice **devp) |
| { |
| struct udevice *dev; |
| |
| for (device_find_first_child(bus, &dev); |
| dev; |
| device_find_next_child(&dev)) { |
| struct pci_child_plat *pplat; |
| |
| pplat = dev_get_parent_plat(dev); |
| if (pplat && pplat->devfn == find_devfn) { |
| *devp = dev; |
| return 0; |
| } |
| } |
| |
| return -ENODEV; |
| } |
| |
| int dm_pci_bus_find_bdf(pci_dev_t bdf, struct udevice **devp) |
| { |
| struct udevice *bus; |
| int ret; |
| |
| ret = pci_get_bus(PCI_BUS(bdf), &bus); |
| if (ret) |
| return ret; |
| return pci_bus_find_devfn(bus, PCI_MASK_BUS(bdf), devp); |
| } |
| |
| static int pci_device_matches_ids(struct udevice *dev, |
| const struct pci_device_id *ids) |
| { |
| struct pci_child_plat *pplat; |
| int i; |
| |
| pplat = dev_get_parent_plat(dev); |
| if (!pplat) |
| return -EINVAL; |
| for (i = 0; ids[i].vendor != 0; i++) { |
| if (pplat->vendor == ids[i].vendor && |
| pplat->device == ids[i].device) |
| return i; |
| } |
| |
| return -EINVAL; |
| } |
| |
| int pci_bus_find_devices(struct udevice *bus, const struct pci_device_id *ids, |
| int *indexp, struct udevice **devp) |
| { |
| struct udevice *dev; |
| |
| /* Scan all devices on this bus */ |
| for (device_find_first_child(bus, &dev); |
| dev; |
| device_find_next_child(&dev)) { |
| if (pci_device_matches_ids(dev, ids) >= 0) { |
| if ((*indexp)-- <= 0) { |
| *devp = dev; |
| return 0; |
| } |
| } |
| } |
| |
| return -ENODEV; |
| } |
| |
| int pci_find_device_id(const struct pci_device_id *ids, int index, |
| struct udevice **devp) |
| { |
| struct udevice *bus; |
| |
| /* Scan all known buses */ |
| for (uclass_first_device(UCLASS_PCI, &bus); |
| bus; |
| uclass_next_device(&bus)) { |
| if (!pci_bus_find_devices(bus, ids, &index, devp)) |
| return 0; |
| } |
| *devp = NULL; |
| |
| return -ENODEV; |
| } |
| |
| static int dm_pci_bus_find_device(struct udevice *bus, unsigned int vendor, |
| unsigned int device, int *indexp, |
| struct udevice **devp) |
| { |
| struct pci_child_plat *pplat; |
| struct udevice *dev; |
| |
| for (device_find_first_child(bus, &dev); |
| dev; |
| device_find_next_child(&dev)) { |
| pplat = dev_get_parent_plat(dev); |
| if (pplat->vendor == vendor && pplat->device == device) { |
| if (!(*indexp)--) { |
| *devp = dev; |
| return 0; |
| } |
| } |
| } |
| |
| return -ENODEV; |
| } |
| |
| int dm_pci_find_device(unsigned int vendor, unsigned int device, int index, |
| struct udevice **devp) |
| { |
| struct udevice *bus; |
| |
| /* Scan all known buses */ |
| for (uclass_first_device(UCLASS_PCI, &bus); |
| bus; |
| uclass_next_device(&bus)) { |
| if (!dm_pci_bus_find_device(bus, vendor, device, &index, devp)) |
| return device_probe(*devp); |
| } |
| *devp = NULL; |
| |
| return -ENODEV; |
| } |
| |
| int dm_pci_find_class(uint find_class, int index, struct udevice **devp) |
| { |
| struct udevice *dev; |
| |
| /* Scan all known buses */ |
| for (pci_find_first_device(&dev); |
| dev; |
| pci_find_next_device(&dev)) { |
| struct pci_child_plat *pplat = dev_get_parent_plat(dev); |
| |
| if (pplat->class == find_class && !index--) { |
| *devp = dev; |
| return device_probe(*devp); |
| } |
| } |
| *devp = NULL; |
| |
| return -ENODEV; |
| } |
| |
| int pci_bus_write_config(struct udevice *bus, pci_dev_t bdf, int offset, |
| unsigned long value, enum pci_size_t size) |
| { |
| struct dm_pci_ops *ops; |
| |
| ops = pci_get_ops(bus); |
| if (!ops->write_config) |
| return -ENOSYS; |
| if (offset < 0 || offset >= 4096) |
| return -EINVAL; |
| return ops->write_config(bus, bdf, offset, value, size); |
| } |
| |
| int pci_bus_clrset_config32(struct udevice *bus, pci_dev_t bdf, int offset, |
| u32 clr, u32 set) |
| { |
| ulong val; |
| int ret; |
| |
| ret = pci_bus_read_config(bus, bdf, offset, &val, PCI_SIZE_32); |
| if (ret) |
| return ret; |
| val &= ~clr; |
| val |= set; |
| |
| return pci_bus_write_config(bus, bdf, offset, val, PCI_SIZE_32); |
| } |
| |
| static int pci_write_config(pci_dev_t bdf, int offset, unsigned long value, |
| enum pci_size_t size) |
| { |
| struct udevice *bus; |
| int ret; |
| |
| ret = pci_get_bus(PCI_BUS(bdf), &bus); |
| if (ret) |
| return ret; |
| |
| return pci_bus_write_config(bus, bdf, offset, value, size); |
| } |
| |
| int dm_pci_write_config(struct udevice *dev, int offset, unsigned long value, |
| enum pci_size_t size) |
| { |
| struct udevice *bus; |
| |
| for (bus = dev; device_is_on_pci_bus(bus);) |
| bus = bus->parent; |
| return pci_bus_write_config(bus, dm_pci_get_bdf(dev), offset, value, |
| size); |
| } |
| |
| int pci_write_config32(pci_dev_t bdf, int offset, u32 value) |
| { |
| return pci_write_config(bdf, offset, value, PCI_SIZE_32); |
| } |
| |
| int pci_write_config16(pci_dev_t bdf, int offset, u16 value) |
| { |
| return pci_write_config(bdf, offset, value, PCI_SIZE_16); |
| } |
| |
| int pci_write_config8(pci_dev_t bdf, int offset, u8 value) |
| { |
| return pci_write_config(bdf, offset, value, PCI_SIZE_8); |
| } |
| |
| int dm_pci_write_config8(struct udevice *dev, int offset, u8 value) |
| { |
| return dm_pci_write_config(dev, offset, value, PCI_SIZE_8); |
| } |
| |
| int dm_pci_write_config16(struct udevice *dev, int offset, u16 value) |
| { |
| return dm_pci_write_config(dev, offset, value, PCI_SIZE_16); |
| } |
| |
| int dm_pci_write_config32(struct udevice *dev, int offset, u32 value) |
| { |
| return dm_pci_write_config(dev, offset, value, PCI_SIZE_32); |
| } |
| |
| int pci_bus_read_config(const struct udevice *bus, pci_dev_t bdf, int offset, |
| unsigned long *valuep, enum pci_size_t size) |
| { |
| struct dm_pci_ops *ops; |
| |
| ops = pci_get_ops(bus); |
| if (!ops->read_config) { |
| *valuep = pci_conv_32_to_size(~0, offset, size); |
| return -ENOSYS; |
| } |
| if (offset < 0 || offset >= 4096) { |
| *valuep = pci_conv_32_to_size(0, offset, size); |
| return -EINVAL; |
| } |
| return ops->read_config(bus, bdf, offset, valuep, size); |
| } |
| |
| static int pci_read_config(pci_dev_t bdf, int offset, unsigned long *valuep, |
| enum pci_size_t size) |
| { |
| struct udevice *bus; |
| int ret; |
| |
| ret = pci_get_bus(PCI_BUS(bdf), &bus); |
| if (ret) |
| return ret; |
| |
| return pci_bus_read_config(bus, bdf, offset, valuep, size); |
| } |
| |
| int dm_pci_read_config(const struct udevice *dev, int offset, |
| unsigned long *valuep, enum pci_size_t size) |
| { |
| const struct udevice *bus; |
| |
| for (bus = dev; device_is_on_pci_bus(bus);) |
| bus = bus->parent; |
| return pci_bus_read_config(bus, dm_pci_get_bdf(dev), offset, valuep, |
| size); |
| } |
| |
| int pci_read_config32(pci_dev_t bdf, int offset, u32 *valuep) |
| { |
| unsigned long value; |
| int ret; |
| |
| ret = pci_read_config(bdf, offset, &value, PCI_SIZE_32); |
| if (ret) |
| return ret; |
| *valuep = value; |
| |
| return 0; |
| } |
| |
| int pci_read_config16(pci_dev_t bdf, int offset, u16 *valuep) |
| { |
| unsigned long value; |
| int ret; |
| |
| ret = pci_read_config(bdf, offset, &value, PCI_SIZE_16); |
| if (ret) |
| return ret; |
| *valuep = value; |
| |
| return 0; |
| } |
| |
| int pci_read_config8(pci_dev_t bdf, int offset, u8 *valuep) |
| { |
| unsigned long value; |
| int ret; |
| |
| ret = pci_read_config(bdf, offset, &value, PCI_SIZE_8); |
| if (ret) |
| return ret; |
| *valuep = value; |
| |
| return 0; |
| } |
| |
| int dm_pci_read_config8(const struct udevice *dev, int offset, u8 *valuep) |
| { |
| unsigned long value; |
| int ret; |
| |
| ret = dm_pci_read_config(dev, offset, &value, PCI_SIZE_8); |
| if (ret) |
| return ret; |
| *valuep = value; |
| |
| return 0; |
| } |
| |
| int dm_pci_read_config16(const struct udevice *dev, int offset, u16 *valuep) |
| { |
| unsigned long value; |
| int ret; |
| |
| ret = dm_pci_read_config(dev, offset, &value, PCI_SIZE_16); |
| if (ret) |
| return ret; |
| *valuep = value; |
| |
| return 0; |
| } |
| |
| int dm_pci_read_config32(const struct udevice *dev, int offset, u32 *valuep) |
| { |
| unsigned long value; |
| int ret; |
| |
| ret = dm_pci_read_config(dev, offset, &value, PCI_SIZE_32); |
| if (ret) |
| return ret; |
| *valuep = value; |
| |
| return 0; |
| } |
| |
| int dm_pci_clrset_config8(struct udevice *dev, int offset, u32 clr, u32 set) |
| { |
| u8 val; |
| int ret; |
| |
| ret = dm_pci_read_config8(dev, offset, &val); |
| if (ret) |
| return ret; |
| val &= ~clr; |
| val |= set; |
| |
| return dm_pci_write_config8(dev, offset, val); |
| } |
| |
| int dm_pci_clrset_config16(struct udevice *dev, int offset, u32 clr, u32 set) |
| { |
| u16 val; |
| int ret; |
| |
| ret = dm_pci_read_config16(dev, offset, &val); |
| if (ret) |
| return ret; |
| val &= ~clr; |
| val |= set; |
| |
| return dm_pci_write_config16(dev, offset, val); |
| } |
| |
| int dm_pci_clrset_config32(struct udevice *dev, int offset, u32 clr, u32 set) |
| { |
| u32 val; |
| int ret; |
| |
| ret = dm_pci_read_config32(dev, offset, &val); |
| if (ret) |
| return ret; |
| val &= ~clr; |
| val |= set; |
| |
| return dm_pci_write_config32(dev, offset, val); |
| } |
| |
| static void set_vga_bridge_bits(struct udevice *dev) |
| { |
| struct udevice *parent = dev->parent; |
| u16 bc; |
| |
| while (dev_seq(parent) != 0) { |
| dm_pci_read_config16(parent, PCI_BRIDGE_CONTROL, &bc); |
| bc |= PCI_BRIDGE_CTL_VGA; |
| dm_pci_write_config16(parent, PCI_BRIDGE_CONTROL, bc); |
| parent = parent->parent; |
| } |
| } |
| |
| int pci_auto_config_devices(struct udevice *bus) |
| { |
| struct pci_controller *hose = dev_get_uclass_priv(bus); |
| struct pci_child_plat *pplat; |
| unsigned int sub_bus; |
| struct udevice *dev; |
| int ret; |
| |
| sub_bus = dev_seq(bus); |
| debug("%s: start\n", __func__); |
| pciauto_config_init(hose); |
| for (ret = device_find_first_child(bus, &dev); |
| !ret && dev; |
| ret = device_find_next_child(&dev)) { |
| unsigned int max_bus; |
| int ret; |
| |
| debug("%s: device %s\n", __func__, dev->name); |
| if (dev_has_ofnode(dev) && |
| dev_read_bool(dev, "pci,no-autoconfig")) |
| continue; |
| ret = dm_pciauto_config_device(dev); |
| if (ret < 0) |
| return log_msg_ret("auto", ret); |
| max_bus = ret; |
| sub_bus = max(sub_bus, max_bus); |
| |
| if (dev_get_parent(dev) == bus) |
| continue; |
| |
| pplat = dev_get_parent_plat(dev); |
| if (pplat->class == (PCI_CLASS_DISPLAY_VGA << 8)) |
| set_vga_bridge_bits(dev); |
| } |
| if (hose->last_busno < sub_bus) |
| hose->last_busno = sub_bus; |
| debug("%s: done\n", __func__); |
| |
| return log_msg_ret("sub", sub_bus); |
| } |
| |
| int pci_generic_mmap_write_config( |
| const struct udevice *bus, |
| int (*addr_f)(const struct udevice *bus, pci_dev_t bdf, uint offset, |
| void **addrp), |
| pci_dev_t bdf, |
| uint offset, |
| ulong value, |
| enum pci_size_t size) |
| { |
| void *address; |
| |
| if (addr_f(bus, bdf, offset, &address) < 0) |
| return 0; |
| |
| switch (size) { |
| case PCI_SIZE_8: |
| writeb(value, address); |
| return 0; |
| case PCI_SIZE_16: |
| writew(value, address); |
| return 0; |
| case PCI_SIZE_32: |
| writel(value, address); |
| return 0; |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| int pci_generic_mmap_read_config( |
| const struct udevice *bus, |
| int (*addr_f)(const struct udevice *bus, pci_dev_t bdf, uint offset, |
| void **addrp), |
| pci_dev_t bdf, |
| uint offset, |
| ulong *valuep, |
| enum pci_size_t size) |
| { |
| void *address; |
| |
| if (addr_f(bus, bdf, offset, &address) < 0) { |
| *valuep = pci_get_ff(size); |
| return 0; |
| } |
| |
| switch (size) { |
| case PCI_SIZE_8: |
| *valuep = readb(address); |
| return 0; |
| case PCI_SIZE_16: |
| *valuep = readw(address); |
| return 0; |
| case PCI_SIZE_32: |
| *valuep = readl(address); |
| return 0; |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| int dm_pci_hose_probe_bus(struct udevice *bus) |
| { |
| u8 header_type; |
| int sub_bus; |
| int ret; |
| int ea_pos; |
| u8 reg; |
| |
| debug("%s\n", __func__); |
| |
| dm_pci_read_config8(bus, PCI_HEADER_TYPE, &header_type); |
| header_type &= 0x7f; |
| if (header_type != PCI_HEADER_TYPE_BRIDGE) { |
| debug("%s: Skipping PCI device %d with Non-Bridge Header Type 0x%x\n", |
| __func__, PCI_DEV(dm_pci_get_bdf(bus)), header_type); |
| return log_msg_ret("probe", -EINVAL); |
| } |
| |
| if (IS_ENABLED(CONFIG_PCI_ENHANCED_ALLOCATION)) |
| ea_pos = dm_pci_find_capability(bus, PCI_CAP_ID_EA); |
| else |
| ea_pos = 0; |
| |
| if (ea_pos) { |
| dm_pci_read_config8(bus, ea_pos + sizeof(u32) + sizeof(u8), |
| ®); |
| sub_bus = reg; |
| } else { |
| sub_bus = pci_get_bus_max() + 1; |
| } |
| debug("%s: bus = %d/%s\n", __func__, sub_bus, bus->name); |
| dm_pciauto_prescan_setup_bridge(bus, sub_bus); |
| |
| ret = device_probe(bus); |
| if (ret) { |
| debug("%s: Cannot probe bus %s: %d\n", __func__, bus->name, |
| ret); |
| return log_msg_ret("probe", ret); |
| } |
| |
| if (!ea_pos) |
| sub_bus = pci_get_bus_max(); |
| |
| dm_pciauto_postscan_setup_bridge(bus, sub_bus); |
| |
| return sub_bus; |
| } |
| |
| /** |
| * pci_match_one_device - Tell if a PCI device structure has a matching |
| * PCI device id structure |
| * @id: single PCI device id structure to match |
| * @find: the PCI device id structure to match against |
| * |
| * Returns true if the finding pci_device_id structure matched or false if |
| * there is no match. |
| */ |
| static bool pci_match_one_id(const struct pci_device_id *id, |
| const struct pci_device_id *find) |
| { |
| if ((id->vendor == PCI_ANY_ID || id->vendor == find->vendor) && |
| (id->device == PCI_ANY_ID || id->device == find->device) && |
| (id->subvendor == PCI_ANY_ID || id->subvendor == find->subvendor) && |
| (id->subdevice == PCI_ANY_ID || id->subdevice == find->subdevice) && |
| !((id->class ^ find->class) & id->class_mask)) |
| return true; |
| |
| return false; |
| } |
| |
| /** |
| * pci_need_device_pre_reloc() - Check if a device should be bound |
| * |
| * This checks a list of vendor/device-ID values indicating devices that should |
| * be bound before relocation. |
| * |
| * @bus: Bus to check |
| * @vendor: Vendor ID to check |
| * @device: Device ID to check |
| * Return: true if the vendor/device is in the list, false if not |
| */ |
| static bool pci_need_device_pre_reloc(struct udevice *bus, uint vendor, |
| uint device) |
| { |
| u32 vendev; |
| int index; |
| |
| for (index = 0; |
| !dev_read_u32_index(bus, "u-boot,pci-pre-reloc", index, |
| &vendev); |
| index++) { |
| if (vendev == PCI_VENDEV(vendor, device)) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /** |
| * pci_find_and_bind_driver() - Find and bind the right PCI driver |
| * |
| * This only looks at certain fields in the descriptor. |
| * |
| * @parent: Parent bus |
| * @find_id: Specification of the driver to find |
| * @bdf: Bus/device/function addreess - see PCI_BDF() |
| * @devp: Returns a pointer to the device created |
| * Return: 0 if OK, -EPERM if the device is not needed before relocation and |
| * therefore was not created, other -ve value on error |
| */ |
| static int pci_find_and_bind_driver(struct udevice *parent, |
| struct pci_device_id *find_id, |
| pci_dev_t bdf, struct udevice **devp) |
| { |
| struct pci_driver_entry *start, *entry; |
| ofnode node = ofnode_null(); |
| const char *drv; |
| int n_ents; |
| int ret; |
| char name[30], *str; |
| bool bridge; |
| |
| *devp = NULL; |
| |
| debug("%s: Searching for driver: vendor=%x, device=%x\n", __func__, |
| find_id->vendor, find_id->device); |
| |
| /* Determine optional OF node */ |
| if (ofnode_valid(dev_ofnode(parent))) |
| pci_dev_find_ofnode(parent, bdf, &node); |
| |
| if (ofnode_valid(node) && !ofnode_is_available(node)) { |
| debug("%s: Ignoring disabled device\n", __func__); |
| return log_msg_ret("dis", -EPERM); |
| } |
| |
| start = ll_entry_start(struct pci_driver_entry, pci_driver_entry); |
| n_ents = ll_entry_count(struct pci_driver_entry, pci_driver_entry); |
| for (entry = start; entry != start + n_ents; entry++) { |
| const struct pci_device_id *id; |
| struct udevice *dev; |
| const struct driver *drv; |
| |
| for (id = entry->match; |
| id->vendor || id->subvendor || id->class_mask; |
| id++) { |
| if (!pci_match_one_id(id, find_id)) |
| continue; |
| |
| drv = entry->driver; |
| |
| /* |
| * In the pre-relocation phase, we only bind devices |
| * whose driver has the DM_FLAG_PRE_RELOC set, to save |
| * precious memory space as on some platforms as that |
| * space is pretty limited (ie: using Cache As RAM). |
| */ |
| if (!(gd->flags & GD_FLG_RELOC) && |
| !(drv->flags & DM_FLAG_PRE_RELOC)) |
| return log_msg_ret("pre", -EPERM); |
| |
| /* |
| * We could pass the descriptor to the driver as |
| * plat (instead of NULL) and allow its bind() |
| * method to return -ENOENT if it doesn't support this |
| * device. That way we could continue the search to |
| * find another driver. For now this doesn't seem |
| * necesssary, so just bind the first match. |
| */ |
| ret = device_bind(parent, drv, drv->name, NULL, node, |
| &dev); |
| if (ret) |
| goto error; |
| debug("%s: Match found: %s\n", __func__, drv->name); |
| dev->driver_data = id->driver_data; |
| *devp = dev; |
| return 0; |
| } |
| } |
| |
| bridge = (find_id->class >> 8) == PCI_CLASS_BRIDGE_PCI; |
| /* |
| * In the pre-relocation phase, we only bind bridge devices to save |
| * precious memory space as on some platforms as that space is pretty |
| * limited (ie: using Cache As RAM). |
| */ |
| if (!(gd->flags & GD_FLG_RELOC) && !bridge && |
| !pci_need_device_pre_reloc(parent, find_id->vendor, |
| find_id->device)) |
| return log_msg_ret("notbr", -EPERM); |
| |
| /* Bind a generic driver so that the device can be used */ |
| sprintf(name, "pci_%x:%x.%x", dev_seq(parent), PCI_DEV(bdf), |
| PCI_FUNC(bdf)); |
| str = strdup(name); |
| if (!str) |
| return -ENOMEM; |
| drv = bridge ? "pci_bridge_drv" : "pci_generic_drv"; |
| |
| ret = device_bind_driver_to_node(parent, drv, str, node, devp); |
| if (ret) { |
| debug("%s: Failed to bind generic driver: %d\n", __func__, ret); |
| free(str); |
| return ret; |
| } |
| debug("%s: No match found: bound generic driver instead\n", __func__); |
| |
| return 0; |
| |
| error: |
| debug("%s: No match found: error %d\n", __func__, ret); |
| return ret; |
| } |
| |
| __weak extern void board_pci_fixup_dev(struct udevice *bus, struct udevice *dev) |
| { |
| } |
| |
| int pci_bind_bus_devices(struct udevice *bus) |
| { |
| ulong vendor, device; |
| ulong header_type; |
| pci_dev_t bdf, end; |
| bool found_multi; |
| int ari_off; |
| int ret; |
| |
| found_multi = false; |
| end = PCI_BDF(dev_seq(bus), PCI_MAX_PCI_DEVICES - 1, |
| PCI_MAX_PCI_FUNCTIONS - 1); |
| for (bdf = PCI_BDF(dev_seq(bus), 0, 0); bdf <= end; |
| bdf += PCI_BDF(0, 0, 1)) { |
| struct pci_child_plat *pplat; |
| struct udevice *dev; |
| ulong class; |
| |
| if (!PCI_FUNC(bdf)) |
| found_multi = false; |
| if (PCI_FUNC(bdf) && !found_multi) |
| continue; |
| |
| /* Check only the first access, we don't expect problems */ |
| ret = pci_bus_read_config(bus, bdf, PCI_VENDOR_ID, &vendor, |
| PCI_SIZE_16); |
| if (ret || vendor == 0xffff || vendor == 0x0000) |
| continue; |
| |
| pci_bus_read_config(bus, bdf, PCI_HEADER_TYPE, |
| &header_type, PCI_SIZE_8); |
| |
| if (!PCI_FUNC(bdf)) |
| found_multi = header_type & 0x80; |
| |
| debug("%s: bus %d/%s: found device %x, function %d", __func__, |
| dev_seq(bus), bus->name, PCI_DEV(bdf), PCI_FUNC(bdf)); |
| pci_bus_read_config(bus, bdf, PCI_DEVICE_ID, &device, |
| PCI_SIZE_16); |
| pci_bus_read_config(bus, bdf, PCI_CLASS_REVISION, &class, |
| PCI_SIZE_32); |
| class >>= 8; |
| |
| /* Find this device in the device tree */ |
| ret = pci_bus_find_devfn(bus, PCI_MASK_BUS(bdf), &dev); |
| debug(": find ret=%d\n", ret); |
| |
| /* If nothing in the device tree, bind a device */ |
| if (ret == -ENODEV) { |
| struct pci_device_id find_id; |
| ulong val; |
| |
| memset(&find_id, '\0', sizeof(find_id)); |
| find_id.vendor = vendor; |
| find_id.device = device; |
| find_id.class = class; |
| if ((header_type & 0x7f) == PCI_HEADER_TYPE_NORMAL) { |
| pci_bus_read_config(bus, bdf, |
| PCI_SUBSYSTEM_VENDOR_ID, |
| &val, PCI_SIZE_32); |
| find_id.subvendor = val & 0xffff; |
| find_id.subdevice = val >> 16; |
| } |
| ret = pci_find_and_bind_driver(bus, &find_id, bdf, |
| &dev); |
| } |
| if (ret == -EPERM) |
| continue; |
| else if (ret) |
| return ret; |
| |
| /* Update the platform data */ |
| pplat = dev_get_parent_plat(dev); |
| pplat->devfn = PCI_MASK_BUS(bdf); |
| pplat->vendor = vendor; |
| pplat->device = device; |
| pplat->class = class; |
| |
| if (IS_ENABLED(CONFIG_PCI_ARID)) { |
| ari_off = dm_pci_find_ext_capability(dev, |
| PCI_EXT_CAP_ID_ARI); |
| if (ari_off) { |
| u16 ari_cap; |
| |
| /* |
| * Read Next Function number in ARI Cap |
| * Register |
| */ |
| dm_pci_read_config16(dev, ari_off + 4, |
| &ari_cap); |
| /* |
| * Update next scan on this function number, |
| * subtract 1 in BDF to satisfy loop increment. |
| */ |
| if (ari_cap & 0xff00) { |
| bdf = PCI_BDF(PCI_BUS(bdf), |
| PCI_DEV(ari_cap), |
| PCI_FUNC(ari_cap)); |
| bdf = bdf - 0x100; |
| } |
| } |
| } |
| |
| board_pci_fixup_dev(bus, dev); |
| } |
| |
| return 0; |
| } |
| |
| static int decode_regions(struct pci_controller *hose, ofnode parent_node, |
| ofnode node) |
| { |
| int pci_addr_cells, addr_cells, size_cells; |
| int cells_per_record; |
| struct bd_info *bd; |
| const u32 *prop; |
| int max_regions; |
| int len; |
| int i; |
| |
| prop = ofnode_get_property(node, "ranges", &len); |
| if (!prop) { |
| debug("%s: Cannot decode regions\n", __func__); |
| return -EINVAL; |
| } |
| |
| pci_addr_cells = ofnode_read_simple_addr_cells(node); |
| addr_cells = ofnode_read_simple_addr_cells(parent_node); |
| size_cells = ofnode_read_simple_size_cells(node); |
| |
| /* PCI addresses are always 3-cells */ |
| len /= sizeof(u32); |
| cells_per_record = pci_addr_cells + addr_cells + size_cells; |
| hose->region_count = 0; |
| debug("%s: len=%d, cells_per_record=%d\n", __func__, len, |
| cells_per_record); |
| |
| /* Dynamically allocate the regions array */ |
| max_regions = len / cells_per_record + CONFIG_NR_DRAM_BANKS; |
| hose->regions = (struct pci_region *) |
| calloc(1, max_regions * sizeof(struct pci_region)); |
| if (!hose->regions) |
| return -ENOMEM; |
| |
| for (i = 0; i < max_regions; i++, len -= cells_per_record) { |
| u64 pci_addr, addr, size; |
| int space_code; |
| u32 flags; |
| int type; |
| int pos; |
| |
| if (len < cells_per_record) |
| break; |
| flags = fdt32_to_cpu(prop[0]); |
| space_code = (flags >> 24) & 3; |
| pci_addr = fdtdec_get_number(prop + 1, 2); |
| prop += pci_addr_cells; |
| addr = fdtdec_get_number(prop, addr_cells); |
| prop += addr_cells; |
| size = fdtdec_get_number(prop, size_cells); |
| prop += size_cells; |
| debug("%s: region %d, pci_addr=%llx, addr=%llx, size=%llx, space_code=%d\n", |
| __func__, hose->region_count, pci_addr, addr, size, space_code); |
| if (space_code & 2) { |
| type = flags & (1U << 30) ? PCI_REGION_PREFETCH : |
| PCI_REGION_MEM; |
| } else if (space_code & 1) { |
| type = PCI_REGION_IO; |
| } else { |
| continue; |
| } |
| |
| if (!IS_ENABLED(CONFIG_SYS_PCI_64BIT) && |
| type == PCI_REGION_MEM && upper_32_bits(pci_addr)) { |
| debug(" - pci_addr beyond the 32-bit boundary, ignoring\n"); |
| continue; |
| } |
| |
| if (!IS_ENABLED(CONFIG_PHYS_64BIT) && upper_32_bits(addr)) { |
| debug(" - addr beyond the 32-bit boundary, ignoring\n"); |
| continue; |
| } |
| |
| if (~((pci_addr_t)0) - pci_addr < size) { |
| debug(" - PCI range exceeds max address, ignoring\n"); |
| continue; |
| } |
| |
| if (~((phys_addr_t)0) - addr < size) { |
| debug(" - phys range exceeds max address, ignoring\n"); |
| continue; |
| } |
| |
| pos = -1; |
| if (!IS_ENABLED(CONFIG_PCI_REGION_MULTI_ENTRY)) { |
| for (i = 0; i < hose->region_count; i++) { |
| if (hose->regions[i].flags == type) |
| pos = i; |
| } |
| } |
| |
| if (pos == -1) |
| pos = hose->region_count++; |
| debug(" - type=%d, pos=%d\n", type, pos); |
| pci_set_region(hose->regions + pos, pci_addr, addr, size, type); |
| } |
| |
| /* Add a region for our local memory */ |
| bd = gd->bd; |
| if (!bd) |
| return 0; |
| |
| for (i = 0; i < CONFIG_NR_DRAM_BANKS; ++i) { |
| if (bd->bi_dram[i].size) { |
| phys_addr_t start = bd->bi_dram[i].start; |
| |
| if (IS_ENABLED(CONFIG_PCI_MAP_SYSTEM_MEMORY)) |
| start = virt_to_phys((void *)(uintptr_t)bd->bi_dram[i].start); |
| |
| pci_set_region(hose->regions + hose->region_count++, |
| start, start, bd->bi_dram[i].size, |
| PCI_REGION_MEM | PCI_REGION_SYS_MEMORY); |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int pci_uclass_pre_probe(struct udevice *bus) |
| { |
| struct pci_controller *hose; |
| struct uclass *uc; |
| int ret; |
| |
| debug("%s, bus=%d/%s, parent=%s\n", __func__, dev_seq(bus), bus->name, |
| bus->parent->name); |
| hose = dev_get_uclass_priv(bus); |
| |
| /* |
| * Set the sequence number, if device_bind() doesn't. We want control |
| * of this so that numbers are allocated as devices are probed. That |
| * ensures that sub-bus numbered is correct (sub-buses must get numbers |
| * higher than their parents) |
| */ |
| if (dev_seq(bus) == -1) { |
| ret = uclass_get(UCLASS_PCI, &uc); |
| if (ret) |
| return ret; |
| bus->seq_ = uclass_find_next_free_seq(uc); |
| } |
| |
| /* For bridges, use the top-level PCI controller */ |
| if (!device_is_on_pci_bus(bus)) { |
| hose->ctlr = bus; |
| ret = decode_regions(hose, dev_ofnode(bus->parent), |
| dev_ofnode(bus)); |
| if (ret) |
| return ret; |
| } else { |
| struct pci_controller *parent_hose; |
| |
| parent_hose = dev_get_uclass_priv(bus->parent); |
| hose->ctlr = parent_hose->bus; |
| } |
| |
| hose->bus = bus; |
| hose->first_busno = dev_seq(bus); |
| hose->last_busno = dev_seq(bus); |
| if (dev_has_ofnode(bus)) { |
| hose->skip_auto_config_until_reloc = |
| dev_read_bool(bus, |
| "u-boot,skip-auto-config-until-reloc"); |
| } |
| |
| return 0; |
| } |
| |
| static int pci_uclass_post_probe(struct udevice *bus) |
| { |
| struct pci_controller *hose = dev_get_uclass_priv(bus); |
| int ret; |
| |
| debug("%s: probing bus %d\n", __func__, dev_seq(bus)); |
| ret = pci_bind_bus_devices(bus); |
| if (ret) |
| return log_msg_ret("bind", ret); |
| |
| if (CONFIG_IS_ENABLED(PCI_PNP) && ll_boot_init() && |
| (!hose->skip_auto_config_until_reloc || |
| (gd->flags & GD_FLG_RELOC))) { |
| ret = pci_auto_config_devices(bus); |
| if (ret < 0) |
| return log_msg_ret("cfg", ret); |
| } |
| |
| #if defined(CONFIG_X86) && defined(CONFIG_HAVE_FSP) |
| /* |
| * Per Intel FSP specification, we should call FSP notify API to |
| * inform FSP that PCI enumeration has been done so that FSP will |
| * do any necessary initialization as required by the chipset's |
| * BIOS Writer's Guide (BWG). |
| * |
| * Unfortunately we have to put this call here as with driver model, |
| * the enumeration is all done on a lazy basis as needed, so until |
| * something is touched on PCI it won't happen. |
| * |
| * Note we only call this 1) after U-Boot is relocated, and 2) |
| * root bus has finished probing. |
| */ |
| if ((gd->flags & GD_FLG_RELOC) && dev_seq(bus) == 0 && ll_boot_init()) { |
| ret = fsp_init_phase_pci(); |
| if (ret) |
| return log_msg_ret("fsp", ret); |
| } |
| #endif |
| |
| return 0; |
| } |
| |
| static int pci_uclass_child_post_bind(struct udevice *dev) |
| { |
| struct pci_child_plat *pplat; |
| |
| if (!dev_has_ofnode(dev)) |
| return 0; |
| |
| pplat = dev_get_parent_plat(dev); |
| |
| /* Extract vendor id and device id if available */ |
| ofnode_read_pci_vendev(dev_ofnode(dev), &pplat->vendor, &pplat->device); |
| |
| /* Extract the devfn from fdt_pci_addr */ |
| pplat->devfn = pci_get_devfn(dev); |
| |
| return 0; |
| } |
| |
| static int pci_bridge_read_config(const struct udevice *bus, pci_dev_t bdf, |
| uint offset, ulong *valuep, |
| enum pci_size_t size) |
| { |
| struct pci_controller *hose = dev_get_uclass_priv(bus); |
| |
| return pci_bus_read_config(hose->ctlr, bdf, offset, valuep, size); |
| } |
| |
| static int pci_bridge_write_config(struct udevice *bus, pci_dev_t bdf, |
| uint offset, ulong value, |
| enum pci_size_t size) |
| { |
| struct pci_controller *hose = dev_get_uclass_priv(bus); |
| |
| return pci_bus_write_config(hose->ctlr, bdf, offset, value, size); |
| } |
| |
| static int skip_to_next_device(struct udevice *bus, struct udevice **devp) |
| { |
| struct udevice *dev; |
| int ret = 0; |
| |
| /* |
| * Scan through all the PCI controllers. On x86 there will only be one |
| * but that is not necessarily true on other hardware. |
| */ |
| do { |
| device_find_first_child(bus, &dev); |
| if (dev) { |
| *devp = dev; |
| return 0; |
| } |
| ret = uclass_next_device(&bus); |
| if (ret) |
| return ret; |
| } while (bus); |
| |
| return 0; |
| } |
| |
| int pci_find_next_device(struct udevice **devp) |
| { |
| struct udevice *child = *devp; |
| struct udevice *bus = child->parent; |
| int ret; |
| |
| /* First try all the siblings */ |
| *devp = NULL; |
| while (child) { |
| device_find_next_child(&child); |
| if (child) { |
| *devp = child; |
| return 0; |
| } |
| } |
| |
| /* We ran out of siblings. Try the next bus */ |
| ret = uclass_next_device(&bus); |
| if (ret) |
| return ret; |
| |
| return bus ? skip_to_next_device(bus, devp) : 0; |
| } |
| |
| int pci_find_first_device(struct udevice **devp) |
| { |
| struct udevice *bus; |
| int ret; |
| |
| *devp = NULL; |
| ret = uclass_first_device(UCLASS_PCI, &bus); |
| if (ret) |
| return ret; |
| |
| return skip_to_next_device(bus, devp); |
| } |
| |
| ulong pci_conv_32_to_size(ulong value, uint offset, enum pci_size_t size) |
| { |
| switch (size) { |
| case PCI_SIZE_8: |
| return (value >> ((offset & 3) * 8)) & 0xff; |
| case PCI_SIZE_16: |
| return (value >> ((offset & 2) * 8)) & 0xffff; |
| default: |
| return value; |
| } |
| } |
| |
| ulong pci_conv_size_to_32(ulong old, ulong value, uint offset, |
| enum pci_size_t size) |
| { |
| uint off_mask; |
| uint val_mask, shift; |
| ulong ldata, mask; |
| |
| switch (size) { |
| case PCI_SIZE_8: |
| off_mask = 3; |
| val_mask = 0xff; |
| break; |
| case PCI_SIZE_16: |
| off_mask = 2; |
| val_mask = 0xffff; |
| break; |
| default: |
| return value; |
| } |
| shift = (offset & off_mask) * 8; |
| ldata = (value & val_mask) << shift; |
| mask = val_mask << shift; |
| value = (old & ~mask) | ldata; |
| |
| return value; |
| } |
| |
| int pci_get_dma_regions(struct udevice *dev, struct pci_region *memp, int index) |
| { |
| int pci_addr_cells, addr_cells, size_cells; |
| int cells_per_record; |
| const u32 *prop; |
| int len; |
| int i = 0; |
| |
| prop = ofnode_get_property(dev_ofnode(dev), "dma-ranges", &len); |
| if (!prop) { |
| log_err("PCI: Device '%s': Cannot decode dma-ranges\n", |
| dev->name); |
| return -EINVAL; |
| } |
| |
| pci_addr_cells = ofnode_read_simple_addr_cells(dev_ofnode(dev)); |
| addr_cells = ofnode_read_simple_addr_cells(dev_ofnode(dev->parent)); |
| size_cells = ofnode_read_simple_size_cells(dev_ofnode(dev)); |
| |
| /* PCI addresses are always 3-cells */ |
| len /= sizeof(u32); |
| cells_per_record = pci_addr_cells + addr_cells + size_cells; |
| debug("%s: len=%d, cells_per_record=%d\n", __func__, len, |
| cells_per_record); |
| |
| while (len) { |
| memp->bus_start = fdtdec_get_number(prop + 1, 2); |
| prop += pci_addr_cells; |
| memp->phys_start = fdtdec_get_number(prop, addr_cells); |
| prop += addr_cells; |
| memp->size = fdtdec_get_number(prop, size_cells); |
| prop += size_cells; |
| |
| if (i == index) |
| return 0; |
| i++; |
| len -= cells_per_record; |
| } |
| |
| return -EINVAL; |
| } |
| |
| int pci_get_regions(struct udevice *dev, struct pci_region **iop, |
| struct pci_region **memp, struct pci_region **prefp) |
| { |
| struct udevice *bus = pci_get_controller(dev); |
| struct pci_controller *hose = dev_get_uclass_priv(bus); |
| int i; |
| |
| *iop = NULL; |
| *memp = NULL; |
| *prefp = NULL; |
| for (i = 0; i < hose->region_count; i++) { |
| switch (hose->regions[i].flags) { |
| case PCI_REGION_IO: |
| if (!*iop || (*iop)->size < hose->regions[i].size) |
| *iop = hose->regions + i; |
| break; |
| case PCI_REGION_MEM: |
| if (!*memp || (*memp)->size < hose->regions[i].size) |
| *memp = hose->regions + i; |
| break; |
| case (PCI_REGION_MEM | PCI_REGION_PREFETCH): |
| if (!*prefp || (*prefp)->size < hose->regions[i].size) |
| *prefp = hose->regions + i; |
| break; |
| } |
| } |
| |
| return (*iop != NULL) + (*memp != NULL) + (*prefp != NULL); |
| } |
| |
| u32 dm_pci_read_bar32(const struct udevice *dev, int barnum) |
| { |
| u32 addr; |
| int bar; |
| |
| bar = PCI_BASE_ADDRESS_0 + barnum * 4; |
| dm_pci_read_config32(dev, bar, &addr); |
| |
| /* |
| * If we get an invalid address, return this so that comparisons with |
| * FDT_ADDR_T_NONE work correctly |
| */ |
| if (addr == 0xffffffff) |
| return addr; |
| else if (addr & PCI_BASE_ADDRESS_SPACE_IO) |
| return addr & PCI_BASE_ADDRESS_IO_MASK; |
| else |
| return addr & PCI_BASE_ADDRESS_MEM_MASK; |
| } |
| |
| void dm_pci_write_bar32(struct udevice *dev, int barnum, u32 addr) |
| { |
| int bar; |
| |
| bar = PCI_BASE_ADDRESS_0 + barnum * 4; |
| dm_pci_write_config32(dev, bar, addr); |
| } |
| |
| phys_addr_t dm_pci_bus_to_phys(struct udevice *dev, pci_addr_t bus_addr, |
| size_t len, unsigned long mask, |
| unsigned long flags) |
| { |
| struct udevice *ctlr; |
| struct pci_controller *hose; |
| struct pci_region *res; |
| pci_addr_t offset; |
| int i; |
| |
| /* The root controller has the region information */ |
| ctlr = pci_get_controller(dev); |
| hose = dev_get_uclass_priv(ctlr); |
| |
| if (hose->region_count == 0) |
| return bus_addr; |
| |
| for (i = 0; i < hose->region_count; i++) { |
| res = &hose->regions[i]; |
| |
| if ((res->flags & mask) != flags) |
| continue; |
| |
| if (bus_addr < res->bus_start) |
| continue; |
| |
| offset = bus_addr - res->bus_start; |
| if (offset >= res->size) |
| continue; |
| |
| if (len > res->size - offset) |
| continue; |
| |
| return res->phys_start + offset; |
| } |
| |
| puts("pci_hose_bus_to_phys: invalid physical address\n"); |
| return 0; |
| } |
| |
| pci_addr_t dm_pci_phys_to_bus(struct udevice *dev, phys_addr_t phys_addr, |
| size_t len, unsigned long mask, |
| unsigned long flags) |
| { |
| struct udevice *ctlr; |
| struct pci_controller *hose; |
| struct pci_region *res; |
| phys_addr_t offset; |
| int i; |
| |
| /* The root controller has the region information */ |
| ctlr = pci_get_controller(dev); |
| hose = dev_get_uclass_priv(ctlr); |
| |
| if (hose->region_count == 0) |
| return phys_addr; |
| |
| for (i = 0; i < hose->region_count; i++) { |
| res = &hose->regions[i]; |
| |
| if ((res->flags & mask) != flags) |
| continue; |
| |
| if (phys_addr < res->phys_start) |
| continue; |
| |
| offset = phys_addr - res->phys_start; |
| if (offset >= res->size) |
| continue; |
| |
| if (len > res->size - offset) |
| continue; |
| |
| return res->bus_start + offset; |
| } |
| |
| puts("pci_hose_phys_to_bus: invalid physical address\n"); |
| return 0; |
| } |
| |
| static phys_addr_t dm_pci_map_ea_virt(struct udevice *dev, int ea_off, |
| struct pci_child_plat *pdata) |
| { |
| phys_addr_t addr = 0; |
| |
| /* |
| * In the case of a Virtual Function device using BAR |
| * base and size, add offset for VFn BAR(1, 2, 3...n) |
| */ |
| if (pdata->is_virtfn) { |
| size_t sz; |
| u32 ea_entry; |
| |
| /* MaxOffset, 1st DW */ |
| dm_pci_read_config32(dev, ea_off + 8, &ea_entry); |
| sz = ea_entry & PCI_EA_FIELD_MASK; |
| /* Fill up lower 2 bits */ |
| sz |= (~PCI_EA_FIELD_MASK); |
| |
| if (ea_entry & PCI_EA_IS_64) { |
| /* MaxOffset 2nd DW */ |
| dm_pci_read_config32(dev, ea_off + 16, &ea_entry); |
| sz |= ((u64)ea_entry) << 32; |
| } |
| |
| addr = (pdata->virtid - 1) * (sz + 1); |
| } |
| |
| return addr; |
| } |
| |
| static void *dm_pci_map_ea_bar(struct udevice *dev, int bar, size_t offset, |
| size_t len, int ea_off, |
| struct pci_child_plat *pdata) |
| { |
| int ea_cnt, i, entry_size; |
| int bar_id = (bar - PCI_BASE_ADDRESS_0) >> 2; |
| u32 ea_entry; |
| phys_addr_t addr; |
| |
| if (IS_ENABLED(CONFIG_PCI_SRIOV)) { |
| /* |
| * In the case of a Virtual Function device, device is |
| * Physical function, so pdata will point to required VF |
| * specific data. |
| */ |
| if (pdata->is_virtfn) |
| bar_id += PCI_EA_BEI_VF_BAR0; |
| } |
| |
| /* EA capability structure header */ |
| dm_pci_read_config32(dev, ea_off, &ea_entry); |
| ea_cnt = (ea_entry >> 16) & PCI_EA_NUM_ENT_MASK; |
| ea_off += PCI_EA_FIRST_ENT; |
| |
| for (i = 0; i < ea_cnt; i++, ea_off += entry_size) { |
| /* Entry header */ |
| dm_pci_read_config32(dev, ea_off, &ea_entry); |
| entry_size = ((ea_entry & PCI_EA_ES) + 1) << 2; |
| |
| if (((ea_entry & PCI_EA_BEI) >> 4) != bar_id) |
| continue; |
| |
| /* Base address, 1st DW */ |
| dm_pci_read_config32(dev, ea_off + 4, &ea_entry); |
| addr = ea_entry & PCI_EA_FIELD_MASK; |
| if (ea_entry & PCI_EA_IS_64) { |
| /* Base address, 2nd DW, skip over 4B MaxOffset */ |
| dm_pci_read_config32(dev, ea_off + 12, &ea_entry); |
| addr |= ((u64)ea_entry) << 32; |
| } |
| |
| if (IS_ENABLED(CONFIG_PCI_SRIOV)) |
| addr += dm_pci_map_ea_virt(dev, ea_off, pdata); |
| |
| if (~((phys_addr_t)0) - addr < offset) |
| return NULL; |
| |
| /* size ignored for now */ |
| return map_physmem(addr + offset, len, MAP_NOCACHE); |
| } |
| |
| return 0; |
| } |
| |
| void *dm_pci_map_bar(struct udevice *dev, int bar, size_t offset, size_t len, |
| unsigned long mask, unsigned long flags) |
| { |
| struct pci_child_plat *pdata = dev_get_parent_plat(dev); |
| struct udevice *udev = dev; |
| pci_addr_t pci_bus_addr; |
| u32 bar_response; |
| int ea_off; |
| |
| if (IS_ENABLED(CONFIG_PCI_SRIOV)) { |
| /* |
| * In case of Virtual Function devices, use PF udevice |
| * as EA capability is defined in Physical Function |
| */ |
| if (pdata->is_virtfn) |
| udev = pdata->pfdev; |
| } |
| |
| /* |
| * if the function supports Enhanced Allocation use that instead of |
| * BARs |
| * Incase of virtual functions, pdata will help read VF BEI |
| * and EA entry size. |
| */ |
| if (IS_ENABLED(CONFIG_PCI_ENHANCED_ALLOCATION)) |
| ea_off = dm_pci_find_capability(udev, PCI_CAP_ID_EA); |
| else |
| ea_off = 0; |
| |
| if (ea_off) |
| return dm_pci_map_ea_bar(udev, bar, offset, len, ea_off, pdata); |
| |
| /* read BAR address */ |
| dm_pci_read_config32(udev, bar, &bar_response); |
| pci_bus_addr = (pci_addr_t)(bar_response & ~0xf); |
| |
| if (~((pci_addr_t)0) - pci_bus_addr < offset) |
| return NULL; |
| |
| /* |
| * Forward the length argument to dm_pci_bus_to_virt. The length will |
| * be used to check that the entire address range has been declared as |
| * a PCI range, but a better check would be to probe for the size of |
| * the bar and prevent overflow more locally. |
| */ |
| return dm_pci_bus_to_virt(udev, pci_bus_addr + offset, len, mask, flags, |
| MAP_NOCACHE); |
| } |
| |
| static int _dm_pci_find_next_capability(struct udevice *dev, u8 pos, int cap) |
| { |
| int ttl = PCI_FIND_CAP_TTL; |
| u8 id; |
| u16 ent; |
| |
| dm_pci_read_config8(dev, pos, &pos); |
| |
| while (ttl--) { |
| if (pos < PCI_STD_HEADER_SIZEOF) |
| break; |
| pos &= ~3; |
| dm_pci_read_config16(dev, pos, &ent); |
| |
| id = ent & 0xff; |
| if (id == 0xff) |
| break; |
| if (id == cap) |
| return pos; |
| pos = (ent >> 8); |
| } |
| |
| return 0; |
| } |
| |
| int dm_pci_find_next_capability(struct udevice *dev, u8 start, int cap) |
| { |
| return _dm_pci_find_next_capability(dev, start + PCI_CAP_LIST_NEXT, |
| cap); |
| } |
| |
| int dm_pci_find_capability(struct udevice *dev, int cap) |
| { |
| u16 status; |
| u8 header_type; |
| u8 pos; |
| |
| dm_pci_read_config16(dev, PCI_STATUS, &status); |
| if (!(status & PCI_STATUS_CAP_LIST)) |
| return 0; |
| |
| dm_pci_read_config8(dev, PCI_HEADER_TYPE, &header_type); |
| if ((header_type & 0x7f) == PCI_HEADER_TYPE_CARDBUS) |
| pos = PCI_CB_CAPABILITY_LIST; |
| else |
| pos = PCI_CAPABILITY_LIST; |
| |
| return _dm_pci_find_next_capability(dev, pos, cap); |
| } |
| |
| int dm_pci_find_next_ext_capability(struct udevice *dev, int start, int cap) |
| { |
| u32 header; |
| int ttl; |
| int pos = PCI_CFG_SPACE_SIZE; |
| |
| /* minimum 8 bytes per capability */ |
| ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8; |
| |
| if (start) |
| pos = start; |
| |
| dm_pci_read_config32(dev, pos, &header); |
| /* |
| * If we have no capabilities, this is indicated by cap ID, |
| * cap version and next pointer all being 0. |
| */ |
| if (header == 0) |
| return 0; |
| |
| while (ttl--) { |
| if (PCI_EXT_CAP_ID(header) == cap) |
| return pos; |
| |
| pos = PCI_EXT_CAP_NEXT(header); |
| if (pos < PCI_CFG_SPACE_SIZE) |
| break; |
| |
| dm_pci_read_config32(dev, pos, &header); |
| } |
| |
| return 0; |
| } |
| |
| int dm_pci_find_ext_capability(struct udevice *dev, int cap) |
| { |
| return dm_pci_find_next_ext_capability(dev, 0, cap); |
| } |
| |
| int dm_pci_flr(struct udevice *dev) |
| { |
| int pcie_off; |
| u32 cap; |
| |
| /* look for PCI Express Capability */ |
| pcie_off = dm_pci_find_capability(dev, PCI_CAP_ID_EXP); |
| if (!pcie_off) |
| return -ENOENT; |
| |
| /* check FLR capability */ |
| dm_pci_read_config32(dev, pcie_off + PCI_EXP_DEVCAP, &cap); |
| if (!(cap & PCI_EXP_DEVCAP_FLR)) |
| return -ENOENT; |
| |
| dm_pci_clrset_config16(dev, pcie_off + PCI_EXP_DEVCTL, 0, |
| PCI_EXP_DEVCTL_BCR_FLR); |
| |
| /* wait 100ms, per PCI spec */ |
| mdelay(100); |
| |
| return 0; |
| } |
| |
| #if defined(CONFIG_PCI_SRIOV) |
| int pci_sriov_init(struct udevice *pdev, int vf_en) |
| { |
| u16 vendor, device; |
| struct udevice *bus; |
| struct udevice *dev; |
| pci_dev_t bdf; |
| u16 ctrl; |
| u16 num_vfs; |
| u16 total_vf; |
| u16 vf_offset; |
| u16 vf_stride; |
| int vf, ret; |
| int pos; |
| |
| pos = dm_pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV); |
| if (!pos) { |
| debug("Error: SRIOV capability not found\n"); |
| return -ENOENT; |
| } |
| |
| dm_pci_read_config16(pdev, pos + PCI_SRIOV_CTRL, &ctrl); |
| |
| dm_pci_read_config16(pdev, pos + PCI_SRIOV_TOTAL_VF, &total_vf); |
| if (vf_en > total_vf) |
| vf_en = total_vf; |
| dm_pci_write_config16(pdev, pos + PCI_SRIOV_NUM_VF, vf_en); |
| |
| ctrl |= PCI_SRIOV_CTRL_VFE | PCI_SRIOV_CTRL_MSE; |
| dm_pci_write_config16(pdev, pos + PCI_SRIOV_CTRL, ctrl); |
| |
| dm_pci_read_config16(pdev, pos + PCI_SRIOV_NUM_VF, &num_vfs); |
| if (num_vfs > vf_en) |
| num_vfs = vf_en; |
| |
| dm_pci_read_config16(pdev, pos + PCI_SRIOV_VF_OFFSET, &vf_offset); |
| dm_pci_read_config16(pdev, pos + PCI_SRIOV_VF_STRIDE, &vf_stride); |
| |
| dm_pci_read_config16(pdev, PCI_VENDOR_ID, &vendor); |
| dm_pci_read_config16(pdev, pos + PCI_SRIOV_VF_DID, &device); |
| |
| bdf = dm_pci_get_bdf(pdev); |
| |
| pci_get_bus(PCI_BUS(bdf), &bus); |
| |
| if (!bus) |
| return -ENODEV; |
| |
| bdf += PCI_BDF(0, 0, vf_offset); |
| |
| for (vf = 0; vf < num_vfs; vf++) { |
| struct pci_child_plat *pplat; |
| ulong class; |
| |
| pci_bus_read_config(bus, bdf, PCI_CLASS_DEVICE, |
| &class, PCI_SIZE_16); |
| |
| debug("%s: bus %d/%s: found VF %x:%x\n", __func__, |
| dev_seq(bus), bus->name, PCI_DEV(bdf), PCI_FUNC(bdf)); |
| |
| /* Find this device in the device tree */ |
| ret = pci_bus_find_devfn(bus, PCI_MASK_BUS(bdf), &dev); |
| |
| if (ret == -ENODEV) { |
| struct pci_device_id find_id; |
| |
| memset(&find_id, '\0', sizeof(find_id)); |
| find_id.vendor = vendor; |
| find_id.device = device; |
| find_id.class = class; |
| |
| ret = pci_find_and_bind_driver(bus, &find_id, |
| bdf, &dev); |
| |
| if (ret) |
| return ret; |
| } |
| |
| /* Update the platform data */ |
| pplat = dev_get_parent_plat(dev); |
| pplat->devfn = PCI_MASK_BUS(bdf); |
| pplat->vendor = vendor; |
| pplat->device = device; |
| pplat->class = class; |
| pplat->is_virtfn = true; |
| pplat->pfdev = pdev; |
| pplat->virtid = vf * vf_stride + vf_offset; |
| |
| debug("%s: bus %d/%s: found VF %x:%x %x:%x class %lx id %x\n", |
| __func__, dev_seq(dev), dev->name, PCI_DEV(bdf), |
| PCI_FUNC(bdf), vendor, device, class, pplat->virtid); |
| bdf += PCI_BDF(0, 0, vf_stride); |
| } |
| |
| return 0; |
| } |
| |
| int pci_sriov_get_totalvfs(struct udevice *pdev) |
| { |
| u16 total_vf; |
| int pos; |
| |
| pos = dm_pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV); |
| if (!pos) { |
| debug("Error: SRIOV capability not found\n"); |
| return -ENOENT; |
| } |
| |
| dm_pci_read_config16(pdev, pos + PCI_SRIOV_TOTAL_VF, &total_vf); |
| |
| return total_vf; |
| } |
| #endif /* SRIOV */ |
| |
| UCLASS_DRIVER(pci) = { |
| .id = UCLASS_PCI, |
| .name = "pci", |
| .flags = DM_UC_FLAG_SEQ_ALIAS | DM_UC_FLAG_NO_AUTO_SEQ, |
| .post_bind = dm_scan_fdt_dev, |
| .pre_probe = pci_uclass_pre_probe, |
| .post_probe = pci_uclass_post_probe, |
| .child_post_bind = pci_uclass_child_post_bind, |
| .per_device_auto = sizeof(struct pci_controller), |
| .per_child_plat_auto = sizeof(struct pci_child_plat), |
| }; |
| |
| static const struct dm_pci_ops pci_bridge_ops = { |
| .read_config = pci_bridge_read_config, |
| .write_config = pci_bridge_write_config, |
| }; |
| |
| static const struct udevice_id pci_bridge_ids[] = { |
| { .compatible = "pci-bridge" }, |
| { } |
| }; |
| |
| U_BOOT_DRIVER(pci_bridge_drv) = { |
| .name = "pci_bridge_drv", |
| .id = UCLASS_PCI, |
| .of_match = pci_bridge_ids, |
| .ops = &pci_bridge_ops, |
| }; |
| |
| UCLASS_DRIVER(pci_generic) = { |
| .id = UCLASS_PCI_GENERIC, |
| .name = "pci_generic", |
| }; |
| |
| static const struct udevice_id pci_generic_ids[] = { |
| { .compatible = "pci-generic" }, |
| { } |
| }; |
| |
| U_BOOT_DRIVER(pci_generic_drv) = { |
| .name = "pci_generic_drv", |
| .id = UCLASS_PCI_GENERIC, |
| .of_match = pci_generic_ids, |
| }; |
| |
| int pci_init(void) |
| { |
| struct udevice *bus; |
| |
| /* |
| * Enumerate all known controller devices. Enumeration has the side- |
| * effect of probing them, so PCIe devices will be enumerated too. |
| */ |
| for (uclass_first_device_check(UCLASS_PCI, &bus); |
| bus; |
| uclass_next_device_check(&bus)) { |
| ; |
| } |
| |
| return 0; |
| } |