Merge git://git.denx.de/u-boot-uniphier
diff --git a/arch/arm/dts/uniphier-ld11-ref.dts b/arch/arm/dts/uniphier-ld11-ref.dts
index ffb473a..54c5317 100644
--- a/arch/arm/dts/uniphier-ld11-ref.dts
+++ b/arch/arm/dts/uniphier-ld11-ref.dts
@@ -40,13 +40,21 @@
 };
 
 &ethsc {
-	interrupts = <0 48 4>;
+	interrupts = <0 8>;
 };
 
 &serial0 {
 	status = "okay";
 };
 
+&gpio {
+	xirq0 {
+		gpio-hog;
+		gpios = <UNIPHIER_GPIO_IRQ(0) 0>;
+		input;
+	};
+};
+
 &i2c0 {
 	status = "okay";
 };
diff --git a/arch/arm/dts/uniphier-ld11.dtsi b/arch/arm/dts/uniphier-ld11.dtsi
index cf079b9..40f27bb 100644
--- a/arch/arm/dts/uniphier-ld11.dtsi
+++ b/arch/arm/dts/uniphier-ld11.dtsi
@@ -7,6 +7,9 @@
  * SPDX-License-Identifier: (GPL-2.0+ OR MIT)
  */
 
+#include <dt-bindings/gpio/gpio.h>
+#include <dt-bindings/gpio/uniphier-gpio.h>
+
 /memreserve/ 0x80000000 0x02000000;
 
 / {
@@ -49,7 +52,7 @@
 		};
 	};
 
-	cluster0_opp: opp_table {
+	cluster0_opp: opp-table {
 		compatible = "operating-points-v2";
 		opp-shared;
 
@@ -96,6 +99,11 @@
 		};
 	};
 
+	emmc_pwrseq: emmc-pwrseq {
+		compatible = "mmc-pwrseq-emmc";
+		reset-gpios = <&gpio UNIPHIER_GPIO_PORT(3, 2) GPIO_ACTIVE_LOW>;
+	};
+
 	timer {
 		compatible = "arm,armv8-timer";
 		interrupts = <1 13 4>,
@@ -119,6 +127,7 @@
 			pinctrl-0 = <&pinctrl_uart0>;
 			clocks = <&peri_clk 0>;
 			clock-frequency = <58820000>;
+			resets = <&peri_rst 0>;
 		};
 
 		serial1: serial@54006900 {
@@ -130,6 +139,7 @@
 			pinctrl-0 = <&pinctrl_uart1>;
 			clocks = <&peri_clk 1>;
 			clock-frequency = <58820000>;
+			resets = <&peri_rst 1>;
 		};
 
 		serial2: serial@54006a00 {
@@ -141,6 +151,7 @@
 			pinctrl-0 = <&pinctrl_uart2>;
 			clocks = <&peri_clk 2>;
 			clock-frequency = <58820000>;
+			resets = <&peri_rst 2>;
 		};
 
 		serial3: serial@54006b00 {
@@ -152,6 +163,7 @@
 			pinctrl-0 = <&pinctrl_uart3>;
 			clocks = <&peri_clk 3>;
 			clock-frequency = <58820000>;
+			resets = <&peri_rst 3>;
 		};
 
 		gpio: gpio@55000000 {
@@ -200,6 +212,7 @@
 			pinctrl-names = "default";
 			pinctrl-0 = <&pinctrl_i2c0>;
 			clocks = <&peri_clk 4>;
+			resets = <&peri_rst 4>;
 			clock-frequency = <100000>;
 		};
 
@@ -213,6 +226,7 @@
 			pinctrl-names = "default";
 			pinctrl-0 = <&pinctrl_i2c1>;
 			clocks = <&peri_clk 5>;
+			resets = <&peri_rst 5>;
 			clock-frequency = <100000>;
 		};
 
@@ -223,6 +237,7 @@
 			#size-cells = <0>;
 			interrupts = <0 43 4>;
 			clocks = <&peri_clk 6>;
+			resets = <&peri_rst 6>;
 			clock-frequency = <400000>;
 		};
 
@@ -236,6 +251,7 @@
 			pinctrl-names = "default";
 			pinctrl-0 = <&pinctrl_i2c3>;
 			clocks = <&peri_clk 7>;
+			resets = <&peri_rst 7>;
 			clock-frequency = <100000>;
 		};
 
@@ -249,6 +265,7 @@
 			pinctrl-names = "default";
 			pinctrl-0 = <&pinctrl_i2c4>;
 			clocks = <&peri_clk 8>;
+			resets = <&peri_rst 8>;
 			clock-frequency = <100000>;
 		};
 
@@ -259,6 +276,7 @@
 			#size-cells = <0>;
 			interrupts = <0 25 4>;
 			clocks = <&peri_clk 9>;
+			resets = <&peri_rst 9>;
 			clock-frequency = <400000>;
 		};
 
@@ -311,9 +329,11 @@
 			pinctrl-names = "default";
 			pinctrl-0 = <&pinctrl_emmc_1v8>;
 			clocks = <&sys_clk 4>;
+			resets = <&sys_rst 4>;
 			bus-width = <8>;
 			mmc-ddr-1_8v;
 			mmc-hs200-1_8v;
+			mmc-pwrseq = <&emmc_pwrseq>;
 			cdns,phy-input-delay-legacy = <4>;
 			cdns,phy-input-delay-mmc-highspeed = <2>;
 			cdns,phy-input-delay-mmc-ddr = <3>;
@@ -328,7 +348,8 @@
 			interrupts = <0 243 4>;
 			pinctrl-names = "default";
 			pinctrl-0 = <&pinctrl_usb0>;
-			clocks = <&mio_clk 7>, <&mio_clk 8>, <&mio_clk 12>;
+			clocks = <&sys_clk 8>, <&mio_clk 7>, <&mio_clk 8>,
+				 <&mio_clk 12>;
 			resets = <&sys_rst 8>, <&mio_rst 7>, <&mio_rst 8>,
 				 <&mio_rst 12>;
 		};
@@ -340,7 +361,8 @@
 			interrupts = <0 244 4>;
 			pinctrl-names = "default";
 			pinctrl-0 = <&pinctrl_usb1>;
-			clocks = <&mio_clk 7>, <&mio_clk 9>, <&mio_clk 13>;
+			clocks = <&sys_clk 8>, <&mio_clk 7>, <&mio_clk 9>,
+				 <&mio_clk 13>;
 			resets = <&sys_rst 8>, <&mio_rst 7>, <&mio_rst 9>,
 				 <&mio_rst 13>;
 		};
@@ -352,7 +374,8 @@
 			interrupts = <0 245 4>;
 			pinctrl-names = "default";
 			pinctrl-0 = <&pinctrl_usb2>;
-			clocks = <&mio_clk 7>, <&mio_clk 10>, <&mio_clk 14>;
+			clocks = <&sys_clk 8>, <&mio_clk 7>, <&mio_clk 10>,
+				 <&mio_clk 14>;
 			resets = <&sys_rst 8>, <&mio_rst 7>, <&mio_rst 10>,
 				 <&mio_rst 14>;
 		};
@@ -384,6 +407,24 @@
 			};
 		};
 
+		soc-glue@5f900000 {
+			compatible = "socionext,uniphier-ld11-soc-glue-debug",
+				     "simple-mfd";
+			#address-cells = <1>;
+			#size-cells = <1>;
+			ranges = <0 0x5f900000 0x2000>;
+
+			efuse@100 {
+				compatible = "socionext,uniphier-efuse";
+				reg = <0x100 0x28>;
+			};
+
+			efuse@200 {
+				compatible = "socionext,uniphier-efuse";
+				reg = <0x200 0x68>;
+			};
+		};
+
 		aidet: aidet@5fc20000 {
 			compatible = "socionext,uniphier-ld11-aidet";
 			reg = <0x5fc20000 0x200>;
@@ -429,6 +470,7 @@
 			pinctrl-names = "default";
 			pinctrl-0 = <&pinctrl_nand>;
 			clocks = <&sys_clk 2>;
+			resets = <&sys_rst 2>;
 		};
 	};
 };
diff --git a/arch/arm/dts/uniphier-ld20-ref.dts b/arch/arm/dts/uniphier-ld20-ref.dts
index 1ca0c86..6933710 100644
--- a/arch/arm/dts/uniphier-ld20-ref.dts
+++ b/arch/arm/dts/uniphier-ld20-ref.dts
@@ -40,13 +40,21 @@
 };
 
 &ethsc {
-	interrupts = <0 48 4>;
+	interrupts = <0 8>;
 };
 
 &serial0 {
 	status = "okay";
 };
 
+&gpio {
+	xirq0 {
+		gpio-hog;
+		gpios = <UNIPHIER_GPIO_IRQ(0) 0>;
+		input;
+	};
+};
+
 &i2c0 {
 	status = "okay";
 };
diff --git a/arch/arm/dts/uniphier-ld20.dtsi b/arch/arm/dts/uniphier-ld20.dtsi
index 68f0292..4d8655e 100644
--- a/arch/arm/dts/uniphier-ld20.dtsi
+++ b/arch/arm/dts/uniphier-ld20.dtsi
@@ -7,6 +7,10 @@
  * SPDX-License-Identifier: (GPL-2.0+ OR MIT)
  */
 
+#include <dt-bindings/gpio/gpio.h>
+#include <dt-bindings/gpio/uniphier-gpio.h>
+#include <dt-bindings/thermal/thermal.h>
+
 /memreserve/ 0x80000000 0x02000000;
 
 / {
@@ -46,6 +50,7 @@
 			clocks = <&sys_clk 32>;
 			enable-method = "psci";
 			operating-points-v2 = <&cluster0_opp>;
+			#cooling-cells = <2>;
 		};
 
 		cpu1: cpu@1 {
@@ -64,6 +69,7 @@
 			clocks = <&sys_clk 33>;
 			enable-method = "psci";
 			operating-points-v2 = <&cluster1_opp>;
+			#cooling-cells = <2>;
 		};
 
 		cpu3: cpu@101 {
@@ -76,7 +82,7 @@
 		};
 	};
 
-	cluster0_opp: opp_table0 {
+	cluster0_opp: opp-table0 {
 		compatible = "operating-points-v2";
 		opp-shared;
 
@@ -114,7 +120,7 @@
 		};
 	};
 
-	cluster1_opp: opp_table1 {
+	cluster1_opp: opp-table1 {
 		compatible = "operating-points-v2";
 		opp-shared;
 
@@ -165,6 +171,11 @@
 		};
 	};
 
+	emmc_pwrseq: emmc-pwrseq {
+		compatible = "mmc-pwrseq-emmc";
+		reset-gpios = <&gpio UNIPHIER_GPIO_PORT(3, 2) GPIO_ACTIVE_LOW>;
+	};
+
 	timer {
 		compatible = "arm,armv8-timer";
 		interrupts = <1 13 4>,
@@ -173,6 +184,40 @@
 			     <1 10 4>;
 	};
 
+	thermal-zones {
+		cpu-thermal {
+			polling-delay-passive = <250>;	/* 250ms */
+			polling-delay = <1000>;		/* 1000ms */
+			thermal-sensors = <&pvtctl>;
+
+			trips {
+				cpu_crit: cpu-crit {
+					temperature = <110000>;	/* 110C */
+					hysteresis = <2000>;
+					type = "critical";
+				};
+				cpu_alert: cpu-alert {
+					temperature = <100000>;	/* 100C */
+					hysteresis = <2000>;
+					type = "passive";
+				};
+			};
+
+			cooling-maps {
+				map0 {
+					trip = <&cpu_alert>;
+					cooling-device = <&cpu0
+					    THERMAL_NO_LIMIT THERMAL_NO_LIMIT>;
+				};
+				map1 {
+					trip = <&cpu_alert>;
+					cooling-device = <&cpu2
+					    THERMAL_NO_LIMIT THERMAL_NO_LIMIT>;
+				};
+			};
+		};
+	};
+
 	soc@0 {
 		compatible = "simple-bus";
 		#address-cells = <1>;
@@ -188,6 +233,7 @@
 			pinctrl-0 = <&pinctrl_uart0>;
 			clocks = <&peri_clk 0>;
 			clock-frequency = <58820000>;
+			resets = <&peri_rst 0>;
 		};
 
 		serial1: serial@54006900 {
@@ -199,6 +245,7 @@
 			pinctrl-0 = <&pinctrl_uart1>;
 			clocks = <&peri_clk 1>;
 			clock-frequency = <58820000>;
+			resets = <&peri_rst 1>;
 		};
 
 		serial2: serial@54006a00 {
@@ -210,6 +257,7 @@
 			pinctrl-0 = <&pinctrl_uart2>;
 			clocks = <&peri_clk 2>;
 			clock-frequency = <58820000>;
+			resets = <&peri_rst 2>;
 		};
 
 		serial3: serial@54006b00 {
@@ -221,6 +269,7 @@
 			pinctrl-0 = <&pinctrl_uart3>;
 			clocks = <&peri_clk 3>;
 			clock-frequency = <58820000>;
+			resets = <&peri_rst 3>;
 		};
 
 		gpio: gpio@55000000 {
@@ -263,6 +312,7 @@
 			pinctrl-names = "default";
 			pinctrl-0 = <&pinctrl_i2c0>;
 			clocks = <&peri_clk 4>;
+			resets = <&peri_rst 4>;
 			clock-frequency = <100000>;
 		};
 
@@ -276,6 +326,7 @@
 			pinctrl-names = "default";
 			pinctrl-0 = <&pinctrl_i2c1>;
 			clocks = <&peri_clk 5>;
+			resets = <&peri_rst 5>;
 			clock-frequency = <100000>;
 		};
 
@@ -286,6 +337,7 @@
 			#size-cells = <0>;
 			interrupts = <0 43 4>;
 			clocks = <&peri_clk 6>;
+			resets = <&peri_rst 6>;
 			clock-frequency = <400000>;
 		};
 
@@ -299,6 +351,7 @@
 			pinctrl-names = "default";
 			pinctrl-0 = <&pinctrl_i2c3>;
 			clocks = <&peri_clk 7>;
+			resets = <&peri_rst 7>;
 			clock-frequency = <100000>;
 		};
 
@@ -312,6 +365,7 @@
 			pinctrl-names = "default";
 			pinctrl-0 = <&pinctrl_i2c4>;
 			clocks = <&peri_clk 8>;
+			resets = <&peri_rst 8>;
 			clock-frequency = <100000>;
 		};
 
@@ -322,6 +376,7 @@
 			#size-cells = <0>;
 			interrupts = <0 25 4>;
 			clocks = <&peri_clk 9>;
+			resets = <&peri_rst 9>;
 			clock-frequency = <400000>;
 		};
 
@@ -379,9 +434,11 @@
 			pinctrl-names = "default";
 			pinctrl-0 = <&pinctrl_emmc_1v8>;
 			clocks = <&sys_clk 4>;
+			resets = <&sys_rst 4>;
 			bus-width = <8>;
 			mmc-ddr-1_8v;
 			mmc-hs200-1_8v;
+			mmc-pwrseq = <&emmc_pwrseq>;
 			cdns,phy-input-delay-legacy = <4>;
 			cdns,phy-input-delay-mmc-highspeed = <2>;
 			cdns,phy-input-delay-mmc-ddr = <3>;
@@ -413,6 +470,24 @@
 			};
 		};
 
+		soc-glue@5f900000 {
+			compatible = "socionext,uniphier-ld20-soc-glue-debug",
+				     "simple-mfd";
+			#address-cells = <1>;
+			#size-cells = <1>;
+			ranges = <0 0x5f900000 0x2000>;
+
+			efuse@100 {
+				compatible = "socionext,uniphier-efuse";
+				reg = <0x100 0x28>;
+			};
+
+			efuse@200 {
+				compatible = "socionext,uniphier-efuse";
+				reg = <0x200 0x68>;
+			};
+		};
+
 		aidet: aidet@5fc20000 {
 			compatible = "socionext,uniphier-ld20-aidet";
 			reg = <0x5fc20000 0x200>;
@@ -447,6 +522,13 @@
 			watchdog {
 				compatible = "socionext,uniphier-wdt";
 			};
+
+			pvtctl: pvtctl {
+				compatible = "socionext,uniphier-ld20-thermal";
+				interrupts = <0 3 4>;
+				#thermal-sensor-cells = <0>;
+				socionext,tmod-calibration = <0x0f22 0x68ee>;
+			};
 		};
 
 		usb: usb@65b00000 {
@@ -476,6 +558,7 @@
 			pinctrl-names = "default";
 			pinctrl-0 = <&pinctrl_nand>;
 			clocks = <&sys_clk 2>;
+			resets = <&sys_rst 2>;
 		};
 	};
 };
diff --git a/arch/arm/dts/uniphier-ld4-ref.dts b/arch/arm/dts/uniphier-ld4-ref.dts
index fb94df4..6097878 100644
--- a/arch/arm/dts/uniphier-ld4-ref.dts
+++ b/arch/arm/dts/uniphier-ld4-ref.dts
@@ -38,7 +38,7 @@
 };
 
 &ethsc {
-	interrupts = <0 49 4>;
+	interrupts = <1 8>;
 };
 
 &serial0 {
@@ -53,6 +53,14 @@
 	status = "okay";
 };
 
+&gpio {
+	xirq1 {
+		gpio-hog;
+		gpios = <UNIPHIER_GPIO_IRQ(1) 0>;
+		input;
+	};
+};
+
 &i2c0 {
 	status = "okay";
 };
diff --git a/arch/arm/dts/uniphier-ld4.dtsi b/arch/arm/dts/uniphier-ld4.dtsi
index 158beae..4f8f386 100644
--- a/arch/arm/dts/uniphier-ld4.dtsi
+++ b/arch/arm/dts/uniphier-ld4.dtsi
@@ -7,6 +7,8 @@
  * SPDX-License-Identifier: (GPL-2.0+ OR MIT)
  */
 
+#include <dt-bindings/gpio/uniphier-gpio.h>
+
 / {
 	compatible = "socionext,uniphier-ld4";
 	#address-cells = <1>;
@@ -37,7 +39,7 @@
 			clock-frequency = <24576000>;
 		};
 
-		arm_timer_clk: arm_timer_clk {
+		arm_timer_clk: arm-timer {
 			#clock-cells = <0>;
 			compatible = "fixed-clock";
 			clock-frequency = <50000000>;
@@ -72,6 +74,7 @@
 			pinctrl-0 = <&pinctrl_uart0>;
 			clocks = <&peri_clk 0>;
 			clock-frequency = <36864000>;
+			resets = <&peri_rst 0>;
 		};
 
 		serial1: serial@54006900 {
@@ -83,6 +86,7 @@
 			pinctrl-0 = <&pinctrl_uart1>;
 			clocks = <&peri_clk 1>;
 			clock-frequency = <36864000>;
+			resets = <&peri_rst 1>;
 		};
 
 		serial2: serial@54006a00 {
@@ -94,6 +98,7 @@
 			pinctrl-0 = <&pinctrl_uart2>;
 			clocks = <&peri_clk 2>;
 			clock-frequency = <36864000>;
+			resets = <&peri_rst 2>;
 		};
 
 		serial3: serial@54006b00 {
@@ -105,6 +110,7 @@
 			pinctrl-0 = <&pinctrl_uart3>;
 			clocks = <&peri_clk 3>;
 			clock-frequency = <36864000>;
+			resets = <&peri_rst 3>;
 		};
 
 		gpio: gpio@55000000 {
@@ -118,6 +124,7 @@
 			gpio-ranges = <&pinctrl 0 0 0>;
 			gpio-ranges-group-names = "gpio_range";
 			ngpios = <136>;
+			socionext,interrupt-ranges = <0 48 13>, <14 62 2>;
 		};
 
 		i2c0: i2c@58400000 {
@@ -130,6 +137,7 @@
 			pinctrl-names = "default";
 			pinctrl-0 = <&pinctrl_i2c0>;
 			clocks = <&peri_clk 4>;
+			resets = <&peri_rst 4>;
 			clock-frequency = <100000>;
 		};
 
@@ -143,6 +151,7 @@
 			pinctrl-names = "default";
 			pinctrl-0 = <&pinctrl_i2c1>;
 			clocks = <&peri_clk 5>;
+			resets = <&peri_rst 5>;
 			clock-frequency = <100000>;
 		};
 
@@ -156,6 +165,7 @@
 			pinctrl-names = "default";
 			pinctrl-0 = <&pinctrl_i2c2>;
 			clocks = <&peri_clk 6>;
+			resets = <&peri_rst 6>;
 			clock-frequency = <400000>;
 		};
 
@@ -169,6 +179,7 @@
 			pinctrl-names = "default";
 			pinctrl-0 = <&pinctrl_i2c3>;
 			clocks = <&peri_clk 7>;
+			resets = <&peri_rst 7>;
 			clock-frequency = <100000>;
 		};
 
@@ -261,7 +272,8 @@
 			interrupts = <0 80 4>;
 			pinctrl-names = "default";
 			pinctrl-0 = <&pinctrl_usb0>;
-			clocks = <&mio_clk 7>, <&mio_clk 8>, <&mio_clk 12>;
+			clocks = <&sys_clk 8>, <&mio_clk 7>, <&mio_clk 8>,
+				 <&mio_clk 12>;
 			resets = <&sys_rst 8>, <&mio_rst 7>, <&mio_rst 8>,
 				 <&mio_rst 12>;
 		};
@@ -273,7 +285,8 @@
 			interrupts = <0 81 4>;
 			pinctrl-names = "default";
 			pinctrl-0 = <&pinctrl_usb1>;
-			clocks = <&mio_clk 7>, <&mio_clk 9>, <&mio_clk 13>;
+			clocks = <&sys_clk 8>, <&mio_clk 7>, <&mio_clk 9>,
+				 <&mio_clk 13>;
 			resets = <&sys_rst 8>, <&mio_rst 7>, <&mio_rst 9>,
 				 <&mio_rst 13>;
 		};
@@ -285,7 +298,8 @@
 			interrupts = <0 82 4>;
 			pinctrl-names = "default";
 			pinctrl-0 = <&pinctrl_usb2>;
-			clocks = <&mio_clk 7>, <&mio_clk 10>, <&mio_clk 14>;
+			clocks = <&sys_clk 8>, <&mio_clk 7>, <&mio_clk 10>,
+				 <&mio_clk 14>;
 			resets = <&sys_rst 8>, <&mio_rst 7>, <&mio_rst 10>,
 				 <&mio_rst 14>;
 		};
@@ -354,6 +368,7 @@
 			pinctrl-names = "default";
 			pinctrl-0 = <&pinctrl_nand2cs>;
 			clocks = <&sys_clk 2>;
+			resets = <&sys_rst 2>;
 		};
 	};
 };
diff --git a/arch/arm/dts/uniphier-ld6b-ref.dts b/arch/arm/dts/uniphier-ld6b-ref.dts
index 9b136b8..1703d8f 100644
--- a/arch/arm/dts/uniphier-ld6b-ref.dts
+++ b/arch/arm/dts/uniphier-ld6b-ref.dts
@@ -40,7 +40,7 @@
 };
 
 &ethsc {
-	interrupts = <0 52 4>;
+	interrupts = <4 8>;
 };
 
 &serial0 {
@@ -55,6 +55,14 @@
 	status = "okay";
 };
 
+&gpio {
+	xirq4 {
+		gpio-hog;
+		gpios = <UNIPHIER_GPIO_IRQ(4) 0>;
+		input;
+	};
+};
+
 &i2c0 {
 	status = "okay";
 };
diff --git a/arch/arm/dts/uniphier-pinctrl.dtsi b/arch/arm/dts/uniphier-pinctrl.dtsi
index a1b9a6c..d4f78c2 100644
--- a/arch/arm/dts/uniphier-pinctrl.dtsi
+++ b/arch/arm/dts/uniphier-pinctrl.dtsi
@@ -8,132 +8,132 @@
  */
 
 &pinctrl {
-	pinctrl_aout: aout_grp {
+	pinctrl_aout: aout {
 		groups = "aout";
 		function = "aout";
 	};
 
-	pinctrl_emmc: emmc_grp {
+	pinctrl_emmc: emmc {
 		groups = "emmc", "emmc_dat8";
 		function = "emmc";
 	};
 
-	pinctrl_emmc_1v8: emmc_grp_1v8 {
+	pinctrl_emmc_1v8: emmc-1v8 {
 		groups = "emmc", "emmc_dat8";
 		function = "emmc";
 	};
 
-	pinctrl_ether_mii: ether_mii_grp {
+	pinctrl_ether_mii: ether-mii {
 		groups = "ether_mii";
 		function = "ether_mii";
 	};
 
-	pinctrl_ether_rgmii: ether_rgmii_grp {
+	pinctrl_ether_rgmii: ether-rgmii {
 		groups = "ether_rgmii";
 		function = "ether_rgmii";
 	};
 
-	pinctrl_ether_rmii: ether_rmii_grp {
+	pinctrl_ether_rmii: ether-rmii {
 		groups = "ether_rmii";
 		function = "ether_rmii";
 	};
 
-	pinctrl_i2c0: i2c0_grp {
+	pinctrl_i2c0: i2c0 {
 		groups = "i2c0";
 		function = "i2c0";
 	};
 
-	pinctrl_i2c1: i2c1_grp {
+	pinctrl_i2c1: i2c1 {
 		groups = "i2c1";
 		function = "i2c1";
 	};
 
-	pinctrl_i2c2: i2c2_grp {
+	pinctrl_i2c2: i2c2 {
 		groups = "i2c2";
 		function = "i2c2";
 	};
 
-	pinctrl_i2c3: i2c3_grp {
+	pinctrl_i2c3: i2c3 {
 		groups = "i2c3";
 		function = "i2c3";
 	};
 
-	pinctrl_i2c4: i2c4_grp {
+	pinctrl_i2c4: i2c4 {
 		groups = "i2c4";
 		function = "i2c4";
 	};
 
-	pinctrl_nand: nand_grp {
+	pinctrl_nand: nand {
 		groups = "nand";
 		function = "nand";
 	};
 
-	pinctrl_nand2cs: nand2cs_grp {
+	pinctrl_nand2cs: nand2cs {
 		groups = "nand", "nand_cs1";
 		function = "nand";
 	};
 
-	pinctrl_sd: sd_grp {
+	pinctrl_sd: sd {
 		groups = "sd";
 		function = "sd";
 	};
 
-	pinctrl_sd_1v8: sd_grp_1v8 {
+	pinctrl_sd_1v8: sd-1v8 {
 		groups = "sd";
 		function = "sd";
 	};
 
-	pinctrl_sd1: sd1_grp {
+	pinctrl_sd1: sd1 {
 		groups = "sd1";
 		function = "sd1";
 	};
 
-	pinctrl_sd1_1v8: sd1_grp_1v8 {
+	pinctrl_sd1_1v8: sd1-1v8 {
 		groups = "sd1";
 		function = "sd1";
 	};
 
-	pinctrl_system_bus: system_bus_grp {
+	pinctrl_system_bus: system-bus {
 		groups = "system_bus", "system_bus_cs1";
 		function = "system_bus";
 	};
 
-	pinctrl_uart0: uart0_grp {
+	pinctrl_uart0: uart0 {
 		groups = "uart0";
 		function = "uart0";
 	};
 
-	pinctrl_uart1: uart1_grp {
+	pinctrl_uart1: uart1 {
 		groups = "uart1";
 		function = "uart1";
 	};
 
-	pinctrl_uart2: uart2_grp {
+	pinctrl_uart2: uart2 {
 		groups = "uart2";
 		function = "uart2";
 	};
 
-	pinctrl_uart3: uart3_grp {
+	pinctrl_uart3: uart3 {
 		groups = "uart3";
 		function = "uart3";
 	};
 
-	pinctrl_usb0: usb0_grp {
+	pinctrl_usb0: usb0 {
 		groups = "usb0";
 		function = "usb0";
 	};
 
-	pinctrl_usb1: usb1_grp {
+	pinctrl_usb1: usb1 {
 		groups = "usb1";
 		function = "usb1";
 	};
 
-	pinctrl_usb2: usb2_grp {
+	pinctrl_usb2: usb2 {
 		groups = "usb2";
 		function = "usb2";
 	};
 
-	pinctrl_usb3: usb3_grp {
+	pinctrl_usb3: usb3 {
 		groups = "usb3";
 		function = "usb3";
 	};
diff --git a/arch/arm/dts/uniphier-pro4-ref.dts b/arch/arm/dts/uniphier-pro4-ref.dts
index 1b22f80..3f9ce6d 100644
--- a/arch/arm/dts/uniphier-pro4-ref.dts
+++ b/arch/arm/dts/uniphier-pro4-ref.dts
@@ -41,7 +41,7 @@
 };
 
 &ethsc {
-	interrupts = <0 50 4>;
+	interrupts = <2 8>;
 };
 
 &serial0 {
@@ -56,6 +56,14 @@
 	status = "okay";
 };
 
+&gpio {
+	xirq2 {
+		gpio-hog;
+		gpios = <UNIPHIER_GPIO_IRQ(2) 0>;
+		input;
+	};
+};
+
 &i2c0 {
 	status = "okay";
 };
diff --git a/arch/arm/dts/uniphier-pro4.dtsi b/arch/arm/dts/uniphier-pro4.dtsi
index ea97e26..9b3ce13 100644
--- a/arch/arm/dts/uniphier-pro4.dtsi
+++ b/arch/arm/dts/uniphier-pro4.dtsi
@@ -7,6 +7,8 @@
  * SPDX-License-Identifier: (GPL-2.0+ OR MIT)
  */
 
+#include <dt-bindings/gpio/uniphier-gpio.h>
+
 / {
 	compatible = "socionext,uniphier-pro4";
 	#address-cells = <1>;
@@ -45,7 +47,7 @@
 			clock-frequency = <25000000>;
 		};
 
-		arm_timer_clk: arm_timer_clk {
+		arm_timer_clk: arm-timer {
 			#clock-cells = <0>;
 			compatible = "fixed-clock";
 			clock-frequency = <50000000>;
@@ -80,6 +82,7 @@
 			pinctrl-0 = <&pinctrl_uart0>;
 			clocks = <&peri_clk 0>;
 			clock-frequency = <73728000>;
+			resets = <&peri_rst 0>;
 		};
 
 		serial1: serial@54006900 {
@@ -91,6 +94,7 @@
 			pinctrl-0 = <&pinctrl_uart1>;
 			clocks = <&peri_clk 1>;
 			clock-frequency = <73728000>;
+			resets = <&peri_rst 1>;
 		};
 
 		serial2: serial@54006a00 {
@@ -102,6 +106,7 @@
 			pinctrl-0 = <&pinctrl_uart2>;
 			clocks = <&peri_clk 2>;
 			clock-frequency = <73728000>;
+			resets = <&peri_rst 2>;
 		};
 
 		serial3: serial@54006b00 {
@@ -113,6 +118,7 @@
 			pinctrl-0 = <&pinctrl_uart3>;
 			clocks = <&peri_clk 3>;
 			clock-frequency = <73728000>;
+			resets = <&peri_rst 3>;
 		};
 
 		gpio: gpio@55000000 {
@@ -126,6 +132,7 @@
 			gpio-ranges = <&pinctrl 0 0 0>;
 			gpio-ranges-group-names = "gpio_range";
 			ngpios = <248>;
+			socionext,interrupt-ranges = <0 48 16>, <16 154 5>;
 		};
 
 		i2c0: i2c@58780000 {
@@ -138,6 +145,7 @@
 			pinctrl-names = "default";
 			pinctrl-0 = <&pinctrl_i2c0>;
 			clocks = <&peri_clk 4>;
+			resets = <&peri_rst 4>;
 			clock-frequency = <100000>;
 		};
 
@@ -151,6 +159,7 @@
 			pinctrl-names = "default";
 			pinctrl-0 = <&pinctrl_i2c1>;
 			clocks = <&peri_clk 5>;
+			resets = <&peri_rst 5>;
 			clock-frequency = <100000>;
 		};
 
@@ -164,6 +173,7 @@
 			pinctrl-names = "default";
 			pinctrl-0 = <&pinctrl_i2c2>;
 			clocks = <&peri_clk 6>;
+			resets = <&peri_rst 6>;
 			clock-frequency = <100000>;
 		};
 
@@ -177,6 +187,7 @@
 			pinctrl-names = "default";
 			pinctrl-0 = <&pinctrl_i2c3>;
 			clocks = <&peri_clk 7>;
+			resets = <&peri_rst 7>;
 			clock-frequency = <100000>;
 		};
 
@@ -190,6 +201,7 @@
 			#size-cells = <0>;
 			interrupts = <0 25 4>;
 			clocks = <&peri_clk 9>;
+			resets = <&peri_rst 9>;
 			clock-frequency = <400000>;
 		};
 
@@ -201,6 +213,7 @@
 			#size-cells = <0>;
 			interrupts = <0 26 4>;
 			clocks = <&peri_clk 10>;
+			resets = <&peri_rst 10>;
 			clock-frequency = <400000>;
 		};
 
@@ -310,7 +323,8 @@
 			interrupts = <0 80 4>;
 			pinctrl-names = "default";
 			pinctrl-0 = <&pinctrl_usb2>;
-			clocks = <&mio_clk 7>, <&mio_clk 8>, <&mio_clk 12>;
+			clocks = <&sys_clk 8>, <&mio_clk 7>, <&mio_clk 8>,
+				 <&mio_clk 12>;
 			resets = <&sys_rst 8>, <&mio_rst 7>, <&mio_rst 8>,
 				 <&mio_rst 12>;
 		};
@@ -322,7 +336,8 @@
 			interrupts = <0 81 4>;
 			pinctrl-names = "default";
 			pinctrl-0 = <&pinctrl_usb3>;
-			clocks = <&mio_clk 7>, <&mio_clk 9>, <&mio_clk 13>;
+			clocks = <&sys_clk 8>, <&mio_clk 7>, <&mio_clk 9>,
+				 <&mio_clk 13>;
 			resets = <&sys_rst 8>, <&mio_rst 7>, <&mio_rst 9>,
 				 <&mio_rst 13>;
 		};
@@ -427,6 +442,7 @@
 			pinctrl-names = "default";
 			pinctrl-0 = <&pinctrl_nand>;
 			clocks = <&sys_clk 2>;
+			resets = <&sys_rst 2>;
 		};
 	};
 };
diff --git a/arch/arm/dts/uniphier-pro5.dtsi b/arch/arm/dts/uniphier-pro5.dtsi
index 3be3acf..c3b627c 100644
--- a/arch/arm/dts/uniphier-pro5.dtsi
+++ b/arch/arm/dts/uniphier-pro5.dtsi
@@ -37,7 +37,7 @@
 		};
 	};
 
-	cpu_opp: opp_table {
+	cpu_opp: opp-table {
 		compatible = "operating-points-v2";
 		opp-shared;
 
@@ -119,7 +119,7 @@
 			clock-frequency = <20000000>;
 		};
 
-		arm_timer_clk: arm_timer_clk {
+		arm_timer_clk: arm-timer {
 			#clock-cells = <0>;
 			compatible = "fixed-clock";
 			clock-frequency = <50000000>;
@@ -167,6 +167,7 @@
 			pinctrl-0 = <&pinctrl_uart0>;
 			clocks = <&peri_clk 0>;
 			clock-frequency = <73728000>;
+			resets = <&peri_rst 0>;
 		};
 
 		serial1: serial@54006900 {
@@ -178,6 +179,7 @@
 			pinctrl-0 = <&pinctrl_uart1>;
 			clocks = <&peri_clk 1>;
 			clock-frequency = <73728000>;
+			resets = <&peri_rst 1>;
 		};
 
 		serial2: serial@54006a00 {
@@ -189,6 +191,7 @@
 			pinctrl-0 = <&pinctrl_uart2>;
 			clocks = <&peri_clk 2>;
 			clock-frequency = <73728000>;
+			resets = <&peri_rst 2>;
 		};
 
 		serial3: serial@54006b00 {
@@ -200,6 +203,7 @@
 			pinctrl-0 = <&pinctrl_uart3>;
 			clocks = <&peri_clk 3>;
 			clock-frequency = <73728000>;
+			resets = <&peri_rst 3>;
 		};
 
 		gpio: gpio@55000000 {
@@ -213,6 +217,7 @@
 			gpio-ranges = <&pinctrl 0 0 0>;
 			gpio-ranges-group-names = "gpio_range";
 			ngpios = <248>;
+			socionext,interrupt-ranges = <0 48 16>, <16 154 5>;
 		};
 
 		i2c0: i2c@58780000 {
@@ -225,6 +230,7 @@
 			pinctrl-names = "default";
 			pinctrl-0 = <&pinctrl_i2c0>;
 			clocks = <&peri_clk 4>;
+			resets = <&peri_rst 4>;
 			clock-frequency = <100000>;
 		};
 
@@ -238,6 +244,7 @@
 			pinctrl-names = "default";
 			pinctrl-0 = <&pinctrl_i2c1>;
 			clocks = <&peri_clk 5>;
+			resets = <&peri_rst 5>;
 			clock-frequency = <100000>;
 		};
 
@@ -251,6 +258,7 @@
 			pinctrl-names = "default";
 			pinctrl-0 = <&pinctrl_i2c2>;
 			clocks = <&peri_clk 6>;
+			resets = <&peri_rst 6>;
 			clock-frequency = <100000>;
 		};
 
@@ -264,6 +272,7 @@
 			pinctrl-names = "default";
 			pinctrl-0 = <&pinctrl_i2c3>;
 			clocks = <&peri_clk 7>;
+			resets = <&peri_rst 7>;
 			clock-frequency = <100000>;
 		};
 
@@ -277,6 +286,7 @@
 			#size-cells = <0>;
 			interrupts = <0 25 4>;
 			clocks = <&peri_clk 9>;
+			resets = <&peri_rst 9>;
 			clock-frequency = <400000>;
 		};
 
@@ -288,6 +298,7 @@
 			#size-cells = <0>;
 			interrupts = <0 26 4>;
 			clocks = <&peri_clk 10>;
+			resets = <&peri_rst 10>;
 			clock-frequency = <400000>;
 		};
 
@@ -438,6 +449,7 @@
 			pinctrl-names = "default";
 			pinctrl-0 = <&pinctrl_nand2cs>;
 			clocks = <&sys_clk 2>;
+			resets = <&sys_rst 2>;
 		};
 
 		emmc: sdhc@68400000 {
diff --git a/arch/arm/dts/uniphier-pxs2.dtsi b/arch/arm/dts/uniphier-pxs2.dtsi
index dcb2515..549d930 100644
--- a/arch/arm/dts/uniphier-pxs2.dtsi
+++ b/arch/arm/dts/uniphier-pxs2.dtsi
@@ -7,6 +7,9 @@
  * SPDX-License-Identifier: (GPL-2.0+ OR MIT)
  */
 
+#include <dt-bindings/gpio/uniphier-gpio.h>
+#include <dt-bindings/thermal/thermal.h>
+
 / {
 	compatible = "socionext,uniphier-pxs2";
 	#address-cells = <1>;
@@ -16,7 +19,7 @@
 		#address-cells = <1>;
 		#size-cells = <0>;
 
-		cpu@0 {
+		cpu0: cpu@0 {
 			device_type = "cpu";
 			compatible = "arm,cortex-a9";
 			reg = <0>;
@@ -24,9 +27,10 @@
 			enable-method = "psci";
 			next-level-cache = <&l2>;
 			operating-points-v2 = <&cpu_opp>;
+			#cooling-cells = <2>;
 		};
 
-		cpu@1 {
+		cpu1: cpu@1 {
 			device_type = "cpu";
 			compatible = "arm,cortex-a9";
 			reg = <1>;
@@ -36,7 +40,7 @@
 			operating-points-v2 = <&cpu_opp>;
 		};
 
-		cpu@2 {
+		cpu2: cpu@2 {
 			device_type = "cpu";
 			compatible = "arm,cortex-a9";
 			reg = <2>;
@@ -46,7 +50,7 @@
 			operating-points-v2 = <&cpu_opp>;
 		};
 
-		cpu@3 {
+		cpu3: cpu@3 {
 			device_type = "cpu";
 			compatible = "arm,cortex-a9";
 			reg = <3>;
@@ -57,7 +61,7 @@
 		};
 	};
 
-	cpu_opp: opp_table {
+	cpu_opp: opp-table {
 		compatible = "operating-points-v2";
 		opp-shared;
 
@@ -107,13 +111,42 @@
 			clock-frequency = <25000000>;
 		};
 
-		arm_timer_clk: arm_timer_clk {
+		arm_timer_clk: arm-timer {
 			#clock-cells = <0>;
 			compatible = "fixed-clock";
 			clock-frequency = <50000000>;
 		};
 	};
 
+	thermal-zones {
+		cpu-thermal {
+			polling-delay-passive = <250>;	/* 250ms */
+			polling-delay = <1000>;		/* 1000ms */
+			thermal-sensors = <&pvtctl>;
+
+			trips {
+				cpu_crit: cpu-crit {
+					temperature = <95000>;	/* 95C */
+					hysteresis = <2000>;
+					type = "critical";
+				};
+				cpu_alert: cpu-alert {
+					temperature = <85000>;	/* 85C */
+					hysteresis = <2000>;
+					type = "passive";
+				};
+			};
+
+			cooling-maps {
+				map {
+					trip = <&cpu_alert>;
+					cooling-device = <&cpu0
+					    THERMAL_NO_LIMIT THERMAL_NO_LIMIT>;
+				};
+			};
+		};
+	};
+
 	soc {
 		compatible = "simple-bus";
 		#address-cells = <1>;
@@ -142,6 +175,7 @@
 			pinctrl-0 = <&pinctrl_uart0>;
 			clocks = <&peri_clk 0>;
 			clock-frequency = <88900000>;
+			resets = <&peri_rst 0>;
 		};
 
 		serial1: serial@54006900 {
@@ -153,6 +187,7 @@
 			pinctrl-0 = <&pinctrl_uart1>;
 			clocks = <&peri_clk 1>;
 			clock-frequency = <88900000>;
+			resets = <&peri_rst 1>;
 		};
 
 		serial2: serial@54006a00 {
@@ -164,6 +199,7 @@
 			pinctrl-0 = <&pinctrl_uart2>;
 			clocks = <&peri_clk 2>;
 			clock-frequency = <88900000>;
+			resets = <&peri_rst 2>;
 		};
 
 		serial3: serial@54006b00 {
@@ -175,6 +211,7 @@
 			pinctrl-0 = <&pinctrl_uart3>;
 			clocks = <&peri_clk 3>;
 			clock-frequency = <88900000>;
+			resets = <&peri_rst 3>;
 		};
 
 		gpio: gpio@55000000 {
@@ -190,6 +227,8 @@
 			gpio-ranges-group-names = "gpio_range0",
 						  "gpio_range1";
 			ngpios = <232>;
+			socionext,interrupt-ranges = <0 48 16>, <16 154 5>,
+						     <21 217 3>;
 		};
 
 		i2c0: i2c@58780000 {
@@ -202,6 +241,7 @@
 			pinctrl-names = "default";
 			pinctrl-0 = <&pinctrl_i2c0>;
 			clocks = <&peri_clk 4>;
+			resets = <&peri_rst 4>;
 			clock-frequency = <100000>;
 		};
 
@@ -215,6 +255,7 @@
 			pinctrl-names = "default";
 			pinctrl-0 = <&pinctrl_i2c1>;
 			clocks = <&peri_clk 5>;
+			resets = <&peri_rst 5>;
 			clock-frequency = <100000>;
 		};
 
@@ -228,6 +269,7 @@
 			pinctrl-names = "default";
 			pinctrl-0 = <&pinctrl_i2c2>;
 			clocks = <&peri_clk 6>;
+			resets = <&peri_rst 6>;
 			clock-frequency = <100000>;
 		};
 
@@ -241,6 +283,7 @@
 			pinctrl-names = "default";
 			pinctrl-0 = <&pinctrl_i2c3>;
 			clocks = <&peri_clk 7>;
+			resets = <&peri_rst 7>;
 			clock-frequency = <100000>;
 		};
 
@@ -252,6 +295,7 @@
 			#size-cells = <0>;
 			interrupts = <0 45 4>;
 			clocks = <&peri_clk 8>;
+			resets = <&peri_rst 8>;
 			clock-frequency = <400000>;
 		};
 
@@ -263,6 +307,7 @@
 			#size-cells = <0>;
 			interrupts = <0 25 4>;
 			clocks = <&peri_clk 9>;
+			resets = <&peri_rst 9>;
 			clock-frequency = <400000>;
 		};
 
@@ -274,6 +319,7 @@
 			#size-cells = <0>;
 			interrupts = <0 26 4>;
 			clocks = <&peri_clk 10>;
+			resets = <&peri_rst 10>;
 			clock-frequency = <400000>;
 		};
 
@@ -412,6 +458,13 @@
 				compatible = "socionext,uniphier-pxs2-reset";
 				#reset-cells = <1>;
 			};
+
+			pvtctl: pvtctl {
+				compatible = "socionext,uniphier-pxs2-thermal";
+				interrupts = <0 3 4>;
+				#thermal-sensor-cells = <0>;
+				socionext,tmod-calibration = <0x0f86 0x6844>;
+			};
 		};
 
 		usb0: usb@65b00000 {
@@ -459,6 +512,7 @@
 			pinctrl-names = "default";
 			pinctrl-0 = <&pinctrl_nand2cs>;
 			clocks = <&sys_clk 2>;
+			resets = <&sys_rst 2>;
 		};
 	};
 };
diff --git a/arch/arm/dts/uniphier-pxs3-ref.dts b/arch/arm/dts/uniphier-pxs3-ref.dts
index 27de84d..f549610 100644
--- a/arch/arm/dts/uniphier-pxs3-ref.dts
+++ b/arch/arm/dts/uniphier-pxs3-ref.dts
@@ -38,13 +38,21 @@
 };
 
 &ethsc {
-	interrupts = <0 52 4>;
+	interrupts = <4 8>;
 };
 
 &serial0 {
 	status = "okay";
 };
 
+&gpio {
+	xirq4 {
+		gpio-hog;
+		gpios = <UNIPHIER_GPIO_IRQ(4) 0>;
+		input;
+	};
+};
+
 &i2c0 {
 	status = "okay";
 };
diff --git a/arch/arm/dts/uniphier-pxs3.dtsi b/arch/arm/dts/uniphier-pxs3.dtsi
index a004bd1..9c3aad5 100644
--- a/arch/arm/dts/uniphier-pxs3.dtsi
+++ b/arch/arm/dts/uniphier-pxs3.dtsi
@@ -7,6 +7,9 @@
  * SPDX-License-Identifier: (GPL-2.0+ OR MIT)
  */
 
+#include <dt-bindings/gpio/gpio.h>
+#include <dt-bindings/gpio/uniphier-gpio.h>
+
 /memreserve/ 0x80000000 0x02000000;
 
 / {
@@ -73,7 +76,7 @@
 		};
 	};
 
-	cluster0_opp: opp_table {
+	cluster0_opp: opp-table {
 		compatible = "operating-points-v2";
 		opp-shared;
 
@@ -124,6 +127,11 @@
 		};
 	};
 
+	emmc_pwrseq: emmc-pwrseq {
+		compatible = "mmc-pwrseq-emmc";
+		reset-gpios = <&gpio UNIPHIER_GPIO_PORT(5, 7) GPIO_ACTIVE_LOW>;
+	};
+
 	timer {
 		compatible = "arm,armv8-timer";
 		interrupts = <1 13 4>,
@@ -147,6 +155,7 @@
 			pinctrl-0 = <&pinctrl_uart0>;
 			clocks = <&peri_clk 0>;
 			clock-frequency = <58820000>;
+			resets = <&peri_rst 0>;
 		};
 
 		serial1: serial@54006900 {
@@ -158,6 +167,7 @@
 			pinctrl-0 = <&pinctrl_uart1>;
 			clocks = <&peri_clk 1>;
 			clock-frequency = <58820000>;
+			resets = <&peri_rst 1>;
 		};
 
 		serial2: serial@54006a00 {
@@ -169,6 +179,7 @@
 			pinctrl-0 = <&pinctrl_uart2>;
 			clocks = <&peri_clk 2>;
 			clock-frequency = <58820000>;
+			resets = <&peri_rst 2>;
 		};
 
 		serial3: serial@54006b00 {
@@ -180,6 +191,7 @@
 			pinctrl-0 = <&pinctrl_uart3>;
 			clocks = <&peri_clk 3>;
 			clock-frequency = <58820000>;
+			resets = <&peri_rst 3>;
 		};
 
 		gpio: gpio@55000000 {
@@ -197,6 +209,8 @@
 						  "gpio_range1",
 						  "gpio_range2";
 			ngpios = <286>;
+			socionext,interrupt-ranges = <0 48 16>, <16 154 5>,
+						     <21 217 3>;
 		};
 
 		i2c0: i2c@58780000 {
@@ -209,6 +223,7 @@
 			pinctrl-names = "default";
 			pinctrl-0 = <&pinctrl_i2c0>;
 			clocks = <&peri_clk 4>;
+			resets = <&peri_rst 4>;
 			clock-frequency = <100000>;
 		};
 
@@ -222,6 +237,7 @@
 			pinctrl-names = "default";
 			pinctrl-0 = <&pinctrl_i2c1>;
 			clocks = <&peri_clk 5>;
+			resets = <&peri_rst 5>;
 			clock-frequency = <100000>;
 		};
 
@@ -235,6 +251,7 @@
 			pinctrl-names = "default";
 			pinctrl-0 = <&pinctrl_i2c2>;
 			clocks = <&peri_clk 6>;
+			resets = <&peri_rst 6>;
 			clock-frequency = <100000>;
 		};
 
@@ -248,6 +265,7 @@
 			pinctrl-names = "default";
 			pinctrl-0 = <&pinctrl_i2c3>;
 			clocks = <&peri_clk 7>;
+			resets = <&peri_rst 7>;
 			clock-frequency = <100000>;
 		};
 
@@ -259,6 +277,7 @@
 			#size-cells = <0>;
 			interrupts = <0 26 4>;
 			clocks = <&peri_clk 10>;
+			resets = <&peri_rst 10>;
 			clock-frequency = <400000>;
 		};
 
@@ -316,9 +335,11 @@
 			pinctrl-names = "default";
 			pinctrl-0 = <&pinctrl_emmc_1v8>;
 			clocks = <&sys_clk 4>;
+			resets = <&sys_rst 4>;
 			bus-width = <8>;
 			mmc-ddr-1_8v;
 			mmc-hs200-1_8v;
+			mmc-pwrseq = <&emmc_pwrseq>;
 			cdns,phy-input-delay-legacy = <4>;
 			cdns,phy-input-delay-mmc-highspeed = <2>;
 			cdns,phy-input-delay-mmc-ddr = <3>;
@@ -350,6 +371,24 @@
 			};
 		};
 
+		soc-glue@5f900000 {
+			compatible = "socionext,uniphier-pxs3-soc-glue-debug",
+				     "simple-mfd";
+			#address-cells = <1>;
+			#size-cells = <1>;
+			ranges = <0 0x5f900000 0x2000>;
+
+			efuse@100 {
+				compatible = "socionext,uniphier-efuse";
+				reg = <0x100 0x28>;
+			};
+
+			efuse@200 {
+				compatible = "socionext,uniphier-efuse";
+				reg = <0x200 0x68>;
+			};
+		};
+
 		aidet: aidet@5fc20000 {
 			compatible = "socionext,uniphier-pxs3-aidet";
 			reg = <0x5fc20000 0x200>;
@@ -431,6 +470,7 @@
 			pinctrl-names = "default";
 			pinctrl-0 = <&pinctrl_nand>;
 			clocks = <&sys_clk 2>;
+			resets = <&sys_rst 2>;
 		};
 	};
 };
diff --git a/arch/arm/dts/uniphier-sld8-ref.dts b/arch/arm/dts/uniphier-sld8-ref.dts
index c94f0af..8fae1ed 100644
--- a/arch/arm/dts/uniphier-sld8-ref.dts
+++ b/arch/arm/dts/uniphier-sld8-ref.dts
@@ -38,7 +38,7 @@
 };
 
 &ethsc {
-	interrupts = <0 48 4>;
+	interrupts = <0 8>;
 };
 
 &serial0 {
@@ -53,6 +53,14 @@
 	status = "okay";
 };
 
+&gpio {
+	xirq0 {
+		gpio-hog;
+		gpios = <UNIPHIER_GPIO_IRQ(0) 0>;
+		input;
+	};
+};
+
 &i2c0 {
 	status = "okay";
 };
diff --git a/arch/arm/dts/uniphier-sld8.dtsi b/arch/arm/dts/uniphier-sld8.dtsi
index a3693b0..c759ac6 100644
--- a/arch/arm/dts/uniphier-sld8.dtsi
+++ b/arch/arm/dts/uniphier-sld8.dtsi
@@ -7,6 +7,8 @@
  * SPDX-License-Identifier: (GPL-2.0+ OR MIT)
  */
 
+#include <dt-bindings/gpio/uniphier-gpio.h>
+
 / {
 	compatible = "socionext,uniphier-sld8";
 	#address-cells = <1>;
@@ -37,7 +39,7 @@
 			clock-frequency = <25000000>;
 		};
 
-		arm_timer_clk: arm_timer_clk {
+		arm_timer_clk: arm-timer {
 			#clock-cells = <0>;
 			compatible = "fixed-clock";
 			clock-frequency = <50000000>;
@@ -72,6 +74,7 @@
 			pinctrl-0 = <&pinctrl_uart0>;
 			clocks = <&peri_clk 0>;
 			clock-frequency = <80000000>;
+			resets = <&peri_rst 0>;
 		};
 
 		serial1: serial@54006900 {
@@ -83,6 +86,7 @@
 			pinctrl-0 = <&pinctrl_uart1>;
 			clocks = <&peri_clk 1>;
 			clock-frequency = <80000000>;
+			resets = <&peri_rst 1>;
 		};
 
 		serial2: serial@54006a00 {
@@ -94,6 +98,7 @@
 			pinctrl-0 = <&pinctrl_uart2>;
 			clocks = <&peri_clk 2>;
 			clock-frequency = <80000000>;
+			resets = <&peri_rst 2>;
 		};
 
 		serial3: serial@54006b00 {
@@ -105,6 +110,7 @@
 			pinctrl-0 = <&pinctrl_uart3>;
 			clocks = <&peri_clk 3>;
 			clock-frequency = <80000000>;
+			resets = <&peri_rst 3>;
 		};
 
 		gpio: gpio@55000000 {
@@ -122,6 +128,7 @@
 						  "gpio_range1",
 						  "gpio_range2";
 			ngpios = <136>;
+			socionext,interrupt-ranges = <0 48 13>, <14 62 2>;
 		};
 
 		i2c0: i2c@58400000 {
@@ -134,6 +141,7 @@
 			pinctrl-names = "default";
 			pinctrl-0 = <&pinctrl_i2c0>;
 			clocks = <&peri_clk 4>;
+			resets = <&peri_rst 4>;
 			clock-frequency = <100000>;
 		};
 
@@ -147,6 +155,7 @@
 			pinctrl-names = "default";
 			pinctrl-0 = <&pinctrl_i2c1>;
 			clocks = <&peri_clk 5>;
+			resets = <&peri_rst 5>;
 			clock-frequency = <100000>;
 		};
 
@@ -160,6 +169,7 @@
 			pinctrl-names = "default";
 			pinctrl-0 = <&pinctrl_i2c2>;
 			clocks = <&peri_clk 6>;
+			resets = <&peri_rst 6>;
 			clock-frequency = <400000>;
 		};
 
@@ -173,6 +183,7 @@
 			pinctrl-names = "default";
 			pinctrl-0 = <&pinctrl_i2c3>;
 			clocks = <&peri_clk 7>;
+			resets = <&peri_rst 7>;
 			clock-frequency = <100000>;
 		};
 
@@ -265,7 +276,8 @@
 			interrupts = <0 80 4>;
 			pinctrl-names = "default";
 			pinctrl-0 = <&pinctrl_usb0>;
-			clocks = <&mio_clk 7>, <&mio_clk 8>, <&mio_clk 12>;
+			clocks = <&sys_clk 8>, <&mio_clk 7>, <&mio_clk 8>,
+				 <&mio_clk 12>;
 			resets = <&sys_rst 8>, <&mio_rst 7>, <&mio_rst 8>,
 				 <&mio_rst 12>;
 		};
@@ -277,7 +289,8 @@
 			interrupts = <0 81 4>;
 			pinctrl-names = "default";
 			pinctrl-0 = <&pinctrl_usb1>;
-			clocks = <&mio_clk 7>, <&mio_clk 9>, <&mio_clk 13>;
+			clocks = <&sys_clk 8>, <&mio_clk 7>, <&mio_clk 9>,
+				 <&mio_clk 13>;
 			resets = <&sys_rst 8>, <&mio_rst 7>, <&mio_rst 9>,
 				 <&mio_rst 13>;
 		};
@@ -289,7 +302,8 @@
 			interrupts = <0 82 4>;
 			pinctrl-names = "default";
 			pinctrl-0 = <&pinctrl_usb2>;
-			clocks = <&mio_clk 7>, <&mio_clk 10>, <&mio_clk 14>;
+			clocks = <&sys_clk 8>, <&mio_clk 7>, <&mio_clk 10>,
+				 <&mio_clk 14>;
 			resets = <&sys_rst 8>, <&mio_rst 7>, <&mio_rst 10>,
 				 <&mio_rst 14>;
 		};
@@ -358,6 +372,7 @@
 			pinctrl-names = "default";
 			pinctrl-0 = <&pinctrl_nand2cs>;
 			clocks = <&sys_clk 2>;
+			resets = <&sys_rst 2>;
 		};
 	};
 };
diff --git a/arch/arm/dts/uniphier-support-card.dtsi b/arch/arm/dts/uniphier-support-card.dtsi
index 6c825f1..e4e7e1b 100644
--- a/arch/arm/dts/uniphier-support-card.dtsi
+++ b/arch/arm/dts/uniphier-support-card.dtsi
@@ -11,11 +11,12 @@
 	status = "okay";
 	ranges = <1 0x00000000 0x42000000 0x02000000>;
 
-	support_card: support_card@1,1f00000 {
+	support_card: support-card@1,1f00000 {
 		compatible = "simple-bus";
 		#address-cells = <1>;
 		#size-cells = <1>;
 		ranges = <0x00000000 1 0x01f00000 0x00100000>;
+		interrupt-parent = <&gpio>;
 
 		ethsc: ethernet@0 {
 			compatible = "smsc,lan9118", "smsc,lan9115";
diff --git a/arch/arm/dts/uniphier-v7-u-boot.dtsi b/arch/arm/dts/uniphier-v7-u-boot.dtsi
index 4a0c9c0..0094a45 100644
--- a/arch/arm/dts/uniphier-v7-u-boot.dtsi
+++ b/arch/arm/dts/uniphier-v7-u-boot.dtsi
@@ -36,19 +36,19 @@
 			pinctrl {
 				u-boot,dm-pre-reloc;
 
-				emmc_grp {
+				emmc {
 					u-boot,dm-pre-reloc;
 				};
 
-				uart0_grp {
+				uart0 {
 					u-boot,dm-pre-reloc;
 				};
 
-				uart1_grp {
+				uart1 {
 					u-boot,dm-pre-reloc;
 				};
 
-				uart2_grp {
+				uart2 {
 					u-boot,dm-pre-reloc;
 				};
 			};
diff --git a/arch/arm/include/asm/arch-sunxi/dram_sunxi_dw.h b/arch/arm/include/asm/arch-sunxi/dram_sunxi_dw.h
index 03fd46b..66e206d 100644
--- a/arch/arm/include/asm/arch-sunxi/dram_sunxi_dw.h
+++ b/arch/arm/include/asm/arch-sunxi/dram_sunxi_dw.h
@@ -13,6 +13,8 @@
 #ifndef _SUNXI_DRAM_SUN8I_H3_H
 #define _SUNXI_DRAM_SUN8I_H3_H
 
+#include <linux/bitops.h>
+
 struct sunxi_mctl_com_reg {
 	u32 cr;			/* 0x00 control register */
 	u32 cr_r1;		/* 0x04 rank 1 control register (R40 only) */
@@ -211,7 +213,6 @@
  * the 32-bit wide access consists of. Also three control signals can be
  * adjusted individually.
  */
-#define BITS_PER_BYTE		8
 #define NR_OF_BYTE_LANES	(32 / BITS_PER_BYTE)
 /* The eight data lines (DQn) plus DM, DQS and DQSN */
 #define LINES_PER_BYTE_LANE	(BITS_PER_BYTE + 3)
diff --git a/arch/arm/mach-kirkwood/include/mach/gpio.h b/arch/arm/mach-kirkwood/include/mach/gpio.h
index aa8c5da..ac2397d 100644
--- a/arch/arm/mach-kirkwood/include/mach/gpio.h
+++ b/arch/arm/mach-kirkwood/include/mach/gpio.h
@@ -15,10 +15,6 @@
 #ifndef __KIRKWOOD_GPIO_H
 #define __KIRKWOOD_GPIO_H
 
-/* got from kernel include/linux/bitops.h */
-#define BITS_PER_BYTE 8
-#define BITS_TO_LONGS(nr)	DIV_ROUND_UP(nr, BITS_PER_BYTE * sizeof(long))
-
 #define GPIO_MAX		50
 #define GPIO_OFF(pin)		(((pin) >> 5) ? 0x0040 : 0x0000)
 #define GPIO_OUT(pin)		(MVEBU_GPIO0_BASE + GPIO_OFF(pin) + 0x00)
diff --git a/arch/arm/mach-uniphier/board_init.c b/arch/arm/mach-uniphier/board_init.c
index a6ee22e..121b786 100644
--- a/arch/arm/mach-uniphier/board_init.c
+++ b/arch/arm/mach-uniphier/board_init.c
@@ -17,55 +17,9 @@
 
 DECLARE_GLOBAL_DATA_PTR;
 
-static void uniphier_setup_xirq(void)
-{
-	const void *fdt = gd->fdt_blob;
-	int soc_node, aidet_node;
-	const fdt32_t *val;
-	unsigned long aidet_base;
-	u32 tmp;
-
-	soc_node = fdt_path_offset(fdt, "/soc");
-	if (soc_node < 0)
-		return;
-
-	aidet_node = fdt_subnode_offset_namelen(fdt, soc_node, "aidet", 5);
-	if (aidet_node < 0)
-		return;
-
-	val = fdt_getprop(fdt, aidet_node, "reg", NULL);
-	if (!val)
-		return;
-
-	aidet_base = fdt32_to_cpu(*val);
-
-	tmp = readl(aidet_base + 8);	/* AIDET DETCONFR2 */
-	tmp |= 0x00ff0000;		/* Set XIRQ0-7 low active */
-	writel(tmp, aidet_base + 8);
-
-	tmp = readl(0x55000090);	/* IRQCTL */
-	tmp |= 0x000000ff;
-	writel(tmp, 0x55000090);
-}
-
-#ifdef CONFIG_ARCH_UNIPHIER_LD11
-static void uniphier_ld11_misc_init(void)
-{
-	sg_set_pinsel(149, 14, 8, 4);	/* XIRQ0    -> XIRQ0 */
-	sg_set_iectrl(149);
-	sg_set_pinsel(153, 14, 8, 4);	/* XIRQ4    -> XIRQ4 */
-	sg_set_iectrl(153);
-}
-#endif
-
 #ifdef CONFIG_ARCH_UNIPHIER_LD20
 static void uniphier_ld20_misc_init(void)
 {
-	sg_set_pinsel(149, 14, 8, 4);	/* XIRQ0    -> XIRQ0 */
-	sg_set_iectrl(149);
-	sg_set_pinsel(153, 14, 8, 4);	/* XIRQ4    -> XIRQ4 */
-	sg_set_iectrl(153);
-
 	/* ES1 errata: increase VDD09 supply to suppress VBO noise */
 	if (uniphier_get_soc_revision() == 1) {
 		writel(0x00000003, 0x6184e004);
@@ -136,7 +90,6 @@
 		.sbc_init = uniphier_ld11_sbc_init,
 		.pll_init = uniphier_ld11_pll_init,
 		.clk_init = uniphier_ld11_clk_init,
-		.misc_init = uniphier_ld11_misc_init,
 	},
 #endif
 #if defined(CONFIG_ARCH_UNIPHIER_LD20)
@@ -192,10 +145,6 @@
 
 	led_puts("U3");
 
-	uniphier_setup_xirq();
-
-	led_puts("U4");
-
 	support_card_late_init();
 
 	led_puts("Uboo");
diff --git a/arch/arm/mach-uniphier/sbc/sbc-ld11.c b/arch/arm/mach-uniphier/sbc/sbc-ld11.c
index e6b83ff..d075c47 100644
--- a/arch/arm/mach-uniphier/sbc/sbc-ld11.c
+++ b/arch/arm/mach-uniphier/sbc/sbc-ld11.c
@@ -21,5 +21,5 @@
 
 	/* pins for NAND and System Bus are multiplexed */
 	if (spl_boot_device() != BOOT_DEVICE_NAND)
-		uniphier_pin_init("system_bus_grp");
+		uniphier_pin_init("system-bus");
 }
diff --git a/arch/arm/mach-uniphier/sbc/sbc-pxs2.c b/arch/arm/mach-uniphier/sbc/sbc-pxs2.c
index 0e0ba27..9ee2646 100644
--- a/arch/arm/mach-uniphier/sbc/sbc-pxs2.c
+++ b/arch/arm/mach-uniphier/sbc/sbc-pxs2.c
@@ -17,5 +17,5 @@
 	/* system bus output enable */
 	writel(0x17, PC0CTRL);
 
-	uniphier_pin_init("system_bus_grp");	/* PXs3 */
+	uniphier_pin_init("system-bus");	/* PXs3 */
 }
diff --git a/configs/openrd_base_defconfig b/configs/openrd_base_defconfig
index efebf82..9bc628f 100644
--- a/configs/openrd_base_defconfig
+++ b/configs/openrd_base_defconfig
@@ -5,7 +5,7 @@
 CONFIG_IDENT_STRING="\nOpenRD-Base"
 CONFIG_SYS_EXTRA_OPTIONS="BOARD_IS_OPENRD_BASE"
 CONFIG_BOOTDELAY=3
-CONFIG_LOGLEVEL=3
+CONFIG_LOGLEVEL=2
 # CONFIG_DISPLAY_BOARDINFO is not set
 # CONFIG_CMD_FLASH is not set
 CONFIG_CMD_IDE=y
diff --git a/configs/openrd_client_defconfig b/configs/openrd_client_defconfig
index 6722e42..c74f0cf 100644
--- a/configs/openrd_client_defconfig
+++ b/configs/openrd_client_defconfig
@@ -5,7 +5,7 @@
 CONFIG_IDENT_STRING="\nOpenRD-Client"
 CONFIG_SYS_EXTRA_OPTIONS="BOARD_IS_OPENRD_CLIENT"
 CONFIG_BOOTDELAY=3
-CONFIG_LOGLEVEL=3
+CONFIG_LOGLEVEL=2
 # CONFIG_DISPLAY_BOARDINFO is not set
 # CONFIG_CMD_FLASH is not set
 CONFIG_CMD_IDE=y
diff --git a/configs/openrd_ultimate_defconfig b/configs/openrd_ultimate_defconfig
index fb31b11..6792af8 100644
--- a/configs/openrd_ultimate_defconfig
+++ b/configs/openrd_ultimate_defconfig
@@ -5,7 +5,7 @@
 CONFIG_IDENT_STRING="\nOpenRD-Ultimate"
 CONFIG_SYS_EXTRA_OPTIONS="BOARD_IS_OPENRD_ULTIMATE"
 CONFIG_BOOTDELAY=3
-CONFIG_LOGLEVEL=3
+CONFIG_LOGLEVEL=2
 # CONFIG_DISPLAY_BOARDINFO is not set
 # CONFIG_CMD_FLASH is not set
 CONFIG_CMD_IDE=y
diff --git a/configs/uniphier_ld4_sld8_defconfig b/configs/uniphier_ld4_sld8_defconfig
index 3a991d7..542cebd 100644
--- a/configs/uniphier_ld4_sld8_defconfig
+++ b/configs/uniphier_ld4_sld8_defconfig
@@ -9,6 +9,7 @@
 CONFIG_MICRO_SUPPORT_CARD=y
 CONFIG_DEFAULT_DEVICE_TREE="uniphier-ld4-ref"
 # CONFIG_ARCH_FIXUP_FDT_MEMORY is not set
+CONFIG_LOGLEVEL=6
 CONFIG_SPL=y
 CONFIG_SPL_NOR_SUPPORT=y
 CONFIG_HUSH_PARSER=y
diff --git a/configs/uniphier_v7_defconfig b/configs/uniphier_v7_defconfig
index b4b54c0..9082ba5 100644
--- a/configs/uniphier_v7_defconfig
+++ b/configs/uniphier_v7_defconfig
@@ -8,6 +8,7 @@
 CONFIG_MICRO_SUPPORT_CARD=y
 CONFIG_DEFAULT_DEVICE_TREE="uniphier-pxs2-vodka"
 # CONFIG_ARCH_FIXUP_FDT_MEMORY is not set
+CONFIG_LOGLEVEL=6
 CONFIG_SPL=y
 CONFIG_SPL_NOR_SUPPORT=y
 CONFIG_HUSH_PARSER=y
diff --git a/configs/uniphier_v8_defconfig b/configs/uniphier_v8_defconfig
index bc4bbbf..746e451 100644
--- a/configs/uniphier_v8_defconfig
+++ b/configs/uniphier_v8_defconfig
@@ -7,6 +7,7 @@
 CONFIG_MICRO_SUPPORT_CARD=y
 CONFIG_DEFAULT_DEVICE_TREE="uniphier-ld20-ref"
 # CONFIG_ARCH_FIXUP_FDT_MEMORY is not set
+CONFIG_LOGLEVEL=6
 CONFIG_HUSH_PARSER=y
 CONFIG_CMD_CONFIG=y
 CONFIG_CMD_IMLS=y
diff --git a/drivers/gpio/gpio-uniphier.c b/drivers/gpio/gpio-uniphier.c
index 107c3fc..8d72ab8 100644
--- a/drivers/gpio/gpio-uniphier.c
+++ b/drivers/gpio/gpio-uniphier.c
@@ -13,8 +13,7 @@
 #include <linux/errno.h>
 #include <asm/global_data.h>
 #include <asm/gpio.h>
-
-#define UNIPHIER_GPIO_LINES_PER_BANK	8
+#include <dt-bindings/gpio/uniphier-gpio.h>
 
 #define UNIPHIER_GPIO_PORT_DATA		0x0	/* data */
 #define UNIPHIER_GPIO_PORT_DIR		0x4	/* direction (1:in, 0:out) */
diff --git a/drivers/gpio/kw_gpio.c b/drivers/gpio/kw_gpio.c
index 43b27e3..cc26cc1 100644
--- a/drivers/gpio/kw_gpio.c
+++ b/drivers/gpio/kw_gpio.c
@@ -14,7 +14,7 @@
  */
 
 #include <common.h>
-#include <asm/bitops.h>
+#include <linux/bitops.h>
 #include <asm/io.h>
 #include <asm/arch/soc.h>
 #include <asm/arch/gpio.h>
diff --git a/drivers/mtd/mtdcore.c b/drivers/mtd/mtdcore.c
index e3f56e5..2cda051 100644
--- a/drivers/mtd/mtdcore.c
+++ b/drivers/mtd/mtdcore.c
@@ -1005,6 +1005,366 @@
 }
 EXPORT_SYMBOL_GPL(mtd_read_oob);
 
+/**
+ * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
+ * @mtd: MTD device structure
+ * @section: ECC section. Depending on the layout you may have all the ECC
+ *	     bytes stored in a single contiguous section, or one section
+ *	     per ECC chunk (and sometime several sections for a single ECC
+ *	     ECC chunk)
+ * @oobecc: OOB region struct filled with the appropriate ECC position
+ *	    information
+ *
+ * This function returns ECC section information in the OOB area. If you want
+ * to get all the ECC bytes information, then you should call
+ * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
+ *
+ * Returns zero on success, a negative error code otherwise.
+ */
+int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
+		      struct mtd_oob_region *oobecc)
+{
+	memset(oobecc, 0, sizeof(*oobecc));
+
+	if (!mtd || section < 0)
+		return -EINVAL;
+
+	if (!mtd->ooblayout || !mtd->ooblayout->ecc)
+		return -ENOTSUPP;
+
+	return mtd->ooblayout->ecc(mtd, section, oobecc);
+}
+EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
+
+/**
+ * mtd_ooblayout_free - Get the OOB region definition of a specific free
+ *			section
+ * @mtd: MTD device structure
+ * @section: Free section you are interested in. Depending on the layout
+ *	     you may have all the free bytes stored in a single contiguous
+ *	     section, or one section per ECC chunk plus an extra section
+ *	     for the remaining bytes (or other funky layout).
+ * @oobfree: OOB region struct filled with the appropriate free position
+ *	     information
+ *
+ * This function returns free bytes position in the OOB area. If you want
+ * to get all the free bytes information, then you should call
+ * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
+ *
+ * Returns zero on success, a negative error code otherwise.
+ */
+int mtd_ooblayout_free(struct mtd_info *mtd, int section,
+		       struct mtd_oob_region *oobfree)
+{
+	memset(oobfree, 0, sizeof(*oobfree));
+
+	if (!mtd || section < 0)
+		return -EINVAL;
+
+	if (!mtd->ooblayout || !mtd->ooblayout->free)
+		return -ENOTSUPP;
+
+	return mtd->ooblayout->free(mtd, section, oobfree);
+}
+EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
+
+/**
+ * mtd_ooblayout_find_region - Find the region attached to a specific byte
+ * @mtd: mtd info structure
+ * @byte: the byte we are searching for
+ * @sectionp: pointer where the section id will be stored
+ * @oobregion: used to retrieve the ECC position
+ * @iter: iterator function. Should be either mtd_ooblayout_free or
+ *	  mtd_ooblayout_ecc depending on the region type you're searching for
+ *
+ * This function returns the section id and oobregion information of a
+ * specific byte. For example, say you want to know where the 4th ECC byte is
+ * stored, you'll use:
+ *
+ * mtd_ooblayout_find_region(mtd, 3, &section, &oobregion, mtd_ooblayout_ecc);
+ *
+ * Returns zero on success, a negative error code otherwise.
+ */
+static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
+				int *sectionp, struct mtd_oob_region *oobregion,
+				int (*iter)(struct mtd_info *,
+					    int section,
+					    struct mtd_oob_region *oobregion))
+{
+	int pos = 0, ret, section = 0;
+
+	memset(oobregion, 0, sizeof(*oobregion));
+
+	while (1) {
+		ret = iter(mtd, section, oobregion);
+		if (ret)
+			return ret;
+
+		if (pos + oobregion->length > byte)
+			break;
+
+		pos += oobregion->length;
+		section++;
+	}
+
+	/*
+	 * Adjust region info to make it start at the beginning at the
+	 * 'start' ECC byte.
+	 */
+	oobregion->offset += byte - pos;
+	oobregion->length -= byte - pos;
+	*sectionp = section;
+
+	return 0;
+}
+
+/**
+ * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
+ *				  ECC byte
+ * @mtd: mtd info structure
+ * @eccbyte: the byte we are searching for
+ * @sectionp: pointer where the section id will be stored
+ * @oobregion: OOB region information
+ *
+ * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
+ * byte.
+ *
+ * Returns zero on success, a negative error code otherwise.
+ */
+int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
+				 int *section,
+				 struct mtd_oob_region *oobregion)
+{
+	return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
+					 mtd_ooblayout_ecc);
+}
+EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
+
+/**
+ * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
+ * @mtd: mtd info structure
+ * @buf: destination buffer to store OOB bytes
+ * @oobbuf: OOB buffer
+ * @start: first byte to retrieve
+ * @nbytes: number of bytes to retrieve
+ * @iter: section iterator
+ *
+ * Extract bytes attached to a specific category (ECC or free)
+ * from the OOB buffer and copy them into buf.
+ *
+ * Returns zero on success, a negative error code otherwise.
+ */
+static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
+				const u8 *oobbuf, int start, int nbytes,
+				int (*iter)(struct mtd_info *,
+					    int section,
+					    struct mtd_oob_region *oobregion))
+{
+	struct mtd_oob_region oobregion;
+	int section, ret;
+
+	ret = mtd_ooblayout_find_region(mtd, start, &section,
+					&oobregion, iter);
+
+	while (!ret) {
+		int cnt;
+
+		cnt = min_t(int, nbytes, oobregion.length);
+		memcpy(buf, oobbuf + oobregion.offset, cnt);
+		buf += cnt;
+		nbytes -= cnt;
+
+		if (!nbytes)
+			break;
+
+		ret = iter(mtd, ++section, &oobregion);
+	}
+
+	return ret;
+}
+
+/**
+ * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
+ * @mtd: mtd info structure
+ * @buf: source buffer to get OOB bytes from
+ * @oobbuf: OOB buffer
+ * @start: first OOB byte to set
+ * @nbytes: number of OOB bytes to set
+ * @iter: section iterator
+ *
+ * Fill the OOB buffer with data provided in buf. The category (ECC or free)
+ * is selected by passing the appropriate iterator.
+ *
+ * Returns zero on success, a negative error code otherwise.
+ */
+static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
+				u8 *oobbuf, int start, int nbytes,
+				int (*iter)(struct mtd_info *,
+					    int section,
+					    struct mtd_oob_region *oobregion))
+{
+	struct mtd_oob_region oobregion;
+	int section, ret;
+
+	ret = mtd_ooblayout_find_region(mtd, start, &section,
+					&oobregion, iter);
+
+	while (!ret) {
+		int cnt;
+
+		cnt = min_t(int, nbytes, oobregion.length);
+		memcpy(oobbuf + oobregion.offset, buf, cnt);
+		buf += cnt;
+		nbytes -= cnt;
+
+		if (!nbytes)
+			break;
+
+		ret = iter(mtd, ++section, &oobregion);
+	}
+
+	return ret;
+}
+
+/**
+ * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
+ * @mtd: mtd info structure
+ * @iter: category iterator
+ *
+ * Count the number of bytes in a given category.
+ *
+ * Returns a positive value on success, a negative error code otherwise.
+ */
+static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
+				int (*iter)(struct mtd_info *,
+					    int section,
+					    struct mtd_oob_region *oobregion))
+{
+	struct mtd_oob_region oobregion;
+	int section = 0, ret, nbytes = 0;
+
+	while (1) {
+		ret = iter(mtd, section++, &oobregion);
+		if (ret) {
+			if (ret == -ERANGE)
+				ret = nbytes;
+			break;
+		}
+
+		nbytes += oobregion.length;
+	}
+
+	return ret;
+}
+
+/**
+ * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
+ * @mtd: mtd info structure
+ * @eccbuf: destination buffer to store ECC bytes
+ * @oobbuf: OOB buffer
+ * @start: first ECC byte to retrieve
+ * @nbytes: number of ECC bytes to retrieve
+ *
+ * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
+ *
+ * Returns zero on success, a negative error code otherwise.
+ */
+int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
+			       const u8 *oobbuf, int start, int nbytes)
+{
+	return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
+				       mtd_ooblayout_ecc);
+}
+EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
+
+/**
+ * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
+ * @mtd: mtd info structure
+ * @eccbuf: source buffer to get ECC bytes from
+ * @oobbuf: OOB buffer
+ * @start: first ECC byte to set
+ * @nbytes: number of ECC bytes to set
+ *
+ * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
+ *
+ * Returns zero on success, a negative error code otherwise.
+ */
+int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
+			       u8 *oobbuf, int start, int nbytes)
+{
+	return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
+				       mtd_ooblayout_ecc);
+}
+EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
+
+/**
+ * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
+ * @mtd: mtd info structure
+ * @databuf: destination buffer to store ECC bytes
+ * @oobbuf: OOB buffer
+ * @start: first ECC byte to retrieve
+ * @nbytes: number of ECC bytes to retrieve
+ *
+ * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
+ *
+ * Returns zero on success, a negative error code otherwise.
+ */
+int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
+				const u8 *oobbuf, int start, int nbytes)
+{
+	return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
+				       mtd_ooblayout_free);
+}
+EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
+
+/**
+ * mtd_ooblayout_get_eccbytes - set data bytes into the oob buffer
+ * @mtd: mtd info structure
+ * @eccbuf: source buffer to get data bytes from
+ * @oobbuf: OOB buffer
+ * @start: first ECC byte to set
+ * @nbytes: number of ECC bytes to set
+ *
+ * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
+ *
+ * Returns zero on success, a negative error code otherwise.
+ */
+int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
+				u8 *oobbuf, int start, int nbytes)
+{
+	return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
+				       mtd_ooblayout_free);
+}
+EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
+
+/**
+ * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
+ * @mtd: mtd info structure
+ *
+ * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
+ *
+ * Returns zero on success, a negative error code otherwise.
+ */
+int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
+{
+	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
+}
+EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
+
+/**
+ * mtd_ooblayout_count_freebytes - count the number of ECC bytes in OOB
+ * @mtd: mtd info structure
+ *
+ * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
+ *
+ * Returns zero on success, a negative error code otherwise.
+ */
+int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
+{
+	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
+}
+EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
+
 /*
  * Method to access the protection register area, present in some flash
  * devices. The user data is one time programmable but the factory data is read
diff --git a/drivers/mtd/nand/Kconfig b/drivers/mtd/nand/Kconfig
index ca98193..cbdbd2f 100644
--- a/drivers/mtd/nand/Kconfig
+++ b/drivers/mtd/nand/Kconfig
@@ -23,17 +23,6 @@
 	  Enable the driver for NAND flash on platforms using a Denali NAND
 	  controller as a DT device.
 
-config SYS_NAND_DENALI_64BIT
-	bool "Use 64-bit variant of Denali NAND controller"
-	depends on NAND_DENALI
-	help
-	  The Denali NAND controller IP has some variations in terms of
-	  the bus interface.  The DMA setup sequence is completely differenct
-	  between 32bit / 64bit AXI bus variants.
-
-	  If your Denali NAND controller is the 64-bit variant, say Y.
-	  Otherwise (32 bit), say N.
-
 config NAND_DENALI_SPARE_AREA_SKIP_BYTES
 	int "Number of bytes skipped in OOB area"
 	depends on NAND_DENALI
diff --git a/drivers/mtd/nand/davinci_nand.c b/drivers/mtd/nand/davinci_nand.c
index 2a01fd3..65104c6 100644
--- a/drivers/mtd/nand/davinci_nand.c
+++ b/drivers/mtd/nand/davinci_nand.c
@@ -358,13 +358,12 @@
  * @buf: the data to write
  * @oob_required: must write chip->oob_poi to OOB
  * @page: page number to write
- * @cached: cached programming
  * @raw: use _raw version of write_page
  */
 static int nand_davinci_write_page(struct mtd_info *mtd, struct nand_chip *chip,
 				   uint32_t offset, int data_len,
 				   const uint8_t *buf, int oob_required,
-				   int page, int cached, int raw)
+				   int page, int raw)
 {
 	int status;
 	int ret = 0;
@@ -395,13 +394,6 @@
 	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
 	status = chip->waitfunc(mtd, chip);
 
-	/*
-	 * See if operation failed and additional status checks are
-	 * available.
-	 */
-	if ((status & NAND_STATUS_FAIL) && (chip->errstat))
-		status = chip->errstat(mtd, chip, FL_WRITING, status, page);
-
 	if (status & NAND_STATUS_FAIL) {
 		ret = -EIO;
 		goto err;
diff --git a/drivers/mtd/nand/denali.c b/drivers/mtd/nand/denali.c
index 54718f4..b116d3a 100644
--- a/drivers/mtd/nand/denali.c
+++ b/drivers/mtd/nand/denali.c
@@ -9,1144 +9,1076 @@
 #include <common.h>
 #include <malloc.h>
 #include <nand.h>
+#include <dm.h>
+#include <linux/bitfield.h>
+#include <linux/dma-direction.h>
 #include <linux/errno.h>
 #include <linux/io.h>
 
 #include "denali.h"
 
-#define NAND_DEFAULT_TIMINGS	-1
-
-static int onfi_timing_mode = NAND_DEFAULT_TIMINGS;
-
-/*
- * We define a macro here that combines all interrupts this driver uses into
- * a single constant value, for convenience.
- */
-#define DENALI_IRQ_ALL	(INTR_STATUS__DMA_CMD_COMP | \
-			INTR_STATUS__ECC_TRANSACTION_DONE | \
-			INTR_STATUS__ECC_ERR | \
-			INTR_STATUS__PROGRAM_FAIL | \
-			INTR_STATUS__LOAD_COMP | \
-			INTR_STATUS__PROGRAM_COMP | \
-			INTR_STATUS__TIME_OUT | \
-			INTR_STATUS__ERASE_FAIL | \
-			INTR_STATUS__RST_COMP | \
-			INTR_STATUS__ERASE_COMP | \
-			INTR_STATUS__ECC_UNCOR_ERR | \
-			INTR_STATUS__INT_ACT | \
-			INTR_STATUS__LOCKED_BLK)
+static dma_addr_t dma_map_single(void *dev, void *ptr, size_t size,
+				 enum dma_data_direction dir)
+{
+	unsigned long addr = (unsigned long)ptr;
 
-/*
- * indicates whether or not the internal value for the flash bank is
- * valid or not
- */
-#define CHIP_SELECT_INVALID	-1
+	if (dir == DMA_FROM_DEVICE)
+		invalidate_dcache_range(addr, addr + size);
+	else
+		flush_dcache_range(addr, addr + size);
 
-#define SUPPORT_8BITECC		1
+	return addr;
+}
 
-/*
- * this macro allows us to convert from an MTD structure to our own
- * device context (denali) structure.
- */
-static inline struct denali_nand_info *mtd_to_denali(struct mtd_info *mtd)
+static void dma_unmap_single(void *dev, dma_addr_t addr, size_t size,
+			     enum dma_data_direction dir)
 {
-	return container_of(mtd_to_nand(mtd), struct denali_nand_info, nand);
+	if (dir != DMA_TO_DEVICE)
+		invalidate_dcache_range(addr, addr + size);
 }
 
-/*
- * These constants are defined by the driver to enable common driver
- * configuration options.
- */
-#define SPARE_ACCESS		0x41
-#define MAIN_ACCESS		0x42
-#define MAIN_SPARE_ACCESS	0x43
-#define PIPELINE_ACCESS		0x2000
-
-#define DENALI_UNLOCK_START	0x10
-#define DENALI_UNLOCK_END	0x11
-#define DENALI_LOCK		0x21
-#define DENALI_LOCK_TIGHT	0x31
-#define DENALI_BUFFER_LOAD	0x60
-#define DENALI_BUFFER_WRITE	0x62
-
-#define DENALI_READ	0
-#define DENALI_WRITE	0x100
-
-/* types of device accesses. We can issue commands and get status */
-#define COMMAND_CYCLE	0
-#define ADDR_CYCLE	1
-#define STATUS_CYCLE	2
-
-/*
- * this is a helper macro that allows us to
- * format the bank into the proper bits for the controller
- */
-#define BANK(x) ((x) << 24)
-
-/* Interrupts are cleared by writing a 1 to the appropriate status bit */
-static inline void clear_interrupt(struct denali_nand_info *denali,
-							uint32_t irq_mask)
+static int dma_mapping_error(void *dev, dma_addr_t addr)
 {
-	uint32_t intr_status_reg;
-
-	intr_status_reg = INTR_STATUS(denali->flash_bank);
-
-	writel(irq_mask, denali->flash_reg + intr_status_reg);
+	return 0;
 }
 
-static uint32_t read_interrupt_status(struct denali_nand_info *denali)
-{
-	uint32_t intr_status_reg;
+#define DENALI_NAND_NAME    "denali-nand"
 
-	intr_status_reg = INTR_STATUS(denali->flash_bank);
+/* for Indexed Addressing */
+#define DENALI_INDEXED_CTRL	0x00
+#define DENALI_INDEXED_DATA	0x10
 
-	return readl(denali->flash_reg + intr_status_reg);
-}
+#define DENALI_MAP00		(0 << 26)	/* direct access to buffer */
+#define DENALI_MAP01		(1 << 26)	/* read/write pages in PIO */
+#define DENALI_MAP10		(2 << 26)	/* high-level control plane */
+#define DENALI_MAP11		(3 << 26)	/* direct controller access */
 
-static void clear_interrupts(struct denali_nand_info *denali)
-{
-	uint32_t status;
+/* MAP11 access cycle type */
+#define DENALI_MAP11_CMD	((DENALI_MAP11) | 0)	/* command cycle */
+#define DENALI_MAP11_ADDR	((DENALI_MAP11) | 1)	/* address cycle */
+#define DENALI_MAP11_DATA	((DENALI_MAP11) | 2)	/* data cycle */
 
-	status = read_interrupt_status(denali);
-	clear_interrupt(denali, status);
+/* MAP10 commands */
+#define DENALI_ERASE		0x01
 
-	denali->irq_status = 0;
-}
+#define DENALI_BANK(denali)	((denali)->active_bank << 24)
 
-static void denali_irq_enable(struct denali_nand_info *denali,
-							uint32_t int_mask)
-{
-	int i;
+#define DENALI_INVALID_BANK	-1
+#define DENALI_NR_BANKS		4
 
-	for (i = 0; i < denali->max_banks; ++i)
-		writel(int_mask, denali->flash_reg + INTR_EN(i));
-}
+/*
+ * The bus interface clock, clk_x, is phase aligned with the core clock.  The
+ * clk_x is an integral multiple N of the core clk.  The value N is configured
+ * at IP delivery time, and its available value is 4, 5, or 6.  We need to align
+ * to the largest value to make it work with any possible configuration.
+ */
+#define DENALI_CLK_X_MULT	6
 
-static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask)
+static inline struct denali_nand_info *mtd_to_denali(struct mtd_info *mtd)
 {
-	unsigned long timeout = 1000000;
-	uint32_t intr_status;
-
-	do {
-		intr_status = read_interrupt_status(denali) & DENALI_IRQ_ALL;
-		if (intr_status & irq_mask) {
-			denali->irq_status &= ~irq_mask;
-			/* our interrupt was detected */
-			break;
-		}
-		udelay(1);
-		timeout--;
-	} while (timeout != 0);
-
-	if (timeout == 0) {
-		/* timeout */
-		printf("Denali timeout with interrupt status %08x\n",
-		       read_interrupt_status(denali));
-		intr_status = 0;
-	}
-	return intr_status;
+	return container_of(mtd_to_nand(mtd), struct denali_nand_info, nand);
 }
 
 /*
- * Certain operations for the denali NAND controller use an indexed mode to
- * read/write data. The operation is performed by writing the address value
- * of the command to the device memory followed by the data. This function
- * abstracts this common operation.
+ * Direct Addressing - the slave address forms the control information (command
+ * type, bank, block, and page address).  The slave data is the actual data to
+ * be transferred.  This mode requires 28 bits of address region allocated.
  */
-static void index_addr(struct denali_nand_info *denali,
-				uint32_t address, uint32_t data)
+static u32 denali_direct_read(struct denali_nand_info *denali, u32 addr)
 {
-	writel(address, denali->flash_mem + INDEX_CTRL_REG);
-	writel(data, denali->flash_mem + INDEX_DATA_REG);
+	return ioread32(denali->host + addr);
 }
 
-/* Perform an indexed read of the device */
-static void index_addr_read_data(struct denali_nand_info *denali,
-				 uint32_t address, uint32_t *pdata)
+static void denali_direct_write(struct denali_nand_info *denali, u32 addr,
+				u32 data)
 {
-	writel(address, denali->flash_mem + INDEX_CTRL_REG);
-	*pdata = readl(denali->flash_mem + INDEX_DATA_REG);
+	iowrite32(data, denali->host + addr);
 }
 
 /*
- * We need to buffer some data for some of the NAND core routines.
- * The operations manage buffering that data.
+ * Indexed Addressing - address translation module intervenes in passing the
+ * control information.  This mode reduces the required address range.  The
+ * control information and transferred data are latched by the registers in
+ * the translation module.
  */
-static void reset_buf(struct denali_nand_info *denali)
+static u32 denali_indexed_read(struct denali_nand_info *denali, u32 addr)
 {
-	denali->buf.head = 0;
-	denali->buf.tail = 0;
+	iowrite32(addr, denali->host + DENALI_INDEXED_CTRL);
+	return ioread32(denali->host + DENALI_INDEXED_DATA);
 }
 
-static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte)
+static void denali_indexed_write(struct denali_nand_info *denali, u32 addr,
+				 u32 data)
 {
-	denali->buf.buf[denali->buf.tail++] = byte;
+	iowrite32(addr, denali->host + DENALI_INDEXED_CTRL);
+	iowrite32(data, denali->host + DENALI_INDEXED_DATA);
 }
 
-/* resets a specific device connected to the core */
-static void reset_bank(struct denali_nand_info *denali)
+/*
+ * Use the configuration feature register to determine the maximum number of
+ * banks that the hardware supports.
+ */
+static void denali_detect_max_banks(struct denali_nand_info *denali)
 {
-	uint32_t irq_status;
-	uint32_t irq_mask = INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT;
-
-	clear_interrupts(denali);
+	uint32_t features = ioread32(denali->reg + FEATURES);
 
-	writel(1 << denali->flash_bank, denali->flash_reg + DEVICE_RESET);
+	denali->max_banks = 1 << FIELD_GET(FEATURES__N_BANKS, features);
 
-	irq_status = wait_for_irq(denali, irq_mask);
-	if (irq_status & INTR_STATUS__TIME_OUT)
-		debug("reset bank failed.\n");
+	/* the encoding changed from rev 5.0 to 5.1 */
+	if (denali->revision < 0x0501)
+		denali->max_banks <<= 1;
 }
 
-/* Reset the flash controller */
-static uint32_t denali_nand_reset(struct denali_nand_info *denali)
+static void __maybe_unused denali_enable_irq(struct denali_nand_info *denali)
 {
 	int i;
 
-	for (i = 0; i < denali->max_banks; i++)
-		writel(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
-		       denali->flash_reg + INTR_STATUS(i));
-
-	for (i = 0; i < denali->max_banks; i++) {
-		writel(1 << i, denali->flash_reg + DEVICE_RESET);
-		while (!(readl(denali->flash_reg + INTR_STATUS(i)) &
-			(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT)))
-			if (readl(denali->flash_reg + INTR_STATUS(i)) &
-				INTR_STATUS__TIME_OUT)
-				debug("NAND Reset operation timed out on bank"
-				      " %d\n", i);
-	}
-
-	for (i = 0; i < denali->max_banks; i++)
-		writel(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
-		       denali->flash_reg + INTR_STATUS(i));
-
-	return 0;
+	for (i = 0; i < DENALI_NR_BANKS; i++)
+		iowrite32(U32_MAX, denali->reg + INTR_EN(i));
+	iowrite32(GLOBAL_INT_EN_FLAG, denali->reg + GLOBAL_INT_ENABLE);
 }
 
-/*
- * this routine calculates the ONFI timing values for a given mode and
- * programs the clocking register accordingly. The mode is determined by
- * the get_onfi_nand_para routine.
- */
-static void nand_onfi_timing_set(struct denali_nand_info *denali,
-								uint16_t mode)
+static void __maybe_unused denali_disable_irq(struct denali_nand_info *denali)
 {
-	uint32_t trea[6] = {40, 30, 25, 20, 20, 16};
-	uint32_t trp[6] = {50, 25, 17, 15, 12, 10};
-	uint32_t treh[6] = {30, 15, 15, 10, 10, 7};
-	uint32_t trc[6] = {100, 50, 35, 30, 25, 20};
-	uint32_t trhoh[6] = {0, 15, 15, 15, 15, 15};
-	uint32_t trloh[6] = {0, 0, 0, 0, 5, 5};
-	uint32_t tcea[6] = {100, 45, 30, 25, 25, 25};
-	uint32_t tadl[6] = {200, 100, 100, 100, 70, 70};
-	uint32_t trhw[6] = {200, 100, 100, 100, 100, 100};
-	uint32_t trhz[6] = {200, 100, 100, 100, 100, 100};
-	uint32_t twhr[6] = {120, 80, 80, 60, 60, 60};
-	uint32_t tcs[6] = {70, 35, 25, 25, 20, 15};
-
-	uint32_t data_invalid_rhoh, data_invalid_rloh, data_invalid;
-	uint32_t dv_window = 0;
-	uint32_t en_lo, en_hi;
-	uint32_t acc_clks;
-	uint32_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt;
+	int i;
 
-	en_lo = DIV_ROUND_UP(trp[mode], CLK_X);
-	en_hi = DIV_ROUND_UP(treh[mode], CLK_X);
-	if ((en_hi * CLK_X) < (treh[mode] + 2))
-		en_hi++;
+	for (i = 0; i < DENALI_NR_BANKS; i++)
+		iowrite32(0, denali->reg + INTR_EN(i));
+	iowrite32(0, denali->reg + GLOBAL_INT_ENABLE);
+}
 
-	if ((en_lo + en_hi) * CLK_X < trc[mode])
-		en_lo += DIV_ROUND_UP((trc[mode] - (en_lo + en_hi) * CLK_X),
-				      CLK_X);
+static void denali_clear_irq(struct denali_nand_info *denali,
+			     int bank, uint32_t irq_status)
+{
+	/* write one to clear bits */
+	iowrite32(irq_status, denali->reg + INTR_STATUS(bank));
+}
 
-	if ((en_lo + en_hi) < CLK_MULTI)
-		en_lo += CLK_MULTI - en_lo - en_hi;
+static void denali_clear_irq_all(struct denali_nand_info *denali)
+{
+	int i;
 
-	while (dv_window < 8) {
-		data_invalid_rhoh = en_lo * CLK_X + trhoh[mode];
+	for (i = 0; i < DENALI_NR_BANKS; i++)
+		denali_clear_irq(denali, i, U32_MAX);
+}
 
-		data_invalid_rloh = (en_lo + en_hi) * CLK_X + trloh[mode];
+static void __denali_check_irq(struct denali_nand_info *denali)
+{
+	uint32_t irq_status;
+	int i;
 
-		data_invalid = data_invalid_rhoh < data_invalid_rloh ?
-					data_invalid_rhoh : data_invalid_rloh;
+	for (i = 0; i < DENALI_NR_BANKS; i++) {
+		irq_status = ioread32(denali->reg + INTR_STATUS(i));
+		denali_clear_irq(denali, i, irq_status);
 
-		dv_window = data_invalid - trea[mode];
+		if (i != denali->active_bank)
+			continue;
 
-		if (dv_window < 8)
-			en_lo++;
+		denali->irq_status |= irq_status;
 	}
-
-	acc_clks = DIV_ROUND_UP(trea[mode], CLK_X);
+}
 
-	while (acc_clks * CLK_X - trea[mode] < 3)
-		acc_clks++;
+static void denali_reset_irq(struct denali_nand_info *denali)
+{
+	denali->irq_status = 0;
+	denali->irq_mask = 0;
+}
 
-	if (data_invalid - acc_clks * CLK_X < 2)
-		debug("%s, Line %d: Warning!\n", __FILE__, __LINE__);
+static uint32_t denali_wait_for_irq(struct denali_nand_info *denali,
+				    uint32_t irq_mask)
+{
+	unsigned long time_left = 1000000;
 
-	addr_2_data = DIV_ROUND_UP(tadl[mode], CLK_X);
-	re_2_we = DIV_ROUND_UP(trhw[mode], CLK_X);
-	re_2_re = DIV_ROUND_UP(trhz[mode], CLK_X);
-	we_2_re = DIV_ROUND_UP(twhr[mode], CLK_X);
-	cs_cnt = DIV_ROUND_UP((tcs[mode] - trp[mode]), CLK_X);
-	if (cs_cnt == 0)
-		cs_cnt = 1;
+	while (time_left) {
+		__denali_check_irq(denali);
 
-	if (tcea[mode]) {
-		while (cs_cnt * CLK_X + trea[mode] < tcea[mode])
-			cs_cnt++;
+		if (irq_mask & denali->irq_status)
+			return denali->irq_status;
+		udelay(1);
+		time_left--;
 	}
 
-	/* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */
-	if (readl(denali->flash_reg + MANUFACTURER_ID) == 0 &&
-	    readl(denali->flash_reg + DEVICE_ID) == 0x88)
-		acc_clks = 6;
+	if (!time_left) {
+		dev_err(denali->dev, "timeout while waiting for irq 0x%x\n",
+			irq_mask);
+		return 0;
+	}
 
-	writel(acc_clks, denali->flash_reg + ACC_CLKS);
-	writel(re_2_we, denali->flash_reg + RE_2_WE);
-	writel(re_2_re, denali->flash_reg + RE_2_RE);
-	writel(we_2_re, denali->flash_reg + WE_2_RE);
-	writel(addr_2_data, denali->flash_reg + ADDR_2_DATA);
-	writel(en_lo, denali->flash_reg + RDWR_EN_LO_CNT);
-	writel(en_hi, denali->flash_reg + RDWR_EN_HI_CNT);
-	writel(cs_cnt, denali->flash_reg + CS_SETUP_CNT);
+	return denali->irq_status;
 }
 
-/* queries the NAND device to see what ONFI modes it supports. */
-static uint32_t get_onfi_nand_para(struct denali_nand_info *denali)
+static uint32_t denali_check_irq(struct denali_nand_info *denali)
 {
-	int i;
+	__denali_check_irq(denali);
 
-	/*
-	 * we needn't to do a reset here because driver has already
-	 * reset all the banks before
-	 */
-	if (!(readl(denali->flash_reg + ONFI_TIMING_MODE) &
-	    ONFI_TIMING_MODE__VALUE))
-		return -EIO;
-
-	for (i = 5; i > 0; i--) {
-		if (readl(denali->flash_reg + ONFI_TIMING_MODE) &
-			(0x01 << i))
-			break;
-	}
-
-	nand_onfi_timing_set(denali, i);
-
-	/*
-	 * By now, all the ONFI devices we know support the page cache
-	 * rw feature. So here we enable the pipeline_rw_ahead feature
-	 */
-
-	return 0;
+	return denali->irq_status;
 }
 
-static void get_samsung_nand_para(struct denali_nand_info *denali,
-							uint8_t device_id)
+static void denali_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
 {
-	if (device_id == 0xd3) { /* Samsung K9WAG08U1A */
-		/* Set timing register values according to datasheet */
-		writel(5, denali->flash_reg + ACC_CLKS);
-		writel(20, denali->flash_reg + RE_2_WE);
-		writel(12, denali->flash_reg + WE_2_RE);
-		writel(14, denali->flash_reg + ADDR_2_DATA);
-		writel(3, denali->flash_reg + RDWR_EN_LO_CNT);
-		writel(2, denali->flash_reg + RDWR_EN_HI_CNT);
-		writel(2, denali->flash_reg + CS_SETUP_CNT);
-	}
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+	u32 addr = DENALI_MAP11_DATA | DENALI_BANK(denali);
+	int i;
+
+	for (i = 0; i < len; i++)
+		buf[i] = denali->host_read(denali, addr);
 }
 
-static void get_toshiba_nand_para(struct denali_nand_info *denali)
+static void denali_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
 {
-	uint32_t tmp;
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+	u32 addr = DENALI_MAP11_DATA | DENALI_BANK(denali);
+	int i;
 
-	/*
-	 * Workaround to fix a controller bug which reports a wrong
-	 * spare area size for some kind of Toshiba NAND device
-	 */
-	if ((readl(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) &&
-	    (readl(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64)) {
-		writel(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
-		tmp = readl(denali->flash_reg + DEVICES_CONNECTED) *
-			readl(denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
-		writel(tmp, denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
-	}
+	for (i = 0; i < len; i++)
+		denali->host_write(denali, addr, buf[i]);
 }
 
-static void get_hynix_nand_para(struct denali_nand_info *denali,
-							uint8_t device_id)
+static void denali_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
 {
-	uint32_t main_size, spare_size;
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+	u32 addr = DENALI_MAP11_DATA | DENALI_BANK(denali);
+	uint16_t *buf16 = (uint16_t *)buf;
+	int i;
 
-	switch (device_id) {
-	case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */
-	case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */
-		writel(128, denali->flash_reg + PAGES_PER_BLOCK);
-		writel(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
-		writel(224, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
-		main_size = 4096 *
-			readl(denali->flash_reg + DEVICES_CONNECTED);
-		spare_size = 224 *
-			readl(denali->flash_reg + DEVICES_CONNECTED);
-		writel(main_size, denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
-		writel(spare_size, denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
-		writel(0, denali->flash_reg + DEVICE_WIDTH);
-		break;
-	default:
-		debug("Spectra: Unknown Hynix NAND (Device ID: 0x%x).\n"
-		      "Will use default parameter values instead.\n",
-		      device_id);
-	}
+	for (i = 0; i < len / 2; i++)
+		buf16[i] = denali->host_read(denali, addr);
 }
 
-/*
- * determines how many NAND chips are connected to the controller. Note for
- * Intel CE4100 devices we don't support more than one device.
- */
-static void find_valid_banks(struct denali_nand_info *denali)
+static void denali_write_buf16(struct mtd_info *mtd, const uint8_t *buf,
+			       int len)
 {
-	uint32_t id[denali->max_banks];
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+	u32 addr = DENALI_MAP11_DATA | DENALI_BANK(denali);
+	const uint16_t *buf16 = (const uint16_t *)buf;
 	int i;
 
-	denali->total_used_banks = 1;
-	for (i = 0; i < denali->max_banks; i++) {
-		index_addr(denali, MODE_11 | (i << 24) | 0, 0x90);
-		index_addr(denali, MODE_11 | (i << 24) | 1, 0);
-		index_addr_read_data(denali, MODE_11 | (i << 24) | 2, &id[i]);
-
-		if (i == 0) {
-			if (!(id[i] & 0x0ff))
-				break;
-		} else {
-			if ((id[i] & 0x0ff) == (id[0] & 0x0ff))
-				denali->total_used_banks++;
-			else
-				break;
-		}
-	}
+	for (i = 0; i < len / 2; i++)
+		denali->host_write(denali, addr, buf16[i]);
 }
 
-/*
- * Use the configuration feature register to determine the maximum number of
- * banks that the hardware supports.
- */
-static void detect_max_banks(struct denali_nand_info *denali)
+static uint8_t denali_read_byte(struct mtd_info *mtd)
 {
-	uint32_t features = ioread32(denali->flash_reg + FEATURES);
+	uint8_t byte;
 
-	denali->max_banks = 1 << (features & FEATURES__N_BANKS);
+	denali_read_buf(mtd, &byte, 1);
 
-	/* the encoding changed from rev 5.0 to 5.1 */
-	if (denali->revision < 0x0501)
-		denali->max_banks <<= 1;
+	return byte;
 }
 
-static void detect_partition_feature(struct denali_nand_info *denali)
+static void denali_write_byte(struct mtd_info *mtd, uint8_t byte)
 {
-	/*
-	 * For MRST platform, denali->fwblks represent the
-	 * number of blocks firmware is taken,
-	 * FW is in protect partition and MTD driver has no
-	 * permission to access it. So let driver know how many
-	 * blocks it can't touch.
-	 */
-	if (readl(denali->flash_reg + FEATURES) & FEATURES__PARTITION) {
-		if ((readl(denali->flash_reg + PERM_SRC_ID(1)) &
-			PERM_SRC_ID__SRCID) == SPECTRA_PARTITION_ID) {
-			denali->fwblks =
-			    ((readl(denali->flash_reg + MIN_MAX_BANK(1)) &
-			      MIN_MAX_BANK__MIN_VALUE) *
-			     denali->blksperchip)
-			    +
-			    (readl(denali->flash_reg + MIN_BLK_ADDR(1)) &
-			    MIN_BLK_ADDR__VALUE);
-		} else {
-			denali->fwblks = SPECTRA_START_BLOCK;
-		}
-	} else {
-		denali->fwblks = SPECTRA_START_BLOCK;
-	}
+	denali_write_buf(mtd, &byte, 1);
 }
 
-static uint32_t denali_nand_timing_set(struct denali_nand_info *denali)
+static uint16_t denali_read_word(struct mtd_info *mtd)
 {
-	uint32_t id_bytes[8], addr;
-	uint8_t maf_id, device_id;
-	int i;
+	uint16_t word;
 
-	/*
-	 * Use read id method to get device ID and other params.
-	 * For some NAND chips, controller can't report the correct
-	 * device ID by reading from DEVICE_ID register
-	 */
-	addr = MODE_11 | BANK(denali->flash_bank);
-	index_addr(denali, addr | 0, 0x90);
-	index_addr(denali, addr | 1, 0);
-	for (i = 0; i < 8; i++)
-		index_addr_read_data(denali, addr | 2, &id_bytes[i]);
-	maf_id = id_bytes[0];
-	device_id = id_bytes[1];
+	denali_read_buf16(mtd, (uint8_t *)&word, 2);
 
-	if (readl(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) &
-		ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */
-		if (get_onfi_nand_para(denali))
-			return -EIO;
-	} else if (maf_id == 0xEC) { /* Samsung NAND */
-		get_samsung_nand_para(denali, device_id);
-	} else if (maf_id == 0x98) { /* Toshiba NAND */
-		get_toshiba_nand_para(denali);
-	} else if (maf_id == 0xAD) { /* Hynix NAND */
-		get_hynix_nand_para(denali, device_id);
-	}
+	return word;
+}
 
-	find_valid_banks(denali);
+static void denali_cmd_ctrl(struct mtd_info *mtd, int dat, unsigned int ctrl)
+{
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+	uint32_t type;
 
-	detect_partition_feature(denali);
+	if (ctrl & NAND_CLE)
+		type = DENALI_MAP11_CMD;
+	else if (ctrl & NAND_ALE)
+		type = DENALI_MAP11_ADDR;
+	else
+		return;
 
 	/*
-	 * If the user specified to override the default timings
-	 * with a specific ONFI mode, we apply those changes here.
+	 * Some commands are followed by chip->dev_ready or chip->waitfunc.
+	 * irq_status must be cleared here to catch the R/B# interrupt later.
 	 */
-	if (onfi_timing_mode != NAND_DEFAULT_TIMINGS)
-		nand_onfi_timing_set(denali, onfi_timing_mode);
+	if (ctrl & NAND_CTRL_CHANGE)
+		denali_reset_irq(denali);
 
-	return 0;
+	denali->host_write(denali, DENALI_BANK(denali) | type, dat);
 }
 
-/*
- * validation function to verify that the controlling software is making
- * a valid request
- */
-static inline bool is_flash_bank_valid(int flash_bank)
+static int denali_dev_ready(struct mtd_info *mtd)
 {
-	return flash_bank >= 0 && flash_bank < 4;
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+
+	return !!(denali_check_irq(denali) & INTR__INT_ACT);
 }
 
-static void denali_irq_init(struct denali_nand_info *denali)
+static int denali_check_erased_page(struct mtd_info *mtd,
+				    struct nand_chip *chip, uint8_t *buf,
+				    unsigned long uncor_ecc_flags,
+				    unsigned int max_bitflips)
 {
-	uint32_t int_mask;
-	int i;
+	uint8_t *ecc_code = chip->buffers->ecccode;
+	int ecc_steps = chip->ecc.steps;
+	int ecc_size = chip->ecc.size;
+	int ecc_bytes = chip->ecc.bytes;
+	int i, ret, stat;
 
-	/* Disable global interrupts */
-	writel(0, denali->flash_reg + GLOBAL_INT_ENABLE);
+	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
+					 chip->ecc.total);
+	if (ret)
+		return ret;
 
-	int_mask = DENALI_IRQ_ALL;
+	for (i = 0; i < ecc_steps; i++) {
+		if (!(uncor_ecc_flags & BIT(i)))
+			continue;
 
-	/* Clear all status bits */
-	for (i = 0; i < denali->max_banks; ++i)
-		writel(0xFFFF, denali->flash_reg + INTR_STATUS(i));
+		stat = nand_check_erased_ecc_chunk(buf, ecc_size,
+						  ecc_code, ecc_bytes,
+						  NULL, 0,
+						  chip->ecc.strength);
+		if (stat < 0) {
+			mtd->ecc_stats.failed++;
+		} else {
+			mtd->ecc_stats.corrected += stat;
+			max_bitflips = max_t(unsigned int, max_bitflips, stat);
+		}
 
-	denali_irq_enable(denali, int_mask);
+		buf += ecc_size;
+		ecc_code += ecc_bytes;
+	}
+
+	return max_bitflips;
 }
 
-/*
- * This helper function setups the registers for ECC and whether or not
- * the spare area will be transferred.
- */
-static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en,
-				bool transfer_spare)
+static int denali_hw_ecc_fixup(struct mtd_info *mtd,
+			       struct denali_nand_info *denali,
+			       unsigned long *uncor_ecc_flags)
 {
-	int ecc_en_flag, transfer_spare_flag;
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	int bank = denali->active_bank;
+	uint32_t ecc_cor;
+	unsigned int max_bitflips;
 
-	/* set ECC, transfer spare bits if needed */
-	ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0;
-	transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0;
+	ecc_cor = ioread32(denali->reg + ECC_COR_INFO(bank));
+	ecc_cor >>= ECC_COR_INFO__SHIFT(bank);
+
+	if (ecc_cor & ECC_COR_INFO__UNCOR_ERR) {
+		/*
+		 * This flag is set when uncorrectable error occurs at least in
+		 * one ECC sector.  We can not know "how many sectors", or
+		 * "which sector(s)".  We need erase-page check for all sectors.
+		 */
+		*uncor_ecc_flags = GENMASK(chip->ecc.steps - 1, 0);
+		return 0;
+	}
 
-	/* Enable spare area/ECC per user's request. */
-	writel(ecc_en_flag, denali->flash_reg + ECC_ENABLE);
-	/* applicable for MAP01 only */
-	writel(transfer_spare_flag, denali->flash_reg + TRANSFER_SPARE_REG);
+	max_bitflips = FIELD_GET(ECC_COR_INFO__MAX_ERRORS, ecc_cor);
+
+	/*
+	 * The register holds the maximum of per-sector corrected bitflips.
+	 * This is suitable for the return value of the ->read_page() callback.
+	 * Unfortunately, we can not know the total number of corrected bits in
+	 * the page.  Increase the stats by max_bitflips. (compromised solution)
+	 */
+	mtd->ecc_stats.corrected += max_bitflips;
+
+	return max_bitflips;
 }
 
-/*
- * sends a pipeline command operation to the controller. See the Denali NAND
- * controller's user guide for more information (section 4.2.3.6).
- */
-static int denali_send_pipeline_cmd(struct denali_nand_info *denali,
-				    bool ecc_en, bool transfer_spare,
-				    int access_type, int op)
+static int denali_sw_ecc_fixup(struct mtd_info *mtd,
+			       struct denali_nand_info *denali,
+			       unsigned long *uncor_ecc_flags, uint8_t *buf)
 {
-	uint32_t addr, cmd, irq_status;
-	static uint32_t page_count = 1;
-
-	setup_ecc_for_xfer(denali, ecc_en, transfer_spare);
+	unsigned int ecc_size = denali->nand.ecc.size;
+	unsigned int bitflips = 0;
+	unsigned int max_bitflips = 0;
+	uint32_t err_addr, err_cor_info;
+	unsigned int err_byte, err_sector, err_device;
+	uint8_t err_cor_value;
+	unsigned int prev_sector = 0;
+	uint32_t irq_status;
 
-	clear_interrupts(denali);
+	denali_reset_irq(denali);
 
-	addr = BANK(denali->flash_bank) | denali->page;
+	do {
+		err_addr = ioread32(denali->reg + ECC_ERROR_ADDRESS);
+		err_sector = FIELD_GET(ECC_ERROR_ADDRESS__SECTOR, err_addr);
+		err_byte = FIELD_GET(ECC_ERROR_ADDRESS__OFFSET, err_addr);
 
-	/* setup the acccess type */
-	cmd = MODE_10 | addr;
-	index_addr(denali, cmd, access_type);
+		err_cor_info = ioread32(denali->reg + ERR_CORRECTION_INFO);
+		err_cor_value = FIELD_GET(ERR_CORRECTION_INFO__BYTE,
+					  err_cor_info);
+		err_device = FIELD_GET(ERR_CORRECTION_INFO__DEVICE,
+				       err_cor_info);
 
-	/* setup the pipeline command */
-	index_addr(denali, cmd, 0x2000 | op | page_count);
+		/* reset the bitflip counter when crossing ECC sector */
+		if (err_sector != prev_sector)
+			bitflips = 0;
 
-	cmd = MODE_01 | addr;
-	writel(cmd, denali->flash_mem + INDEX_CTRL_REG);
+		if (err_cor_info & ERR_CORRECTION_INFO__UNCOR) {
+			/*
+			 * Check later if this is a real ECC error, or
+			 * an erased sector.
+			 */
+			*uncor_ecc_flags |= BIT(err_sector);
+		} else if (err_byte < ecc_size) {
+			/*
+			 * If err_byte is larger than ecc_size, means error
+			 * happened in OOB, so we ignore it. It's no need for
+			 * us to correct it err_device is represented the NAND
+			 * error bits are happened in if there are more than
+			 * one NAND connected.
+			 */
+			int offset;
+			unsigned int flips_in_byte;
 
-	if (op == DENALI_READ) {
-		/* wait for command to be accepted */
-		irq_status = wait_for_irq(denali, INTR_STATUS__LOAD_COMP);
+			offset = (err_sector * ecc_size + err_byte) *
+					denali->devs_per_cs + err_device;
 
-		if (irq_status == 0)
-			return -EIO;
-	}
+			/* correct the ECC error */
+			flips_in_byte = hweight8(buf[offset] ^ err_cor_value);
+			buf[offset] ^= err_cor_value;
+			mtd->ecc_stats.corrected += flips_in_byte;
+			bitflips += flips_in_byte;
 
-	return 0;
-}
+			max_bitflips = max(max_bitflips, bitflips);
+		}
 
-/* helper function that simply writes a buffer to the flash */
-static int write_data_to_flash_mem(struct denali_nand_info *denali,
-				   const uint8_t *buf, int len)
-{
-	uint32_t *buf32;
-	int i;
+		prev_sector = err_sector;
+	} while (!(err_cor_info & ERR_CORRECTION_INFO__LAST_ERR));
 
 	/*
-	 * verify that the len is a multiple of 4.
-	 * see comment in read_data_from_flash_mem()
+	 * Once handle all ECC errors, controller will trigger an
+	 * ECC_TRANSACTION_DONE interrupt.
 	 */
-	BUG_ON((len % 4) != 0);
+	irq_status = denali_wait_for_irq(denali, INTR__ECC_TRANSACTION_DONE);
+	if (!(irq_status & INTR__ECC_TRANSACTION_DONE))
+		return -EIO;
 
-	/* write the data to the flash memory */
-	buf32 = (uint32_t *)buf;
-	for (i = 0; i < len / 4; i++)
-		writel(*buf32++, denali->flash_mem + INDEX_DATA_REG);
-	return i * 4; /* intent is to return the number of bytes read */
+	return max_bitflips;
 }
 
-/* helper function that simply reads a buffer from the flash */
-static int read_data_from_flash_mem(struct denali_nand_info *denali,
-				    uint8_t *buf, int len)
+static void denali_setup_dma64(struct denali_nand_info *denali,
+			       dma_addr_t dma_addr, int page, int write)
 {
-	uint32_t *buf32;
-	int i;
+	uint32_t mode;
+	const int page_count = 1;
 
-	/*
-	 * we assume that len will be a multiple of 4, if not it would be nice
-	 * to know about it ASAP rather than have random failures...
-	 * This assumption is based on the fact that this function is designed
-	 * to be used to read flash pages, which are typically multiples of 4.
-	 */
-	BUG_ON((len % 4) != 0);
+	mode = DENALI_MAP10 | DENALI_BANK(denali) | page;
 
-	/* transfer the data from the flash */
-	buf32 = (uint32_t *)buf;
-	for (i = 0; i < len / 4; i++)
-		*buf32++ = readl(denali->flash_mem + INDEX_DATA_REG);
+	/* DMA is a three step process */
 
-	return i * 4; /* intent is to return the number of bytes read */
-}
+	/*
+	 * 1. setup transfer type, interrupt when complete,
+	 *    burst len = 64 bytes, the number of pages
+	 */
+	denali->host_write(denali, mode,
+			   0x01002000 | (64 << 16) | (write << 8) | page_count);
 
-static void denali_mode_main_access(struct denali_nand_info *denali)
-{
-	uint32_t addr, cmd;
+	/* 2. set memory low address */
+	denali->host_write(denali, mode, lower_32_bits(dma_addr));
 
-	addr = BANK(denali->flash_bank) | denali->page;
-	cmd = MODE_10 | addr;
-	index_addr(denali, cmd, MAIN_ACCESS);
+	/* 3. set memory high address */
+	denali->host_write(denali, mode, upper_32_bits(dma_addr));
 }
 
-static void denali_mode_main_spare_access(struct denali_nand_info *denali)
+static void denali_setup_dma32(struct denali_nand_info *denali,
+			       dma_addr_t dma_addr, int page, int write)
 {
-	uint32_t addr, cmd;
+	uint32_t mode;
+	const int page_count = 1;
 
-	addr = BANK(denali->flash_bank) | denali->page;
-	cmd = MODE_10 | addr;
-	index_addr(denali, cmd, MAIN_SPARE_ACCESS);
-}
+	mode = DENALI_MAP10 | DENALI_BANK(denali);
 
-/* writes OOB data to the device */
-static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
-{
-	struct denali_nand_info *denali = mtd_to_denali(mtd);
-	uint32_t irq_status;
-	uint32_t irq_mask = INTR_STATUS__PROGRAM_COMP |
-						INTR_STATUS__PROGRAM_FAIL;
-	int status = 0;
+	/* DMA is a four step process */
 
-	denali->page = page;
+	/* 1. setup transfer type and # of pages */
+	denali->host_write(denali, mode | page,
+			   0x2000 | (write << 8) | page_count);
 
-	if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
-				     DENALI_WRITE) == 0) {
-		write_data_to_flash_mem(denali, buf, mtd->oobsize);
+	/* 2. set memory high address bits 23:8 */
+	denali->host_write(denali, mode | ((dma_addr >> 16) << 8), 0x2200);
 
-		/* wait for operation to complete */
-		irq_status = wait_for_irq(denali, irq_mask);
+	/* 3. set memory low address bits 23:8 */
+	denali->host_write(denali, mode | ((dma_addr & 0xffff) << 8), 0x2300);
 
-		if (irq_status == 0) {
-			dev_err(denali->dev, "OOB write failed\n");
-			status = -EIO;
-		}
-	} else {
-		printf("unable to send pipeline command\n");
-		status = -EIO;
-	}
-	return status;
+	/* 4. interrupt when complete, burst len = 64 bytes */
+	denali->host_write(denali, mode | 0x14000, 0x2400);
 }
 
-/* reads OOB data from the device */
-static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
+static int denali_pio_read(struct denali_nand_info *denali, void *buf,
+			   size_t size, int page, int raw)
 {
-	struct denali_nand_info *denali = mtd_to_denali(mtd);
-	uint32_t irq_mask = INTR_STATUS__LOAD_COMP;
-	uint32_t irq_status, addr, cmd;
+	u32 addr = DENALI_MAP01 | DENALI_BANK(denali) | page;
+	uint32_t *buf32 = (uint32_t *)buf;
+	uint32_t irq_status, ecc_err_mask;
+	int i;
 
-	denali->page = page;
+	if (denali->caps & DENALI_CAP_HW_ECC_FIXUP)
+		ecc_err_mask = INTR__ECC_UNCOR_ERR;
+	else
+		ecc_err_mask = INTR__ECC_ERR;
 
-	if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
-				     DENALI_READ) == 0) {
-		read_data_from_flash_mem(denali, buf, mtd->oobsize);
+	denali_reset_irq(denali);
 
-		/*
-		 * wait for command to be accepted
-		 * can always use status0 bit as the
-		 * mask is identical for each bank.
-		 */
-		irq_status = wait_for_irq(denali, irq_mask);
+	for (i = 0; i < size / 4; i++)
+		*buf32++ = denali->host_read(denali, addr);
 
-		if (irq_status == 0)
-			printf("page on OOB timeout %d\n", denali->page);
+	irq_status = denali_wait_for_irq(denali, INTR__PAGE_XFER_INC);
+	if (!(irq_status & INTR__PAGE_XFER_INC))
+		return -EIO;
 
-		/*
-		 * We set the device back to MAIN_ACCESS here as I observed
-		 * instability with the controller if you do a block erase
-		 * and the last transaction was a SPARE_ACCESS. Block erase
-		 * is reliable (according to the MTD test infrastructure)
-		 * if you are in MAIN_ACCESS.
-		 */
-		addr = BANK(denali->flash_bank) | denali->page;
-		cmd = MODE_10 | addr;
-		index_addr(denali, cmd, MAIN_ACCESS);
-	}
+	if (irq_status & INTR__ERASED_PAGE)
+		memset(buf, 0xff, size);
+
+	return irq_status & ecc_err_mask ? -EBADMSG : 0;
 }
 
-/*
- * this function examines buffers to see if they contain data that
- * indicate that the buffer is part of an erased region of flash.
- */
-static bool is_erased(uint8_t *buf, int len)
+static int denali_pio_write(struct denali_nand_info *denali,
+			    const void *buf, size_t size, int page, int raw)
 {
+	u32 addr = DENALI_MAP01 | DENALI_BANK(denali) | page;
+	const uint32_t *buf32 = (uint32_t *)buf;
+	uint32_t irq_status;
 	int i;
 
-	for (i = 0; i < len; i++)
-		if (buf[i] != 0xFF)
-			return false;
-	return true;
+	denali_reset_irq(denali);
+
+	for (i = 0; i < size / 4; i++)
+		denali->host_write(denali, addr, *buf32++);
+
+	irq_status = denali_wait_for_irq(denali,
+				INTR__PROGRAM_COMP | INTR__PROGRAM_FAIL);
+	if (!(irq_status & INTR__PROGRAM_COMP))
+		return -EIO;
+
+	return 0;
 }
 
-/* programs the controller to either enable/disable DMA transfers */
-static void denali_enable_dma(struct denali_nand_info *denali, bool en)
+static int denali_pio_xfer(struct denali_nand_info *denali, void *buf,
+			   size_t size, int page, int raw, int write)
 {
-	writel(en ? DMA_ENABLE__FLAG : 0, denali->flash_reg + DMA_ENABLE);
-	readl(denali->flash_reg + DMA_ENABLE);
+	if (write)
+		return denali_pio_write(denali, buf, size, page, raw);
+	else
+		return denali_pio_read(denali, buf, size, page, raw);
 }
 
-/* setups the HW to perform the data DMA */
-static void denali_setup_dma(struct denali_nand_info *denali, int op)
+static int denali_dma_xfer(struct denali_nand_info *denali, void *buf,
+			   size_t size, int page, int raw, int write)
 {
-	uint32_t mode;
-	const int page_count = 1;
-	uint64_t addr = (unsigned long)denali->buf.dma_buf;
-
-	flush_dcache_range(addr, addr + sizeof(denali->buf.dma_buf));
-
-/* For Denali controller that is 64 bit bus IP core */
-#ifdef CONFIG_SYS_NAND_DENALI_64BIT
-	mode = MODE_10 | BANK(denali->flash_bank) | denali->page;
+	dma_addr_t dma_addr;
+	uint32_t irq_mask, irq_status, ecc_err_mask;
+	enum dma_data_direction dir = write ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
+	int ret = 0;
 
-	/* DMA is a three step process */
+	dma_addr = dma_map_single(denali->dev, buf, size, dir);
+	if (dma_mapping_error(denali->dev, dma_addr)) {
+		dev_dbg(denali->dev, "Failed to DMA-map buffer. Trying PIO.\n");
+		return denali_pio_xfer(denali, buf, size, page, raw, write);
+	}
 
-	/* 1. setup transfer type, interrupt when complete,
-	      burst len = 64 bytes, the number of pages */
-	index_addr(denali, mode, 0x01002000 | (64 << 16) | op | page_count);
+	if (write) {
+		/*
+		 * INTR__PROGRAM_COMP is never asserted for the DMA transfer.
+		 * We can use INTR__DMA_CMD_COMP instead.  This flag is asserted
+		 * when the page program is completed.
+		 */
+		irq_mask = INTR__DMA_CMD_COMP | INTR__PROGRAM_FAIL;
+		ecc_err_mask = 0;
+	} else if (denali->caps & DENALI_CAP_HW_ECC_FIXUP) {
+		irq_mask = INTR__DMA_CMD_COMP;
+		ecc_err_mask = INTR__ECC_UNCOR_ERR;
+	} else {
+		irq_mask = INTR__DMA_CMD_COMP;
+		ecc_err_mask = INTR__ECC_ERR;
+	}
 
-	/* 2. set memory low address bits 31:0 */
-	index_addr(denali, mode, addr);
+	iowrite32(DMA_ENABLE__FLAG, denali->reg + DMA_ENABLE);
 
-	/* 3. set memory high address bits 64:32 */
-	index_addr(denali, mode, addr >> 32);
-#else
-	mode = MODE_10 | BANK(denali->flash_bank);
+	denali_reset_irq(denali);
+	denali->setup_dma(denali, dma_addr, page, write);
 
-	/* DMA is a four step process */
+	irq_status = denali_wait_for_irq(denali, irq_mask);
+	if (!(irq_status & INTR__DMA_CMD_COMP))
+		ret = -EIO;
+	else if (irq_status & ecc_err_mask)
+		ret = -EBADMSG;
 
-	/* 1. setup transfer type and # of pages */
-	index_addr(denali, mode | denali->page, 0x2000 | op | page_count);
+	iowrite32(0, denali->reg + DMA_ENABLE);
 
-	/* 2. set memory high address bits 23:8 */
-	index_addr(denali, mode | (((addr >> 16) & 0xffff) << 8), 0x2200);
+	dma_unmap_single(denali->dev, dma_addr, size, dir);
 
-	/* 3. set memory low address bits 23:8 */
-	index_addr(denali, mode | ((addr & 0xffff) << 8), 0x2300);
+	if (irq_status & INTR__ERASED_PAGE)
+		memset(buf, 0xff, size);
 
-	/* 4. interrupt when complete, burst len = 64 bytes */
-	index_addr(denali, mode | 0x14000, 0x2400);
-#endif
+	return ret;
 }
 
-/* Common DMA function */
-static uint32_t denali_dma_configuration(struct denali_nand_info *denali,
-					 uint32_t ops, bool raw_xfer,
-					 uint32_t irq_mask, int oob_required)
+static int denali_data_xfer(struct denali_nand_info *denali, void *buf,
+			    size_t size, int page, int raw, int write)
 {
-	uint32_t irq_status = 0;
-	/* setup_ecc_for_xfer(bool ecc_en, bool transfer_spare) */
-	setup_ecc_for_xfer(denali, !raw_xfer, oob_required);
+	iowrite32(raw ? 0 : ECC_ENABLE__FLAG, denali->reg + ECC_ENABLE);
+	iowrite32(raw ? TRANSFER_SPARE_REG__FLAG : 0,
+		  denali->reg + TRANSFER_SPARE_REG);
 
-	/* clear any previous interrupt flags */
-	clear_interrupts(denali);
+	if (denali->dma_avail)
+		return denali_dma_xfer(denali, buf, size, page, raw, write);
+	else
+		return denali_pio_xfer(denali, buf, size, page, raw, write);
+}
 
-	/* enable the DMA */
-	denali_enable_dma(denali, true);
+static void denali_oob_xfer(struct mtd_info *mtd, struct nand_chip *chip,
+			    int page, int write)
+{
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+	unsigned int start_cmd = write ? NAND_CMD_SEQIN : NAND_CMD_READ0;
+	unsigned int rnd_cmd = write ? NAND_CMD_RNDIN : NAND_CMD_RNDOUT;
+	int writesize = mtd->writesize;
+	int oobsize = mtd->oobsize;
+	uint8_t *bufpoi = chip->oob_poi;
+	int ecc_steps = chip->ecc.steps;
+	int ecc_size = chip->ecc.size;
+	int ecc_bytes = chip->ecc.bytes;
+	int oob_skip = denali->oob_skip_bytes;
+	size_t size = writesize + oobsize;
+	int i, pos, len;
 
-	/* setup the DMA */
-	denali_setup_dma(denali, ops);
+	/* BBM at the beginning of the OOB area */
+	chip->cmdfunc(mtd, start_cmd, writesize, page);
+	if (write)
+		chip->write_buf(mtd, bufpoi, oob_skip);
+	else
+		chip->read_buf(mtd, bufpoi, oob_skip);
+	bufpoi += oob_skip;
 
-	/* wait for operation to complete */
-	irq_status = wait_for_irq(denali, irq_mask);
+	/* OOB ECC */
+	for (i = 0; i < ecc_steps; i++) {
+		pos = ecc_size + i * (ecc_size + ecc_bytes);
+		len = ecc_bytes;
 
-	/* if ECC fault happen, seems we need delay before turning off DMA.
-	 * If not, the controller will go into non responsive condition */
-	if (irq_status & INTR_STATUS__ECC_UNCOR_ERR)
-		udelay(100);
+		if (pos >= writesize)
+			pos += oob_skip;
+		else if (pos + len > writesize)
+			len = writesize - pos;
 
-	/* disable the DMA */
-	denali_enable_dma(denali, false);
+		chip->cmdfunc(mtd, rnd_cmd, pos, -1);
+		if (write)
+			chip->write_buf(mtd, bufpoi, len);
+		else
+			chip->read_buf(mtd, bufpoi, len);
+		bufpoi += len;
+		if (len < ecc_bytes) {
+			len = ecc_bytes - len;
+			chip->cmdfunc(mtd, rnd_cmd, writesize + oob_skip, -1);
+			if (write)
+				chip->write_buf(mtd, bufpoi, len);
+			else
+				chip->read_buf(mtd, bufpoi, len);
+			bufpoi += len;
+		}
+	}
 
-	return irq_status;
+	/* OOB free */
+	len = oobsize - (bufpoi - chip->oob_poi);
+	chip->cmdfunc(mtd, rnd_cmd, size - len, -1);
+	if (write)
+		chip->write_buf(mtd, bufpoi, len);
+	else
+		chip->read_buf(mtd, bufpoi, len);
 }
 
-static int write_page(struct mtd_info *mtd, struct nand_chip *chip,
-			const uint8_t *buf, bool raw_xfer, int oob_required)
+static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
+				uint8_t *buf, int oob_required, int page)
 {
 	struct denali_nand_info *denali = mtd_to_denali(mtd);
+	int writesize = mtd->writesize;
+	int oobsize = mtd->oobsize;
+	int ecc_steps = chip->ecc.steps;
+	int ecc_size = chip->ecc.size;
+	int ecc_bytes = chip->ecc.bytes;
+	void *tmp_buf = denali->buf;
+	int oob_skip = denali->oob_skip_bytes;
+	size_t size = writesize + oobsize;
+	int ret, i, pos, len;
 
-	uint32_t irq_status = 0;
-	uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP;
+	ret = denali_data_xfer(denali, tmp_buf, size, page, 1, 0);
+	if (ret)
+		return ret;
 
-	denali->status = 0;
+	/* Arrange the buffer for syndrome payload/ecc layout */
+	if (buf) {
+		for (i = 0; i < ecc_steps; i++) {
+			pos = i * (ecc_size + ecc_bytes);
+			len = ecc_size;
 
-	/* copy buffer into DMA buffer */
-	memcpy(denali->buf.dma_buf, buf, mtd->writesize);
+			if (pos >= writesize)
+				pos += oob_skip;
+			else if (pos + len > writesize)
+				len = writesize - pos;
 
-	/* need extra memcpy for raw transfer */
-	if (raw_xfer)
-		memcpy(denali->buf.dma_buf + mtd->writesize,
-		       chip->oob_poi, mtd->oobsize);
+			memcpy(buf, tmp_buf + pos, len);
+			buf += len;
+			if (len < ecc_size) {
+				len = ecc_size - len;
+				memcpy(buf, tmp_buf + writesize + oob_skip,
+				       len);
+				buf += len;
+			}
+		}
+	}
 
-	/* setting up DMA */
-	irq_status = denali_dma_configuration(denali, DENALI_WRITE, raw_xfer,
-					      irq_mask, oob_required);
+	if (oob_required) {
+		uint8_t *oob = chip->oob_poi;
 
-	/* if timeout happen, error out */
-	if (!(irq_status & INTR_STATUS__DMA_CMD_COMP)) {
-		debug("DMA timeout for denali write_page\n");
-		denali->status = NAND_STATUS_FAIL;
-		return -EIO;
-	}
+		/* BBM at the beginning of the OOB area */
+		memcpy(oob, tmp_buf + writesize, oob_skip);
+		oob += oob_skip;
 
-	if (irq_status & INTR_STATUS__LOCKED_BLK) {
-		debug("Failed as write to locked block\n");
-		denali->status = NAND_STATUS_FAIL;
-		return -EIO;
+		/* OOB ECC */
+		for (i = 0; i < ecc_steps; i++) {
+			pos = ecc_size + i * (ecc_size + ecc_bytes);
+			len = ecc_bytes;
+
+			if (pos >= writesize)
+				pos += oob_skip;
+			else if (pos + len > writesize)
+				len = writesize - pos;
+
+			memcpy(oob, tmp_buf + pos, len);
+			oob += len;
+			if (len < ecc_bytes) {
+				len = ecc_bytes - len;
+				memcpy(oob, tmp_buf + writesize + oob_skip,
+				       len);
+				oob += len;
+			}
+		}
+
+		/* OOB free */
+		len = oobsize - (oob - chip->oob_poi);
+		memcpy(oob, tmp_buf + size - len, len);
 	}
+
 	return 0;
 }
 
-/* NAND core entry points */
-
-/*
- * this is the callback that the NAND core calls to write a page. Since
- * writing a page with ECC or without is similar, all the work is done
- * by write_page above.
- */
-static int denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
-				const uint8_t *buf, int oob_required, int page)
+static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
+			   int page)
 {
-	struct denali_nand_info *denali = mtd_to_denali(mtd);
-
-	/*
-	 * for regular page writes, we let HW handle all the ECC
-	 * data written to the device.
-	 */
-	if (oob_required)
-		/* switch to main + spare access */
-		denali_mode_main_spare_access(denali);
-	else
-		/* switch to main access only */
-		denali_mode_main_access(denali);
+	denali_oob_xfer(mtd, chip, page, 0);
 
-	return write_page(mtd, chip, buf, false, oob_required);
+	return 0;
 }
 
-/*
- * This is the callback that the NAND core calls to write a page without ECC.
- * raw access is similar to ECC page writes, so all the work is done in the
- * write_page() function above.
- */
-static int denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
-				 const uint8_t *buf, int oob_required,
-				 int page)
+static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
+			    int page)
 {
 	struct denali_nand_info *denali = mtd_to_denali(mtd);
+	int status;
 
-	/*
-	 * for raw page writes, we want to disable ECC and simply write
-	 * whatever data is in the buffer.
-	 */
+	denali_reset_irq(denali);
 
-	if (oob_required)
-		/* switch to main + spare access */
-		denali_mode_main_spare_access(denali);
-	else
-		/* switch to main access only */
-		denali_mode_main_access(denali);
+	denali_oob_xfer(mtd, chip, page, 1);
 
-	return write_page(mtd, chip, buf, true, oob_required);
-}
+	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
+	status = chip->waitfunc(mtd, chip);
 
-static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
-				int page)
-{
-	return write_oob_data(mtd, chip->oob_poi, page);
+	return status & NAND_STATUS_FAIL ? -EIO : 0;
 }
 
-/* raw include ECC value and all the spare area */
-static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
-				uint8_t *buf, int oob_required, int page)
+static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
+			    uint8_t *buf, int oob_required, int page)
 {
 	struct denali_nand_info *denali = mtd_to_denali(mtd);
+	unsigned long uncor_ecc_flags = 0;
+	int stat = 0;
+	int ret;
 
-	uint32_t irq_status, irq_mask = INTR_STATUS__DMA_CMD_COMP;
+	ret = denali_data_xfer(denali, buf, mtd->writesize, page, 0, 0);
+	if (ret && ret != -EBADMSG)
+		return ret;
 
-	if (denali->page != page) {
-		debug("Missing NAND_CMD_READ0 command\n");
-		return -EIO;
-	}
+	if (denali->caps & DENALI_CAP_HW_ECC_FIXUP)
+		stat = denali_hw_ecc_fixup(mtd, denali, &uncor_ecc_flags);
+	else if (ret == -EBADMSG)
+		stat = denali_sw_ecc_fixup(mtd, denali, &uncor_ecc_flags, buf);
 
-	if (oob_required)
-		/* switch to main + spare access */
-		denali_mode_main_spare_access(denali);
-	else
-		/* switch to main access only */
-		denali_mode_main_access(denali);
+	if (stat < 0)
+		return stat;
 
-	/* setting up the DMA where ecc_enable is false */
-	irq_status = denali_dma_configuration(denali, DENALI_READ, true,
-					      irq_mask, oob_required);
+	if (uncor_ecc_flags) {
+		ret = denali_read_oob(mtd, chip, page);
+		if (ret)
+			return ret;
 
-	/* if timeout happen, error out */
-	if (!(irq_status & INTR_STATUS__DMA_CMD_COMP)) {
-		debug("DMA timeout for denali_read_page_raw\n");
-		return -EIO;
+		stat = denali_check_erased_page(mtd, chip, buf,
+						uncor_ecc_flags, stat);
 	}
 
-	/* splitting the content to destination buffer holder */
-	memcpy(chip->oob_poi, (denali->buf.dma_buf + mtd->writesize),
-	       mtd->oobsize);
-	memcpy(buf, denali->buf.dma_buf, mtd->writesize);
-
-	return 0;
+	return stat;
 }
 
-static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
-				uint8_t *buf, int oob_required, int page)
+static int denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
+				 const uint8_t *buf, int oob_required, int page)
 {
 	struct denali_nand_info *denali = mtd_to_denali(mtd);
-	uint32_t irq_status, irq_mask =	INTR_STATUS__DMA_CMD_COMP;
+	int writesize = mtd->writesize;
+	int oobsize = mtd->oobsize;
+	int ecc_steps = chip->ecc.steps;
+	int ecc_size = chip->ecc.size;
+	int ecc_bytes = chip->ecc.bytes;
+	void *tmp_buf = denali->buf;
+	int oob_skip = denali->oob_skip_bytes;
+	size_t size = writesize + oobsize;
+	int i, pos, len;
 
-	if (denali->page != page) {
-		debug("Missing NAND_CMD_READ0 command\n");
-		return -EIO;
+	/*
+	 * Fill the buffer with 0xff first except the full page transfer.
+	 * This simplifies the logic.
+	 */
+	if (!buf || !oob_required)
+		memset(tmp_buf, 0xff, size);
+
+	/* Arrange the buffer for syndrome payload/ecc layout */
+	if (buf) {
+		for (i = 0; i < ecc_steps; i++) {
+			pos = i * (ecc_size + ecc_bytes);
+			len = ecc_size;
+
+			if (pos >= writesize)
+				pos += oob_skip;
+			else if (pos + len > writesize)
+				len = writesize - pos;
+
+			memcpy(tmp_buf + pos, buf, len);
+			buf += len;
+			if (len < ecc_size) {
+				len = ecc_size - len;
+				memcpy(tmp_buf + writesize + oob_skip, buf,
+				       len);
+				buf += len;
+			}
+		}
 	}
 
-	if (oob_required)
-		/* switch to main + spare access */
-		denali_mode_main_spare_access(denali);
-	else
-		/* switch to main access only */
-		denali_mode_main_access(denali);
+	if (oob_required) {
+		const uint8_t *oob = chip->oob_poi;
 
-	/* setting up the DMA where ecc_enable is true */
-	irq_status = denali_dma_configuration(denali, DENALI_READ, false,
-					      irq_mask, oob_required);
+		/* BBM at the beginning of the OOB area */
+		memcpy(tmp_buf + writesize, oob, oob_skip);
+		oob += oob_skip;
 
-	memcpy(buf, denali->buf.dma_buf, mtd->writesize);
+		/* OOB ECC */
+		for (i = 0; i < ecc_steps; i++) {
+			pos = ecc_size + i * (ecc_size + ecc_bytes);
+			len = ecc_bytes;
 
-	/* check whether any ECC error */
-	if (irq_status & INTR_STATUS__ECC_UNCOR_ERR) {
-		/* is the ECC cause by erase page, check using read_page_raw */
-		debug("  Uncorrected ECC detected\n");
-		denali_read_page_raw(mtd, chip, buf, oob_required,
-				     denali->page);
+			if (pos >= writesize)
+				pos += oob_skip;
+			else if (pos + len > writesize)
+				len = writesize - pos;
 
-		if (is_erased(buf, mtd->writesize) == true &&
-		    is_erased(chip->oob_poi, mtd->oobsize) == true) {
-			debug("  ECC error cause by erased block\n");
-			/* false alarm, return the 0xFF */
-		} else {
-			return -EBADMSG;
+			memcpy(tmp_buf + pos, oob, len);
+			oob += len;
+			if (len < ecc_bytes) {
+				len = ecc_bytes - len;
+				memcpy(tmp_buf + writesize + oob_skip, oob,
+				       len);
+				oob += len;
+			}
 		}
+
+		/* OOB free */
+		len = oobsize - (oob - chip->oob_poi);
+		memcpy(tmp_buf + size - len, oob, len);
 	}
-	memcpy(buf, denali->buf.dma_buf, mtd->writesize);
-	return 0;
+
+	return denali_data_xfer(denali, tmp_buf, size, page, 1, 1);
 }
 
-static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
-				int page)
+static int denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
+			     const uint8_t *buf, int oob_required, int page)
 {
-	read_oob_data(mtd, chip->oob_poi, page);
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
 
-	return 0;
+	return denali_data_xfer(denali, (void *)buf, mtd->writesize,
+				page, 0, 1);
 }
 
-static uint8_t denali_read_byte(struct mtd_info *mtd)
+static void denali_select_chip(struct mtd_info *mtd, int chip)
 {
 	struct denali_nand_info *denali = mtd_to_denali(mtd);
-	uint32_t addr, result;
 
-	addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
-	index_addr_read_data(denali, addr | 2, &result);
-	return (uint8_t)result & 0xFF;
+	denali->active_bank = chip;
 }
 
-static void denali_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
+static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
 {
 	struct denali_nand_info *denali = mtd_to_denali(mtd);
-	uint32_t i, addr, result;
-
-	/* delay for tR (data transfer from Flash array to data register) */
-	udelay(25);
+	uint32_t irq_status;
 
-	/* ensure device completed else additional delay and polling */
-	wait_for_irq(denali, INTR_STATUS__INT_ACT);
+	/* R/B# pin transitioned from low to high? */
+	irq_status = denali_wait_for_irq(denali, INTR__INT_ACT);
 
-	addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
-	for (i = 0; i < len; i++) {
-		index_addr_read_data(denali, (uint32_t)addr | 2, &result);
-		write_byte_to_buf(denali, result);
-	}
-	memcpy(buf, denali->buf.buf, len);
+	return irq_status & INTR__INT_ACT ? 0 : NAND_STATUS_FAIL;
 }
 
-static void denali_select_chip(struct mtd_info *mtd, int chip)
+static int denali_erase(struct mtd_info *mtd, int page)
 {
 	struct denali_nand_info *denali = mtd_to_denali(mtd);
+	uint32_t irq_status;
 
-	denali->flash_bank = chip;
-}
+	denali_reset_irq(denali);
 
-static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
-{
-	struct denali_nand_info *denali = mtd_to_denali(mtd);
-	int status = denali->status;
+	denali->host_write(denali, DENALI_MAP10 | DENALI_BANK(denali) | page,
+			   DENALI_ERASE);
 
-	denali->status = 0;
+	/* wait for erase to complete or failure to occur */
+	irq_status = denali_wait_for_irq(denali,
+					 INTR__ERASE_COMP | INTR__ERASE_FAIL);
 
-	return status;
+	return irq_status & INTR__ERASE_COMP ? 0 : NAND_STATUS_FAIL;
 }
 
-static int denali_erase(struct mtd_info *mtd, int page)
+static int __maybe_unused denali_setup_data_interface(struct mtd_info *mtd, int chipnr,
+				       const struct nand_data_interface *conf)
 {
 	struct denali_nand_info *denali = mtd_to_denali(mtd);
+	const struct nand_sdr_timings *timings;
+	unsigned long t_clk;
+	int acc_clks, re_2_we, re_2_re, we_2_re, addr_2_data;
+	int rdwr_en_lo, rdwr_en_hi, rdwr_en_lo_hi, cs_setup;
+	int addr_2_data_mask;
+	uint32_t tmp;
 
-	uint32_t cmd, irq_status;
+	timings = nand_get_sdr_timings(conf);
+	if (IS_ERR(timings))
+		return PTR_ERR(timings);
 
-	clear_interrupts(denali);
+	/* clk_x period in picoseconds */
+	t_clk = DIV_ROUND_DOWN_ULL(1000000000000ULL, denali->clk_x_rate);
+	if (!t_clk)
+		return -EINVAL;
 
-	/* setup page read request for access type */
-	cmd = MODE_10 | BANK(denali->flash_bank) | page;
-	index_addr(denali, cmd, 0x1);
+	if (chipnr == NAND_DATA_IFACE_CHECK_ONLY)
+		return 0;
 
-	/* wait for erase to complete or failure to occur */
-	irq_status = wait_for_irq(denali, INTR_STATUS__ERASE_COMP |
-					INTR_STATUS__ERASE_FAIL);
+	/* tREA -> ACC_CLKS */
+	acc_clks = DIV_ROUND_UP(timings->tREA_max, t_clk);
+	acc_clks = min_t(int, acc_clks, ACC_CLKS__VALUE);
+
+	tmp = ioread32(denali->reg + ACC_CLKS);
+	tmp &= ~ACC_CLKS__VALUE;
+	tmp |= FIELD_PREP(ACC_CLKS__VALUE, acc_clks);
+	iowrite32(tmp, denali->reg + ACC_CLKS);
+
+	/* tRWH -> RE_2_WE */
+	re_2_we = DIV_ROUND_UP(timings->tRHW_min, t_clk);
+	re_2_we = min_t(int, re_2_we, RE_2_WE__VALUE);
 
-	if (irq_status & INTR_STATUS__ERASE_FAIL ||
-	    irq_status & INTR_STATUS__LOCKED_BLK)
-		return NAND_STATUS_FAIL;
+	tmp = ioread32(denali->reg + RE_2_WE);
+	tmp &= ~RE_2_WE__VALUE;
+	tmp |= FIELD_PREP(RE_2_WE__VALUE, re_2_we);
+	iowrite32(tmp, denali->reg + RE_2_WE);
+
+	/* tRHZ -> RE_2_RE */
+	re_2_re = DIV_ROUND_UP(timings->tRHZ_max, t_clk);
+	re_2_re = min_t(int, re_2_re, RE_2_RE__VALUE);
+
+	tmp = ioread32(denali->reg + RE_2_RE);
+	tmp &= ~RE_2_RE__VALUE;
+	tmp |= FIELD_PREP(RE_2_RE__VALUE, re_2_re);
+	iowrite32(tmp, denali->reg + RE_2_RE);
+
+	/*
+	 * tCCS, tWHR -> WE_2_RE
+	 *
+	 * With WE_2_RE properly set, the Denali controller automatically takes
+	 * care of the delay; the driver need not set NAND_WAIT_TCCS.
+	 */
+	we_2_re = DIV_ROUND_UP(max(timings->tCCS_min, timings->tWHR_min),
+			       t_clk);
+	we_2_re = min_t(int, we_2_re, TWHR2_AND_WE_2_RE__WE_2_RE);
+
+	tmp = ioread32(denali->reg + TWHR2_AND_WE_2_RE);
+	tmp &= ~TWHR2_AND_WE_2_RE__WE_2_RE;
+	tmp |= FIELD_PREP(TWHR2_AND_WE_2_RE__WE_2_RE, we_2_re);
+	iowrite32(tmp, denali->reg + TWHR2_AND_WE_2_RE);
+
+	/* tADL -> ADDR_2_DATA */
+
+	/* for older versions, ADDR_2_DATA is only 6 bit wide */
+	addr_2_data_mask = TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA;
+	if (denali->revision < 0x0501)
+		addr_2_data_mask >>= 1;
+
+	addr_2_data = DIV_ROUND_UP(timings->tADL_min, t_clk);
+	addr_2_data = min_t(int, addr_2_data, addr_2_data_mask);
+
+	tmp = ioread32(denali->reg + TCWAW_AND_ADDR_2_DATA);
+	tmp &= ~TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA;
+	tmp |= FIELD_PREP(TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA, addr_2_data);
+	iowrite32(tmp, denali->reg + TCWAW_AND_ADDR_2_DATA);
+
+	/* tREH, tWH -> RDWR_EN_HI_CNT */
+	rdwr_en_hi = DIV_ROUND_UP(max(timings->tREH_min, timings->tWH_min),
+				  t_clk);
+	rdwr_en_hi = min_t(int, rdwr_en_hi, RDWR_EN_HI_CNT__VALUE);
+
+	tmp = ioread32(denali->reg + RDWR_EN_HI_CNT);
+	tmp &= ~RDWR_EN_HI_CNT__VALUE;
+	tmp |= FIELD_PREP(RDWR_EN_HI_CNT__VALUE, rdwr_en_hi);
+	iowrite32(tmp, denali->reg + RDWR_EN_HI_CNT);
+
+	/* tRP, tWP -> RDWR_EN_LO_CNT */
+	rdwr_en_lo = DIV_ROUND_UP(max(timings->tRP_min, timings->tWP_min),
+				  t_clk);
+	rdwr_en_lo_hi = DIV_ROUND_UP(max(timings->tRC_min, timings->tWC_min),
+				     t_clk);
+	rdwr_en_lo_hi = max(rdwr_en_lo_hi, DENALI_CLK_X_MULT);
+	rdwr_en_lo = max(rdwr_en_lo, rdwr_en_lo_hi - rdwr_en_hi);
+	rdwr_en_lo = min_t(int, rdwr_en_lo, RDWR_EN_LO_CNT__VALUE);
+
+	tmp = ioread32(denali->reg + RDWR_EN_LO_CNT);
+	tmp &= ~RDWR_EN_LO_CNT__VALUE;
+	tmp |= FIELD_PREP(RDWR_EN_LO_CNT__VALUE, rdwr_en_lo);
+	iowrite32(tmp, denali->reg + RDWR_EN_LO_CNT);
+
+	/* tCS, tCEA -> CS_SETUP_CNT */
+	cs_setup = max3((int)DIV_ROUND_UP(timings->tCS_min, t_clk) - rdwr_en_lo,
+			(int)DIV_ROUND_UP(timings->tCEA_max, t_clk) - acc_clks,
+			0);
+	cs_setup = min_t(int, cs_setup, CS_SETUP_CNT__VALUE);
+
+	tmp = ioread32(denali->reg + CS_SETUP_CNT);
+	tmp &= ~CS_SETUP_CNT__VALUE;
+	tmp |= FIELD_PREP(CS_SETUP_CNT__VALUE, cs_setup);
+	iowrite32(tmp, denali->reg + CS_SETUP_CNT);
 
 	return 0;
 }
 
-static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
-			   int page)
+static void denali_reset_banks(struct denali_nand_info *denali)
 {
-	struct denali_nand_info *denali = mtd_to_denali(mtd);
-	uint32_t addr;
+	u32 irq_status;
+	int i;
 
-	switch (cmd) {
-	case NAND_CMD_PAGEPROG:
-		break;
-	case NAND_CMD_STATUS:
-		addr = MODE_11 | BANK(denali->flash_bank);
-		index_addr(denali, addr | 0, cmd);
-		break;
-	case NAND_CMD_READID:
-	case NAND_CMD_PARAM:
-		reset_buf(denali);
-		/*
-		 * sometimes ManufactureId read from register is not right
-		 * e.g. some of Micron MT29F32G08QAA MLC NAND chips
-		 * So here we send READID cmd to NAND insteand
-		 */
-		addr = MODE_11 | BANK(denali->flash_bank);
-		index_addr(denali, addr | 0, cmd);
-		index_addr(denali, addr | 1, col & 0xFF);
-		if (cmd == NAND_CMD_PARAM)
-			udelay(50);
-		break;
-	case NAND_CMD_RNDOUT:
-		addr = MODE_11 | BANK(denali->flash_bank);
-		index_addr(denali, addr | 0, cmd);
-		index_addr(denali, addr | 1, col & 0xFF);
-		index_addr(denali, addr | 1, col >> 8);
-		index_addr(denali, addr | 0, NAND_CMD_RNDOUTSTART);
-		break;
-	case NAND_CMD_READ0:
-	case NAND_CMD_SEQIN:
-		denali->page = page;
-		break;
-	case NAND_CMD_RESET:
-		reset_bank(denali);
-		break;
-	case NAND_CMD_READOOB:
-		/* TODO: Read OOB data */
-		break;
-	case NAND_CMD_ERASE1:
-		/*
-		 * supporting block erase only, not multiblock erase as
-		 * it will cross plane and software need complex calculation
-		 * to identify the block count for the cross plane
-		 */
-		denali_erase(mtd, page);
-		break;
-	case NAND_CMD_ERASE2:
-		/* nothing to do here as it was done during NAND_CMD_ERASE1 */
-		break;
-	case NAND_CMD_UNLOCK1:
-		addr = MODE_10 | BANK(denali->flash_bank) | page;
-		index_addr(denali, addr | 0, DENALI_UNLOCK_START);
-		break;
-	case NAND_CMD_UNLOCK2:
-		addr = MODE_10 | BANK(denali->flash_bank) | page;
-		index_addr(denali, addr | 0, DENALI_UNLOCK_END);
-		break;
-	case NAND_CMD_LOCK:
-		addr = MODE_10 | BANK(denali->flash_bank);
-		index_addr(denali, addr | 0, DENALI_LOCK);
-		break;
-	default:
-		printf(": unsupported command received 0x%x\n", cmd);
-		break;
+	for (i = 0; i < denali->max_banks; i++) {
+		denali->active_bank = i;
+
+		denali_reset_irq(denali);
+
+		iowrite32(DEVICE_RESET__BANK(i),
+			  denali->reg + DEVICE_RESET);
+
+		irq_status = denali_wait_for_irq(denali,
+			INTR__RST_COMP | INTR__INT_ACT | INTR__TIME_OUT);
+		if (!(irq_status & INTR__INT_ACT))
+			break;
 	}
+
+	dev_dbg(denali->dev, "%d chips connected\n", i);
+	denali->max_banks = i;
 }
-/* end NAND core entry points */
 
-/* Initialization code to bring the device up to a known good state */
 static void denali_hw_init(struct denali_nand_info *denali)
 {
 	/*
@@ -1154,125 +1086,284 @@
 	 * override it.
 	 */
 	if (!denali->revision)
-		denali->revision = swab16(ioread32(denali->flash_reg + REVISION));
+		denali->revision = swab16(ioread32(denali->reg + REVISION));
 
 	/*
 	 * tell driver how many bit controller will skip before writing
 	 * ECC code in OOB. This is normally used for bad block marker
 	 */
-	writel(CONFIG_NAND_DENALI_SPARE_AREA_SKIP_BYTES,
-	       denali->flash_reg + SPARE_AREA_SKIP_BYTES);
-	detect_max_banks(denali);
-	denali_nand_reset(denali);
-	writel(0x0F, denali->flash_reg + RB_PIN_ENABLED);
-	writel(CHIP_EN_DONT_CARE__FLAG,
-	       denali->flash_reg + CHIP_ENABLE_DONT_CARE);
-	writel(0xffff, denali->flash_reg + SPARE_AREA_MARKER);
+	denali->oob_skip_bytes = CONFIG_NAND_DENALI_SPARE_AREA_SKIP_BYTES;
+	iowrite32(denali->oob_skip_bytes, denali->reg + SPARE_AREA_SKIP_BYTES);
+	denali_detect_max_banks(denali);
+	iowrite32(0x0F, denali->reg + RB_PIN_ENABLED);
+	iowrite32(CHIP_EN_DONT_CARE__FLAG, denali->reg + CHIP_ENABLE_DONT_CARE);
 
-	/* Should set value for these registers when init */
-	writel(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES);
-	writel(1, denali->flash_reg + ECC_ENABLE);
-	denali_nand_timing_set(denali);
-	denali_irq_init(denali);
+	iowrite32(0xffff, denali->reg + SPARE_AREA_MARKER);
 }
 
-static struct nand_ecclayout nand_oob;
+int denali_calc_ecc_bytes(int step_size, int strength)
+{
+	/* BCH code.  Denali requires ecc.bytes to be multiple of 2 */
+	return DIV_ROUND_UP(strength * fls(step_size * 8), 16) * 2;
+}
+EXPORT_SYMBOL(denali_calc_ecc_bytes);
 
-int denali_init(struct denali_nand_info *denali)
+static int denali_ecc_setup(struct mtd_info *mtd, struct nand_chip *chip,
+			    struct denali_nand_info *denali)
 {
-	struct mtd_info *mtd = nand_to_mtd(&denali->nand);
+	int oobavail = mtd->oobsize - denali->oob_skip_bytes;
 	int ret;
 
-	denali_hw_init(denali);
+	/*
+	 * If .size and .strength are already set (usually by DT),
+	 * check if they are supported by this controller.
+	 */
+	if (chip->ecc.size && chip->ecc.strength)
+		return nand_check_ecc_caps(chip, denali->ecc_caps, oobavail);
+
+	/*
+	 * We want .size and .strength closest to the chip's requirement
+	 * unless NAND_ECC_MAXIMIZE is requested.
+	 */
+	if (!(chip->ecc.options & NAND_ECC_MAXIMIZE)) {
+		ret = nand_match_ecc_req(chip, denali->ecc_caps, oobavail);
+		if (!ret)
+			return 0;
+	}
+
+	/* Max ECC strength is the last thing we can do */
+	return nand_maximize_ecc(chip, denali->ecc_caps, oobavail);
+}
+
+static struct nand_ecclayout nand_oob;
+
+static int denali_ooblayout_ecc(struct mtd_info *mtd, int section,
+				struct mtd_oob_region *oobregion)
+{
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+	struct nand_chip *chip = mtd_to_nand(mtd);
+
+	if (section)
+		return -ERANGE;
+
+	oobregion->offset = denali->oob_skip_bytes;
+	oobregion->length = chip->ecc.total;
+
+	return 0;
+}
+
+static int denali_ooblayout_free(struct mtd_info *mtd, int section,
+				 struct mtd_oob_region *oobregion)
+{
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+	struct nand_chip *chip = mtd_to_nand(mtd);
+
+	if (section)
+		return -ERANGE;
+
+	oobregion->offset = chip->ecc.total + denali->oob_skip_bytes;
+	oobregion->length = mtd->oobsize - oobregion->offset;
+
+	return 0;
+}
 
-	mtd->name = "denali-nand";
-	mtd->owner = THIS_MODULE;
+static const struct mtd_ooblayout_ops denali_ooblayout_ops = {
+	.ecc = denali_ooblayout_ecc,
+	.free = denali_ooblayout_free,
+};
 
-	/* register the driver with the NAND core subsystem */
-	denali->nand.select_chip = denali_select_chip;
-	denali->nand.cmdfunc = denali_cmdfunc;
-	denali->nand.read_byte = denali_read_byte;
-	denali->nand.read_buf = denali_read_buf;
-	denali->nand.waitfunc = denali_waitfunc;
+static int denali_multidev_fixup(struct denali_nand_info *denali)
+{
+	struct nand_chip *chip = &denali->nand;
+	struct mtd_info *mtd = nand_to_mtd(chip);
 
 	/*
-	 * scan for NAND devices attached to the controller
-	 * this is the first stage in a two step process to register
-	 * with the nand subsystem
+	 * Support for multi device:
+	 * When the IP configuration is x16 capable and two x8 chips are
+	 * connected in parallel, DEVICES_CONNECTED should be set to 2.
+	 * In this case, the core framework knows nothing about this fact,
+	 * so we should tell it the _logical_ pagesize and anything necessary.
 	 */
-	if (nand_scan_ident(mtd, denali->max_banks, NULL)) {
-		ret = -ENXIO;
-		goto fail;
-	}
+	denali->devs_per_cs = ioread32(denali->reg + DEVICES_CONNECTED);
 
-#ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
-	/* check whether flash got BBT table (located at end of flash). As we
-	 * use NAND_BBT_NO_OOB, the BBT page will start with
-	 * bbt_pattern. We will have mirror pattern too */
-	denali->nand.bbt_options |= NAND_BBT_USE_FLASH;
 	/*
-	 * We are using main + spare with ECC support. As BBT need ECC support,
-	 * we need to ensure BBT code don't write to OOB for the BBT pattern.
-	 * All BBT info will be stored into data area with ECC support.
+	 * On some SoCs, DEVICES_CONNECTED is not auto-detected.
+	 * For those, DEVICES_CONNECTED is left to 0.  Set 1 if it is the case.
 	 */
-	denali->nand.bbt_options |= NAND_BBT_NO_OOB;
-#endif
+	if (denali->devs_per_cs == 0) {
+		denali->devs_per_cs = 1;
+		iowrite32(1, denali->reg + DEVICES_CONNECTED);
+	}
+
+	if (denali->devs_per_cs == 1)
+		return 0;
+
+	if (denali->devs_per_cs != 2) {
+		dev_err(denali->dev, "unsupported number of devices %d\n",
+			denali->devs_per_cs);
+		return -EINVAL;
+	}
+
+	/* 2 chips in parallel */
+	mtd->size <<= 1;
+	mtd->erasesize <<= 1;
+	mtd->writesize <<= 1;
+	mtd->oobsize <<= 1;
+	chip->chipsize <<= 1;
+	chip->page_shift += 1;
+	chip->phys_erase_shift += 1;
+	chip->bbt_erase_shift += 1;
+	chip->chip_shift += 1;
+	chip->pagemask <<= 1;
+	chip->ecc.size <<= 1;
+	chip->ecc.bytes <<= 1;
+	chip->ecc.strength <<= 1;
+	denali->oob_skip_bytes <<= 1;
+
+	return 0;
+}
+
+int denali_init(struct denali_nand_info *denali)
+{
+	struct nand_chip *chip = &denali->nand;
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	u32 features = ioread32(denali->reg + FEATURES);
+	int ret;
+
+	denali_hw_init(denali);
+
+	denali_clear_irq_all(denali);
+
+	denali_reset_banks(denali);
+
+	denali->active_bank = DENALI_INVALID_BANK;
+
+	chip->flash_node = dev_of_offset(denali->dev);
+	/* Fallback to the default name if DT did not give "label" property */
+	if (!mtd->name)
+		mtd->name = "denali-nand";
 
-	denali->nand.ecc.mode = NAND_ECC_HW;
-	denali->nand.ecc.size = CONFIG_NAND_DENALI_ECC_SIZE;
+	chip->select_chip = denali_select_chip;
+	chip->read_byte = denali_read_byte;
+	chip->write_byte = denali_write_byte;
+	chip->read_word = denali_read_word;
+	chip->cmd_ctrl = denali_cmd_ctrl;
+	chip->dev_ready = denali_dev_ready;
+	chip->waitfunc = denali_waitfunc;
+
+	if (features & FEATURES__INDEX_ADDR) {
+		denali->host_read = denali_indexed_read;
+		denali->host_write = denali_indexed_write;
+	} else {
+		denali->host_read = denali_direct_read;
+		denali->host_write = denali_direct_write;
+	}
+
+	/* clk rate info is needed for setup_data_interface */
+	if (denali->clk_x_rate)
+		chip->setup_data_interface = denali_setup_data_interface;
+
+	ret = nand_scan_ident(mtd, denali->max_banks, NULL);
+	if (ret)
+		return ret;
+
+	if (ioread32(denali->reg + FEATURES) & FEATURES__DMA)
+		denali->dma_avail = 1;
+
+	if (denali->dma_avail) {
+		chip->buf_align = 16;
+		if (denali->caps & DENALI_CAP_DMA_64BIT)
+			denali->setup_dma = denali_setup_dma64;
+		else
+			denali->setup_dma = denali_setup_dma32;
+	} else {
+		chip->buf_align = 4;
+	}
+
+	chip->options |= NAND_USE_BOUNCE_BUFFER;
+	chip->bbt_options |= NAND_BBT_USE_FLASH;
+	chip->bbt_options |= NAND_BBT_NO_OOB;
+	denali->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
 
 	/* no subpage writes on denali */
-	denali->nand.options |= NAND_NO_SUBPAGE_WRITE;
+	chip->options |= NAND_NO_SUBPAGE_WRITE;
 
-	/*
-	 * Tell driver the ecc strength. This register may be already set
-	 * correctly. So we read this value out.
-	 */
-	denali->nand.ecc.strength = readl(denali->flash_reg + ECC_CORRECTION);
-	switch (denali->nand.ecc.size) {
-	case 512:
-		denali->nand.ecc.bytes =
-			(denali->nand.ecc.strength * 13 + 15) / 16 * 2;
-		break;
-	case 1024:
-		denali->nand.ecc.bytes =
-			(denali->nand.ecc.strength * 14 + 15) / 16 * 2;
-		break;
-	default:
-		pr_err("Unsupported ECC size\n");
-		ret = -EINVAL;
-		goto fail;
+	ret = denali_ecc_setup(mtd, chip, denali);
+	if (ret) {
+		dev_err(denali->dev, "Failed to setup ECC settings.\n");
+		return ret;
 	}
+
+	dev_dbg(denali->dev,
+		"chosen ECC settings: step=%d, strength=%d, bytes=%d\n",
+		chip->ecc.size, chip->ecc.strength, chip->ecc.bytes);
+
+	iowrite32(FIELD_PREP(ECC_CORRECTION__ERASE_THRESHOLD, 1) |
+		  FIELD_PREP(ECC_CORRECTION__VALUE, chip->ecc.strength),
+		  denali->reg + ECC_CORRECTION);
+	iowrite32(mtd->erasesize / mtd->writesize,
+		  denali->reg + PAGES_PER_BLOCK);
+	iowrite32(chip->options & NAND_BUSWIDTH_16 ? 1 : 0,
+		  denali->reg + DEVICE_WIDTH);
+	iowrite32(chip->options & NAND_ROW_ADDR_3 ? 0 : TWO_ROW_ADDR_CYCLES__FLAG,
+		  denali->reg + TWO_ROW_ADDR_CYCLES);
+	iowrite32(mtd->writesize, denali->reg + DEVICE_MAIN_AREA_SIZE);
+	iowrite32(mtd->oobsize, denali->reg + DEVICE_SPARE_AREA_SIZE);
+
+	iowrite32(chip->ecc.size, denali->reg + CFG_DATA_BLOCK_SIZE);
+	iowrite32(chip->ecc.size, denali->reg + CFG_LAST_DATA_BLOCK_SIZE);
+	/* chip->ecc.steps is set by nand_scan_tail(); not available here */
+	iowrite32(mtd->writesize / chip->ecc.size,
+		  denali->reg + CFG_NUM_DATA_BLOCKS);
+
+	mtd_set_ooblayout(mtd, &denali_ooblayout_ops);
+
 	nand_oob.eccbytes = denali->nand.ecc.bytes;
 	denali->nand.ecc.layout = &nand_oob;
 
-	writel(mtd->erasesize / mtd->writesize,
-	       denali->flash_reg + PAGES_PER_BLOCK);
-	writel(denali->nand.options & NAND_BUSWIDTH_16 ? 1 : 0,
-	       denali->flash_reg + DEVICE_WIDTH);
-	writel(mtd->writesize,
-	       denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
-	writel(mtd->oobsize,
-	       denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
-	if (readl(denali->flash_reg + DEVICES_CONNECTED) == 0)
-		writel(1, denali->flash_reg + DEVICES_CONNECTED);
+	if (chip->options & NAND_BUSWIDTH_16) {
+		chip->read_buf = denali_read_buf16;
+		chip->write_buf = denali_write_buf16;
+	} else {
+		chip->read_buf = denali_read_buf;
+		chip->write_buf = denali_write_buf;
+	}
+	chip->ecc.options |= NAND_ECC_CUSTOM_PAGE_ACCESS;
+	chip->ecc.read_page = denali_read_page;
+	chip->ecc.read_page_raw = denali_read_page_raw;
+	chip->ecc.write_page = denali_write_page;
+	chip->ecc.write_page_raw = denali_write_page_raw;
+	chip->ecc.read_oob = denali_read_oob;
+	chip->ecc.write_oob = denali_write_oob;
+	chip->erase = denali_erase;
 
-	/* override the default operations */
-	denali->nand.ecc.read_page = denali_read_page;
-	denali->nand.ecc.read_page_raw = denali_read_page_raw;
-	denali->nand.ecc.write_page = denali_write_page;
-	denali->nand.ecc.write_page_raw = denali_write_page_raw;
-	denali->nand.ecc.read_oob = denali_read_oob;
-	denali->nand.ecc.write_oob = denali_write_oob;
+	ret = denali_multidev_fixup(denali);
+	if (ret)
+		return ret;
 
-	if (nand_scan_tail(mtd)) {
-		ret = -ENXIO;
-		goto fail;
-	}
+	/*
+	 * This buffer is DMA-mapped by denali_{read,write}_page_raw.  Do not
+	 * use devm_kmalloc() because the memory allocated by devm_ does not
+	 * guarantee DMA-safe alignment.
+	 */
+	denali->buf = kmalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL);
+	if (!denali->buf)
+		return -ENOMEM;
+
+	ret = nand_scan_tail(mtd);
+	if (ret)
+		goto free_buf;
 
 	ret = nand_register(0, mtd);
+	if (ret) {
+		dev_err(denali->dev, "Failed to register MTD: %d\n", ret);
+		goto free_buf;
+	}
+	return 0;
+
+free_buf:
+	kfree(denali->buf);
 
-fail:
 	return ret;
 }
 
@@ -1289,8 +1380,8 @@
 	 * In the future, these base addresses should be taken from
 	 * Device Tree or platform data.
 	 */
-	denali->flash_reg = (void  __iomem *)CONFIG_SYS_NAND_REGS_BASE;
-	denali->flash_mem = (void  __iomem *)CONFIG_SYS_NAND_DATA_BASE;
+	denali->reg = (void  __iomem *)CONFIG_SYS_NAND_REGS_BASE;
+	denali->host = (void  __iomem *)CONFIG_SYS_NAND_DATA_BASE;
 
 	return denali_init(denali);
 }
diff --git a/drivers/mtd/nand/denali.h b/drivers/mtd/nand/denali.h
index f796f0d..04b4ae2 100644
--- a/drivers/mtd/nand/denali.h
+++ b/drivers/mtd/nand/denali.h
@@ -8,466 +8,319 @@
 #ifndef __DENALI_H__
 #define __DENALI_H__
 
+#include <linux/bitops.h>
 #include <linux/mtd/nand.h>
+#include <linux/types.h>
 
 #define DEVICE_RESET				0x0
-#define     DEVICE_RESET__BANK0				0x0001
-#define     DEVICE_RESET__BANK1				0x0002
-#define     DEVICE_RESET__BANK2				0x0004
-#define     DEVICE_RESET__BANK3				0x0008
+#define     DEVICE_RESET__BANK(bank)			BIT(bank)
 
 #define TRANSFER_SPARE_REG			0x10
-#define     TRANSFER_SPARE_REG__FLAG			0x0001
+#define     TRANSFER_SPARE_REG__FLAG			BIT(0)
 
 #define LOAD_WAIT_CNT				0x20
-#define     LOAD_WAIT_CNT__VALUE			0xffff
+#define     LOAD_WAIT_CNT__VALUE			GENMASK(15, 0)
 
 #define PROGRAM_WAIT_CNT			0x30
-#define     PROGRAM_WAIT_CNT__VALUE			0xffff
+#define     PROGRAM_WAIT_CNT__VALUE			GENMASK(15, 0)
 
 #define ERASE_WAIT_CNT				0x40
-#define     ERASE_WAIT_CNT__VALUE			0xffff
+#define     ERASE_WAIT_CNT__VALUE			GENMASK(15, 0)
 
 #define INT_MON_CYCCNT				0x50
-#define     INT_MON_CYCCNT__VALUE			0xffff
+#define     INT_MON_CYCCNT__VALUE			GENMASK(15, 0)
 
 #define RB_PIN_ENABLED				0x60
-#define     RB_PIN_ENABLED__BANK0			0x0001
-#define     RB_PIN_ENABLED__BANK1			0x0002
-#define     RB_PIN_ENABLED__BANK2			0x0004
-#define     RB_PIN_ENABLED__BANK3			0x0008
+#define     RB_PIN_ENABLED__BANK(bank)			BIT(bank)
 
 #define MULTIPLANE_OPERATION			0x70
-#define     MULTIPLANE_OPERATION__FLAG			0x0001
+#define     MULTIPLANE_OPERATION__FLAG			BIT(0)
 
 #define MULTIPLANE_READ_ENABLE			0x80
-#define     MULTIPLANE_READ_ENABLE__FLAG		0x0001
+#define     MULTIPLANE_READ_ENABLE__FLAG		BIT(0)
 
 #define COPYBACK_DISABLE			0x90
-#define     COPYBACK_DISABLE__FLAG			0x0001
+#define     COPYBACK_DISABLE__FLAG			BIT(0)
 
 #define CACHE_WRITE_ENABLE			0xa0
-#define     CACHE_WRITE_ENABLE__FLAG			0x0001
+#define     CACHE_WRITE_ENABLE__FLAG			BIT(0)
 
 #define CACHE_READ_ENABLE			0xb0
-#define     CACHE_READ_ENABLE__FLAG			0x0001
+#define     CACHE_READ_ENABLE__FLAG			BIT(0)
 
 #define PREFETCH_MODE				0xc0
-#define     PREFETCH_MODE__PREFETCH_EN			0x0001
-#define     PREFETCH_MODE__PREFETCH_BURST_LENGTH	0xfff0
+#define     PREFETCH_MODE__PREFETCH_EN			BIT(0)
+#define     PREFETCH_MODE__PREFETCH_BURST_LENGTH	GENMASK(15, 4)
 
 #define CHIP_ENABLE_DONT_CARE			0xd0
-#define     CHIP_EN_DONT_CARE__FLAG			0x01
+#define     CHIP_EN_DONT_CARE__FLAG			BIT(0)
 
 #define ECC_ENABLE				0xe0
-#define     ECC_ENABLE__FLAG				0x0001
+#define     ECC_ENABLE__FLAG				BIT(0)
 
 #define GLOBAL_INT_ENABLE			0xf0
-#define     GLOBAL_INT_EN_FLAG				0x01
+#define     GLOBAL_INT_EN_FLAG				BIT(0)
 
-#define WE_2_RE					0x100
-#define     WE_2_RE__VALUE				0x003f
+#define TWHR2_AND_WE_2_RE			0x100
+#define     TWHR2_AND_WE_2_RE__WE_2_RE			GENMASK(5, 0)
+#define     TWHR2_AND_WE_2_RE__TWHR2			GENMASK(13, 8)
 
-#define ADDR_2_DATA				0x110
-#define     ADDR_2_DATA__VALUE				0x003f
+#define TCWAW_AND_ADDR_2_DATA			0x110
+/* The width of ADDR_2_DATA is 6 bit for old IP, 7 bit for new IP */
+#define     TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA		GENMASK(6, 0)
+#define     TCWAW_AND_ADDR_2_DATA__TCWAW		GENMASK(13, 8)
 
 #define RE_2_WE					0x120
-#define     RE_2_WE__VALUE				0x003f
+#define     RE_2_WE__VALUE				GENMASK(5, 0)
 
 #define ACC_CLKS				0x130
-#define     ACC_CLKS__VALUE				0x000f
+#define     ACC_CLKS__VALUE				GENMASK(3, 0)
 
 #define NUMBER_OF_PLANES			0x140
-#define     NUMBER_OF_PLANES__VALUE			0x0007
+#define     NUMBER_OF_PLANES__VALUE			GENMASK(2, 0)
 
 #define PAGES_PER_BLOCK				0x150
-#define     PAGES_PER_BLOCK__VALUE			0xffff
+#define     PAGES_PER_BLOCK__VALUE			GENMASK(15, 0)
 
 #define DEVICE_WIDTH				0x160
-#define     DEVICE_WIDTH__VALUE				0x0003
+#define     DEVICE_WIDTH__VALUE				GENMASK(1, 0)
 
 #define DEVICE_MAIN_AREA_SIZE			0x170
-#define     DEVICE_MAIN_AREA_SIZE__VALUE		0xffff
+#define     DEVICE_MAIN_AREA_SIZE__VALUE		GENMASK(15, 0)
 
 #define DEVICE_SPARE_AREA_SIZE			0x180
-#define     DEVICE_SPARE_AREA_SIZE__VALUE		0xffff
+#define     DEVICE_SPARE_AREA_SIZE__VALUE		GENMASK(15, 0)
 
 #define TWO_ROW_ADDR_CYCLES			0x190
-#define     TWO_ROW_ADDR_CYCLES__FLAG			0x0001
+#define     TWO_ROW_ADDR_CYCLES__FLAG			BIT(0)
 
 #define MULTIPLANE_ADDR_RESTRICT		0x1a0
-#define     MULTIPLANE_ADDR_RESTRICT__FLAG		0x0001
+#define     MULTIPLANE_ADDR_RESTRICT__FLAG		BIT(0)
 
 #define ECC_CORRECTION				0x1b0
-#define     ECC_CORRECTION__VALUE			0x001f
+#define     ECC_CORRECTION__VALUE			GENMASK(4, 0)
+#define     ECC_CORRECTION__ERASE_THRESHOLD		GENMASK(31, 16)
 
 #define READ_MODE				0x1c0
-#define     READ_MODE__VALUE				0x000f
+#define     READ_MODE__VALUE				GENMASK(3, 0)
 
 #define WRITE_MODE				0x1d0
-#define     WRITE_MODE__VALUE				0x000f
+#define     WRITE_MODE__VALUE				GENMASK(3, 0)
 
 #define COPYBACK_MODE				0x1e0
-#define     COPYBACK_MODE__VALUE			0x000f
+#define     COPYBACK_MODE__VALUE			GENMASK(3, 0)
 
 #define RDWR_EN_LO_CNT				0x1f0
-#define     RDWR_EN_LO_CNT__VALUE			0x001f
+#define     RDWR_EN_LO_CNT__VALUE			GENMASK(4, 0)
 
 #define RDWR_EN_HI_CNT				0x200
-#define     RDWR_EN_HI_CNT__VALUE			0x001f
+#define     RDWR_EN_HI_CNT__VALUE			GENMASK(4, 0)
 
 #define MAX_RD_DELAY				0x210
-#define     MAX_RD_DELAY__VALUE				0x000f
+#define     MAX_RD_DELAY__VALUE				GENMASK(3, 0)
 
 #define CS_SETUP_CNT				0x220
-#define     CS_SETUP_CNT__VALUE				0x001f
+#define     CS_SETUP_CNT__VALUE				GENMASK(4, 0)
+#define     CS_SETUP_CNT__TWB				GENMASK(17, 12)
 
 #define SPARE_AREA_SKIP_BYTES			0x230
-#define     SPARE_AREA_SKIP_BYTES__VALUE		0x003f
+#define     SPARE_AREA_SKIP_BYTES__VALUE		GENMASK(5, 0)
 
 #define SPARE_AREA_MARKER			0x240
-#define     SPARE_AREA_MARKER__VALUE			0xffff
+#define     SPARE_AREA_MARKER__VALUE			GENMASK(15, 0)
 
 #define DEVICES_CONNECTED			0x250
-#define     DEVICES_CONNECTED__VALUE			0x0007
+#define     DEVICES_CONNECTED__VALUE			GENMASK(2, 0)
 
 #define DIE_MASK				0x260
-#define     DIE_MASK__VALUE				0x00ff
+#define     DIE_MASK__VALUE				GENMASK(7, 0)
 
 #define FIRST_BLOCK_OF_NEXT_PLANE		0x270
-#define     FIRST_BLOCK_OF_NEXT_PLANE__VALUE		0xffff
+#define     FIRST_BLOCK_OF_NEXT_PLANE__VALUE		GENMASK(15, 0)
 
 #define WRITE_PROTECT				0x280
-#define     WRITE_PROTECT__FLAG				0x0001
+#define     WRITE_PROTECT__FLAG				BIT(0)
 
 #define RE_2_RE					0x290
-#define     RE_2_RE__VALUE				0x003f
+#define     RE_2_RE__VALUE				GENMASK(5, 0)
 
 #define MANUFACTURER_ID				0x300
-#define     MANUFACTURER_ID__VALUE			0x00ff
+#define     MANUFACTURER_ID__VALUE			GENMASK(7, 0)
 
 #define DEVICE_ID				0x310
-#define     DEVICE_ID__VALUE				0x00ff
+#define     DEVICE_ID__VALUE				GENMASK(7, 0)
 
 #define DEVICE_PARAM_0				0x320
-#define     DEVICE_PARAM_0__VALUE			0x00ff
+#define     DEVICE_PARAM_0__VALUE			GENMASK(7, 0)
 
 #define DEVICE_PARAM_1				0x330
-#define     DEVICE_PARAM_1__VALUE			0x00ff
+#define     DEVICE_PARAM_1__VALUE			GENMASK(7, 0)
 
 #define DEVICE_PARAM_2				0x340
-#define     DEVICE_PARAM_2__VALUE			0x00ff
+#define     DEVICE_PARAM_2__VALUE			GENMASK(7, 0)
 
 #define LOGICAL_PAGE_DATA_SIZE			0x350
-#define     LOGICAL_PAGE_DATA_SIZE__VALUE		0xffff
+#define     LOGICAL_PAGE_DATA_SIZE__VALUE		GENMASK(15, 0)
 
 #define LOGICAL_PAGE_SPARE_SIZE			0x360
-#define     LOGICAL_PAGE_SPARE_SIZE__VALUE		0xffff
+#define     LOGICAL_PAGE_SPARE_SIZE__VALUE		GENMASK(15, 0)
 
 #define REVISION				0x370
-#define     REVISION__VALUE				0xffff
+#define     REVISION__VALUE				GENMASK(15, 0)
 
 #define ONFI_DEVICE_FEATURES			0x380
-#define     ONFI_DEVICE_FEATURES__VALUE			0x003f
+#define     ONFI_DEVICE_FEATURES__VALUE			GENMASK(5, 0)
 
 #define ONFI_OPTIONAL_COMMANDS			0x390
-#define     ONFI_OPTIONAL_COMMANDS__VALUE		0x003f
+#define     ONFI_OPTIONAL_COMMANDS__VALUE		GENMASK(5, 0)
 
 #define ONFI_TIMING_MODE			0x3a0
-#define     ONFI_TIMING_MODE__VALUE			0x003f
+#define     ONFI_TIMING_MODE__VALUE			GENMASK(5, 0)
 
 #define ONFI_PGM_CACHE_TIMING_MODE		0x3b0
-#define     ONFI_PGM_CACHE_TIMING_MODE__VALUE		0x003f
+#define     ONFI_PGM_CACHE_TIMING_MODE__VALUE		GENMASK(5, 0)
 
 #define ONFI_DEVICE_NO_OF_LUNS			0x3c0
-#define     ONFI_DEVICE_NO_OF_LUNS__NO_OF_LUNS		0x00ff
-#define     ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE		0x0100
+#define     ONFI_DEVICE_NO_OF_LUNS__NO_OF_LUNS		GENMASK(7, 0)
+#define     ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE		BIT(8)
 
 #define ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_L	0x3d0
-#define     ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_L__VALUE	0xffff
+#define     ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_L__VALUE	GENMASK(15, 0)
 
 #define ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_U	0x3e0
-#define     ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_U__VALUE	0xffff
+#define     ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_U__VALUE	GENMASK(15, 0)
 
-#define FEATURES					0x3f0
-#define     FEATURES__N_BANKS				0x0003
-#define     FEATURES__ECC_MAX_ERR			0x003c
-#define     FEATURES__DMA				0x0040
-#define     FEATURES__CMD_DMA				0x0080
-#define     FEATURES__PARTITION				0x0100
-#define     FEATURES__XDMA_SIDEBAND			0x0200
-#define     FEATURES__GPREG				0x0400
-#define     FEATURES__INDEX_ADDR			0x0800
+#define FEATURES				0x3f0
+#define     FEATURES__N_BANKS				GENMASK(1, 0)
+#define     FEATURES__ECC_MAX_ERR			GENMASK(5, 2)
+#define     FEATURES__DMA				BIT(6)
+#define     FEATURES__CMD_DMA				BIT(7)
+#define     FEATURES__PARTITION				BIT(8)
+#define     FEATURES__XDMA_SIDEBAND			BIT(9)
+#define     FEATURES__GPREG				BIT(10)
+#define     FEATURES__INDEX_ADDR			BIT(11)
 
 #define TRANSFER_MODE				0x400
-#define     TRANSFER_MODE__VALUE			0x0003
+#define     TRANSFER_MODE__VALUE			GENMASK(1, 0)
 
-#define INTR_STATUS(__bank)	(0x410 + ((__bank) * 0x50))
-#define INTR_EN(__bank)		(0x420 + ((__bank) * 0x50))
+#define INTR_STATUS(bank)			(0x410 + (bank) * 0x50)
+#define INTR_EN(bank)				(0x420 + (bank) * 0x50)
+/* bit[1:0] is used differently depending on IP version */
+#define     INTR__ECC_UNCOR_ERR				BIT(0)	/* new IP */
+#define     INTR__ECC_TRANSACTION_DONE			BIT(0)	/* old IP */
+#define     INTR__ECC_ERR				BIT(1)	/* old IP */
+#define     INTR__DMA_CMD_COMP				BIT(2)
+#define     INTR__TIME_OUT				BIT(3)
+#define     INTR__PROGRAM_FAIL				BIT(4)
+#define     INTR__ERASE_FAIL				BIT(5)
+#define     INTR__LOAD_COMP				BIT(6)
+#define     INTR__PROGRAM_COMP				BIT(7)
+#define     INTR__ERASE_COMP				BIT(8)
+#define     INTR__PIPE_CPYBCK_CMD_COMP			BIT(9)
+#define     INTR__LOCKED_BLK				BIT(10)
+#define     INTR__UNSUP_CMD				BIT(11)
+#define     INTR__INT_ACT				BIT(12)
+#define     INTR__RST_COMP				BIT(13)
+#define     INTR__PIPE_CMD_ERR				BIT(14)
+#define     INTR__PAGE_XFER_INC				BIT(15)
+#define     INTR__ERASED_PAGE				BIT(16)
 
-/*
- * Some versions of the IP have the ECC fixup handled in hardware.  In this
- * configuration we only get interrupted when the error is uncorrectable.
- * Unfortunately this bit replaces INTR_STATUS__ECC_TRANSACTION_DONE from the
- * old IP.
- */
-#define     INTR_STATUS__ECC_UNCOR_ERR			0x0001
-#define     INTR_STATUS__ECC_TRANSACTION_DONE		0x0001
-#define     INTR_STATUS__ECC_ERR			0x0002
-#define     INTR_STATUS__DMA_CMD_COMP			0x0004
-#define     INTR_STATUS__TIME_OUT			0x0008
-#define     INTR_STATUS__PROGRAM_FAIL			0x0010
-#define     INTR_STATUS__ERASE_FAIL			0x0020
-#define     INTR_STATUS__LOAD_COMP			0x0040
-#define     INTR_STATUS__PROGRAM_COMP			0x0080
-#define     INTR_STATUS__ERASE_COMP			0x0100
-#define     INTR_STATUS__PIPE_CPYBCK_CMD_COMP		0x0200
-#define     INTR_STATUS__LOCKED_BLK			0x0400
-#define     INTR_STATUS__UNSUP_CMD			0x0800
-#define     INTR_STATUS__INT_ACT			0x1000
-#define     INTR_STATUS__RST_COMP			0x2000
-#define     INTR_STATUS__PIPE_CMD_ERR			0x4000
-#define     INTR_STATUS__PAGE_XFER_INC			0x8000
-
-#define     INTR_EN__ECC_TRANSACTION_DONE		0x0001
-#define     INTR_EN__ECC_ERR				0x0002
-#define     INTR_EN__DMA_CMD_COMP			0x0004
-#define     INTR_EN__TIME_OUT				0x0008
-#define     INTR_EN__PROGRAM_FAIL			0x0010
-#define     INTR_EN__ERASE_FAIL				0x0020
-#define     INTR_EN__LOAD_COMP				0x0040
-#define     INTR_EN__PROGRAM_COMP			0x0080
-#define     INTR_EN__ERASE_COMP				0x0100
-#define     INTR_EN__PIPE_CPYBCK_CMD_COMP		0x0200
-#define     INTR_EN__LOCKED_BLK				0x0400
-#define     INTR_EN__UNSUP_CMD				0x0800
-#define     INTR_EN__INT_ACT				0x1000
-#define     INTR_EN__RST_COMP				0x2000
-#define     INTR_EN__PIPE_CMD_ERR			0x4000
-#define     INTR_EN__PAGE_XFER_INC			0x8000
-
-#define PAGE_CNT(__bank)	(0x430 + ((__bank) * 0x50))
-#define ERR_PAGE_ADDR(__bank)	(0x440 + ((__bank) * 0x50))
-#define ERR_BLOCK_ADDR(__bank)	(0x450 + ((__bank) * 0x50))
-
-#define DATA_INTR				0x550
-#define     DATA_INTR__WRITE_SPACE_AV			0x0001
-#define     DATA_INTR__READ_DATA_AV			0x0002
-
-#define DATA_INTR_EN				0x560
-#define     DATA_INTR_EN__WRITE_SPACE_AV		0x0001
-#define     DATA_INTR_EN__READ_DATA_AV			0x0002
-
-#define GPREG_0					0x570
-#define     GPREG_0__VALUE				0xffff
-
-#define GPREG_1					0x580
-#define     GPREG_1__VALUE				0xffff
-
-#define GPREG_2					0x590
-#define     GPREG_2__VALUE				0xffff
-
-#define GPREG_3					0x5a0
-#define     GPREG_3__VALUE				0xffff
+#define PAGE_CNT(bank)				(0x430 + (bank) * 0x50)
+#define ERR_PAGE_ADDR(bank)			(0x440 + (bank) * 0x50)
+#define ERR_BLOCK_ADDR(bank)			(0x450 + (bank) * 0x50)
 
 #define ECC_THRESHOLD				0x600
-#define     ECC_THRESHOLD__VALUE			0x03ff
+#define     ECC_THRESHOLD__VALUE			GENMASK(9, 0)
 
 #define ECC_ERROR_BLOCK_ADDRESS			0x610
-#define     ECC_ERROR_BLOCK_ADDRESS__VALUE		0xffff
+#define     ECC_ERROR_BLOCK_ADDRESS__VALUE		GENMASK(15, 0)
 
 #define ECC_ERROR_PAGE_ADDRESS			0x620
-#define     ECC_ERROR_PAGE_ADDRESS__VALUE		0x0fff
-#define     ECC_ERROR_PAGE_ADDRESS__BANK		0xf000
+#define     ECC_ERROR_PAGE_ADDRESS__VALUE		GENMASK(11, 0)
+#define     ECC_ERROR_PAGE_ADDRESS__BANK		GENMASK(15, 12)
 
 #define ECC_ERROR_ADDRESS			0x630
-#define     ECC_ERROR_ADDRESS__OFFSET			0x0fff
-#define     ECC_ERROR_ADDRESS__SECTOR_NR		0xf000
+#define     ECC_ERROR_ADDRESS__OFFSET			GENMASK(11, 0)
+#define     ECC_ERROR_ADDRESS__SECTOR			GENMASK(15, 12)
 
 #define ERR_CORRECTION_INFO			0x640
-#define     ERR_CORRECTION_INFO__BYTEMASK		0x00ff
-#define     ERR_CORRECTION_INFO__DEVICE_NR		0x0f00
-#define     ERR_CORRECTION_INFO__ERROR_TYPE		0x4000
-#define     ERR_CORRECTION_INFO__LAST_ERR_INFO		0x8000
+#define     ERR_CORRECTION_INFO__BYTE			GENMASK(7, 0)
+#define     ERR_CORRECTION_INFO__DEVICE			GENMASK(11, 8)
+#define     ERR_CORRECTION_INFO__UNCOR			BIT(14)
+#define     ERR_CORRECTION_INFO__LAST_ERR		BIT(15)
+
+#define ECC_COR_INFO(bank)			(0x650 + (bank) / 2 * 0x10)
+#define     ECC_COR_INFO__SHIFT(bank)			((bank) % 2 * 8)
+#define     ECC_COR_INFO__MAX_ERRORS			GENMASK(6, 0)
+#define     ECC_COR_INFO__UNCOR_ERR			BIT(7)
+
+#define CFG_DATA_BLOCK_SIZE			0x6b0
+
+#define CFG_LAST_DATA_BLOCK_SIZE		0x6c0
+
+#define CFG_NUM_DATA_BLOCKS			0x6d0
+
+#define CFG_META_DATA_SIZE			0x6e0
 
 #define DMA_ENABLE				0x700
-#define     DMA_ENABLE__FLAG				0x0001
+#define     DMA_ENABLE__FLAG				BIT(0)
 
 #define IGNORE_ECC_DONE				0x710
-#define     IGNORE_ECC_DONE__FLAG			0x0001
+#define     IGNORE_ECC_DONE__FLAG			BIT(0)
 
 #define DMA_INTR				0x720
-#define     DMA_INTR__TARGET_ERROR			0x0001
-#define     DMA_INTR__DESC_COMP_CHANNEL0		0x0002
-#define     DMA_INTR__DESC_COMP_CHANNEL1		0x0004
-#define     DMA_INTR__DESC_COMP_CHANNEL2		0x0008
-#define     DMA_INTR__DESC_COMP_CHANNEL3		0x0010
-#define     DMA_INTR__MEMCOPY_DESC_COMP		0x0020
-
 #define DMA_INTR_EN				0x730
-#define     DMA_INTR_EN__TARGET_ERROR			0x0001
-#define     DMA_INTR_EN__DESC_COMP_CHANNEL0		0x0002
-#define     DMA_INTR_EN__DESC_COMP_CHANNEL1		0x0004
-#define     DMA_INTR_EN__DESC_COMP_CHANNEL2		0x0008
-#define     DMA_INTR_EN__DESC_COMP_CHANNEL3		0x0010
-#define     DMA_INTR_EN__MEMCOPY_DESC_COMP		0x0020
+#define     DMA_INTR__TARGET_ERROR			BIT(0)
+#define     DMA_INTR__DESC_COMP_CHANNEL0		BIT(1)
+#define     DMA_INTR__DESC_COMP_CHANNEL1		BIT(2)
+#define     DMA_INTR__DESC_COMP_CHANNEL2		BIT(3)
+#define     DMA_INTR__DESC_COMP_CHANNEL3		BIT(4)
+#define     DMA_INTR__MEMCOPY_DESC_COMP			BIT(5)
 
 #define TARGET_ERR_ADDR_LO			0x740
-#define     TARGET_ERR_ADDR_LO__VALUE			0xffff
+#define     TARGET_ERR_ADDR_LO__VALUE			GENMASK(15, 0)
 
 #define TARGET_ERR_ADDR_HI			0x750
-#define     TARGET_ERR_ADDR_HI__VALUE			0xffff
+#define     TARGET_ERR_ADDR_HI__VALUE			GENMASK(15, 0)
 
 #define CHNL_ACTIVE				0x760
-#define     CHNL_ACTIVE__CHANNEL0			0x0001
-#define     CHNL_ACTIVE__CHANNEL1			0x0002
-#define     CHNL_ACTIVE__CHANNEL2			0x0004
-#define     CHNL_ACTIVE__CHANNEL3			0x0008
-
-#define ACTIVE_SRC_ID				0x800
-#define     ACTIVE_SRC_ID__VALUE			0x00ff
+#define     CHNL_ACTIVE__CHANNEL0			BIT(0)
+#define     CHNL_ACTIVE__CHANNEL1			BIT(1)
+#define     CHNL_ACTIVE__CHANNEL2			BIT(2)
+#define     CHNL_ACTIVE__CHANNEL3			BIT(3)
 
-#define PTN_INTR					0x810
-#define     PTN_INTR__CONFIG_ERROR			0x0001
-#define     PTN_INTR__ACCESS_ERROR_BANK0		0x0002
-#define     PTN_INTR__ACCESS_ERROR_BANK1		0x0004
-#define     PTN_INTR__ACCESS_ERROR_BANK2		0x0008
-#define     PTN_INTR__ACCESS_ERROR_BANK3		0x0010
-#define     PTN_INTR__REG_ACCESS_ERROR			0x0020
-
-#define PTN_INTR_EN				0x820
-#define     PTN_INTR_EN__CONFIG_ERROR			0x0001
-#define     PTN_INTR_EN__ACCESS_ERROR_BANK0		0x0002
-#define     PTN_INTR_EN__ACCESS_ERROR_BANK1		0x0004
-#define     PTN_INTR_EN__ACCESS_ERROR_BANK2		0x0008
-#define     PTN_INTR_EN__ACCESS_ERROR_BANK3		0x0010
-#define     PTN_INTR_EN__REG_ACCESS_ERROR		0x0020
-
-#define PERM_SRC_ID(__bank)	(0x830 + ((__bank) * 0x40))
-#define     PERM_SRC_ID__SRCID				0x00ff
-#define     PERM_SRC_ID__DIRECT_ACCESS_ACTIVE		0x0800
-#define     PERM_SRC_ID__WRITE_ACTIVE			0x2000
-#define     PERM_SRC_ID__READ_ACTIVE			0x4000
-#define     PERM_SRC_ID__PARTITION_VALID		0x8000
-
-#define MIN_BLK_ADDR(__bank)	(0x840 + ((__bank) * 0x40))
-#define     MIN_BLK_ADDR__VALUE				0xffff
-
-#define MAX_BLK_ADDR(__bank)	(0x850 + ((__bank) * 0x40))
-#define     MAX_BLK_ADDR__VALUE				0xffff
-
-#define MIN_MAX_BANK(__bank)	(0x860 + ((__bank) * 0x40))
-#define     MIN_MAX_BANK__MIN_VALUE			0x0003
-#define     MIN_MAX_BANK__MAX_VALUE			0x000c
-
-/* lld.h */
-#define GOOD_BLOCK 0
-#define DEFECTIVE_BLOCK 1
-#define READ_ERROR 2
-
-#define CLK_X  5
-#define CLK_MULTI 4
-
-/* spectraswconfig.h */
-#define CMD_DMA 0
-
-#define SPECTRA_PARTITION_ID    0
-/**** Block Table and Reserved Block Parameters *****/
-#define SPECTRA_START_BLOCK     3
-#define NUM_FREE_BLOCKS_GATE    30
-
-/* KBV - Updated to LNW scratch register address */
-#define SCRATCH_REG_ADDR    CONFIG_MTD_NAND_DENALI_SCRATCH_REG_ADDR
-#define SCRATCH_REG_SIZE    64
-
-#define GLOB_HWCTL_DEFAULT_BLKS    2048
-
-#define CUSTOM_CONF_PARAMS      0
-
-#define INDEX_CTRL_REG    0x0
-#define INDEX_DATA_REG    0x10
-
-#define MODE_00    0x00000000
-#define MODE_01    0x04000000
-#define MODE_10    0x08000000
-#define MODE_11    0x0C000000
-
-
-#define DATA_TRANSFER_MODE              0
-#define PROTECTION_PER_BLOCK            1
-#define LOAD_WAIT_COUNT                 2
-#define PROGRAM_WAIT_COUNT              3
-#define ERASE_WAIT_COUNT                4
-#define INT_MONITOR_CYCLE_COUNT         5
-#define READ_BUSY_PIN_ENABLED           6
-#define MULTIPLANE_OPERATION_SUPPORT    7
-#define PRE_FETCH_MODE                  8
-#define CE_DONT_CARE_SUPPORT            9
-#define COPYBACK_SUPPORT                10
-#define CACHE_WRITE_SUPPORT             11
-#define CACHE_READ_SUPPORT              12
-#define NUM_PAGES_IN_BLOCK              13
-#define ECC_ENABLE_SELECT               14
-#define WRITE_ENABLE_2_READ_ENABLE      15
-#define ADDRESS_2_DATA                  16
-#define READ_ENABLE_2_WRITE_ENABLE      17
-#define TWO_ROW_ADDRESS_CYCLES          18
-#define MULTIPLANE_ADDRESS_RESTRICT     19
-#define ACC_CLOCKS                      20
-#define READ_WRITE_ENABLE_LOW_COUNT     21
-#define READ_WRITE_ENABLE_HIGH_COUNT    22
-
-#define ECC_SECTOR_SIZE     512
-
-#define DENALI_BUF_SIZE		(NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE)
-
-struct nand_buf {
-	int head;
-	int tail;
-	/* seprating dma_buf as buf can be used for status read purpose */
-	uint8_t dma_buf[DENALI_BUF_SIZE]  __aligned(64);
-	uint8_t buf[DENALI_BUF_SIZE];
-};
-
-#define INTEL_CE4100	1
-#define INTEL_MRST	2
-#define DT		3
+struct udevice;
 
 struct denali_nand_info {
 	struct nand_chip nand;
 	unsigned long clk_x_rate;	/* bus interface clock rate */
-	int flash_bank; /* currently selected chip */
-	int status;
-	int platform;
-	struct nand_buf buf;
-	struct device *dev;
-	int total_used_banks;
-	uint32_t block;  /* stored for future use */
+	int active_bank;		/* currently selected bank */
+	struct udevice *dev;
 	uint32_t page;
-	void __iomem *flash_reg;  /* Mapped io reg base address */
-	void __iomem *flash_mem;  /* Mapped io reg base address */
-
-	/* elements used by ISR */
-	/*struct completion complete;*/
-
-	uint32_t irq_status;
-	int irq_debug_array[32];
-	int idx;
+	void __iomem *reg;		/* Register Interface */
+	void __iomem *host;		/* Host Data/Command Interface */
+	u32 irq_mask;			/* interrupts we are waiting for */
+	u32 irq_status;			/* interrupts that have happened */
 	int irq;
-
-	uint32_t devnum;	/* represent how many nands connected */
-	uint32_t fwblks; /* represent how many blocks FW used */
-	uint32_t totalblks;
-	uint32_t blksperchip;
-	uint32_t bbtskipbytes;
-	uint32_t max_banks;
-	unsigned int revision;
-	unsigned int caps;
+	void *buf;			/* for syndrome layout conversion */
+	dma_addr_t dma_addr;
+	int dma_avail;			/* can support DMA? */
+	int devs_per_cs;		/* devices connected in parallel */
+	int oob_skip_bytes;		/* number of bytes reserved for BBM */
+	int max_banks;
+	unsigned int revision;		/* IP revision */
+	unsigned int caps;		/* IP capability (or quirk) */
+	const struct nand_ecc_caps *ecc_caps;
+	u32 (*host_read)(struct denali_nand_info *denali, u32 addr);
+	void (*host_write)(struct denali_nand_info *denali, u32 addr, u32 data);
+	void (*setup_dma)(struct denali_nand_info *denali, dma_addr_t dma_addr,
+			  int page, int write);
 };
 
 #define DENALI_CAP_HW_ECC_FIXUP			BIT(0)
 #define DENALI_CAP_DMA_64BIT			BIT(1)
 
+int denali_calc_ecc_bytes(int step_size, int strength);
 int denali_init(struct denali_nand_info *denali);
 
 #endif /* __DENALI_H__ */
diff --git a/drivers/mtd/nand/denali_dt.c b/drivers/mtd/nand/denali_dt.c
index 805c066..9d6cb09 100644
--- a/drivers/mtd/nand/denali_dt.c
+++ b/drivers/mtd/nand/denali_dt.c
@@ -16,21 +16,31 @@
 struct denali_dt_data {
 	unsigned int revision;
 	unsigned int caps;
+	const struct nand_ecc_caps *ecc_caps;
 };
 
+NAND_ECC_CAPS_SINGLE(denali_socfpga_ecc_caps, denali_calc_ecc_bytes,
+		     512, 8, 15);
 static const struct denali_dt_data denali_socfpga_data = {
 	.caps = DENALI_CAP_HW_ECC_FIXUP,
+	.ecc_caps = &denali_socfpga_ecc_caps,
 };
 
+NAND_ECC_CAPS_SINGLE(denali_uniphier_v5a_ecc_caps, denali_calc_ecc_bytes,
+		     1024, 8, 16, 24);
 static const struct denali_dt_data denali_uniphier_v5a_data = {
 	.caps = DENALI_CAP_HW_ECC_FIXUP |
 		DENALI_CAP_DMA_64BIT,
+	.ecc_caps = &denali_uniphier_v5a_ecc_caps,
 };
 
+NAND_ECC_CAPS_SINGLE(denali_uniphier_v5b_ecc_caps, denali_calc_ecc_bytes,
+		     1024, 8, 16);
 static const struct denali_dt_data denali_uniphier_v5b_data = {
 	.revision = 0x0501,
 	.caps = DENALI_CAP_HW_ECC_FIXUP |
 		DENALI_CAP_DMA_64BIT,
+	.ecc_caps = &denali_uniphier_v5b_ecc_caps,
 };
 
 static const struct udevice_id denali_nand_dt_ids[] = {
@@ -61,19 +71,22 @@
 	if (data) {
 		denali->revision = data->revision;
 		denali->caps = data->caps;
+		denali->ecc_caps = data->ecc_caps;
 	}
 
+	denali->dev = dev;
+
 	ret = dev_read_resource_byname(dev, "denali_reg", &res);
 	if (ret)
 		return ret;
 
-	denali->flash_reg = devm_ioremap(dev, res.start, resource_size(&res));
+	denali->reg = devm_ioremap(dev, res.start, resource_size(&res));
 
 	ret = dev_read_resource_byname(dev, "nand_data", &res);
 	if (ret)
 		return ret;
 
-	denali->flash_mem = devm_ioremap(dev, res.start, resource_size(&res));
+	denali->host = devm_ioremap(dev, res.start, resource_size(&res));
 
 	ret = clk_get_by_index(dev, 0, &clk);
 	if (ret)
diff --git a/drivers/mtd/nand/denali_spl.c b/drivers/mtd/nand/denali_spl.c
index c693032..3cb9849 100644
--- a/drivers/mtd/nand/denali_spl.c
+++ b/drivers/mtd/nand/denali_spl.c
@@ -11,6 +11,12 @@
 #include <linux/mtd/nand.h>
 #include "denali.h"
 
+#define DENALI_MAP01		(1 << 26)	/* read/write pages in PIO */
+#define DENALI_MAP10		(2 << 26)	/* high-level control plane */
+
+#define INDEX_CTRL_REG		0x0
+#define INDEX_DATA_REG		0x10
+
 #define SPARE_ACCESS		0x41
 #define MAIN_ACCESS		0x42
 #define PIPELINE_ACCESS		0x2000
@@ -39,7 +45,7 @@
 	do {
 		intr_status = readl(denali_flash_reg + INTR_STATUS(flash_bank));
 
-		if (intr_status & INTR_STATUS__ECC_UNCOR_ERR) {
+		if (intr_status & INTR__ECC_UNCOR_ERR) {
 			debug("Uncorrected ECC detected\n");
 			return -EBADMSG;
 		}
@@ -106,16 +112,16 @@
 	addr = BANK(flash_bank) | page;
 
 	/* setup the acccess type */
-	cmd = MODE_10 | addr;
+	cmd = DENALI_MAP10 | addr;
 	index_addr(cmd, access_type);
 
 	/* setup the pipeline command */
 	index_addr(cmd, PIPELINE_ACCESS | page_count);
 
-	cmd = MODE_01 | addr;
+	cmd = DENALI_MAP01 | addr;
 	writel(cmd, denali_flash_mem + INDEX_CTRL_REG);
 
-	return wait_for_irq(INTR_STATUS__LOAD_COMP);
+	return wait_for_irq(INTR__LOAD_COMP);
 }
 
 static int nand_read_oob(void *buf, int page)
diff --git a/drivers/mtd/nand/nand_base.c b/drivers/mtd/nand/nand_base.c
index 5bb4ea8..aca3231 100644
--- a/drivers/mtd/nand/nand_base.c
+++ b/drivers/mtd/nand/nand_base.c
@@ -634,8 +634,7 @@
 		chip->cmd_ctrl(mtd, page_addr, ctrl);
 		ctrl &= ~NAND_CTRL_CHANGE;
 		chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
-		/* One more address cycle for devices > 32MiB */
-		if (chip->chipsize > (32 << 20))
+		if (chip->options & NAND_ROW_ADDR_3)
 			chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
 	}
 	chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
@@ -729,8 +728,7 @@
 			chip->cmd_ctrl(mtd, page_addr, ctrl);
 			chip->cmd_ctrl(mtd, page_addr >> 8,
 				       NAND_NCE | NAND_ALE);
-			/* One more address cycle for devices > 128MiB */
-			if (chip->chipsize > (128 << 20))
+			if (chip->options & NAND_ROW_ADDR_3)
 				chip->cmd_ctrl(mtd, page_addr >> 16,
 					       NAND_NCE | NAND_ALE);
 		}
@@ -901,7 +899,184 @@
 	return status;
 }
 
-#define BITS_PER_BYTE 8
+/**
+ * nand_reset_data_interface - Reset data interface and timings
+ * @chip: The NAND chip
+ * @chipnr: Internal die id
+ *
+ * Reset the Data interface and timings to ONFI mode 0.
+ *
+ * Returns 0 for success or negative error code otherwise.
+ */
+static int nand_reset_data_interface(struct nand_chip *chip, int chipnr)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	const struct nand_data_interface *conf;
+	int ret;
+
+	if (!chip->setup_data_interface)
+		return 0;
+
+	/*
+	 * The ONFI specification says:
+	 * "
+	 * To transition from NV-DDR or NV-DDR2 to the SDR data
+	 * interface, the host shall use the Reset (FFh) command
+	 * using SDR timing mode 0. A device in any timing mode is
+	 * required to recognize Reset (FFh) command issued in SDR
+	 * timing mode 0.
+	 * "
+	 *
+	 * Configure the data interface in SDR mode and set the
+	 * timings to timing mode 0.
+	 */
+
+	conf = nand_get_default_data_interface();
+	ret = chip->setup_data_interface(mtd, chipnr, conf);
+	if (ret)
+		pr_err("Failed to configure data interface to SDR timing mode 0\n");
+
+	return ret;
+}
+
+/**
+ * nand_setup_data_interface - Setup the best data interface and timings
+ * @chip: The NAND chip
+ * @chipnr: Internal die id
+ *
+ * Find and configure the best data interface and NAND timings supported by
+ * the chip and the driver.
+ * First tries to retrieve supported timing modes from ONFI information,
+ * and if the NAND chip does not support ONFI, relies on the
+ * ->onfi_timing_mode_default specified in the nand_ids table.
+ *
+ * Returns 0 for success or negative error code otherwise.
+ */
+static int nand_setup_data_interface(struct nand_chip *chip, int chipnr)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	int ret;
+
+	if (!chip->setup_data_interface || !chip->data_interface)
+		return 0;
+
+	/*
+	 * Ensure the timing mode has been changed on the chip side
+	 * before changing timings on the controller side.
+	 */
+	if (chip->onfi_version) {
+		u8 tmode_param[ONFI_SUBFEATURE_PARAM_LEN] = {
+			chip->onfi_timing_mode_default,
+		};
+
+		ret = chip->onfi_set_features(mtd, chip,
+				ONFI_FEATURE_ADDR_TIMING_MODE,
+				tmode_param);
+		if (ret)
+			goto err;
+	}
+
+	ret = chip->setup_data_interface(mtd, chipnr, chip->data_interface);
+err:
+	return ret;
+}
+
+/**
+ * nand_init_data_interface - find the best data interface and timings
+ * @chip: The NAND chip
+ *
+ * Find the best data interface and NAND timings supported by the chip
+ * and the driver.
+ * First tries to retrieve supported timing modes from ONFI information,
+ * and if the NAND chip does not support ONFI, relies on the
+ * ->onfi_timing_mode_default specified in the nand_ids table. After this
+ * function nand_chip->data_interface is initialized with the best timing mode
+ * available.
+ *
+ * Returns 0 for success or negative error code otherwise.
+ */
+static int nand_init_data_interface(struct nand_chip *chip)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	int modes, mode, ret;
+
+	if (!chip->setup_data_interface)
+		return 0;
+
+	/*
+	 * First try to identify the best timings from ONFI parameters and
+	 * if the NAND does not support ONFI, fallback to the default ONFI
+	 * timing mode.
+	 */
+	modes = onfi_get_async_timing_mode(chip);
+	if (modes == ONFI_TIMING_MODE_UNKNOWN) {
+		if (!chip->onfi_timing_mode_default)
+			return 0;
+
+		modes = GENMASK(chip->onfi_timing_mode_default, 0);
+	}
+
+	chip->data_interface = kzalloc(sizeof(*chip->data_interface),
+				       GFP_KERNEL);
+	if (!chip->data_interface)
+		return -ENOMEM;
+
+	for (mode = fls(modes) - 1; mode >= 0; mode--) {
+		ret = onfi_init_data_interface(chip, chip->data_interface,
+					       NAND_SDR_IFACE, mode);
+		if (ret)
+			continue;
+
+		/* Pass -1 to only */
+		ret = chip->setup_data_interface(mtd,
+						 NAND_DATA_IFACE_CHECK_ONLY,
+						 chip->data_interface);
+		if (!ret) {
+			chip->onfi_timing_mode_default = mode;
+			break;
+		}
+	}
+
+	return 0;
+}
+
+static void __maybe_unused nand_release_data_interface(struct nand_chip *chip)
+{
+	kfree(chip->data_interface);
+}
+
+/**
+ * nand_reset - Reset and initialize a NAND device
+ * @chip: The NAND chip
+ * @chipnr: Internal die id
+ *
+ * Returns 0 for success or negative error code otherwise
+ */
+int nand_reset(struct nand_chip *chip, int chipnr)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	int ret;
+
+	ret = nand_reset_data_interface(chip, chipnr);
+	if (ret)
+		return ret;
+
+	/*
+	 * The CS line has to be released before we can apply the new NAND
+	 * interface settings, hence this weird ->select_chip() dance.
+	 */
+	chip->select_chip(mtd, chipnr);
+	chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
+	chip->select_chip(mtd, -1);
+
+	chip->select_chip(mtd, chipnr);
+	ret = nand_setup_data_interface(chip, chipnr);
+	chip->select_chip(mtd, -1);
+	if (ret)
+		return ret;
+
+	return 0;
+}
 
 /**
  * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data
@@ -1547,6 +1722,9 @@
 
 		if (!aligned)
 			use_bufpoi = 1;
+		else if (chip->options & NAND_USE_BOUNCE_BUFFER)
+			use_bufpoi = !IS_ALIGNED((unsigned long)buf,
+						 chip->buf_align);
 		else
 			use_bufpoi = 0;
 
@@ -1559,7 +1737,8 @@
 						 __func__, buf);
 
 read_retry:
-			chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
+			if (nand_standard_page_accessors(&chip->ecc))
+				chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
 
 			/*
 			 * Now read the page into the buffer.  Absent an error,
@@ -2235,12 +2414,11 @@
  * @buf: the data to write
  * @oob_required: must write chip->oob_poi to OOB
  * @page: page number to write
- * @cached: cached programming
  * @raw: use _raw version of write_page
  */
 static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
 		uint32_t offset, int data_len, const uint8_t *buf,
-		int oob_required, int page, int cached, int raw)
+		int oob_required, int page, int raw)
 {
 	int status, subpage;
 
@@ -2250,7 +2428,8 @@
 	else
 		subpage = 0;
 
-	chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
+	if (nand_standard_page_accessors(&chip->ecc))
+		chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
 
 	if (unlikely(raw))
 		status = chip->ecc.write_page_raw(mtd, chip, buf,
@@ -2265,29 +2444,12 @@
 	if (status < 0)
 		return status;
 
-	/*
-	 * Cached progamming disabled for now. Not sure if it's worth the
-	 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s).
-	 */
-	cached = 0;
-
-	if (!cached || !NAND_HAS_CACHEPROG(chip)) {
-
+	if (nand_standard_page_accessors(&chip->ecc)) {
 		chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
-		status = chip->waitfunc(mtd, chip);
-		/*
-		 * See if operation failed and additional status checks are
-		 * available.
-		 */
-		if ((status & NAND_STATUS_FAIL) && (chip->errstat))
-			status = chip->errstat(mtd, chip, FL_WRITING, status,
-					       page);
 
+		status = chip->waitfunc(mtd, chip);
 		if (status & NAND_STATUS_FAIL)
 			return -EIO;
-	} else {
-		chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
-		status = chip->waitfunc(mtd, chip);
 	}
 
 	return 0;
@@ -2362,7 +2524,7 @@
 static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
 			     struct mtd_oob_ops *ops)
 {
-	int chipnr, realpage, page, blockmask, column;
+	int chipnr, realpage, page, column;
 	struct nand_chip *chip = mtd_to_nand(mtd);
 	uint32_t writelen = ops->len;
 
@@ -2398,7 +2560,6 @@
 
 	realpage = (int)(to >> chip->page_shift);
 	page = realpage & chip->pagemask;
-	blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
 
 	/* Invalidate the page cache, when we write to the cached page */
 	if (to <= ((loff_t)chip->pagebuf << chip->page_shift) &&
@@ -2413,13 +2574,15 @@
 
 	while (1) {
 		int bytes = mtd->writesize;
-		int cached = writelen > bytes && page != blockmask;
 		uint8_t *wbuf = buf;
 		int use_bufpoi;
 		int part_pagewr = (column || writelen < mtd->writesize);
 
 		if (part_pagewr)
 			use_bufpoi = 1;
+		else if (chip->options & NAND_USE_BOUNCE_BUFFER)
+			use_bufpoi = !IS_ALIGNED((unsigned long)buf,
+						 chip->buf_align);
 		else
 			use_bufpoi = 0;
 
@@ -2428,7 +2591,6 @@
 		if (use_bufpoi) {
 			pr_debug("%s: using write bounce buffer for buf@%p\n",
 					 __func__, buf);
-			cached = 0;
 			if (part_pagewr)
 				bytes = min_t(int, bytes - column, writelen);
 			chip->pagebuf = -1;
@@ -2446,7 +2608,7 @@
 			memset(chip->oob_poi, 0xff, mtd->oobsize);
 		}
 		ret = chip->write_page(mtd, chip, column, bytes, wbuf,
-					oob_required, page, cached,
+					oob_required, page,
 					(ops->mode == MTD_OPS_RAW));
 		if (ret)
 			break;
@@ -2582,10 +2744,6 @@
 	}
 
 	chipnr = (int)(to >> chip->chip_shift);
-	chip->select_chip(mtd, chipnr);
-
-	/* Shift to get page */
-	page = (int)(to >> chip->page_shift);
 
 	/*
 	 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
@@ -2593,7 +2751,12 @@
 	 * if we don't do this. I have no clue why, but I seem to have 'fixed'
 	 * it in the doc2000 driver in August 1999.  dwmw2.
 	 */
-	chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
+	nand_reset(chip, chipnr);
+
+	chip->select_chip(mtd, chipnr);
+
+	/* Shift to get page */
+	page = (int)(to >> chip->page_shift);
 
 	/* Check, if it is write protected */
 	if (nand_check_wp(mtd)) {
@@ -2763,14 +2926,6 @@
 
 		status = chip->erase(mtd, page & chip->pagemask);
 
-		/*
-		 * See if operation failed and additional status checks are
-		 * available
-		 */
-		if ((status & NAND_STATUS_FAIL) && (chip->errstat))
-			status = chip->errstat(mtd, chip, FL_ERASING,
-					       status, page);
-
 		/* See if block erase succeeded */
 		if (status & NAND_STATUS_FAIL) {
 			pr_debug("%s: failed erase, page 0x%08x\n",
@@ -2972,6 +3127,8 @@
 		init_waitqueue_head(&chip->controller->wq);
 	}
 
+	if (!chip->buf_align)
+		chip->buf_align = 1;
 }
 
 /* Sanitize ONFI strings so we can safely print them */
@@ -3607,14 +3764,14 @@
 	int i, maf_idx;
 	u8 id_data[8];
 
-	/* Select the device */
-	chip->select_chip(mtd, 0);
-
 	/*
 	 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
 	 * after power-up.
 	 */
-	chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
+	nand_reset(chip, 0);
+
+	/* Select the device */
+	chip->select_chip(mtd, 0);
 
 	/* Send the command for reading device ID */
 	chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
@@ -3730,6 +3887,9 @@
 		chip->chip_shift += 32 - 1;
 	}
 
+	if (chip->chip_shift - chip->page_shift > 16)
+		chip->options |= NAND_ROW_ADDR_3;
+
 	chip->badblockbits = 8;
 	chip->erase = single_erase;
 
@@ -3819,6 +3979,9 @@
 	if (ecc_step > 0)
 		chip->ecc.size = ecc_step;
 
+	if (fdt_getprop(blob, node, "nand-ecc-maximize", NULL))
+		chip->ecc.options |= NAND_ECC_MAXIMIZE;
+
 	return 0;
 }
 #else
@@ -3866,13 +4029,31 @@
 		return PTR_ERR(type);
 	}
 
+	/* Initialize the ->data_interface field. */
+	ret = nand_init_data_interface(chip);
+	if (ret)
+		return ret;
+
+	/*
+	 * Setup the data interface correctly on the chip and controller side.
+	 * This explicit call to nand_setup_data_interface() is only required
+	 * for the first die, because nand_reset() has been called before
+	 * ->data_interface and ->default_onfi_timing_mode were set.
+	 * For the other dies, nand_reset() will automatically switch to the
+	 * best mode for us.
+	 */
+	ret = nand_setup_data_interface(chip, 0);
+	if (ret)
+		return ret;
+
 	chip->select_chip(mtd, -1);
 
 	/* Check for a chip array */
 	for (i = 1; i < maxchips; i++) {
-		chip->select_chip(mtd, i);
 		/* See comment in nand_get_flash_type for reset */
-		chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
+		nand_reset(chip, i);
+
+		chip->select_chip(mtd, i);
 		/* Send the command for reading device ID */
 		chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
 		/* Read manufacturer and device IDs */
@@ -3897,6 +4078,226 @@
 }
 EXPORT_SYMBOL(nand_scan_ident);
 
+/**
+ * nand_check_ecc_caps - check the sanity of preset ECC settings
+ * @chip: nand chip info structure
+ * @caps: ECC caps info structure
+ * @oobavail: OOB size that the ECC engine can use
+ *
+ * When ECC step size and strength are already set, check if they are supported
+ * by the controller and the calculated ECC bytes fit within the chip's OOB.
+ * On success, the calculated ECC bytes is set.
+ */
+int nand_check_ecc_caps(struct nand_chip *chip,
+			const struct nand_ecc_caps *caps, int oobavail)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	const struct nand_ecc_step_info *stepinfo;
+	int preset_step = chip->ecc.size;
+	int preset_strength = chip->ecc.strength;
+	int nsteps, ecc_bytes;
+	int i, j;
+
+	if (WARN_ON(oobavail < 0))
+		return -EINVAL;
+
+	if (!preset_step || !preset_strength)
+		return -ENODATA;
+
+	nsteps = mtd->writesize / preset_step;
+
+	for (i = 0; i < caps->nstepinfos; i++) {
+		stepinfo = &caps->stepinfos[i];
+
+		if (stepinfo->stepsize != preset_step)
+			continue;
+
+		for (j = 0; j < stepinfo->nstrengths; j++) {
+			if (stepinfo->strengths[j] != preset_strength)
+				continue;
+
+			ecc_bytes = caps->calc_ecc_bytes(preset_step,
+							 preset_strength);
+			if (WARN_ON_ONCE(ecc_bytes < 0))
+				return ecc_bytes;
+
+			if (ecc_bytes * nsteps > oobavail) {
+				pr_err("ECC (step, strength) = (%d, %d) does not fit in OOB",
+				       preset_step, preset_strength);
+				return -ENOSPC;
+			}
+
+			chip->ecc.bytes = ecc_bytes;
+
+			return 0;
+		}
+	}
+
+	pr_err("ECC (step, strength) = (%d, %d) not supported on this controller",
+	       preset_step, preset_strength);
+
+	return -ENOTSUPP;
+}
+EXPORT_SYMBOL_GPL(nand_check_ecc_caps);
+
+/**
+ * nand_match_ecc_req - meet the chip's requirement with least ECC bytes
+ * @chip: nand chip info structure
+ * @caps: ECC engine caps info structure
+ * @oobavail: OOB size that the ECC engine can use
+ *
+ * If a chip's ECC requirement is provided, try to meet it with the least
+ * number of ECC bytes (i.e. with the largest number of OOB-free bytes).
+ * On success, the chosen ECC settings are set.
+ */
+int nand_match_ecc_req(struct nand_chip *chip,
+		       const struct nand_ecc_caps *caps, int oobavail)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	const struct nand_ecc_step_info *stepinfo;
+	int req_step = chip->ecc_step_ds;
+	int req_strength = chip->ecc_strength_ds;
+	int req_corr, step_size, strength, nsteps, ecc_bytes, ecc_bytes_total;
+	int best_step, best_strength, best_ecc_bytes;
+	int best_ecc_bytes_total = INT_MAX;
+	int i, j;
+
+	if (WARN_ON(oobavail < 0))
+		return -EINVAL;
+
+	/* No information provided by the NAND chip */
+	if (!req_step || !req_strength)
+		return -ENOTSUPP;
+
+	/* number of correctable bits the chip requires in a page */
+	req_corr = mtd->writesize / req_step * req_strength;
+
+	for (i = 0; i < caps->nstepinfos; i++) {
+		stepinfo = &caps->stepinfos[i];
+		step_size = stepinfo->stepsize;
+
+		for (j = 0; j < stepinfo->nstrengths; j++) {
+			strength = stepinfo->strengths[j];
+
+			/*
+			 * If both step size and strength are smaller than the
+			 * chip's requirement, it is not easy to compare the
+			 * resulted reliability.
+			 */
+			if (step_size < req_step && strength < req_strength)
+				continue;
+
+			if (mtd->writesize % step_size)
+				continue;
+
+			nsteps = mtd->writesize / step_size;
+
+			ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
+			if (WARN_ON_ONCE(ecc_bytes < 0))
+				continue;
+			ecc_bytes_total = ecc_bytes * nsteps;
+
+			if (ecc_bytes_total > oobavail ||
+			    strength * nsteps < req_corr)
+				continue;
+
+			/*
+			 * We assume the best is to meet the chip's requrement
+			 * with the least number of ECC bytes.
+			 */
+			if (ecc_bytes_total < best_ecc_bytes_total) {
+				best_ecc_bytes_total = ecc_bytes_total;
+				best_step = step_size;
+				best_strength = strength;
+				best_ecc_bytes = ecc_bytes;
+			}
+		}
+	}
+
+	if (best_ecc_bytes_total == INT_MAX)
+		return -ENOTSUPP;
+
+	chip->ecc.size = best_step;
+	chip->ecc.strength = best_strength;
+	chip->ecc.bytes = best_ecc_bytes;
+
+	return 0;
+}
+EXPORT_SYMBOL_GPL(nand_match_ecc_req);
+
+/**
+ * nand_maximize_ecc - choose the max ECC strength available
+ * @chip: nand chip info structure
+ * @caps: ECC engine caps info structure
+ * @oobavail: OOB size that the ECC engine can use
+ *
+ * Choose the max ECC strength that is supported on the controller, and can fit
+ * within the chip's OOB.  On success, the chosen ECC settings are set.
+ */
+int nand_maximize_ecc(struct nand_chip *chip,
+		      const struct nand_ecc_caps *caps, int oobavail)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	const struct nand_ecc_step_info *stepinfo;
+	int step_size, strength, nsteps, ecc_bytes, corr;
+	int best_corr = 0;
+	int best_step = 0;
+	int best_strength, best_ecc_bytes;
+	int i, j;
+
+	if (WARN_ON(oobavail < 0))
+		return -EINVAL;
+
+	for (i = 0; i < caps->nstepinfos; i++) {
+		stepinfo = &caps->stepinfos[i];
+		step_size = stepinfo->stepsize;
+
+		/* If chip->ecc.size is already set, respect it */
+		if (chip->ecc.size && step_size != chip->ecc.size)
+			continue;
+
+		for (j = 0; j < stepinfo->nstrengths; j++) {
+			strength = stepinfo->strengths[j];
+
+			if (mtd->writesize % step_size)
+				continue;
+
+			nsteps = mtd->writesize / step_size;
+
+			ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
+			if (WARN_ON_ONCE(ecc_bytes < 0))
+				continue;
+
+			if (ecc_bytes * nsteps > oobavail)
+				continue;
+
+			corr = strength * nsteps;
+
+			/*
+			 * If the number of correctable bits is the same,
+			 * bigger step_size has more reliability.
+			 */
+			if (corr > best_corr ||
+			    (corr == best_corr && step_size > best_step)) {
+				best_corr = corr;
+				best_step = step_size;
+				best_strength = strength;
+				best_ecc_bytes = ecc_bytes;
+			}
+		}
+	}
+
+	if (!best_corr)
+		return -ENOTSUPP;
+
+	chip->ecc.size = best_step;
+	chip->ecc.strength = best_strength;
+	chip->ecc.bytes = best_ecc_bytes;
+
+	return 0;
+}
+EXPORT_SYMBOL_GPL(nand_maximize_ecc);
+
 /*
  * Check if the chip configuration meet the datasheet requirements.
 
@@ -3931,6 +4332,26 @@
 	return corr >= ds_corr && ecc->strength >= chip->ecc_strength_ds;
 }
 
+static bool invalid_ecc_page_accessors(struct nand_chip *chip)
+{
+	struct nand_ecc_ctrl *ecc = &chip->ecc;
+
+	if (nand_standard_page_accessors(ecc))
+		return false;
+
+	/*
+	 * NAND_ECC_CUSTOM_PAGE_ACCESS flag is set, make sure the NAND
+	 * controller driver implements all the page accessors because
+	 * default helpers are not suitable when the core does not
+	 * send the READ0/PAGEPROG commands.
+	 */
+	return (!ecc->read_page || !ecc->write_page ||
+		!ecc->read_page_raw || !ecc->write_page_raw ||
+		(NAND_HAS_SUBPAGE_READ(chip) && !ecc->read_subpage) ||
+		(NAND_HAS_SUBPAGE_WRITE(chip) && !ecc->write_subpage &&
+		 ecc->hwctl && ecc->calculate));
+}
+
 /**
  * nand_scan_tail - [NAND Interface] Scan for the NAND device
  * @mtd: MTD device structure
@@ -3950,6 +4371,11 @@
 	BUG_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
 			!(chip->bbt_options & NAND_BBT_USE_FLASH));
 
+	if (invalid_ecc_page_accessors(chip)) {
+		pr_err("Invalid ECC page accessors setup\n");
+		return -EINVAL;
+	}
+
 	if (!(chip->options & NAND_OWN_BUFFERS)) {
 		nbuf = kzalloc(sizeof(struct nand_buffers), GFP_KERNEL);
 		chip->buffers = nbuf;
diff --git a/drivers/mtd/nand/nand_timings.c b/drivers/mtd/nand/nand_timings.c
index 53dcbd3..9935557 100644
--- a/drivers/mtd/nand/nand_timings.c
+++ b/drivers/mtd/nand/nand_timings.c
@@ -12,228 +12,258 @@
 #include <linux/kernel.h>
 #include <linux/mtd/nand.h>
 
-static const struct nand_sdr_timings onfi_sdr_timings[] = {
+static const struct nand_data_interface onfi_sdr_timings[] = {
 	/* Mode 0 */
 	{
-		.tADL_min = 200000,
-		.tALH_min = 20000,
-		.tALS_min = 50000,
-		.tAR_min = 25000,
-		.tCEA_max = 100000,
-		.tCEH_min = 20000,
-		.tCH_min = 20000,
-		.tCHZ_max = 100000,
-		.tCLH_min = 20000,
-		.tCLR_min = 20000,
-		.tCLS_min = 50000,
-		.tCOH_min = 0,
-		.tCS_min = 70000,
-		.tDH_min = 20000,
-		.tDS_min = 40000,
-		.tFEAT_max = 1000000,
-		.tIR_min = 10000,
-		.tITC_max = 1000000,
-		.tRC_min = 100000,
-		.tREA_max = 40000,
-		.tREH_min = 30000,
-		.tRHOH_min = 0,
-		.tRHW_min = 200000,
-		.tRHZ_max = 200000,
-		.tRLOH_min = 0,
-		.tRP_min = 50000,
-		.tRST_max = 250000000000ULL,
-		.tWB_max = 200000,
-		.tRR_min = 40000,
-		.tWC_min = 100000,
-		.tWH_min = 30000,
-		.tWHR_min = 120000,
-		.tWP_min = 50000,
-		.tWW_min = 100000,
+		.type = NAND_SDR_IFACE,
+		.timings.sdr = {
+			.tCCS_min = 500000,
+			.tR_max = 200000000,
+			.tADL_min = 400000,
+			.tALH_min = 20000,
+			.tALS_min = 50000,
+			.tAR_min = 25000,
+			.tCEA_max = 100000,
+			.tCEH_min = 20000,
+			.tCH_min = 20000,
+			.tCHZ_max = 100000,
+			.tCLH_min = 20000,
+			.tCLR_min = 20000,
+			.tCLS_min = 50000,
+			.tCOH_min = 0,
+			.tCS_min = 70000,
+			.tDH_min = 20000,
+			.tDS_min = 40000,
+			.tFEAT_max = 1000000,
+			.tIR_min = 10000,
+			.tITC_max = 1000000,
+			.tRC_min = 100000,
+			.tREA_max = 40000,
+			.tREH_min = 30000,
+			.tRHOH_min = 0,
+			.tRHW_min = 200000,
+			.tRHZ_max = 200000,
+			.tRLOH_min = 0,
+			.tRP_min = 50000,
+			.tRR_min = 40000,
+			.tRST_max = 250000000000ULL,
+			.tWB_max = 200000,
+			.tWC_min = 100000,
+			.tWH_min = 30000,
+			.tWHR_min = 120000,
+			.tWP_min = 50000,
+			.tWW_min = 100000,
+		},
 	},
 	/* Mode 1 */
 	{
-		.tADL_min = 100000,
-		.tALH_min = 10000,
-		.tALS_min = 25000,
-		.tAR_min = 10000,
-		.tCEA_max = 45000,
-		.tCEH_min = 20000,
-		.tCH_min = 10000,
-		.tCHZ_max = 50000,
-		.tCLH_min = 10000,
-		.tCLR_min = 10000,
-		.tCLS_min = 25000,
-		.tCOH_min = 15000,
-		.tCS_min = 35000,
-		.tDH_min = 10000,
-		.tDS_min = 20000,
-		.tFEAT_max = 1000000,
-		.tIR_min = 0,
-		.tITC_max = 1000000,
-		.tRC_min = 50000,
-		.tREA_max = 30000,
-		.tREH_min = 15000,
-		.tRHOH_min = 15000,
-		.tRHW_min = 100000,
-		.tRHZ_max = 100000,
-		.tRLOH_min = 0,
-		.tRP_min = 25000,
-		.tRR_min = 20000,
-		.tRST_max = 500000000,
-		.tWB_max = 100000,
-		.tWC_min = 45000,
-		.tWH_min = 15000,
-		.tWHR_min = 80000,
-		.tWP_min = 25000,
-		.tWW_min = 100000,
+		.type = NAND_SDR_IFACE,
+		.timings.sdr = {
+			.tCCS_min = 500000,
+			.tR_max = 200000000,
+			.tADL_min = 400000,
+			.tALH_min = 10000,
+			.tALS_min = 25000,
+			.tAR_min = 10000,
+			.tCEA_max = 45000,
+			.tCEH_min = 20000,
+			.tCH_min = 10000,
+			.tCHZ_max = 50000,
+			.tCLH_min = 10000,
+			.tCLR_min = 10000,
+			.tCLS_min = 25000,
+			.tCOH_min = 15000,
+			.tCS_min = 35000,
+			.tDH_min = 10000,
+			.tDS_min = 20000,
+			.tFEAT_max = 1000000,
+			.tIR_min = 0,
+			.tITC_max = 1000000,
+			.tRC_min = 50000,
+			.tREA_max = 30000,
+			.tREH_min = 15000,
+			.tRHOH_min = 15000,
+			.tRHW_min = 100000,
+			.tRHZ_max = 100000,
+			.tRLOH_min = 0,
+			.tRP_min = 25000,
+			.tRR_min = 20000,
+			.tRST_max = 500000000,
+			.tWB_max = 100000,
+			.tWC_min = 45000,
+			.tWH_min = 15000,
+			.tWHR_min = 80000,
+			.tWP_min = 25000,
+			.tWW_min = 100000,
+		},
 	},
 	/* Mode 2 */
 	{
-		.tADL_min = 100000,
-		.tALH_min = 10000,
-		.tALS_min = 15000,
-		.tAR_min = 10000,
-		.tCEA_max = 30000,
-		.tCEH_min = 20000,
-		.tCH_min = 10000,
-		.tCHZ_max = 50000,
-		.tCLH_min = 10000,
-		.tCLR_min = 10000,
-		.tCLS_min = 15000,
-		.tCOH_min = 15000,
-		.tCS_min = 25000,
-		.tDH_min = 5000,
-		.tDS_min = 15000,
-		.tFEAT_max = 1000000,
-		.tIR_min = 0,
-		.tITC_max = 1000000,
-		.tRC_min = 35000,
-		.tREA_max = 25000,
-		.tREH_min = 15000,
-		.tRHOH_min = 15000,
-		.tRHW_min = 100000,
-		.tRHZ_max = 100000,
-		.tRLOH_min = 0,
-		.tRR_min = 20000,
-		.tRST_max = 500000000,
-		.tWB_max = 100000,
-		.tRP_min = 17000,
-		.tWC_min = 35000,
-		.tWH_min = 15000,
-		.tWHR_min = 80000,
-		.tWP_min = 17000,
-		.tWW_min = 100000,
+		.type = NAND_SDR_IFACE,
+		.timings.sdr = {
+			.tCCS_min = 500000,
+			.tR_max = 200000000,
+			.tADL_min = 400000,
+			.tALH_min = 10000,
+			.tALS_min = 15000,
+			.tAR_min = 10000,
+			.tCEA_max = 30000,
+			.tCEH_min = 20000,
+			.tCH_min = 10000,
+			.tCHZ_max = 50000,
+			.tCLH_min = 10000,
+			.tCLR_min = 10000,
+			.tCLS_min = 15000,
+			.tCOH_min = 15000,
+			.tCS_min = 25000,
+			.tDH_min = 5000,
+			.tDS_min = 15000,
+			.tFEAT_max = 1000000,
+			.tIR_min = 0,
+			.tITC_max = 1000000,
+			.tRC_min = 35000,
+			.tREA_max = 25000,
+			.tREH_min = 15000,
+			.tRHOH_min = 15000,
+			.tRHW_min = 100000,
+			.tRHZ_max = 100000,
+			.tRLOH_min = 0,
+			.tRR_min = 20000,
+			.tRST_max = 500000000,
+			.tWB_max = 100000,
+			.tRP_min = 17000,
+			.tWC_min = 35000,
+			.tWH_min = 15000,
+			.tWHR_min = 80000,
+			.tWP_min = 17000,
+			.tWW_min = 100000,
+		},
 	},
 	/* Mode 3 */
 	{
-		.tADL_min = 100000,
-		.tALH_min = 5000,
-		.tALS_min = 10000,
-		.tAR_min = 10000,
-		.tCEA_max = 25000,
-		.tCEH_min = 20000,
-		.tCH_min = 5000,
-		.tCHZ_max = 50000,
-		.tCLH_min = 5000,
-		.tCLR_min = 10000,
-		.tCLS_min = 10000,
-		.tCOH_min = 15000,
-		.tCS_min = 25000,
-		.tDH_min = 5000,
-		.tDS_min = 10000,
-		.tFEAT_max = 1000000,
-		.tIR_min = 0,
-		.tITC_max = 1000000,
-		.tRC_min = 30000,
-		.tREA_max = 20000,
-		.tREH_min = 10000,
-		.tRHOH_min = 15000,
-		.tRHW_min = 100000,
-		.tRHZ_max = 100000,
-		.tRLOH_min = 0,
-		.tRP_min = 15000,
-		.tRR_min = 20000,
-		.tRST_max = 500000000,
-		.tWB_max = 100000,
-		.tWC_min = 30000,
-		.tWH_min = 10000,
-		.tWHR_min = 80000,
-		.tWP_min = 15000,
-		.tWW_min = 100000,
+		.type = NAND_SDR_IFACE,
+		.timings.sdr = {
+			.tCCS_min = 500000,
+			.tR_max = 200000000,
+			.tADL_min = 400000,
+			.tALH_min = 5000,
+			.tALS_min = 10000,
+			.tAR_min = 10000,
+			.tCEA_max = 25000,
+			.tCEH_min = 20000,
+			.tCH_min = 5000,
+			.tCHZ_max = 50000,
+			.tCLH_min = 5000,
+			.tCLR_min = 10000,
+			.tCLS_min = 10000,
+			.tCOH_min = 15000,
+			.tCS_min = 25000,
+			.tDH_min = 5000,
+			.tDS_min = 10000,
+			.tFEAT_max = 1000000,
+			.tIR_min = 0,
+			.tITC_max = 1000000,
+			.tRC_min = 30000,
+			.tREA_max = 20000,
+			.tREH_min = 10000,
+			.tRHOH_min = 15000,
+			.tRHW_min = 100000,
+			.tRHZ_max = 100000,
+			.tRLOH_min = 0,
+			.tRP_min = 15000,
+			.tRR_min = 20000,
+			.tRST_max = 500000000,
+			.tWB_max = 100000,
+			.tWC_min = 30000,
+			.tWH_min = 10000,
+			.tWHR_min = 80000,
+			.tWP_min = 15000,
+			.tWW_min = 100000,
+		},
 	},
 	/* Mode 4 */
 	{
-		.tADL_min = 70000,
-		.tALH_min = 5000,
-		.tALS_min = 10000,
-		.tAR_min = 10000,
-		.tCEA_max = 25000,
-		.tCEH_min = 20000,
-		.tCH_min = 5000,
-		.tCHZ_max = 30000,
-		.tCLH_min = 5000,
-		.tCLR_min = 10000,
-		.tCLS_min = 10000,
-		.tCOH_min = 15000,
-		.tCS_min = 20000,
-		.tDH_min = 5000,
-		.tDS_min = 10000,
-		.tFEAT_max = 1000000,
-		.tIR_min = 0,
-		.tITC_max = 1000000,
-		.tRC_min = 25000,
-		.tREA_max = 20000,
-		.tREH_min = 10000,
-		.tRHOH_min = 15000,
-		.tRHW_min = 100000,
-		.tRHZ_max = 100000,
-		.tRLOH_min = 5000,
-		.tRP_min = 12000,
-		.tRR_min = 20000,
-		.tRST_max = 500000000,
-		.tWB_max = 100000,
-		.tWC_min = 25000,
-		.tWH_min = 10000,
-		.tWHR_min = 80000,
-		.tWP_min = 12000,
-		.tWW_min = 100000,
+		.type = NAND_SDR_IFACE,
+		.timings.sdr = {
+			.tCCS_min = 500000,
+			.tR_max = 200000000,
+			.tADL_min = 400000,
+			.tALH_min = 5000,
+			.tALS_min = 10000,
+			.tAR_min = 10000,
+			.tCEA_max = 25000,
+			.tCEH_min = 20000,
+			.tCH_min = 5000,
+			.tCHZ_max = 30000,
+			.tCLH_min = 5000,
+			.tCLR_min = 10000,
+			.tCLS_min = 10000,
+			.tCOH_min = 15000,
+			.tCS_min = 20000,
+			.tDH_min = 5000,
+			.tDS_min = 10000,
+			.tFEAT_max = 1000000,
+			.tIR_min = 0,
+			.tITC_max = 1000000,
+			.tRC_min = 25000,
+			.tREA_max = 20000,
+			.tREH_min = 10000,
+			.tRHOH_min = 15000,
+			.tRHW_min = 100000,
+			.tRHZ_max = 100000,
+			.tRLOH_min = 5000,
+			.tRP_min = 12000,
+			.tRR_min = 20000,
+			.tRST_max = 500000000,
+			.tWB_max = 100000,
+			.tWC_min = 25000,
+			.tWH_min = 10000,
+			.tWHR_min = 80000,
+			.tWP_min = 12000,
+			.tWW_min = 100000,
+		},
 	},
 	/* Mode 5 */
 	{
-		.tADL_min = 70000,
-		.tALH_min = 5000,
-		.tALS_min = 10000,
-		.tAR_min = 10000,
-		.tCEA_max = 25000,
-		.tCEH_min = 20000,
-		.tCH_min = 5000,
-		.tCHZ_max = 30000,
-		.tCLH_min = 5000,
-		.tCLR_min = 10000,
-		.tCLS_min = 10000,
-		.tCOH_min = 15000,
-		.tCS_min = 15000,
-		.tDH_min = 5000,
-		.tDS_min = 7000,
-		.tFEAT_max = 1000000,
-		.tIR_min = 0,
-		.tITC_max = 1000000,
-		.tRC_min = 20000,
-		.tREA_max = 16000,
-		.tREH_min = 7000,
-		.tRHOH_min = 15000,
-		.tRHW_min = 100000,
-		.tRHZ_max = 100000,
-		.tRLOH_min = 5000,
-		.tRP_min = 10000,
-		.tRR_min = 20000,
-		.tRST_max = 500000000,
-		.tWB_max = 100000,
-		.tWC_min = 20000,
-		.tWH_min = 7000,
-		.tWHR_min = 80000,
-		.tWP_min = 10000,
-		.tWW_min = 100000,
+		.type = NAND_SDR_IFACE,
+		.timings.sdr = {
+			.tCCS_min = 500000,
+			.tR_max = 200000000,
+			.tADL_min = 400000,
+			.tALH_min = 5000,
+			.tALS_min = 10000,
+			.tAR_min = 10000,
+			.tCEA_max = 25000,
+			.tCEH_min = 20000,
+			.tCH_min = 5000,
+			.tCHZ_max = 30000,
+			.tCLH_min = 5000,
+			.tCLR_min = 10000,
+			.tCLS_min = 10000,
+			.tCOH_min = 15000,
+			.tCS_min = 15000,
+			.tDH_min = 5000,
+			.tDS_min = 7000,
+			.tFEAT_max = 1000000,
+			.tIR_min = 0,
+			.tITC_max = 1000000,
+			.tRC_min = 20000,
+			.tREA_max = 16000,
+			.tREH_min = 7000,
+			.tRHOH_min = 15000,
+			.tRHW_min = 100000,
+			.tRHZ_max = 100000,
+			.tRLOH_min = 5000,
+			.tRP_min = 10000,
+			.tRR_min = 20000,
+			.tRST_max = 500000000,
+			.tWB_max = 100000,
+			.tWC_min = 20000,
+			.tWH_min = 7000,
+			.tWHR_min = 80000,
+			.tWP_min = 10000,
+			.tWW_min = 100000,
+		},
 	},
 };
 
@@ -247,6 +277,58 @@
 	if (mode < 0 || mode >= ARRAY_SIZE(onfi_sdr_timings))
 		return ERR_PTR(-EINVAL);
 
-	return &onfi_sdr_timings[mode];
+	return &onfi_sdr_timings[mode].timings.sdr;
 }
 EXPORT_SYMBOL(onfi_async_timing_mode_to_sdr_timings);
+
+/**
+ * onfi_init_data_interface - [NAND Interface] Initialize a data interface from
+ * given ONFI mode
+ * @iface: The data interface to be initialized
+ * @mode: The ONFI timing mode
+ */
+int onfi_init_data_interface(struct nand_chip *chip,
+			     struct nand_data_interface *iface,
+			     enum nand_data_interface_type type,
+			     int timing_mode)
+{
+	if (type != NAND_SDR_IFACE)
+		return -EINVAL;
+
+	if (timing_mode < 0 || timing_mode >= ARRAY_SIZE(onfi_sdr_timings))
+		return -EINVAL;
+
+	*iface = onfi_sdr_timings[timing_mode];
+
+	/*
+	 * Initialize timings that cannot be deduced from timing mode:
+	 * tR, tPROG, tCCS, ...
+	 * These information are part of the ONFI parameter page.
+	 */
+	if (chip->onfi_version) {
+		struct nand_onfi_params *params = &chip->onfi_params;
+		struct nand_sdr_timings *timings = &iface->timings.sdr;
+
+		/* microseconds -> picoseconds */
+		timings->tPROG_max = 1000000ULL * le16_to_cpu(params->t_prog);
+		timings->tBERS_max = 1000000ULL * le16_to_cpu(params->t_bers);
+		timings->tR_max = 1000000ULL * le16_to_cpu(params->t_r);
+
+		/* nanoseconds -> picoseconds */
+		timings->tCCS_min = 1000UL * le16_to_cpu(params->t_ccs);
+	}
+
+	return 0;
+}
+EXPORT_SYMBOL(onfi_init_data_interface);
+
+/**
+ * nand_get_default_data_interface - [NAND Interface] Retrieve NAND
+ * data interface for mode 0. This is used as default timing after
+ * reset.
+ */
+const struct nand_data_interface *nand_get_default_data_interface(void)
+{
+	return &onfi_sdr_timings[0];
+}
+EXPORT_SYMBOL(nand_get_default_data_interface);
diff --git a/include/configs/uniphier.h b/include/configs/uniphier.h
index 6f4d67e..453f3db 100644
--- a/include/configs/uniphier.h
+++ b/include/configs/uniphier.h
@@ -71,13 +71,8 @@
 
 #define CONFIG_SYS_MAX_NAND_DEVICE			1
 #define CONFIG_SYS_NAND_ONFI_DETECTION
-
-#define CONFIG_NAND_DENALI_ECC_SIZE			1024
-
 #define CONFIG_SYS_NAND_REGS_BASE			0x68100000
 #define CONFIG_SYS_NAND_DATA_BASE			0x68000000
-
-#define CONFIG_SYS_NAND_USE_FLASH_BBT
 #define CONFIG_SYS_NAND_BAD_BLOCK_POS			0
 
 /* SD/MMC */
diff --git a/include/dt-bindings/gpio/uniphier-gpio.h b/include/dt-bindings/gpio/uniphier-gpio.h
new file mode 100644
index 0000000..9f0ad17
--- /dev/null
+++ b/include/dt-bindings/gpio/uniphier-gpio.h
@@ -0,0 +1,18 @@
+/*
+ * Copyright (C) 2017 Socionext Inc.
+ *   Author: Masahiro Yamada <yamada.masahiro@socionext.com>
+ */
+
+#ifndef _DT_BINDINGS_GPIO_UNIPHIER_H
+#define _DT_BINDINGS_GPIO_UNIPHIER_H
+
+#define UNIPHIER_GPIO_LINES_PER_BANK	8
+
+#define UNIPHIER_GPIO_IRQ_OFFSET	((UNIPHIER_GPIO_LINES_PER_BANK) * 15)
+
+#define UNIPHIER_GPIO_PORT(bank, line)	\
+			((UNIPHIER_GPIO_LINES_PER_BANK) * (bank) + (line))
+
+#define UNIPHIER_GPIO_IRQ(n)		((UNIPHIER_GPIO_IRQ_OFFSET) + (n))
+
+#endif /* _DT_BINDINGS_GPIO_UNIPHIER_H */
diff --git a/include/linux/bitops.h b/include/linux/bitops.h
index 576b15d..a47f6d1 100644
--- a/include/linux/bitops.h
+++ b/include/linux/bitops.h
@@ -5,9 +5,16 @@
 #include <asm-generic/bitsperlong.h>
 #include <linux/compiler.h>
 
+#ifdef	__KERNEL__
 #define BIT(nr)			(1UL << (nr))
+#define BIT_ULL(nr)		(1ULL << (nr))
 #define BIT_MASK(nr)		(1UL << ((nr) % BITS_PER_LONG))
 #define BIT_WORD(nr)		((nr) / BITS_PER_LONG)
+#define BIT_ULL_MASK(nr)	(1ULL << ((nr) % BITS_PER_LONG_LONG))
+#define BIT_ULL_WORD(nr)	((nr) / BITS_PER_LONG_LONG)
+#define BITS_PER_BYTE		8
+#define BITS_TO_LONGS(nr)	DIV_ROUND_UP(nr, BITS_PER_BYTE * sizeof(long))
+#endif
 
 /*
  * Create a contiguous bitmask starting at bit position @l and ending at
diff --git a/include/linux/mtd/mtd.h b/include/linux/mtd/mtd.h
index 4bde251..ba4cbba 100644
--- a/include/linux/mtd/mtd.h
+++ b/include/linux/mtd/mtd.h
@@ -103,8 +103,38 @@
 #else
 #define MTD_MAX_ECCPOS_ENTRIES_LARGE	680
 #endif
+/**
+ * struct mtd_oob_region - oob region definition
+ * @offset: region offset
+ * @length: region length
+ *
+ * This structure describes a region of the OOB area, and is used
+ * to retrieve ECC or free bytes sections.
+ * Each section is defined by an offset within the OOB area and a
+ * length.
+ */
+struct mtd_oob_region {
+	u32 offset;
+	u32 length;
+};
 
 /*
+ * struct mtd_ooblayout_ops - NAND OOB layout operations
+ * @ecc: function returning an ECC region in the OOB area.
+ *	 Should return -ERANGE if %section exceeds the total number of
+ *	 ECC sections.
+ * @free: function returning a free region in the OOB area.
+ *	  Should return -ERANGE if %section exceeds the total number of
+ *	  free sections.
+ */
+struct mtd_ooblayout_ops {
+	int (*ecc)(struct mtd_info *mtd, int section,
+		   struct mtd_oob_region *oobecc);
+	int (*free)(struct mtd_info *mtd, int section,
+		    struct mtd_oob_region *oobfree);
+};
+
+/*
  * Internal ECC layout control structure. For historical reasons, there is a
  * similar, smaller struct nand_ecclayout_user (in mtd-abi.h) that is retained
  * for export to user-space via the ECCGETLAYOUT ioctl.
@@ -179,6 +209,9 @@
 #endif
 	int index;
 
+	/* OOB layout description */
+	const struct mtd_ooblayout_ops *ooblayout;
+
 	/* ECC layout structure pointer - read only! */
 	struct nand_ecclayout *ecclayout;
 
@@ -278,6 +311,30 @@
 	int usecount;
 };
 
+int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
+		      struct mtd_oob_region *oobecc);
+int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
+				 int *section,
+				 struct mtd_oob_region *oobregion);
+int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
+			       const u8 *oobbuf, int start, int nbytes);
+int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
+			       u8 *oobbuf, int start, int nbytes);
+int mtd_ooblayout_free(struct mtd_info *mtd, int section,
+		       struct mtd_oob_region *oobfree);
+int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
+				const u8 *oobbuf, int start, int nbytes);
+int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
+				u8 *oobbuf, int start, int nbytes);
+int mtd_ooblayout_count_freebytes(struct mtd_info *mtd);
+int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd);
+
+static inline void mtd_set_ooblayout(struct mtd_info *mtd,
+				     const struct mtd_ooblayout_ops *ooblayout)
+{
+	mtd->ooblayout = ooblayout;
+}
+
 static inline int mtd_oobavail(struct mtd_info *mtd, struct mtd_oob_ops *ops)
 {
 	return ops->mode == MTD_OPS_AUTO_OOB ? mtd->oobavail : mtd->oobsize;
diff --git a/include/linux/mtd/nand.h b/include/linux/mtd/nand.h
index d55807b..d1db34c 100644
--- a/include/linux/mtd/nand.h
+++ b/include/linux/mtd/nand.h
@@ -28,20 +28,20 @@
 struct device_node;
 
 /* Scan and identify a NAND device */
-extern int nand_scan(struct mtd_info *mtd, int max_chips);
+int nand_scan(struct mtd_info *mtd, int max_chips);
 /*
  * Separate phases of nand_scan(), allowing board driver to intervene
  * and override command or ECC setup according to flash type.
  */
-extern int nand_scan_ident(struct mtd_info *mtd, int max_chips,
+int nand_scan_ident(struct mtd_info *mtd, int max_chips,
 			   struct nand_flash_dev *table);
-extern int nand_scan_tail(struct mtd_info *mtd);
+int nand_scan_tail(struct mtd_info *mtd);
 
 /* Free resources held by the NAND device */
-extern void nand_release(struct mtd_info *mtd);
+void nand_release(struct mtd_info *mtd);
 
 /* Internal helper for board drivers which need to override command function */
-extern void nand_wait_ready(struct mtd_info *mtd);
+void nand_wait_ready(struct mtd_info *mtd);
 
 /*
  * This constant declares the max. oobsize / page, which
@@ -124,6 +124,8 @@
 #define NAND_STATUS_READY	0x40
 #define NAND_STATUS_WP		0x80
 
+#define NAND_DATA_IFACE_CHECK_ONLY	-1
+
 /*
  * Constants for ECC_MODES
  */
@@ -153,6 +155,13 @@
  * pages and you want to rely on the default implementation.
  */
 #define NAND_ECC_GENERIC_ERASED_CHECK	BIT(0)
+#define NAND_ECC_MAXIMIZE		BIT(1)
+/*
+ * If your controller already sends the required NAND commands when
+ * reading or writing a page, then the framework is not supposed to
+ * send READ0 and SEQIN/PAGEPROG respectively.
+ */
+#define NAND_ECC_CUSTOM_PAGE_ACCESS	BIT(2)
 
 /* Bit mask for flags passed to do_nand_read_ecc */
 #define NAND_GET_DEVICE		0x80
@@ -195,12 +204,16 @@
  */
 #define NAND_NEED_SCRAMBLING	0x00002000
 
+/* Device needs 3rd row address cycle */
+#define NAND_ROW_ADDR_3		0x00004000
+
 /* Options valid for Samsung large page devices */
 #define NAND_SAMSUNG_LP_OPTIONS NAND_CACHEPRG
 
 /* Macros to identify the above */
 #define NAND_HAS_CACHEPROG(chip) ((chip->options & NAND_CACHEPRG))
 #define NAND_HAS_SUBPAGE_READ(chip) ((chip->options & NAND_SUBPAGE_READ))
+#define NAND_HAS_SUBPAGE_WRITE(chip) !((chip)->options & NAND_NO_SUBPAGE_WRITE)
 
 /* Non chip related options */
 /* This option skips the bbt scan during initialization. */
@@ -478,6 +491,44 @@
 };
 
 /**
+ * struct nand_ecc_step_info - ECC step information of ECC engine
+ * @stepsize: data bytes per ECC step
+ * @strengths: array of supported strengths
+ * @nstrengths: number of supported strengths
+ */
+struct nand_ecc_step_info {
+	int stepsize;
+	const int *strengths;
+	int nstrengths;
+};
+
+/**
+ * struct nand_ecc_caps - capability of ECC engine
+ * @stepinfos: array of ECC step information
+ * @nstepinfos: number of ECC step information
+ * @calc_ecc_bytes: driver's hook to calculate ECC bytes per step
+ */
+struct nand_ecc_caps {
+	const struct nand_ecc_step_info *stepinfos;
+	int nstepinfos;
+	int (*calc_ecc_bytes)(int step_size, int strength);
+};
+
+/* a shorthand to generate struct nand_ecc_caps with only one ECC stepsize */
+#define NAND_ECC_CAPS_SINGLE(__name, __calc, __step, ...)	\
+static const int __name##_strengths[] = { __VA_ARGS__ };	\
+static const struct nand_ecc_step_info __name##_stepinfo = {	\
+	.stepsize = __step,					\
+	.strengths = __name##_strengths,			\
+	.nstrengths = ARRAY_SIZE(__name##_strengths),		\
+};								\
+static const struct nand_ecc_caps __name = {			\
+	.stepinfos = &__name##_stepinfo,			\
+	.nstepinfos = 1,					\
+	.calc_ecc_bytes = __calc,				\
+}
+
+/**
  * struct nand_ecc_ctrl - Control structure for ECC
  * @mode:	ECC mode
  * @steps:	number of ECC steps per page
@@ -567,6 +618,11 @@
 			int page);
 };
 
+static inline int nand_standard_page_accessors(struct nand_ecc_ctrl *ecc)
+{
+	return !(ecc->options & NAND_ECC_CUSTOM_PAGE_ACCESS);
+}
+
 /**
  * struct nand_buffers - buffer structure for read/write
  * @ecccalc:	buffer pointer for calculated ECC, size is oobsize.
@@ -584,6 +640,131 @@
 };
 
 /**
+ * struct nand_sdr_timings - SDR NAND chip timings
+ *
+ * This struct defines the timing requirements of a SDR NAND chip.
+ * These information can be found in every NAND datasheets and the timings
+ * meaning are described in the ONFI specifications:
+ * www.onfi.org/~/media/ONFI/specs/onfi_3_1_spec.pdf (chapter 4.15 Timing
+ * Parameters)
+ *
+ * All these timings are expressed in picoseconds.
+ *
+ * @tBERS_max: Block erase time
+ * @tCCS_min: Change column setup time
+ * @tPROG_max: Page program time
+ * @tR_max: Page read time
+ * @tALH_min: ALE hold time
+ * @tADL_min: ALE to data loading time
+ * @tALS_min: ALE setup time
+ * @tAR_min: ALE to RE# delay
+ * @tCEA_max: CE# access time
+ * @tCEH_min: CE# high hold time
+ * @tCH_min:  CE# hold time
+ * @tCHZ_max: CE# high to output hi-Z
+ * @tCLH_min: CLE hold time
+ * @tCLR_min: CLE to RE# delay
+ * @tCLS_min: CLE setup time
+ * @tCOH_min: CE# high to output hold
+ * @tCS_min: CE# setup time
+ * @tDH_min: Data hold time
+ * @tDS_min: Data setup time
+ * @tFEAT_max: Busy time for Set Features and Get Features
+ * @tIR_min: Output hi-Z to RE# low
+ * @tITC_max: Interface and Timing Mode Change time
+ * @tRC_min: RE# cycle time
+ * @tREA_max: RE# access time
+ * @tREH_min: RE# high hold time
+ * @tRHOH_min: RE# high to output hold
+ * @tRHW_min: RE# high to WE# low
+ * @tRHZ_max: RE# high to output hi-Z
+ * @tRLOH_min: RE# low to output hold
+ * @tRP_min: RE# pulse width
+ * @tRR_min: Ready to RE# low (data only)
+ * @tRST_max: Device reset time, measured from the falling edge of R/B# to the
+ *	      rising edge of R/B#.
+ * @tWB_max: WE# high to SR[6] low
+ * @tWC_min: WE# cycle time
+ * @tWH_min: WE# high hold time
+ * @tWHR_min: WE# high to RE# low
+ * @tWP_min: WE# pulse width
+ * @tWW_min: WP# transition to WE# low
+ */
+struct nand_sdr_timings {
+	u64 tBERS_max;
+	u32 tCCS_min;
+	u64 tPROG_max;
+	u64 tR_max;
+	u32 tALH_min;
+	u32 tADL_min;
+	u32 tALS_min;
+	u32 tAR_min;
+	u32 tCEA_max;
+	u32 tCEH_min;
+	u32 tCH_min;
+	u32 tCHZ_max;
+	u32 tCLH_min;
+	u32 tCLR_min;
+	u32 tCLS_min;
+	u32 tCOH_min;
+	u32 tCS_min;
+	u32 tDH_min;
+	u32 tDS_min;
+	u32 tFEAT_max;
+	u32 tIR_min;
+	u32 tITC_max;
+	u32 tRC_min;
+	u32 tREA_max;
+	u32 tREH_min;
+	u32 tRHOH_min;
+	u32 tRHW_min;
+	u32 tRHZ_max;
+	u32 tRLOH_min;
+	u32 tRP_min;
+	u32 tRR_min;
+	u64 tRST_max;
+	u32 tWB_max;
+	u32 tWC_min;
+	u32 tWH_min;
+	u32 tWHR_min;
+	u32 tWP_min;
+	u32 tWW_min;
+};
+
+/**
+ * enum nand_data_interface_type - NAND interface timing type
+ * @NAND_SDR_IFACE:	Single Data Rate interface
+ */
+enum nand_data_interface_type {
+	NAND_SDR_IFACE,
+};
+
+/**
+ * struct nand_data_interface - NAND interface timing
+ * @type:	type of the timing
+ * @timings:	The timing, type according to @type
+ */
+struct nand_data_interface {
+	enum nand_data_interface_type type;
+	union {
+		struct nand_sdr_timings sdr;
+	} timings;
+};
+
+/**
+ * nand_get_sdr_timings - get SDR timing from data interface
+ * @conf:	The data interface
+ */
+static inline const struct nand_sdr_timings *
+nand_get_sdr_timings(const struct nand_data_interface *conf)
+{
+	if (conf->type != NAND_SDR_IFACE)
+		return ERR_PTR(-EINVAL);
+
+	return &conf->timings.sdr;
+}
+
+/**
  * struct nand_chip - NAND Private Flash Chip Data
  * @mtd:		MTD device registered to the MTD framework
  * @IO_ADDR_R:		[BOARDSPECIFIC] address to read the 8 I/O lines of the
@@ -614,6 +795,7 @@
  *			setting the read-retry mode. Mostly needed for MLC NAND.
  * @ecc:		[BOARDSPECIFIC] ECC control structure
  * @buffers:		buffer structure for read/write
+ * @buf_align:		minimum buffer alignment required by a platform
  * @hwcontrol:		platform-specific hardware control structure
  * @erase:		[REPLACEABLE] erase function
  * @scan_bbt:		[REPLACEABLE] function to scan bad block table
@@ -646,10 +828,9 @@
  *                      also from the datasheet. It is the recommended ECC step
  *			size, if known; if unknown, set to zero.
  * @onfi_timing_mode_default: [INTERN] default ONFI timing mode. This field is
- *			      either deduced from the datasheet if the NAND
- *			      chip is not ONFI compliant or set to 0 if it is
- *			      (an ONFI chip is always configured in mode 0
- *			      after a NAND reset)
+ *			      set to the actually used ONFI mode if the chip is
+ *			      ONFI compliant or deduced from the datasheet if
+ *			      the NAND chip is not ONFI compliant.
  * @numchips:		[INTERN] number of physical chips
  * @chipsize:		[INTERN] the size of one chip for multichip arrays
  * @pagemask:		[INTERN] page number mask = number of (pages / chip) - 1
@@ -669,6 +850,10 @@
  * @read_retries:	[INTERN] the number of read retry modes supported
  * @onfi_set_features:	[REPLACEABLE] set the features for ONFI nand
  * @onfi_get_features:	[REPLACEABLE] get the features for ONFI nand
+ * @setup_data_interface: [OPTIONAL] setup the data interface and timing. If
+ *			  chipnr is set to %NAND_DATA_IFACE_CHECK_ONLY this
+ *			  means the configuration should not be applied but
+ *			  only checked.
  * @bbt:		[INTERN] bad block table pointer
  * @bbt_td:		[REPLACEABLE] bad block table descriptor for flash
  *			lookup.
@@ -679,9 +864,6 @@
  *			structure which is shared among multiple independent
  *			devices.
  * @priv:		[OPTIONAL] pointer to private chip data
- * @errstat:		[OPTIONAL] hardware specific function to perform
- *			additional error status checks (determine if errors are
- *			correctable).
  * @write_page:		[REPLACEABLE] High-level page write function
  */
 
@@ -707,16 +889,17 @@
 	int(*waitfunc)(struct mtd_info *mtd, struct nand_chip *this);
 	int (*erase)(struct mtd_info *mtd, int page);
 	int (*scan_bbt)(struct mtd_info *mtd);
-	int (*errstat)(struct mtd_info *mtd, struct nand_chip *this, int state,
-			int status, int page);
 	int (*write_page)(struct mtd_info *mtd, struct nand_chip *chip,
 			uint32_t offset, int data_len, const uint8_t *buf,
-			int oob_required, int page, int cached, int raw);
+			int oob_required, int page, int raw);
 	int (*onfi_set_features)(struct mtd_info *mtd, struct nand_chip *chip,
 			int feature_addr, uint8_t *subfeature_para);
 	int (*onfi_get_features)(struct mtd_info *mtd, struct nand_chip *chip,
 			int feature_addr, uint8_t *subfeature_para);
 	int (*setup_read_retry)(struct mtd_info *mtd, int retry_mode);
+	int (*setup_data_interface)(struct mtd_info *mtd, int chipnr,
+				    const struct nand_data_interface *conf);
+
 
 	int chip_delay;
 	unsigned int options;
@@ -741,11 +924,11 @@
 
 	int onfi_version;
 	int jedec_version;
-#ifdef CONFIG_SYS_NAND_ONFI_DETECTION
 	struct nand_onfi_params	onfi_params;
-#endif
 	struct nand_jedec_params jedec_params;
  
+	struct nand_data_interface *data_interface;
+
 	int read_retries;
 
 	flstate_t state;
@@ -756,6 +939,7 @@
 
 	struct nand_ecc_ctrl ecc;
 	struct nand_buffers *buffers;
+	unsigned long buf_align;
 	struct nand_hw_control hwcontrol;
 
 	uint8_t *bbt;
@@ -900,13 +1084,13 @@
 extern struct nand_flash_dev nand_flash_ids[];
 extern struct nand_manufacturers nand_manuf_ids[];
 
-extern int nand_default_bbt(struct mtd_info *mtd);
-extern int nand_markbad_bbt(struct mtd_info *mtd, loff_t offs);
-extern int nand_isreserved_bbt(struct mtd_info *mtd, loff_t offs);
-extern int nand_isbad_bbt(struct mtd_info *mtd, loff_t offs, int allowbbt);
-extern int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
+int nand_default_bbt(struct mtd_info *mtd);
+int nand_markbad_bbt(struct mtd_info *mtd, loff_t offs);
+int nand_isreserved_bbt(struct mtd_info *mtd, loff_t offs);
+int nand_isbad_bbt(struct mtd_info *mtd, loff_t offs, int allowbbt);
+int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
 			   int allowbbt);
-extern int nand_do_read(struct mtd_info *mtd, loff_t from, size_t len,
+int nand_do_read(struct mtd_info *mtd, loff_t from, size_t len,
 			size_t *retlen, uint8_t *buf);
 
 /*
@@ -1001,8 +1185,28 @@
 		return ONFI_TIMING_MODE_UNKNOWN;
 	return le16_to_cpu(chip->onfi_params.src_sync_timing_mode);
 }
+#else
+static inline int onfi_feature(struct nand_chip *chip)
+{
+	return 0;
+}
+
+static inline int onfi_get_async_timing_mode(struct nand_chip *chip)
+{
+	return ONFI_TIMING_MODE_UNKNOWN;
+}
+
+static inline int onfi_get_sync_timing_mode(struct nand_chip *chip)
+{
+	return ONFI_TIMING_MODE_UNKNOWN;
+}
 #endif
 
+int onfi_init_data_interface(struct nand_chip *chip,
+			     struct nand_data_interface *iface,
+			     enum nand_data_interface_type type,
+			     int timing_mode);
+
 /*
  * Check if it is a SLC nand.
  * The !nand_is_slc() can be used to check the MLC/TLC nand chips.
@@ -1045,60 +1249,26 @@
 void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len);
 uint8_t nand_read_byte(struct mtd_info *mtd);
 
-/*
- * struct nand_sdr_timings - SDR NAND chip timings
- *
- * This struct defines the timing requirements of a SDR NAND chip.
- * These informations can be found in every NAND datasheets and the timings
- * meaning are described in the ONFI specifications:
- * www.onfi.org/~/media/ONFI/specs/onfi_3_1_spec.pdf (chapter 4.15 Timing
- * Parameters)
- *
- * All these timings are expressed in picoseconds.
- */
-
-struct nand_sdr_timings {
-	u32 tALH_min;
-	u32 tADL_min;
-	u32 tALS_min;
-	u32 tAR_min;
-	u32 tCEA_max;
-	u32 tCEH_min;
-	u32 tCH_min;
-	u32 tCHZ_max;
-	u32 tCLH_min;
-	u32 tCLR_min;
-	u32 tCLS_min;
-	u32 tCOH_min;
-	u32 tCS_min;
-	u32 tDH_min;
-	u32 tDS_min;
-	u32 tFEAT_max;
-	u32 tIR_min;
-	u32 tITC_max;
-	u32 tRC_min;
-	u32 tREA_max;
-	u32 tREH_min;
-	u32 tRHOH_min;
-	u32 tRHW_min;
-	u32 tRHZ_max;
-	u32 tRLOH_min;
-	u32 tRP_min;
-	u32 tRR_min;
-	u64 tRST_max;
-	u32 tWB_max;
-	u32 tWC_min;
-	u32 tWH_min;
-	u32 tWHR_min;
-	u32 tWP_min;
-	u32 tWW_min;
-};
-
 /* get timing characteristics from ONFI timing mode. */
 const struct nand_sdr_timings *onfi_async_timing_mode_to_sdr_timings(int mode);
+/* get data interface from ONFI timing mode 0, used after reset. */
+const struct nand_data_interface *nand_get_default_data_interface(void);
 
 int nand_check_erased_ecc_chunk(void *data, int datalen,
 				void *ecc, int ecclen,
 				void *extraoob, int extraooblen,
 				int threshold);
+
+int nand_check_ecc_caps(struct nand_chip *chip,
+			const struct nand_ecc_caps *caps, int oobavail);
+
+int nand_match_ecc_req(struct nand_chip *chip,
+		       const struct nand_ecc_caps *caps,  int oobavail);
+
+int nand_maximize_ecc(struct nand_chip *chip,
+		      const struct nand_ecc_caps *caps, int oobavail);
+
+/* Reset and initialize a NAND device */
+int nand_reset(struct nand_chip *chip, int chipnr);
+
 #endif /* __LINUX_MTD_NAND_H */
diff --git a/include/usb/lin_gadget_compat.h b/include/usb/lin_gadget_compat.h
index 4a01585..d0d71f7 100644
--- a/include/usb/lin_gadget_compat.h
+++ b/include/usb/lin_gadget_compat.h
@@ -10,12 +10,10 @@
 #ifndef __LIN_COMPAT_H__
 #define __LIN_COMPAT_H__
 
+#include <linux/bitops.h>
 #include <linux/compat.h>
 
 /* common */
-#define BITS_PER_BYTE				8
-#define BITS_TO_LONGS(nr) \
-	DIV_ROUND_UP(nr, BITS_PER_BYTE * sizeof(long))
 #define DECLARE_BITMAP(name, bits) \
 	unsigned long name[BITS_TO_LONGS(bits)]