blob: cb31d5b858cef819d92e09b5c49ac0964411bbcb [file] [log] [blame]
/*
* Boot a Marvell SoC, with Xmodem over UART0.
* supports Kirkwood, Dove, Avanta, Armada 370, Armada XP, Armada 375,
* Armada 38x and Armada 39x.
*
* (c) 2012 Daniel Stodden <daniel.stodden@gmail.com>
* (c) 2021 Pali Rohár <pali@kernel.org>
* (c) 2021 Marek Behún <kabel@kernel.org>
*
* References:
* - "88F6180, 88F6190, 88F6192, and 88F6281: Integrated Controller: Functional
* Specifications" December 2, 2008. Chapter 24.2 "BootROM Firmware".
* https://web.archive.org/web/20130730091033/https://www.marvell.com/embedded-processors/kirkwood/assets/FS_88F6180_9x_6281_OpenSource.pdf
* - "88AP510: High-Performance SoC with Integrated CPU, 2D/3D Graphics
* Processor, and High-Definition Video Decoder: Functional Specifications"
* August 3, 2011. Chapter 5 "BootROM Firmware"
* https://web.archive.org/web/20120130172443/https://www.marvell.com/application-processors/armada-500/assets/Armada-510-Functional-Spec.pdf
* - "88F6665, 88F6660, 88F6658, 88F6655, 88F6655F, 88F6650, 88F6650F, 88F6610,
* and 88F6610F Avanta LP Family Integrated Single/Dual CPU Ecosystem for
* Gateway (GW), Home Gateway Unit (HGU), and Single Family Unit (SFU)
* Functional Specifications" Doc. No. MV-S108952-00, Rev. A. November 7, 2013.
* Chapter 7 "Boot Flow"
* CONFIDENTIAL, no public documentation available
* - "88F6710, 88F6707, and 88F6W11: ARMADA(R) 370 SoC: Functional Specifications"
* May 26, 2014. Chapter 6 "BootROM Firmware".
* https://web.archive.org/web/20140617183701/https://www.marvell.com/embedded-processors/armada-300/assets/ARMADA370-FunctionalSpec-datasheet.pdf
* - "MV78230, MV78260, and MV78460: ARMADA(R) XP Family of Highly Integrated
* Multi-Core ARMv7 Based SoC Processors: Functional Specifications"
* May 29, 2014. Chapter 6 "BootROM Firmware".
* https://web.archive.org/web/20180829171131/https://www.marvell.com/embedded-processors/armada-xp/assets/ARMADA-XP-Functional-SpecDatasheet.pdf
* - "BobCat2 Control and Management Subsystem Functional Specifications"
* Doc. No. MV-S109400-00, Rev. A. December 4, 2014.
* Chapter 1.6 BootROM Firmware
* CONFIDENTIAL, no public documentation available
* - "AlleyCat3 and PONCat3 Highly Integrated 1/10 Gigabit Ethernet Switch
* Control and Management Subsystem: Functional Specifications"
* Doc. No. MV-S109693-00, Rev. A. May 20, 2014.
* Chapter 1.6 BootROM Firmware
* CONFIDENTIAL, no public documentation available
* - "ARMADA(R) 375 Value-Performance Dual Core CPU System on Chip: Functional
* Specifications" Doc. No. MV-S109377-00, Rev. A. September 18, 2013.
* Chapter 7 "Boot Sequence"
* CONFIDENTIAL, no public documentation available
* - "88F6810, 88F6811, 88F6821, 88F6W21, 88F6820, and 88F6828: ARMADA(R) 38x
* Family High-Performance Single/Dual CPU System on Chip: Functional
* Specifications" Doc. No. MV-S109094-00, Rev. C. August 2, 2015.
* Chapter 7 "Boot Flow"
* CONFIDENTIAL, no public documentation available
* - "88F6920, 88F6925 and 88F6928: ARMADA(R) 39x High-Performance Dual Core CPU
* System on Chip Functional Specifications" Doc. No. MV-S109896-00, Rev. B.
* December 22, 2015. Chapter 7 "Boot Flow"
* CONFIDENTIAL, no public documentation available
* - "Marvell boot image parser", Marvell U-Boot 2013.01, version 18.06. September 17, 2015.
* https://github.com/MarvellEmbeddedProcessors/u-boot-marvell/blob/u-boot-2013.01-armada-18.06/tools/marvell/doimage_mv/hdrparser.c
* - "Marvell doimage Tool", Marvell U-Boot 2013.01, version 18.06. August 30, 2015.
* https://github.com/MarvellEmbeddedProcessors/u-boot-marvell/blob/u-boot-2013.01-armada-18.06/tools/marvell/doimage_mv/doimage.c
*
* Storage location / offset of different image types:
* - IBR_HDR_SPI_ID (0x5A):
* SPI image can be stored at any 2 MB aligned offset in the first 16 MB of
* SPI-NOR or parallel-NOR. Despite the type name it really can be stored on
* parallel-NOR and cannot be stored on other SPI devices, like SPI-NAND.
* So it should have been named NOR image, not SPI image. This image type
* supports XIP - Execute In Place directly from NOR memory.
*
* - IBR_HDR_NAND_ID (0x8B):
* NAND image can be stored either at any 2 MB aligned offset in the first
* 16 MB of SPI-NAND or at any blocksize aligned offset in the first 64 MB
* of parallel-NAND.
*
* - IBR_HDR_PEX_ID (0x9C):
* PEX image is used for booting from PCI Express device. Source address
* stored in image is ignored by BootROM. It is not the BootROM who parses
* or loads data part of the PEX image. BootROM just configures SoC to the
* PCIe endpoint mode and let the PCIe device on the other end of the PCIe
* link (which must be in Root Complex mode) to load kwbimage into SoC's
* memory and tell BootROM physical address.
*
* - IBR_HDR_UART_ID (0x69):
* UART image can be transfered via xmodem protocol over first UART.
*
* - IBR_HDR_I2C_ID (0x4D):
* It is unknown for what kind of storage is used this image. It is not
* specified in any document from References section.
*
* - IBR_HDR_SATA_ID (0x78):
* SATA image can be stored at sector 1 (after the MBR table), sector 34
* (after the GPT table) or at any next sector which is aligned to 2 MB and
* is in the first 16 MB of SATA disk. Note that source address in SATA image
* is stored in sector unit and not in bytes like for any other images.
* Unfortunately sector size is disk specific, in most cases it is 512 bytes
* but there are also Native 4K SATA disks which have 4096 bytes long sectors.
*
* - IBR_HDR_SDIO_ID (0xAE):
* SDIO image can be stored on different medias:
* - SD(SC) card
* - SDHC/SDXC card
* - eMMC HW boot partition
* - eMMC user data partition / MMC card
* It cannot be stored on SDIO card despite the image name.
*
* For SD(SC)/SDHC/SDXC cards, image can be stored at the same locations as
* the SATA image (sector 1, sector 34 or any 2 MB aligned sector) but within
* the first 64 MB. SDHC and SDXC cards have fixed 512 bytes long sector size.
* Old SD(SC) cards unfortunately can have also different sector sizes, mostly
* 1024 bytes long sector sizes and also can be changed at runtime.
*
* For MMC-compatible devices, image can be stored at offset 0 or at offset
* 2 MB. If MMC device supports HW boot partitions then image must be stored
* on the HW partition as is configured in the EXT_CSC register (it can be
* either boot or user data).
*
* Note that source address for SDIO image is stored in byte unit, like for
* any other images (except SATA). Marvell Functional Specifications for
* A38x and A39x SoCs say that source address is in sector units, but this
* is purely incorrect information. A385 BootROM really expects source address
* for SDIO images in bytes and also Marvell tools generate SDIO image with
* source address in byte units.
*/
#include "kwbimage.h"
#include "mkimage.h"
#include "version.h"
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <stdarg.h>
#include <image.h>
#include <libgen.h>
#include <fcntl.h>
#include <errno.h>
#include <unistd.h>
#include <stdint.h>
#include <time.h>
#include <sys/stat.h>
#include <pthread.h>
#ifdef __linux__
#include "termios_linux.h"
#else
#include <termios.h>
#endif
/*
* These functions are in <term.h> header file, but this header file conflicts
* with "termios_linux.h" header file. So declare these functions manually.
*/
extern int setupterm(const char *, int, int *);
extern char *tigetstr(const char *);
/*
* Marvell BootROM UART Sensing
*/
static unsigned char kwboot_msg_boot[] = {
0xBB, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77
};
static unsigned char kwboot_msg_debug[] = {
0xDD, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77
};
/* Defines known to work on Kirkwood */
#define KWBOOT_MSG_RSP_TIMEO 50 /* ms */
/* Defines known to work on Armada XP */
#define KWBOOT_MSG_RSP_TIMEO_AXP 10 /* ms */
/*
* Xmodem Transfers
*/
#define SOH 1 /* sender start of block header */
#define EOT 4 /* sender end of block transfer */
#define ACK 6 /* target block ack */
#define NAK 21 /* target block negative ack */
#define KWBOOT_XM_BLKSZ 128 /* xmodem block size */
struct kwboot_block {
uint8_t soh;
uint8_t pnum;
uint8_t _pnum;
uint8_t data[KWBOOT_XM_BLKSZ];
uint8_t csum;
} __packed;
#define KWBOOT_BLK_RSP_TIMEO 2000 /* ms */
#define KWBOOT_HDR_RSP_TIMEO 10000 /* ms */
/* ARM code to change baudrate */
static unsigned char kwboot_baud_code[] = {
/* ; #define UART_BASE 0xd0012000 */
/* ; #define DLL 0x00 */
/* ; #define DLH 0x04 */
/* ; #define LCR 0x0c */
/* ; #define DLAB 0x80 */
/* ; #define LSR 0x14 */
/* ; #define TEMT 0x40 */
/* ; #define DIV_ROUND(a, b) ((a + b/2) / b) */
/* ; */
/* ; u32 set_baudrate(u32 old_b, u32 new_b) { */
/* ; while */
/* ; (!(readl(UART_BASE + LSR) & TEMT)); */
/* ; u32 lcr = readl(UART_BASE + LCR); */
/* ; writel(UART_BASE + LCR, lcr | DLAB); */
/* ; u8 old_dll = readl(UART_BASE + DLL); */
/* ; u8 old_dlh = readl(UART_BASE + DLH); */
/* ; u16 old_dl = old_dll | (old_dlh << 8); */
/* ; u32 clk = old_b * old_dl; */
/* ; u16 new_dl = DIV_ROUND(clk, new_b); */
/* ; u8 new_dll = new_dl & 0xff; */
/* ; u8 new_dlh = (new_dl >> 8) & 0xff; */
/* ; writel(UART_BASE + DLL, new_dll); */
/* ; writel(UART_BASE + DLH, new_dlh); */
/* ; writel(UART_BASE + LCR, lcr & ~DLAB); */
/* ; msleep(5); */
/* ; return 0; */
/* ; } */
/* ; r0 = UART_BASE */
0x0d, 0x02, 0xa0, 0xe3, /* mov r0, #0xd0000000 */
0x12, 0x0a, 0x80, 0xe3, /* orr r0, r0, #0x12000 */
/* ; Wait until Transmitter FIFO is Empty */
/* .Lloop_txempty: */
/* ; r1 = UART_BASE[LSR] & TEMT */
0x14, 0x10, 0x90, 0xe5, /* ldr r1, [r0, #0x14] */
0x40, 0x00, 0x11, 0xe3, /* tst r1, #0x40 */
0xfc, 0xff, 0xff, 0x0a, /* beq .Lloop_txempty */
/* ; Set Divisor Latch Access Bit */
/* ; UART_BASE[LCR] |= DLAB */
0x0c, 0x10, 0x90, 0xe5, /* ldr r1, [r0, #0x0c] */
0x80, 0x10, 0x81, 0xe3, /* orr r1, r1, #0x80 */
0x0c, 0x10, 0x80, 0xe5, /* str r1, [r0, #0x0c] */
/* ; Read current Divisor Latch */
/* ; r1 = UART_BASE[DLH]<<8 | UART_BASE[DLL] */
0x00, 0x10, 0x90, 0xe5, /* ldr r1, [r0, #0x00] */
0xff, 0x10, 0x01, 0xe2, /* and r1, r1, #0xff */
0x01, 0x20, 0xa0, 0xe1, /* mov r2, r1 */
0x04, 0x10, 0x90, 0xe5, /* ldr r1, [r0, #0x04] */
0xff, 0x10, 0x01, 0xe2, /* and r1, r1, #0xff */
0x41, 0x14, 0xa0, 0xe1, /* asr r1, r1, #8 */
0x02, 0x10, 0x81, 0xe1, /* orr r1, r1, r2 */
/* ; Read old baudrate value */
/* ; r2 = old_baudrate */
0x74, 0x20, 0x9f, 0xe5, /* ldr r2, old_baudrate */
/* ; Calculate base clock */
/* ; r1 = r2 * r1 */
0x92, 0x01, 0x01, 0xe0, /* mul r1, r2, r1 */
/* ; Read new baudrate value */
/* ; r2 = new_baudrate */
0x70, 0x20, 0x9f, 0xe5, /* ldr r2, new_baudrate */
/* ; Calculate new Divisor Latch */
/* ; r1 = DIV_ROUND(r1, r2) = */
/* ; = (r1 + r2/2) / r2 */
0xa2, 0x10, 0x81, 0xe0, /* add r1, r1, r2, lsr #1 */
0x02, 0x40, 0xa0, 0xe1, /* mov r4, r2 */
0xa1, 0x00, 0x54, 0xe1, /* cmp r4, r1, lsr #1 */
/* .Lloop_div1: */
0x84, 0x40, 0xa0, 0x91, /* movls r4, r4, lsl #1 */
0xa1, 0x00, 0x54, 0xe1, /* cmp r4, r1, lsr #1 */
0xfc, 0xff, 0xff, 0x9a, /* bls .Lloop_div1 */
0x00, 0x30, 0xa0, 0xe3, /* mov r3, #0 */
/* .Lloop_div2: */
0x04, 0x00, 0x51, 0xe1, /* cmp r1, r4 */
0x04, 0x10, 0x41, 0x20, /* subhs r1, r1, r4 */
0x03, 0x30, 0xa3, 0xe0, /* adc r3, r3, r3 */
0xa4, 0x40, 0xa0, 0xe1, /* mov r4, r4, lsr #1 */
0x02, 0x00, 0x54, 0xe1, /* cmp r4, r2 */
0xf9, 0xff, 0xff, 0x2a, /* bhs .Lloop_div2 */
0x03, 0x10, 0xa0, 0xe1, /* mov r1, r3 */
/* ; Set new Divisor Latch Low */
/* ; UART_BASE[DLL] = r1 & 0xff */
0x01, 0x20, 0xa0, 0xe1, /* mov r2, r1 */
0xff, 0x20, 0x02, 0xe2, /* and r2, r2, #0xff */
0x00, 0x20, 0x80, 0xe5, /* str r2, [r0, #0x00] */
/* ; Set new Divisor Latch High */
/* ; UART_BASE[DLH] = r1>>8 & 0xff */
0x41, 0x24, 0xa0, 0xe1, /* asr r2, r1, #8 */
0xff, 0x20, 0x02, 0xe2, /* and r2, r2, #0xff */
0x04, 0x20, 0x80, 0xe5, /* str r2, [r0, #0x04] */
/* ; Clear Divisor Latch Access Bit */
/* ; UART_BASE[LCR] &= ~DLAB */
0x0c, 0x10, 0x90, 0xe5, /* ldr r1, [r0, #0x0c] */
0x80, 0x10, 0xc1, 0xe3, /* bic r1, r1, #0x80 */
0x0c, 0x10, 0x80, 0xe5, /* str r1, [r0, #0x0c] */
/* ; Loop 0x2dc000 (2998272) cycles */
/* ; which is about 5ms on 1200 MHz CPU */
/* ; r1 = 0x2dc000 */
0xb7, 0x19, 0xa0, 0xe3, /* mov r1, #0x2dc000 */
/* .Lloop_sleep: */
0x01, 0x10, 0x41, 0xe2, /* sub r1, r1, #1 */
0x00, 0x00, 0x51, 0xe3, /* cmp r1, #0 */
0xfc, 0xff, 0xff, 0x1a, /* bne .Lloop_sleep */
/* ; Jump to the end of execution */
0x01, 0x00, 0x00, 0xea, /* b end */
/* ; Placeholder for old baudrate value */
/* old_baudrate: */
0x00, 0x00, 0x00, 0x00, /* .word 0 */
/* ; Placeholder for new baudrate value */
/* new_baudrate: */
0x00, 0x00, 0x00, 0x00, /* .word 0 */
/* end: */
};
/* ARM code from binary header executed by BootROM before changing baudrate */
static unsigned char kwboot_baud_code_binhdr_pre[] = {
/* ; #define UART_BASE 0xd0012000 */
/* ; #define THR 0x00 */
/* ; #define LSR 0x14 */
/* ; #define THRE 0x20 */
/* ; */
/* ; void send_preamble(void) { */
/* ; const u8 *str = "$baudratechange"; */
/* ; u8 c; */
/* ; do { */
/* ; while */
/* ; ((readl(UART_BASE + LSR) & THRE)); */
/* ; c = *str++; */
/* ; writel(UART_BASE + THR, c); */
/* ; } while (c); */
/* ; } */
/* ; Preserve registers for BootROM */
0xfe, 0x5f, 0x2d, 0xe9, /* push { r1 - r12, lr } */
/* ; r0 = UART_BASE */
0x0d, 0x02, 0xa0, 0xe3, /* mov r0, #0xd0000000 */
0x12, 0x0a, 0x80, 0xe3, /* orr r0, r0, #0x12000 */
/* ; r2 = address of preamble string */
0x00, 0x20, 0x8f, 0xe2, /* adr r2, .Lstr_preamble */
/* ; Skip preamble data section */
0x03, 0x00, 0x00, 0xea, /* b .Lloop_preamble */
/* ; Preamble string */
/* .Lstr_preamble: */
0x24, 0x62, 0x61, 0x75, /* .asciz "$baudratechange" */
0x64, 0x72, 0x61, 0x74,
0x65, 0x63, 0x68, 0x61,
0x6e, 0x67, 0x65, 0x00,
/* ; Send preamble string over UART */
/* .Lloop_preamble: */
/* */
/* ; Wait until Transmitter Holding is Empty */
/* .Lloop_thre: */
/* ; r1 = UART_BASE[LSR] & THRE */
0x14, 0x10, 0x90, 0xe5, /* ldr r1, [r0, #0x14] */
0x20, 0x00, 0x11, 0xe3, /* tst r1, #0x20 */
0xfc, 0xff, 0xff, 0x0a, /* beq .Lloop_thre */
/* ; Put character into Transmitter FIFO */
/* ; r1 = *r2++ */
0x01, 0x10, 0xd2, 0xe4, /* ldrb r1, [r2], #1 */
/* ; UART_BASE[THR] = r1 */
0x00, 0x10, 0x80, 0xe5, /* str r1, [r0, #0x0] */
/* ; Loop until end of preamble string */
0x00, 0x00, 0x51, 0xe3, /* cmp r1, #0 */
0xf8, 0xff, 0xff, 0x1a, /* bne .Lloop_preamble */
};
/* ARM code for returning from binary header back to BootROM */
static unsigned char kwboot_baud_code_binhdr_post[] = {
/* ; Return 0 - no error */
0x00, 0x00, 0xa0, 0xe3, /* mov r0, #0 */
0xfe, 0x9f, 0xbd, 0xe8, /* pop { r1 - r12, pc } */
};
/* ARM code for jumping to the original image exec_addr */
static unsigned char kwboot_baud_code_data_jump[] = {
0x04, 0xf0, 0x1f, 0xe5, /* ldr pc, exec_addr */
/* ; Placeholder for exec_addr */
/* exec_addr: */
0x00, 0x00, 0x00, 0x00, /* .word 0 */
};
static const char kwb_baud_magic[16] = "$baudratechange";
static int kwboot_verbose;
static int msg_rsp_timeo = KWBOOT_MSG_RSP_TIMEO;
static int blk_rsp_timeo = KWBOOT_BLK_RSP_TIMEO;
static ssize_t
kwboot_write(int fd, const char *buf, size_t len)
{
ssize_t tot = 0;
while (tot < len) {
ssize_t wr = write(fd, buf + tot, len - tot);
if (wr < 0 && errno == EINTR)
continue;
else if (wr < 0)
return wr;
tot += wr;
}
return tot;
}
static void
kwboot_printv(const char *fmt, ...)
{
va_list ap;
if (kwboot_verbose) {
va_start(ap, fmt);
vprintf(fmt, ap);
va_end(ap);
fflush(stdout);
}
}
static void
__spinner(void)
{
const char seq[] = { '-', '\\', '|', '/' };
const int div = 8;
static int state, bs;
if (state % div == 0) {
fputc(bs, stdout);
fputc(seq[state / div % sizeof(seq)], stdout);
fflush(stdout);
}
bs = '\b';
state++;
}
static void
kwboot_spinner(void)
{
if (kwboot_verbose)
__spinner();
}
static void
__progress(int pct, char c)
{
const int width = 70;
static const char *nl = "";
static int pos;
if (pos % width == 0)
printf("%s%3d %% [", nl, pct);
fputc(c, stdout);
nl = "]\n";
pos = (pos + 1) % width;
if (pct == 100) {
while (pos && pos++ < width)
fputc(' ', stdout);
fputs(nl, stdout);
nl = "";
pos = 0;
}
fflush(stdout);
}
static void
kwboot_progress(int _pct, char c)
{
static int pct;
if (_pct != -1)
pct = _pct;
if (kwboot_verbose)
__progress(pct, c);
if (pct == 100)
pct = 0;
}
static int
kwboot_tty_recv(int fd, void *buf, size_t len, int timeo)
{
int rc, nfds;
fd_set rfds;
struct timeval tv;
ssize_t n;
rc = -1;
FD_ZERO(&rfds);
FD_SET(fd, &rfds);
tv.tv_sec = 0;
tv.tv_usec = timeo * 1000;
if (tv.tv_usec > 1000000) {
tv.tv_sec += tv.tv_usec / 1000000;
tv.tv_usec %= 1000000;
}
do {
nfds = select(fd + 1, &rfds, NULL, NULL, &tv);
if (nfds < 0 && errno == EINTR)
continue;
else if (nfds < 0)
goto out;
else if (!nfds) {
errno = ETIMEDOUT;
goto out;
}
n = read(fd, buf, len);
if (n < 0 && errno == EINTR)
continue;
else if (n <= 0)
goto out;
buf = (char *)buf + n;
len -= n;
} while (len > 0);
rc = 0;
out:
return rc;
}
static int
kwboot_tty_send(int fd, const void *buf, size_t len, int nodrain)
{
if (!buf)
return 0;
if (kwboot_write(fd, buf, len) < 0)
return -1;
if (nodrain)
return 0;
return tcdrain(fd);
}
static int
kwboot_tty_send_char(int fd, unsigned char c)
{
return kwboot_tty_send(fd, &c, 1, 0);
}
static speed_t
kwboot_tty_baudrate_to_speed(int baudrate)
{
switch (baudrate) {
#ifdef B4000000
case 4000000:
return B4000000;
#endif
#ifdef B3500000
case 3500000:
return B3500000;
#endif
#ifdef B3000000
case 3000000:
return B3000000;
#endif
#ifdef B2500000
case 2500000:
return B2500000;
#endif
#ifdef B2000000
case 2000000:
return B2000000;
#endif
#ifdef B1500000
case 1500000:
return B1500000;
#endif
#ifdef B1152000
case 1152000:
return B1152000;
#endif
#ifdef B1000000
case 1000000:
return B1000000;
#endif
#ifdef B921600
case 921600:
return B921600;
#endif
#ifdef B614400
case 614400:
return B614400;
#endif
#ifdef B576000
case 576000:
return B576000;
#endif
#ifdef B500000
case 500000:
return B500000;
#endif
#ifdef B460800
case 460800:
return B460800;
#endif
#ifdef B307200
case 307200:
return B307200;
#endif
#ifdef B230400
case 230400:
return B230400;
#endif
#ifdef B153600
case 153600:
return B153600;
#endif
#ifdef B115200
case 115200:
return B115200;
#endif
#ifdef B76800
case 76800:
return B76800;
#endif
#ifdef B57600
case 57600:
return B57600;
#endif
#ifdef B38400
case 38400:
return B38400;
#endif
#ifdef B19200
case 19200:
return B19200;
#endif
#ifdef B9600
case 9600:
return B9600;
#endif
#ifdef B4800
case 4800:
return B4800;
#endif
#ifdef B2400
case 2400:
return B2400;
#endif
#ifdef B1800
case 1800:
return B1800;
#endif
#ifdef B1200
case 1200:
return B1200;
#endif
#ifdef B600
case 600:
return B600;
#endif
#ifdef B300
case 300:
return B300;
#endif
#ifdef B200
case 200:
return B200;
#endif
#ifdef B150
case 150:
return B150;
#endif
#ifdef B134
case 134:
return B134;
#endif
#ifdef B110
case 110:
return B110;
#endif
#ifdef B75
case 75:
return B75;
#endif
#ifdef B50
case 50:
return B50;
#endif
default:
#ifdef BOTHER
return BOTHER;
#else
return B0;
#endif
}
}
static int
_is_within_tolerance(int value, int reference, int tolerance)
{
return 100 * value >= reference * (100 - tolerance) &&
100 * value <= reference * (100 + tolerance);
}
static int
kwboot_tty_change_baudrate(int fd, int baudrate)
{
struct termios tio;
speed_t speed;
int rc;
rc = tcgetattr(fd, &tio);
if (rc)
return rc;
speed = kwboot_tty_baudrate_to_speed(baudrate);
if (speed == B0) {
errno = EINVAL;
return -1;
}
#ifdef BOTHER
if (speed == BOTHER)
tio.c_ospeed = tio.c_ispeed = baudrate;
#endif
rc = cfsetospeed(&tio, speed);
if (rc)
return rc;
rc = cfsetispeed(&tio, speed);
if (rc)
return rc;
rc = tcsetattr(fd, TCSANOW, &tio);
if (rc)
return rc;
rc = tcgetattr(fd, &tio);
if (rc)
return rc;
if (cfgetospeed(&tio) != speed || cfgetispeed(&tio) != speed)
goto baud_fail;
#ifdef BOTHER
/*
* Check whether set baudrate is within 3% tolerance.
* If BOTHER is defined, Linux always fills out c_ospeed / c_ispeed
* with real values.
*/
if (!_is_within_tolerance(tio.c_ospeed, baudrate, 3))
goto baud_fail;
if (!_is_within_tolerance(tio.c_ispeed, baudrate, 3))
goto baud_fail;
#endif
return 0;
baud_fail:
fprintf(stderr, "Could not set baudrate to requested value\n");
errno = EINVAL;
return -1;
}
static int
kwboot_open_tty(const char *path, int baudrate)
{
int rc, fd, flags;
struct termios tio;
rc = -1;
fd = open(path, O_RDWR | O_NOCTTY | O_NDELAY);
if (fd < 0)
goto out;
rc = tcgetattr(fd, &tio);
if (rc)
goto out;
cfmakeraw(&tio);
tio.c_cflag |= CREAD | CLOCAL;
tio.c_cflag &= ~(CSTOPB | HUPCL | CRTSCTS);
tio.c_cc[VMIN] = 1;
tio.c_cc[VTIME] = 0;
rc = tcsetattr(fd, TCSANOW, &tio);
if (rc)
goto out;
flags = fcntl(fd, F_GETFL);
if (flags < 0)
goto out;
rc = fcntl(fd, F_SETFL, flags & ~O_NDELAY);
if (rc)
goto out;
rc = kwboot_tty_change_baudrate(fd, baudrate);
if (rc)
goto out;
rc = fd;
out:
if (rc < 0) {
if (fd >= 0)
close(fd);
}
return rc;
}
static void *
kwboot_msg_write_handler(void *arg)
{
int tty = *(int *)((void **)arg)[0];
const void *msg = ((void **)arg)[1];
int rsp_timeo = msg_rsp_timeo;
int i, dummy_oldtype;
/* allow to cancel this thread at any time */
pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &dummy_oldtype);
while (1) {
/* write 128 samples of message pattern into the output queue without waiting */
for (i = 0; i < 128; i++) {
if (kwboot_tty_send(tty, msg, 8, 1) < 0) {
perror("\nFailed to send message pattern");
exit(1);
}
}
/* wait until output queue is transmitted and then make pause */
if (tcdrain(tty) < 0) {
perror("\nFailed to send message pattern");
exit(1);
}
/* BootROM requires pause on UART after it detects message pattern */
usleep(rsp_timeo * 1000);
}
}
static int
kwboot_msg_start_thread(pthread_t *thread, int *tty, void *msg)
{
void *arg[2];
int rc;
arg[0] = tty;
arg[1] = msg;
rc = pthread_create(thread, NULL, kwboot_msg_write_handler, arg);
if (rc) {
errno = rc;
return -1;
}
return 0;
}
static int
kwboot_msg_stop_thread(pthread_t thread)
{
int rc;
rc = pthread_cancel(thread);
if (rc) {
errno = rc;
return -1;
}
rc = pthread_join(thread, NULL);
if (rc) {
errno = rc;
return -1;
}
return 0;
}
static int
kwboot_bootmsg(int tty)
{
struct kwboot_block block;
pthread_t write_thread;
int rc, err;
char c;
/* flush input and output queue */
tcflush(tty, TCIOFLUSH);
rc = kwboot_msg_start_thread(&write_thread, &tty, kwboot_msg_boot);
if (rc) {
perror("Failed to start write thread");
return rc;
}
kwboot_printv("Sending boot message. Please reboot the target...");
err = 0;
while (1) {
kwboot_spinner();
rc = kwboot_tty_recv(tty, &c, 1, msg_rsp_timeo);
if (rc && errno == ETIMEDOUT) {
continue;
} else if (rc) {
err = errno;
break;
}
if (c == NAK)
break;
}
kwboot_printv("\n");
rc = kwboot_msg_stop_thread(write_thread);
if (rc) {
perror("Failed to stop write thread");
return rc;
}
if (err) {
errno = err;
perror("Failed to read response for boot message pattern");
return -1;
}
/*
* At this stage we have sent more boot message patterns and BootROM
* (at least on Armada XP and 385) started interpreting sent bytes as
* part of xmodem packets. If BootROM is expecting SOH byte as start of
* a xmodem packet and it receives byte 0xff, then it throws it away and
* sends a NAK reply to host. If BootROM does not receive any byte for
* 2s when expecting some continuation of the xmodem packet, it throws
* away the partially received xmodem data and sends NAK reply to host.
*
* Therefore for starting xmodem transfer we have two options: Either
* wait 2s or send 132 0xff bytes (which is the size of xmodem packet)
* to ensure that BootROM throws away any partially received data.
*/
/* flush output queue with remaining boot message patterns */
rc = tcflush(tty, TCOFLUSH);
if (rc) {
perror("Failed to flush output queue");
return rc;
}
/* send one xmodem packet with 0xff bytes to force BootROM to re-sync */
memset(&block, 0xff, sizeof(block));
rc = kwboot_tty_send(tty, &block, sizeof(block), 0);
if (rc) {
perror("Failed to send sync sequence");
return rc;
}
/*
* Sending 132 bytes via 115200B/8-N-1 takes 11.45 ms, reading 132 bytes
* takes 11.45 ms, so waiting for 30 ms should be enough.
*/
usleep(30 * 1000);
/* flush remaining NAK replies from input queue */
rc = tcflush(tty, TCIFLUSH);
if (rc) {
perror("Failed to flush input queue");
return rc;
}
return 0;
}
static int
kwboot_debugmsg(int tty)
{
unsigned char buf[8192];
pthread_t write_thread;
int rc, err, i, pos;
size_t off;
/* flush input and output queue */
tcflush(tty, TCIOFLUSH);
rc = kwboot_msg_start_thread(&write_thread, &tty, kwboot_msg_debug);
if (rc) {
perror("Failed to start write thread");
return rc;
}
kwboot_printv("Sending debug message. Please reboot the target...");
kwboot_spinner();
err = 0;
off = 0;
while (1) {
/* Read immediately all bytes in queue without waiting */
rc = read(tty, buf + off, sizeof(buf) - off);
if ((rc < 0 && errno == EINTR) || rc == 0) {
continue;
} else if (rc < 0) {
err = errno;
break;
}
off += rc - 1;
kwboot_spinner();
/*
* Check if we received at least 4 debug message patterns
* (console echo from BootROM) in cyclic buffer
*/
for (pos = 0; pos < sizeof(kwboot_msg_debug); pos++)
if (buf[off] == kwboot_msg_debug[(pos + off) % sizeof(kwboot_msg_debug)])
break;
for (i = off; i >= 0; i--)
if (buf[i] != kwboot_msg_debug[(pos + i) % sizeof(kwboot_msg_debug)])
break;
off -= i;
if (off >= 4 * sizeof(kwboot_msg_debug))
break;
/* If not move valid suffix from end of the buffer to the beginning of buffer */
memmove(buf, buf + i + 1, off);
}
kwboot_printv("\n");
rc = kwboot_msg_stop_thread(write_thread);
if (rc) {
perror("Failed to stop write thread");
return rc;
}
if (err) {
errno = err;
perror("Failed to read response for debug message pattern");
return -1;
}
/* flush output queue with remaining debug message patterns */
rc = tcflush(tty, TCOFLUSH);
if (rc) {
perror("Failed to flush output queue");
return rc;
}
kwboot_printv("Clearing input buffer...\n");
/*
* Wait until BootROM transmit all remaining echo characters.
* Experimentally it was measured that for Armada 385 BootROM
* it is required to wait at least 0.415s. So wait 0.5s.
*/
usleep(500 * 1000);
/*
* In off variable is stored number of characters received after the
* successful detection of echo reply. So these characters are console
* echo for other following debug message patterns. BootROM may have in
* its output queue other echo characters which were being transmitting
* before above sleep call. So read remaining number of echo characters
* sent by the BootROM now.
*/
while ((rc = kwboot_tty_recv(tty, &buf[0], 1, 0)) == 0)
off++;
if (errno != ETIMEDOUT) {
perror("Failed to read response");
return rc;
}
/*
* Clear every echo character set by the BootROM by backspace byte.
* This is required prior writing any command to the BootROM debug
* because BootROM command line buffer has limited size. If length
* of the command is larger than buffer size then it looks like
* that Armada 385 BootROM crashes after sending ENTER. So erase it.
* Experimentally it was measured that for Armada 385 BootROM it is
* required to send at least 3 backspace bytes for one echo character.
* This is unknown why. But lets do it.
*/
off *= 3;
memset(buf, '\x08', sizeof(buf));
while (off > sizeof(buf)) {
rc = kwboot_tty_send(tty, buf, sizeof(buf), 1);
if (rc) {
perror("Failed to send clear sequence");
return rc;
}
off -= sizeof(buf);
}
rc = kwboot_tty_send(tty, buf, off, 0);
if (rc) {
perror("Failed to send clear sequence");
return rc;
}
usleep(msg_rsp_timeo * 1000);
rc = tcflush(tty, TCIFLUSH);
if (rc) {
perror("Failed to flush input queue");
return rc;
}
return 0;
}
static size_t
kwboot_xm_makeblock(struct kwboot_block *block, const void *data,
size_t size, int pnum)
{
size_t i, n;
block->soh = SOH;
block->pnum = pnum;
block->_pnum = ~block->pnum;
n = size < KWBOOT_XM_BLKSZ ? size : KWBOOT_XM_BLKSZ;
memcpy(&block->data[0], data, n);
memset(&block->data[n], 0, KWBOOT_XM_BLKSZ - n);
block->csum = 0;
for (i = 0; i < n; i++)
block->csum += block->data[i];
return n;
}
static uint64_t
_now(void)
{
struct timespec ts;
if (clock_gettime(CLOCK_MONOTONIC, &ts)) {
static int err_print;
if (!err_print) {
perror("clock_gettime() does not work");
err_print = 1;
}
/* this will just make the timeout not work */
return -1ULL;
}
return ts.tv_sec * 1000ULL + (ts.tv_nsec + 500000) / 1000000;
}
static int
_is_xm_reply(char c)
{
return c == ACK || c == NAK;
}
static int
_xm_reply_to_error(int c)
{
int rc = -1;
switch (c) {
case ACK:
rc = 0;
break;
case NAK:
errno = EBADMSG;
break;
default:
errno = EPROTO;
break;
}
return rc;
}
static int
kwboot_baud_magic_handle(int fd, char c, int baudrate)
{
static size_t rcv_len;
if (rcv_len < sizeof(kwb_baud_magic)) {
/* try to recognize whole magic word */
if (c == kwb_baud_magic[rcv_len]) {
rcv_len++;
} else {
printf("%.*s%c", (int)rcv_len, kwb_baud_magic, c);
fflush(stdout);
rcv_len = 0;
}
}
if (rcv_len == sizeof(kwb_baud_magic)) {
/* magic word received */
kwboot_printv("\nChanging baudrate to %d Bd\n", baudrate);
return kwboot_tty_change_baudrate(fd, baudrate) ? : 1;
} else {
return 0;
}
}
static int
kwboot_xm_recv_reply(int fd, char *c, int stop_on_non_xm,
int ignore_nak_reply,
int allow_non_xm, int *non_xm_print,
int baudrate, int *baud_changed)
{
int timeout = allow_non_xm ? KWBOOT_HDR_RSP_TIMEO : blk_rsp_timeo;
uint64_t recv_until = _now() + timeout;
int rc;
while (1) {
rc = kwboot_tty_recv(fd, c, 1, timeout);
if (rc) {
if (errno != ETIMEDOUT)
return rc;
else if (allow_non_xm && *non_xm_print)
return -1;
else
*c = NAK;
}
/* If received xmodem reply, end. */
if (_is_xm_reply(*c)) {
if (*c == NAK && ignore_nak_reply) {
timeout = recv_until - _now();
if (timeout >= 0)
continue;
}
break;
}
/*
* If receiving/printing non-xmodem text output is allowed and
* such a byte was received, we want to increase receiving time
* and either:
* - print the byte, if it is not part of baudrate change magic
* sequence while baudrate change was requested (-B option)
* - change baudrate
* Otherwise decrease timeout by time elapsed.
*/
if (allow_non_xm) {
recv_until = _now() + timeout;
if (baudrate && !*baud_changed) {
rc = kwboot_baud_magic_handle(fd, *c, baudrate);
if (rc == 1)
*baud_changed = 1;
else if (!rc)
*non_xm_print = 1;
else
return rc;
} else if (!baudrate || !*baud_changed) {
putchar(*c);
fflush(stdout);
*non_xm_print = 1;
}
} else {
if (stop_on_non_xm)
break;
timeout = recv_until - _now();
if (timeout < 0) {
errno = ETIMEDOUT;
return -1;
}
}
}
return 0;
}
static int
kwboot_xm_sendblock(int fd, struct kwboot_block *block, int allow_non_xm,
int *done_print, int baudrate, int allow_retries)
{
int non_xm_print, baud_changed;
int rc, err, retries;
char c;
*done_print = 0;
non_xm_print = 0;
baud_changed = 0;
retries = 0;
do {
rc = kwboot_tty_send(fd, block, sizeof(*block), 1);
if (rc)
goto err;
if (allow_non_xm && !*done_print) {
kwboot_progress(100, '.');
kwboot_printv("Done\n");
*done_print = 1;
}
rc = kwboot_xm_recv_reply(fd, &c, retries < 3,
retries > 8,
allow_non_xm, &non_xm_print,
baudrate, &baud_changed);
if (rc)
goto err;
if (!allow_non_xm && c != ACK) {
if (c == NAK && allow_retries && retries + 1 < 16)
kwboot_progress(-1, '+');
else
kwboot_progress(-1, 'E');
}
} while (c == NAK && allow_retries && retries++ < 16);
if (non_xm_print)
kwboot_printv("\n");
if (allow_non_xm && baudrate && !baud_changed) {
fprintf(stderr, "Baudrate was not changed\n");
errno = EPROTO;
return -1;
}
return _xm_reply_to_error(c);
err:
err = errno;
kwboot_printv("\n");
errno = err;
return rc;
}
static int
kwboot_xm_finish(int fd)
{
int rc, retries;
char c;
kwboot_printv("Finishing transfer\n");
retries = 0;
do {
rc = kwboot_tty_send_char(fd, EOT);
if (rc)
return rc;
rc = kwboot_xm_recv_reply(fd, &c, retries < 3,
retries > 8,
0, NULL, 0, NULL);
if (rc)
return rc;
} while (c == NAK && retries++ < 16);
return _xm_reply_to_error(c);
}
static int
kwboot_xmodem_one(int tty, int *pnum, int header, const uint8_t *data,
size_t size, int baudrate)
{
int done_print = 0;
size_t sent, left;
int rc;
kwboot_printv("Sending boot image %s (%zu bytes)...\n",
header ? "header" : "data", size);
left = size;
sent = 0;
while (sent < size) {
struct kwboot_block block;
int last_block;
size_t blksz;
blksz = kwboot_xm_makeblock(&block, data, left, (*pnum)++);
data += blksz;
last_block = (left <= blksz);
/*
* Handling of repeated xmodem packets is completely broken in
* Armada 385 BootROM - it completely ignores xmodem packet
* numbers, they are only used for checksum verification.
* BootROM can handle a retry of the xmodem packet only during
* the transmission of kwbimage header and only if BootROM
* itself sent NAK response to previous attempt (it does it on
* checksum failure). During the transmission of kwbimage data
* part, BootROM always expects next xmodem packet, even if it
* sent NAK to previous attempt - there is absolutely no way to
* repair incorrectly transmitted xmodem packet during kwbimage
* data part upload. Also, if kwboot receives non-ACK/NAK
* response (meaning that original BootROM response was damaged
* on UART) there is no way to detect if BootROM accepted xmodem
* packet or not and no way to check if kwboot could repeat the
* packet or not.
*
* Stop transfer and return failure if kwboot receives unknown
* reply if non-xmodem reply is not allowed (for all xmodem
* packets except the last header packet) or when non-ACK reply
* is received during data part transfer.
*/
rc = kwboot_xm_sendblock(tty, &block, header && last_block,
&done_print, baudrate, header);
if (rc)
goto out;
sent += blksz;
left -= blksz;
if (!done_print)
kwboot_progress(sent * 100 / size, '.');
}
if (!done_print)
kwboot_printv("Done\n");
return 0;
out:
kwboot_printv("\n");
return rc;
}
static int
kwboot_xmodem(int tty, const void *_img, size_t size, int baudrate)
{
const uint8_t *img = _img;
int rc, pnum;
size_t hdrsz;
hdrsz = kwbheader_size(img);
/*
* If header size is not aligned to xmodem block size (which applies
* for all images in kwbimage v0 format) then we have to ensure that
* the last xmodem block of header contains beginning of the data
* followed by the header. So align header size to xmodem block size.
*/
hdrsz += (KWBOOT_XM_BLKSZ - hdrsz % KWBOOT_XM_BLKSZ) % KWBOOT_XM_BLKSZ;
pnum = 1;
rc = kwboot_xmodem_one(tty, &pnum, 1, img, hdrsz, baudrate);
if (rc)
return rc;
/*
* If we have already sent image data as a part of the last
* xmodem header block then we have nothing more to send.
*/
if (hdrsz < size) {
img += hdrsz;
size -= hdrsz;
rc = kwboot_xmodem_one(tty, &pnum, 0, img, size, 0);
if (rc)
return rc;
}
rc = kwboot_xm_finish(tty);
if (rc)
return rc;
if (baudrate) {
kwboot_printv("\nChanging baudrate back to 115200 Bd\n\n");
rc = kwboot_tty_change_baudrate(tty, 115200);
if (rc)
return rc;
}
return 0;
}
static int
kwboot_term_pipe(int in, int out, const char *quit, int *s, const char *kbs, int *k)
{
char buf[128];
ssize_t nin, noff;
nin = read(in, buf, sizeof(buf));
if (nin <= 0)
return -1;
noff = 0;
if (quit || kbs) {
int i;
for (i = 0; i < nin; i++) {
if ((quit || kbs) &&
(!quit || buf[i] != quit[*s]) &&
(!kbs || buf[i] != kbs[*k])) {
const char *prefix;
int plen;
if (quit && kbs) {
prefix = (*s >= *k) ? quit : kbs;
plen = (*s >= *k) ? *s : *k;
} else if (quit) {
prefix = quit;
plen = *s;
} else {
prefix = kbs;
plen = *k;
}
if (plen > i && kwboot_write(out, prefix, plen - i) < 0)
return -1;
}
if (quit && buf[i] == quit[*s]) {
(*s)++;
if (!quit[*s]) {
nin = (i > *s) ? (i - *s) : 0;
break;
}
} else if (quit) {
*s = 0;
}
if (kbs && buf[i] == kbs[*k]) {
(*k)++;
if (!kbs[*k]) {
if (i > *k + noff &&
kwboot_write(out, buf + noff, i - *k - noff) < 0)
return -1;
/*
* Replace backspace key by '\b' (0x08)
* byte which is the only recognized
* backspace byte by Marvell BootROM.
*/
if (write(out, "\x08", 1) < 0)
return -1;
noff = i + 1;
*k = 0;
}
} else if (kbs) {
*k = 0;
}
}
if (i == nin) {
i = 0;
if (quit && i < *s)
i = *s;
if (kbs && i < *k)
i = *k;
nin -= (nin > i) ? i : nin;
}
}
if (nin > noff && kwboot_write(out, buf + noff, nin - noff) < 0)
return -1;
return 0;
}
static int
kwboot_terminal(int tty)
{
int rc, in, s, k;
const char *kbs = NULL;
const char *quit = "\34c";
struct termios otio, tio;
rc = -1;
in = STDIN_FILENO;
if (isatty(in)) {
rc = tcgetattr(in, &otio);
if (!rc) {
tio = otio;
cfmakeraw(&tio);
rc = tcsetattr(in, TCSANOW, &tio);
}
if (rc) {
perror("tcsetattr");
goto out;
}
/*
* Get sequence for backspace key used by the current
* terminal. Every occurrence of this sequence will be
* replaced by '\b' byte which is the only recognized
* backspace byte by Marvell BootROM.
*
* Note that we cannot read this sequence from termios
* c_cc[VERASE] as VERASE is valid only when ICANON is
* set in termios c_lflag, which is not case for us.
*
* Also most terminals do not set termios c_cc[VERASE]
* as c_cc[VERASE] can specify only one-byte sequence
* and instead let applications to read (possible
* multi-byte) sequence for backspace key from "kbs"
* terminfo database based on $TERM env variable.
*
* So read "kbs" from terminfo database via tigetstr()
* call after successful setupterm(). Most terminals
* use byte 0x7F for backspace key, so replacement with
* '\b' is required.
*/
if (setupterm(NULL, STDOUT_FILENO, &rc) == 0) {
kbs = tigetstr("kbs");
if (kbs == (char *)-1)
kbs = NULL;
}
kwboot_printv("[Type Ctrl-%c + %c to quit]\r\n",
quit[0] | 0100, quit[1]);
} else
in = -1;
rc = 0;
s = 0;
k = 0;
do {
fd_set rfds;
int nfds = 0;
FD_ZERO(&rfds);
FD_SET(tty, &rfds);
nfds = nfds < tty ? tty : nfds;
if (in >= 0) {
FD_SET(in, &rfds);
nfds = nfds < in ? in : nfds;
}
nfds = select(nfds + 1, &rfds, NULL, NULL, NULL);
if (nfds < 0)
break;
if (FD_ISSET(tty, &rfds)) {
rc = kwboot_term_pipe(tty, STDOUT_FILENO, NULL, NULL, NULL, NULL);
if (rc)
break;
}
if (in >= 0 && FD_ISSET(in, &rfds)) {
rc = kwboot_term_pipe(in, tty, quit, &s, kbs, &k);
if (rc)
break;
}
} while (quit[s] != 0);
if (in >= 0)
tcsetattr(in, TCSANOW, &otio);
printf("\n");
out:
return rc;
}
static void *
kwboot_read_image(const char *path, size_t *size, size_t reserve)
{
int rc, fd;
void *img;
off_t len;
off_t tot;
rc = -1;
img = NULL;
fd = open(path, O_RDONLY);
if (fd < 0)
goto out;
len = lseek(fd, 0, SEEK_END);
if (len == (off_t)-1)
goto out;
if (lseek(fd, 0, SEEK_SET) == (off_t)-1)
goto out;
img = malloc(len + reserve);
if (!img)
goto out;
tot = 0;
while (tot < len) {
ssize_t rd = read(fd, img + tot, len - tot);
if (rd < 0)
goto out;
tot += rd;
if (!rd && tot < len) {
errno = EIO;
goto out;
}
}
rc = 0;
*size = len;
out:
if (rc && img) {
free(img);
img = NULL;
}
if (fd >= 0)
close(fd);
return img;
}
static uint8_t
kwboot_hdr_csum8(const void *hdr)
{
const uint8_t *data = hdr;
uint8_t csum;
size_t size;
size = kwbheader_size_for_csum(hdr);
for (csum = 0; size-- > 0; data++)
csum += *data;
return csum;
}
static uint32_t *
kwboot_img_csum32_ptr(void *img)
{
struct main_hdr_v1 *hdr = img;
uint32_t datasz;
datasz = le32_to_cpu(hdr->blocksize) - sizeof(uint32_t);
return img + le32_to_cpu(hdr->srcaddr) + datasz;
}
static uint32_t
kwboot_img_csum32(const void *img)
{
const struct main_hdr_v1 *hdr = img;
uint32_t datasz, csum = 0;
const uint32_t *data;
datasz = le32_to_cpu(hdr->blocksize) - sizeof(csum);
if (datasz % sizeof(uint32_t))
return 0;
data = img + le32_to_cpu(hdr->srcaddr);
while (datasz > 0) {
csum += le32_to_cpu(*data++);
datasz -= 4;
}
return cpu_to_le32(csum);
}
static int
kwboot_img_is_secure(void *img)
{
struct opt_hdr_v1 *ohdr;
for_each_opt_hdr_v1 (ohdr, img)
if (ohdr->headertype == OPT_HDR_V1_SECURE_TYPE)
return 1;
return 0;
}
static int
kwboot_img_has_ddr_init(void *img)
{
const struct register_set_hdr_v1 *rhdr;
const struct main_hdr_v0 *hdr0;
struct opt_hdr_v1 *ohdr;
u32 ohdrsz;
int last;
/*
* kwbimage v0 image headers contain DDR init code either in
* extension header or in binary code header.
*/
if (kwbimage_version(img) == 0) {
hdr0 = img;
return hdr0->ext || hdr0->bin;
}
/*
* kwbimage v1 image headers contain DDR init code either in binary
* code header or in a register set list header with SDRAM_SETUP.
*/
for_each_opt_hdr_v1 (ohdr, img) {
if (ohdr->headertype == OPT_HDR_V1_BINARY_TYPE)
return 1;
if (ohdr->headertype == OPT_HDR_V1_REGISTER_TYPE) {
rhdr = (const struct register_set_hdr_v1 *)ohdr;
ohdrsz = opt_hdr_v1_size(ohdr);
if (ohdrsz >= sizeof(*ohdr) + sizeof(rhdr->data[0].last_entry)) {
ohdrsz -= sizeof(*ohdr) + sizeof(rhdr->data[0].last_entry);
last = ohdrsz / sizeof(rhdr->data[0].entry);
if (rhdr->data[last].last_entry.delay ==
REGISTER_SET_HDR_OPT_DELAY_SDRAM_SETUP)
return 1;
}
}
}
return 0;
}
static void *
kwboot_img_grow_data_right(void *img, size_t *size, size_t grow)
{
struct main_hdr_v1 *hdr = img;
void *result;
/*
* 32-bit checksum comes after end of image code, so we will be putting
* new code there. So we get this pointer and then increase data size
* (since increasing data size changes kwboot_img_csum32_ptr() return
* value).
*/
result = kwboot_img_csum32_ptr(img);
hdr->blocksize = cpu_to_le32(le32_to_cpu(hdr->blocksize) + grow);
*size += grow;
return result;
}
static void
kwboot_img_grow_hdr(void *img, size_t *size, size_t grow)
{
uint32_t hdrsz, datasz, srcaddr;
struct main_hdr_v1 *hdr = img;
struct opt_hdr_v1 *ohdr;
uint8_t *data;
srcaddr = le32_to_cpu(hdr->srcaddr);
/* calculate real used space in kwbimage header */
if (kwbimage_version(img) == 0) {
hdrsz = kwbheader_size(img);
} else {
hdrsz = sizeof(*hdr);
for_each_opt_hdr_v1 (ohdr, hdr)
hdrsz += opt_hdr_v1_size(ohdr);
}
data = (uint8_t *)img + srcaddr;
datasz = *size - srcaddr;
/* only move data if there is not enough space */
if (hdrsz + grow > srcaddr) {
size_t need = hdrsz + grow - srcaddr;
/* move data by enough bytes */
memmove(data + need, data, datasz);
hdr->srcaddr = cpu_to_le32(srcaddr + need);
*size += need;
}
if (kwbimage_version(img) == 1) {
hdrsz += grow;
if (hdrsz > kwbheader_size(img)) {
hdr->headersz_msb = hdrsz >> 16;
hdr->headersz_lsb = cpu_to_le16(hdrsz & 0xffff);
}
}
}
static void *
kwboot_add_bin_ohdr_v1(void *img, size_t *size, uint32_t binsz)
{
struct main_hdr_v1 *hdr = img;
struct opt_hdr_v1 *ohdr;
uint32_t num_args;
uint32_t offset;
uint32_t ohdrsz;
uint8_t *prev_ext;
if (hdr->ext) {
for_each_opt_hdr_v1 (ohdr, img)
if (opt_hdr_v1_next(ohdr) == NULL)
break;
prev_ext = opt_hdr_v1_ext(ohdr);
ohdr = _opt_hdr_v1_next(ohdr);
} else {
ohdr = (void *)(hdr + 1);
prev_ext = &hdr->ext;
}
/*
* ARM executable code inside the BIN header on some mvebu platforms
* (e.g. A370, AXP) must always be aligned with the 128-bit boundary.
* This requirement can be met by inserting dummy arguments into
* BIN header, if needed.
*/
offset = &ohdr->data[4] - (char *)img;
num_args = ((16 - offset % 16) % 16) / sizeof(uint32_t);
ohdrsz = sizeof(*ohdr) + 4 + 4 * num_args + binsz + 4;
kwboot_img_grow_hdr(hdr, size, ohdrsz);
*prev_ext = 1;
ohdr->headertype = OPT_HDR_V1_BINARY_TYPE;
ohdr->headersz_msb = ohdrsz >> 16;
ohdr->headersz_lsb = cpu_to_le16(ohdrsz & 0xffff);
memset(&ohdr->data[0], 0, ohdrsz - sizeof(*ohdr));
*(uint32_t *)&ohdr->data[0] = cpu_to_le32(num_args);
return &ohdr->data[4 + 4 * num_args];
}
static void
_inject_baudrate_change_code(void *img, size_t *size, int for_data,
int old_baud, int new_baud)
{
struct main_hdr_v1 *hdr = img;
uint32_t orig_datasz;
uint32_t codesz;
uint8_t *code;
if (for_data) {
orig_datasz = le32_to_cpu(hdr->blocksize) - sizeof(uint32_t);
codesz = sizeof(kwboot_baud_code) +
sizeof(kwboot_baud_code_data_jump);
code = kwboot_img_grow_data_right(img, size, codesz);
} else {
codesz = sizeof(kwboot_baud_code_binhdr_pre) +
sizeof(kwboot_baud_code) +
sizeof(kwboot_baud_code_binhdr_post);
code = kwboot_add_bin_ohdr_v1(img, size, codesz);
codesz = sizeof(kwboot_baud_code_binhdr_pre);
memcpy(code, kwboot_baud_code_binhdr_pre, codesz);
code += codesz;
}
codesz = sizeof(kwboot_baud_code) - 2 * sizeof(uint32_t);
memcpy(code, kwboot_baud_code, codesz);
code += codesz;
*(uint32_t *)code = cpu_to_le32(old_baud);
code += sizeof(uint32_t);
*(uint32_t *)code = cpu_to_le32(new_baud);
code += sizeof(uint32_t);
if (for_data) {
codesz = sizeof(kwboot_baud_code_data_jump) - sizeof(uint32_t);
memcpy(code, kwboot_baud_code_data_jump, codesz);
code += codesz;
*(uint32_t *)code = hdr->execaddr;
code += sizeof(uint32_t);
hdr->execaddr = cpu_to_le32(le32_to_cpu(hdr->destaddr) + orig_datasz);
} else {
codesz = sizeof(kwboot_baud_code_binhdr_post);
memcpy(code, kwboot_baud_code_binhdr_post, codesz);
code += codesz;
}
}
static int
kwboot_img_patch(void *img, size_t *size, int baudrate)
{
struct main_hdr_v1 *hdr;
struct opt_hdr_v1 *ohdr;
uint32_t srcaddr;
uint8_t csum;
size_t hdrsz;
int image_ver;
int is_secure;
hdr = img;
if (*size < sizeof(struct main_hdr_v1))
goto err;
image_ver = kwbimage_version(img);
if (image_ver != 0 && image_ver != 1) {
fprintf(stderr, "Invalid image header version\n");
goto err;
}
hdrsz = kwbheader_size(hdr);
if (*size < hdrsz)
goto err;
csum = kwboot_hdr_csum8(hdr) - hdr->checksum;
if (csum != hdr->checksum)
goto err;
srcaddr = le32_to_cpu(hdr->srcaddr);
switch (hdr->blockid) {
case IBR_HDR_SATA_ID:
hdr->srcaddr = cpu_to_le32(srcaddr * 512);
break;
case IBR_HDR_PEX_ID:
if (srcaddr == 0xFFFFFFFF)
hdr->srcaddr = cpu_to_le32(hdrsz);
break;
case IBR_HDR_SPI_ID:
if (hdr->destaddr == cpu_to_le32(0xFFFFFFFF)) {
kwboot_printv("Patching destination and execution addresses from SPI/NOR XIP area to DDR area 0x00800000\n");
hdr->destaddr = cpu_to_le32(0x00800000 + le32_to_cpu(hdr->srcaddr));
hdr->execaddr = cpu_to_le32(0x00800000 + le32_to_cpu(hdr->execaddr));
}
break;
}
if (hdrsz > le32_to_cpu(hdr->srcaddr) ||
*size < le32_to_cpu(hdr->srcaddr) + le32_to_cpu(hdr->blocksize))
goto err;
for_each_opt_hdr_v1 (ohdr, hdr) {
if (!opt_hdr_v1_valid_size(ohdr, (const uint8_t *)hdr + hdrsz)) {
fprintf(stderr, "Invalid optional image header\n");
goto err;
}
}
/*
* The 32-bit data checksum is optional for UART image. If it is not
* present (checksum detected as invalid) then grow data part of the
* image for the checksum, so it can be inserted there.
*/
if (kwboot_img_csum32(img) != *kwboot_img_csum32_ptr(img)) {
if (hdr->blockid != IBR_HDR_UART_ID) {
fprintf(stderr, "Image has invalid data checksum\n");
goto err;
}
kwboot_img_grow_data_right(img, size, sizeof(uint32_t));
}
if (!kwboot_img_has_ddr_init(img) &&
(le32_to_cpu(hdr->destaddr) < 0x40000000 ||
le32_to_cpu(hdr->destaddr) + le32_to_cpu(hdr->blocksize) > 0x40034000)) {
fprintf(stderr, "Image does not contain DDR init code needed for UART booting\n");
goto err;
}
is_secure = kwboot_img_is_secure(img);
if (hdr->blockid != IBR_HDR_UART_ID) {
if (is_secure) {
fprintf(stderr,
"Image has secure header with signature for non-UART booting\n");
goto err;
}
kwboot_printv("Patching image boot signature to UART\n");
hdr->blockid = IBR_HDR_UART_ID;
}
if (!is_secure) {
if (image_ver == 1) {
/*
* Tell BootROM to send BootROM messages to UART port
* number 0 (used also for UART booting) with default
* baudrate (which should be 115200) and do not touch
* UART MPP configuration.
*/
hdr->flags |= 0x1;
hdr->options &= ~0x1F;
hdr->options |= MAIN_HDR_V1_OPT_BAUD_DEFAULT;
hdr->options |= 0 << 3;
}
if (image_ver == 0)
((struct main_hdr_v0 *)img)->nandeccmode = IBR_HDR_ECC_DISABLED;
hdr->nandpagesize = 0;
}
if (baudrate) {
if (image_ver == 0) {
fprintf(stderr,
"Cannot inject code for changing baudrate into v0 image header\n");
goto err;
}
if (is_secure) {
fprintf(stderr,
"Cannot inject code for changing baudrate into image with secure header\n");
goto err;
}
/*
* First inject code that changes the baudrate from the default
* value of 115200 Bd to requested value. This code is inserted
* as a new opt hdr, so it is executed by BootROM after the
* header part is received.
*/
kwboot_printv("Injecting binary header code for changing baudrate to %d Bd\n",
baudrate);
_inject_baudrate_change_code(img, size, 0, 115200, baudrate);
/*
* Now inject code that changes the baudrate back to 115200 Bd.
* This code is appended after the data part of the image, and
* execaddr is changed so that it is executed before U-Boot
* proper.
*/
kwboot_printv("Injecting code for changing baudrate back\n");
_inject_baudrate_change_code(img, size, 1, baudrate, 115200);
/* Update the 32-bit data checksum */
*kwboot_img_csum32_ptr(img) = kwboot_img_csum32(img);
/* recompute header size */
hdrsz = kwbheader_size(hdr);
}
if (hdrsz % KWBOOT_XM_BLKSZ) {
size_t grow = KWBOOT_XM_BLKSZ - hdrsz % KWBOOT_XM_BLKSZ;
if (is_secure) {
fprintf(stderr, "Cannot align image with secure header\n");
goto err;
}
kwboot_printv("Aligning image header to Xmodem block size\n");
kwboot_img_grow_hdr(img, size, grow);
}
hdr->checksum = kwboot_hdr_csum8(hdr) - csum;
*size = le32_to_cpu(hdr->srcaddr) + le32_to_cpu(hdr->blocksize);
return 0;
err:
errno = EINVAL;
return -1;
}
static void
kwboot_usage(FILE *stream, char *progname)
{
fprintf(stream,
"Usage: %s [OPTIONS] [-b <image> | -D <image> | -b | -d ] [-B <baud> ] [-t] <TTY>\n",
progname);
fprintf(stream, "\n");
fprintf(stream,
" -b <image>: boot <image> with preamble (Kirkwood, Avanta, Armada 370/XP/375/38x/39x)\n");
fprintf(stream,
" -D <image>: boot <image> without preamble (Dove)\n");
fprintf(stream, " -b: enter xmodem boot mode\n");
fprintf(stream, " -d: enter console debug mode\n");
fprintf(stream, " -a: use timings for Armada XP\n");
fprintf(stream, " -s <resp-timeo>: use specific response-timeout\n");
fprintf(stream,
" -o <block-timeo>: use specific xmodem block timeout\n");
fprintf(stream, "\n");
fprintf(stream, " -t: mini terminal\n");
fprintf(stream, "\n");
fprintf(stream, " -B <baud>: set baud rate\n");
fprintf(stream, "\n");
}
int
main(int argc, char **argv)
{
const char *ttypath, *imgpath;
int rv, rc, tty, term;
int bootmsg;
int debugmsg;
void *img;
size_t size;
size_t after_img_rsv;
int baudrate;
int prev_optind;
int c;
rv = 1;
tty = -1;
bootmsg = 0;
debugmsg = 0;
imgpath = NULL;
img = NULL;
term = 0;
size = 0;
after_img_rsv = KWBOOT_XM_BLKSZ;
baudrate = 115200;
printf("kwboot version %s\n", PLAIN_VERSION);
kwboot_verbose = isatty(STDOUT_FILENO);
do {
prev_optind = optind;
c = getopt(argc, argv, "hbptaB:dD:q:s:o:");
if (c < 0)
break;
switch (c) {
case 'b':
if (imgpath || bootmsg || debugmsg)
goto usage;
bootmsg = 1;
if (prev_optind == optind)
goto usage;
/* Option -b could have optional argument which specify image path */
if (optind < argc && argv[optind] && argv[optind][0] != '-')
imgpath = argv[optind++];
break;
case 'D':
if (imgpath || bootmsg || debugmsg)
goto usage;
bootmsg = 0;
imgpath = optarg;
break;
case 'd':
if (imgpath || bootmsg || debugmsg)
goto usage;
debugmsg = 1;
break;
case 'p':
/* nop, for backward compatibility */
break;
case 't':
term = 1;
break;
case 'a':
msg_rsp_timeo = KWBOOT_MSG_RSP_TIMEO_AXP;
break;
case 'q':
/* nop, for backward compatibility */
break;
case 's':
msg_rsp_timeo = atoi(optarg);
break;
case 'o':
blk_rsp_timeo = atoi(optarg);
break;
case 'B':
baudrate = atoi(optarg);
break;
case 'h':
rv = 0;
default:
goto usage;
}
} while (1);
if (!bootmsg && !term && !debugmsg && !imgpath)
goto usage;
/*
* If there is no remaining argument but optional imgpath was parsed
* then it means that optional imgpath was eaten by getopt parser.
* Reassing imgpath to required ttypath argument.
*/
if (optind == argc && imgpath) {
ttypath = imgpath;
imgpath = NULL;
} else if (optind + 1 == argc) {
ttypath = argv[optind];
} else {
goto usage;
}
/* boot and debug message use baudrate 115200 */
if (((bootmsg && !imgpath) || debugmsg) && baudrate != 115200) {
fprintf(stderr, "Baudrate other than 115200 cannot be used for this operation.\n");
goto usage;
}
tty = kwboot_open_tty(ttypath, baudrate);
if (tty < 0) {
perror(ttypath);
goto out;
}
/*
* initial baudrate for image transfer is always 115200,
* the change to different baudrate is done only after the header is sent
*/
if (imgpath && baudrate != 115200) {
rc = kwboot_tty_change_baudrate(tty, 115200);
if (rc) {
perror(ttypath);
goto out;
}
}
if (baudrate == 115200)
/* do not change baudrate during Xmodem to the same value */
baudrate = 0;
else
/* ensure we have enough space for baudrate change code */
after_img_rsv += sizeof(struct opt_hdr_v1) + 8 + 16 +
sizeof(kwboot_baud_code_binhdr_pre) +
sizeof(kwboot_baud_code) +
sizeof(kwboot_baud_code_binhdr_post) +
KWBOOT_XM_BLKSZ +
sizeof(kwboot_baud_code) +
sizeof(kwboot_baud_code_data_jump) +
sizeof(uint32_t) +
KWBOOT_XM_BLKSZ;
if (imgpath) {
img = kwboot_read_image(imgpath, &size, after_img_rsv);
if (!img) {
perror(imgpath);
goto out;
}
rc = kwboot_img_patch(img, &size, baudrate);
if (rc) {
fprintf(stderr, "%s: Invalid image.\n", imgpath);
goto out;
}
}
if (debugmsg) {
rc = kwboot_debugmsg(tty);
if (rc)
goto out;
} else if (bootmsg) {
rc = kwboot_bootmsg(tty);
if (rc)
goto out;
}
if (img) {
rc = kwboot_xmodem(tty, img, size, baudrate);
if (rc) {
perror("xmodem");
goto out;
}
}
if (term) {
rc = kwboot_terminal(tty);
if (rc && !(errno == EINTR)) {
perror("terminal");
goto out;
}
}
rv = 0;
out:
if (tty >= 0)
close(tty);
if (img)
free(img);
return rv;
usage:
kwboot_usage(rv ? stderr : stdout, basename(argv[0]));
goto out;
}