blob: 8f4018aa56093e60594fff22c8f2366055df9b29 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* Freescale i.MX28 image generator
*
* Copyright (C) 2011 Marek Vasut <marek.vasut@gmail.com>
* on behalf of DENX Software Engineering GmbH
*/
#include <fcntl.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#include "compiler.h"
/* Taken from <linux/kernel.h> */
#define __round_mask(x, y) ((__typeof__(x))((y)-1))
#define round_down(x, y) ((x) & ~__round_mask(x, y))
/*
* Default BCB layout.
*
* TWEAK this if you have blown any OCOTP fuses.
*/
#define STRIDE_PAGES 64
#define STRIDE_COUNT 4
/*
* Layout for 256Mb big NAND with 2048b page size, 64b OOB size and
* 128kb erase size.
*
* TWEAK this if you have different kind of NAND chip.
*/
static uint32_t nand_writesize = 2048;
static uint32_t nand_oobsize = 64;
static uint32_t nand_erasesize = 128 * 1024;
/*
* Sector on which the SigmaTel boot partition (0x53) starts.
*/
static uint32_t sd_sector = 2048;
/*
* Each of the U-Boot bootstreams is at maximum 1MB big.
*
* TWEAK this if, for some wild reason, you need to boot bigger image.
*/
#define MAX_BOOTSTREAM_SIZE (1 * 1024 * 1024)
/* i.MX28 NAND controller-specific constants. DO NOT TWEAK! */
#define MXS_NAND_DMA_DESCRIPTOR_COUNT 4
#define MXS_NAND_CHUNK_DATA_CHUNK_SIZE 512
#define MXS_NAND_METADATA_SIZE 10
#define MXS_NAND_BITS_PER_ECC_LEVEL 13
#define MXS_NAND_COMMAND_BUFFER_SIZE 32
struct mx28_nand_fcb {
uint32_t checksum;
uint32_t fingerprint;
uint32_t version;
struct {
uint8_t data_setup;
uint8_t data_hold;
uint8_t address_setup;
uint8_t dsample_time;
uint8_t nand_timing_state;
uint8_t rea;
uint8_t rloh;
uint8_t rhoh;
} timing;
uint32_t page_data_size;
uint32_t total_page_size;
uint32_t sectors_per_block;
uint32_t number_of_nands; /* Ignored */
uint32_t total_internal_die; /* Ignored */
uint32_t cell_type; /* Ignored */
uint32_t ecc_block_n_ecc_type;
uint32_t ecc_block_0_size;
uint32_t ecc_block_n_size;
uint32_t ecc_block_0_ecc_type;
uint32_t metadata_bytes;
uint32_t num_ecc_blocks_per_page;
uint32_t ecc_block_n_ecc_level_sdk; /* Ignored */
uint32_t ecc_block_0_size_sdk; /* Ignored */
uint32_t ecc_block_n_size_sdk; /* Ignored */
uint32_t ecc_block_0_ecc_level_sdk; /* Ignored */
uint32_t num_ecc_blocks_per_page_sdk; /* Ignored */
uint32_t metadata_bytes_sdk; /* Ignored */
uint32_t erase_threshold;
uint32_t boot_patch;
uint32_t patch_sectors;
uint32_t firmware1_starting_sector;
uint32_t firmware2_starting_sector;
uint32_t sectors_in_firmware1;
uint32_t sectors_in_firmware2;
uint32_t dbbt_search_area_start_address;
uint32_t badblock_marker_byte;
uint32_t badblock_marker_start_bit;
uint32_t bb_marker_physical_offset;
};
struct mx28_nand_dbbt {
uint32_t checksum;
uint32_t fingerprint;
uint32_t version;
uint32_t number_bb;
uint32_t number_2k_pages_bb;
};
struct mx28_nand_bbt {
uint32_t nand;
uint32_t number_bb;
uint32_t badblock[510];
};
struct mx28_sd_drive_info {
uint32_t chip_num;
uint32_t drive_type;
uint32_t tag;
uint32_t first_sector_number;
uint32_t sector_count;
};
struct mx28_sd_config_block {
uint32_t signature;
uint32_t primary_boot_tag;
uint32_t secondary_boot_tag;
uint32_t num_copies;
struct mx28_sd_drive_info drv_info[1];
};
static inline uint32_t mx28_nand_ecc_chunk_cnt(uint32_t page_data_size)
{
return page_data_size / MXS_NAND_CHUNK_DATA_CHUNK_SIZE;
}
static inline uint32_t mx28_nand_ecc_size_in_bits(uint32_t ecc_strength)
{
return ecc_strength * MXS_NAND_BITS_PER_ECC_LEVEL;
}
static inline uint32_t mx28_nand_get_ecc_strength(uint32_t page_data_size,
uint32_t page_oob_size)
{
int ecc_strength;
/*
* Determine the ECC layout with the formula:
* ECC bits per chunk = (total page spare data bits) /
* (bits per ECC level) / (chunks per page)
* where:
* total page spare data bits =
* (page oob size - meta data size) * (bits per byte)
*/
ecc_strength = ((page_oob_size - MXS_NAND_METADATA_SIZE) * 8)
/ (MXS_NAND_BITS_PER_ECC_LEVEL *
mx28_nand_ecc_chunk_cnt(page_data_size));
return round_down(ecc_strength, 2);
}
static inline uint32_t mx28_nand_get_mark_offset(uint32_t page_data_size,
uint32_t ecc_strength)
{
uint32_t chunk_data_size_in_bits;
uint32_t chunk_ecc_size_in_bits;
uint32_t chunk_total_size_in_bits;
uint32_t block_mark_chunk_number;
uint32_t block_mark_chunk_bit_offset;
uint32_t block_mark_bit_offset;
chunk_data_size_in_bits = MXS_NAND_CHUNK_DATA_CHUNK_SIZE * 8;
chunk_ecc_size_in_bits = mx28_nand_ecc_size_in_bits(ecc_strength);
chunk_total_size_in_bits =
chunk_data_size_in_bits + chunk_ecc_size_in_bits;
/* Compute the bit offset of the block mark within the physical page. */
block_mark_bit_offset = page_data_size * 8;
/* Subtract the metadata bits. */
block_mark_bit_offset -= MXS_NAND_METADATA_SIZE * 8;
/*
* Compute the chunk number (starting at zero) in which the block mark
* appears.
*/
block_mark_chunk_number =
block_mark_bit_offset / chunk_total_size_in_bits;
/*
* Compute the bit offset of the block mark within its chunk, and
* validate it.
*/
block_mark_chunk_bit_offset = block_mark_bit_offset -
(block_mark_chunk_number * chunk_total_size_in_bits);
if (block_mark_chunk_bit_offset > chunk_data_size_in_bits)
return 1;
/*
* Now that we know the chunk number in which the block mark appears,
* we can subtract all the ECC bits that appear before it.
*/
block_mark_bit_offset -=
block_mark_chunk_number * chunk_ecc_size_in_bits;
return block_mark_bit_offset;
}
static inline uint32_t mx28_nand_mark_byte_offset(void)
{
uint32_t ecc_strength;
ecc_strength = mx28_nand_get_ecc_strength(nand_writesize, nand_oobsize);
return mx28_nand_get_mark_offset(nand_writesize, ecc_strength) >> 3;
}
static inline uint32_t mx28_nand_mark_bit_offset(void)
{
uint32_t ecc_strength;
ecc_strength = mx28_nand_get_ecc_strength(nand_writesize, nand_oobsize);
return mx28_nand_get_mark_offset(nand_writesize, ecc_strength) & 0x7;
}
static uint32_t mx28_nand_block_csum(uint8_t *block, uint32_t size)
{
uint32_t csum = 0;
int i;
for (i = 0; i < size; i++)
csum += block[i];
return csum ^ 0xffffffff;
}
static struct mx28_nand_fcb *mx28_nand_get_fcb(uint32_t size)
{
struct mx28_nand_fcb *fcb;
uint32_t bcb_size_bytes;
uint32_t stride_size_bytes;
uint32_t bootstream_size_pages;
uint32_t fw1_start_page;
uint32_t fw2_start_page;
fcb = malloc(nand_writesize);
if (!fcb) {
printf("MX28 NAND: Unable to allocate FCB\n");
return NULL;
}
memset(fcb, 0, nand_writesize);
fcb->fingerprint = 0x20424346;
fcb->version = 0x01000000;
/*
* FIXME: These here are default values as found in kobs-ng. We should
* probably retrieve the data from NAND or something.
*/
fcb->timing.data_setup = 80;
fcb->timing.data_hold = 60;
fcb->timing.address_setup = 25;
fcb->timing.dsample_time = 6;
fcb->page_data_size = nand_writesize;
fcb->total_page_size = nand_writesize + nand_oobsize;
fcb->sectors_per_block = nand_erasesize / nand_writesize;
fcb->num_ecc_blocks_per_page = (nand_writesize / 512) - 1;
fcb->ecc_block_0_size = 512;
fcb->ecc_block_n_size = 512;
fcb->metadata_bytes = 10;
fcb->ecc_block_n_ecc_type = mx28_nand_get_ecc_strength(
nand_writesize, nand_oobsize) >> 1;
fcb->ecc_block_0_ecc_type = mx28_nand_get_ecc_strength(
nand_writesize, nand_oobsize) >> 1;
if (fcb->ecc_block_n_ecc_type == 0) {
printf("MX28 NAND: Unsupported NAND geometry\n");
goto err;
}
fcb->boot_patch = 0;
fcb->patch_sectors = 0;
fcb->badblock_marker_byte = mx28_nand_mark_byte_offset();
fcb->badblock_marker_start_bit = mx28_nand_mark_bit_offset();
fcb->bb_marker_physical_offset = nand_writesize;
stride_size_bytes = STRIDE_PAGES * nand_writesize;
bcb_size_bytes = stride_size_bytes * STRIDE_COUNT;
bootstream_size_pages = (size + (nand_writesize - 1)) /
nand_writesize;
fw1_start_page = 2 * bcb_size_bytes / nand_writesize;
fw2_start_page = (2 * bcb_size_bytes + MAX_BOOTSTREAM_SIZE) /
nand_writesize;
fcb->firmware1_starting_sector = fw1_start_page;
fcb->firmware2_starting_sector = fw2_start_page;
fcb->sectors_in_firmware1 = bootstream_size_pages;
fcb->sectors_in_firmware2 = bootstream_size_pages;
fcb->dbbt_search_area_start_address = STRIDE_PAGES * STRIDE_COUNT;
return fcb;
err:
free(fcb);
return NULL;
}
static struct mx28_nand_dbbt *mx28_nand_get_dbbt(void)
{
struct mx28_nand_dbbt *dbbt;
dbbt = malloc(nand_writesize);
if (!dbbt) {
printf("MX28 NAND: Unable to allocate DBBT\n");
return NULL;
}
memset(dbbt, 0, nand_writesize);
dbbt->fingerprint = 0x54424244;
dbbt->version = 0x1;
return dbbt;
}
static inline uint8_t mx28_nand_parity_13_8(const uint8_t b)
{
uint32_t parity = 0, tmp;
tmp = ((b >> 6) ^ (b >> 5) ^ (b >> 3) ^ (b >> 2)) & 1;
parity |= tmp << 0;
tmp = ((b >> 7) ^ (b >> 5) ^ (b >> 4) ^ (b >> 2) ^ (b >> 1)) & 1;
parity |= tmp << 1;
tmp = ((b >> 7) ^ (b >> 6) ^ (b >> 5) ^ (b >> 1) ^ (b >> 0)) & 1;
parity |= tmp << 2;
tmp = ((b >> 7) ^ (b >> 4) ^ (b >> 3) ^ (b >> 0)) & 1;
parity |= tmp << 3;
tmp = ((b >> 6) ^ (b >> 4) ^ (b >> 3) ^
(b >> 2) ^ (b >> 1) ^ (b >> 0)) & 1;
parity |= tmp << 4;
return parity;
}
static uint8_t *mx28_nand_fcb_block(struct mx28_nand_fcb *fcb)
{
uint8_t *block;
uint8_t *ecc;
int i;
block = malloc(nand_writesize + nand_oobsize);
if (!block) {
printf("MX28 NAND: Unable to allocate FCB block\n");
return NULL;
}
memset(block, 0, nand_writesize + nand_oobsize);
/* Update the FCB checksum */
fcb->checksum = mx28_nand_block_csum(((uint8_t *)fcb) + 4, 508);
/* Figure 12-11. in iMX28RM, rev. 1, says FCB is at offset 12 */
memcpy(block + 12, fcb, sizeof(struct mx28_nand_fcb));
/* ECC is at offset 12 + 512 */
ecc = block + 12 + 512;
/* Compute the ECC parity */
for (i = 0; i < sizeof(struct mx28_nand_fcb); i++)
ecc[i] = mx28_nand_parity_13_8(block[i + 12]);
return block;
}
static int mx28_nand_write_fcb(struct mx28_nand_fcb *fcb, uint8_t *buf)
{
uint32_t offset;
uint8_t *fcbblock;
int ret = 0;
int i;
fcbblock = mx28_nand_fcb_block(fcb);
if (!fcbblock)
return -1;
for (i = 0; i < STRIDE_PAGES * STRIDE_COUNT; i += STRIDE_PAGES) {
offset = i * nand_writesize;
memcpy(buf + offset, fcbblock, nand_writesize + nand_oobsize);
/* Mark the NAND page is OK. */
buf[offset + nand_writesize] = 0xff;
}
free(fcbblock);
return ret;
}
static int mx28_nand_write_dbbt(struct mx28_nand_dbbt *dbbt, uint8_t *buf)
{
uint32_t offset;
int i = STRIDE_PAGES * STRIDE_COUNT;
for (; i < 2 * STRIDE_PAGES * STRIDE_COUNT; i += STRIDE_PAGES) {
offset = i * nand_writesize;
memcpy(buf + offset, dbbt, sizeof(struct mx28_nand_dbbt));
}
return 0;
}
static int mx28_nand_write_firmware(struct mx28_nand_fcb *fcb, int infd,
uint8_t *buf)
{
int ret;
off_t size;
uint32_t offset1, offset2;
size = lseek(infd, 0, SEEK_END);
lseek(infd, 0, SEEK_SET);
offset1 = fcb->firmware1_starting_sector * nand_writesize;
offset2 = fcb->firmware2_starting_sector * nand_writesize;
ret = read(infd, buf + offset1, size);
if (ret != size)
return -1;
memcpy(buf + offset2, buf + offset1, size);
return 0;
}
static void usage(void)
{
printf(
"Usage: mxsboot [ops] <type> <infile> <outfile>\n"
"Augment BootStream file with a proper header for i.MX28 boot\n"
"\n"
" <type> type of image:\n"
" \"nand\" for NAND image\n"
" \"sd\" for SD image\n"
" <infile> input file, the u-boot.sb bootstream\n"
" <outfile> output file, the bootable image\n"
"\n");
printf(
"For NAND boot, these options are accepted:\n"
" -w <size> NAND page size\n"
" -o <size> NAND OOB size\n"
" -e <size> NAND erase size\n"
"\n"
"For SD boot, these options are accepted:\n"
" -p <sector> Sector where the SGTL partition starts\n"
);
}
static int mx28_create_nand_image(int infd, int outfd)
{
struct mx28_nand_fcb *fcb;
struct mx28_nand_dbbt *dbbt;
int ret = -1;
uint8_t *buf;
int size;
ssize_t wr_size;
size = nand_writesize * 512 + 2 * MAX_BOOTSTREAM_SIZE;
buf = malloc(size);
if (!buf) {
printf("Can not allocate output buffer of %d bytes\n", size);
goto err0;
}
memset(buf, 0xff, size);
fcb = mx28_nand_get_fcb(MAX_BOOTSTREAM_SIZE);
if (!fcb) {
printf("Unable to compile FCB\n");
goto err1;
}
dbbt = mx28_nand_get_dbbt();
if (!dbbt) {
printf("Unable to compile DBBT\n");
goto err2;
}
ret = mx28_nand_write_fcb(fcb, buf);
if (ret) {
printf("Unable to write FCB to buffer\n");
goto err3;
}
ret = mx28_nand_write_dbbt(dbbt, buf);
if (ret) {
printf("Unable to write DBBT to buffer\n");
goto err3;
}
ret = mx28_nand_write_firmware(fcb, infd, buf);
if (ret) {
printf("Unable to write firmware to buffer\n");
goto err3;
}
wr_size = write(outfd, buf, size);
if (wr_size != size) {
ret = -1;
goto err3;
}
ret = 0;
err3:
free(dbbt);
err2:
free(fcb);
err1:
free(buf);
err0:
return ret;
}
static int mx28_create_sd_image(int infd, int outfd)
{
int ret = -1;
uint32_t *buf;
int size;
off_t fsize;
ssize_t wr_size;
struct mx28_sd_config_block *cb;
fsize = lseek(infd, 0, SEEK_END);
lseek(infd, 0, SEEK_SET);
size = fsize + 4 * 512;
buf = malloc(size);
if (!buf) {
printf("Can not allocate output buffer of %d bytes\n", size);
goto err0;
}
ret = read(infd, (uint8_t *)buf + 4 * 512, fsize);
if (ret != fsize) {
ret = -1;
goto err1;
}
cb = (struct mx28_sd_config_block *)buf;
cb->signature = cpu_to_le32(0x00112233);
cb->primary_boot_tag = cpu_to_le32(0x1);
cb->secondary_boot_tag = cpu_to_le32(0x1);
cb->num_copies = cpu_to_le32(1);
cb->drv_info[0].chip_num = cpu_to_le32(0x0);
cb->drv_info[0].drive_type = cpu_to_le32(0x0);
cb->drv_info[0].tag = cpu_to_le32(0x1);
cb->drv_info[0].first_sector_number = cpu_to_le32(sd_sector + 4);
cb->drv_info[0].sector_count = cpu_to_le32((size - 4) / 512);
wr_size = write(outfd, buf, size);
if (wr_size != size) {
ret = -1;
goto err1;
}
ret = 0;
err1:
free(buf);
err0:
return ret;
}
static int parse_ops(int argc, char **argv)
{
int i;
int tmp;
char *end;
enum param {
PARAM_WRITE,
PARAM_OOB,
PARAM_ERASE,
PARAM_PART,
PARAM_SD,
PARAM_NAND
};
int type;
if (argc < 4)
return -1;
for (i = 1; i < argc; i++) {
if (!strncmp(argv[i], "-w", 2))
type = PARAM_WRITE;
else if (!strncmp(argv[i], "-o", 2))
type = PARAM_OOB;
else if (!strncmp(argv[i], "-e", 2))
type = PARAM_ERASE;
else if (!strncmp(argv[i], "-p", 2))
type = PARAM_PART;
else /* SD/MMC */
break;
tmp = strtol(argv[++i], &end, 10);
if (tmp % 2)
return -1;
if (tmp <= 0)
return -1;
if (type == PARAM_WRITE)
nand_writesize = tmp;
if (type == PARAM_OOB)
nand_oobsize = tmp;
if (type == PARAM_ERASE)
nand_erasesize = tmp;
if (type == PARAM_PART)
sd_sector = tmp;
}
if (strcmp(argv[i], "sd") && strcmp(argv[i], "nand"))
return -1;
if (i + 3 != argc)
return -1;
return i;
}
int main(int argc, char **argv)
{
int infd, outfd;
int ret = 0;
int offset;
offset = parse_ops(argc, argv);
if (offset < 0) {
usage();
ret = 1;
goto err1;
}
infd = open(argv[offset + 1], O_RDONLY);
if (infd < 0) {
printf("Input BootStream file can not be opened\n");
ret = 2;
goto err1;
}
outfd = open(argv[offset + 2], O_CREAT | O_TRUNC | O_WRONLY,
S_IRUSR | S_IWUSR);
if (outfd < 0) {
printf("Output file can not be created\n");
ret = 3;
goto err2;
}
if (!strcmp(argv[offset], "sd"))
ret = mx28_create_sd_image(infd, outfd);
else if (!strcmp(argv[offset], "nand"))
ret = mx28_create_nand_image(infd, outfd);
close(outfd);
err2:
close(infd);
err1:
return ret;
}