blob: d1cbced28fc3c11b2e64bbc2e6de0d9f6a955259 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* Image manipulator for Marvell SoCs
* supports Kirkwood, Dove, Armada 370, Armada XP, Armada 375, Armada 38x and
* Armada 39x
*
* (C) Copyright 2013 Thomas Petazzoni
* <thomas.petazzoni@free-electrons.com>
*
* (C) Copyright 2022 Pali Rohár <pali@kernel.org>
*/
#define OPENSSL_API_COMPAT 0x10101000L
#include "imagetool.h"
#include <limits.h>
#include <image.h>
#include <stdarg.h>
#include <stdint.h>
#include "kwbimage.h"
#include <openssl/bn.h>
#include <openssl/rsa.h>
#include <openssl/pem.h>
#include <openssl/err.h>
#include <openssl/evp.h>
#if OPENSSL_VERSION_NUMBER < 0x10100000L || \
(defined(LIBRESSL_VERSION_NUMBER) && LIBRESSL_VERSION_NUMBER < 0x2070000fL)
static void RSA_get0_key(const RSA *r,
const BIGNUM **n, const BIGNUM **e, const BIGNUM **d)
{
if (n != NULL)
*n = r->n;
if (e != NULL)
*e = r->e;
if (d != NULL)
*d = r->d;
}
#elif !defined(LIBRESSL_VERSION_NUMBER)
void EVP_MD_CTX_cleanup(EVP_MD_CTX *ctx)
{
EVP_MD_CTX_reset(ctx);
}
#endif
/* fls - find last (most-significant) bit set in 4-bit integer */
static inline int fls4(int num)
{
if (num & 0x8)
return 4;
else if (num & 0x4)
return 3;
else if (num & 0x2)
return 2;
else if (num & 0x1)
return 1;
else
return 0;
}
static struct image_cfg_element *image_cfg;
static int cfgn;
static int verbose_mode;
struct boot_mode {
unsigned int id;
const char *name;
};
/*
* SHA2-256 hash
*/
struct hash_v1 {
uint8_t hash[32];
};
struct boot_mode boot_modes[] = {
{ IBR_HDR_I2C_ID, "i2c" },
{ IBR_HDR_SPI_ID, "spi" },
{ IBR_HDR_NAND_ID, "nand" },
{ IBR_HDR_SATA_ID, "sata" },
{ IBR_HDR_PEX_ID, "pex" },
{ IBR_HDR_UART_ID, "uart" },
{ IBR_HDR_SDIO_ID, "sdio" },
{},
};
struct nand_ecc_mode {
unsigned int id;
const char *name;
};
struct nand_ecc_mode nand_ecc_modes[] = {
{ IBR_HDR_ECC_DEFAULT, "default" },
{ IBR_HDR_ECC_FORCED_HAMMING, "hamming" },
{ IBR_HDR_ECC_FORCED_RS, "rs" },
{ IBR_HDR_ECC_DISABLED, "disabled" },
{},
};
/* Used to identify an undefined execution or destination address */
#define ADDR_INVALID ((uint32_t)-1)
#define BINARY_MAX_ARGS 255
/* In-memory representation of a line of the configuration file */
enum image_cfg_type {
IMAGE_CFG_VERSION = 0x1,
IMAGE_CFG_BOOT_FROM,
IMAGE_CFG_DEST_ADDR,
IMAGE_CFG_EXEC_ADDR,
IMAGE_CFG_NAND_BLKSZ,
IMAGE_CFG_NAND_BADBLK_LOCATION,
IMAGE_CFG_NAND_ECC_MODE,
IMAGE_CFG_NAND_PAGESZ,
IMAGE_CFG_SATA_BLKSZ,
IMAGE_CFG_CPU,
IMAGE_CFG_BINARY,
IMAGE_CFG_DATA,
IMAGE_CFG_DATA_DELAY,
IMAGE_CFG_BAUDRATE,
IMAGE_CFG_UART_PORT,
IMAGE_CFG_UART_MPP,
IMAGE_CFG_DEBUG,
IMAGE_CFG_KAK,
IMAGE_CFG_CSK,
IMAGE_CFG_CSK_INDEX,
IMAGE_CFG_JTAG_DELAY,
IMAGE_CFG_BOX_ID,
IMAGE_CFG_FLASH_ID,
IMAGE_CFG_SEC_COMMON_IMG,
IMAGE_CFG_SEC_SPECIALIZED_IMG,
IMAGE_CFG_SEC_BOOT_DEV,
IMAGE_CFG_SEC_FUSE_DUMP,
IMAGE_CFG_COUNT
} type;
static const char * const id_strs[] = {
[IMAGE_CFG_VERSION] = "VERSION",
[IMAGE_CFG_BOOT_FROM] = "BOOT_FROM",
[IMAGE_CFG_DEST_ADDR] = "DEST_ADDR",
[IMAGE_CFG_EXEC_ADDR] = "EXEC_ADDR",
[IMAGE_CFG_NAND_BLKSZ] = "NAND_BLKSZ",
[IMAGE_CFG_NAND_BADBLK_LOCATION] = "NAND_BADBLK_LOCATION",
[IMAGE_CFG_NAND_ECC_MODE] = "NAND_ECC_MODE",
[IMAGE_CFG_NAND_PAGESZ] = "NAND_PAGE_SIZE",
[IMAGE_CFG_SATA_BLKSZ] = "SATA_BLKSZ",
[IMAGE_CFG_CPU] = "CPU",
[IMAGE_CFG_BINARY] = "BINARY",
[IMAGE_CFG_DATA] = "DATA",
[IMAGE_CFG_DATA_DELAY] = "DATA_DELAY",
[IMAGE_CFG_BAUDRATE] = "BAUDRATE",
[IMAGE_CFG_UART_PORT] = "UART_PORT",
[IMAGE_CFG_UART_MPP] = "UART_MPP",
[IMAGE_CFG_DEBUG] = "DEBUG",
[IMAGE_CFG_KAK] = "KAK",
[IMAGE_CFG_CSK] = "CSK",
[IMAGE_CFG_CSK_INDEX] = "CSK_INDEX",
[IMAGE_CFG_JTAG_DELAY] = "JTAG_DELAY",
[IMAGE_CFG_BOX_ID] = "BOX_ID",
[IMAGE_CFG_FLASH_ID] = "FLASH_ID",
[IMAGE_CFG_SEC_COMMON_IMG] = "SEC_COMMON_IMG",
[IMAGE_CFG_SEC_SPECIALIZED_IMG] = "SEC_SPECIALIZED_IMG",
[IMAGE_CFG_SEC_BOOT_DEV] = "SEC_BOOT_DEV",
[IMAGE_CFG_SEC_FUSE_DUMP] = "SEC_FUSE_DUMP"
};
struct image_cfg_element {
enum image_cfg_type type;
union {
unsigned int version;
unsigned int cpu_sheeva;
unsigned int bootfrom;
struct {
const char *file;
unsigned int loadaddr;
unsigned int args[BINARY_MAX_ARGS];
unsigned int nargs;
} binary;
unsigned int dstaddr;
unsigned int execaddr;
unsigned int nandblksz;
unsigned int nandbadblklocation;
unsigned int nandeccmode;
unsigned int nandpagesz;
unsigned int satablksz;
struct ext_hdr_v0_reg regdata;
unsigned int regdata_delay;
unsigned int baudrate;
unsigned int uart_port;
unsigned int uart_mpp;
unsigned int debug;
const char *key_name;
int csk_idx;
uint8_t jtag_delay;
uint32_t boxid;
uint32_t flashid;
bool sec_specialized_img;
unsigned int sec_boot_dev;
const char *name;
};
};
#define IMAGE_CFG_ELEMENT_MAX 256
/*
* Utility functions to manipulate boot mode and ecc modes (convert
* them back and forth between description strings and the
* corresponding numerical identifiers).
*/
static const char *image_boot_mode_name(unsigned int id)
{
int i;
for (i = 0; boot_modes[i].name; i++)
if (boot_modes[i].id == id)
return boot_modes[i].name;
return NULL;
}
static int image_boot_mode_id(const char *boot_mode_name)
{
int i;
for (i = 0; boot_modes[i].name; i++)
if (!strcmp(boot_modes[i].name, boot_mode_name))
return boot_modes[i].id;
return -1;
}
static const char *image_nand_ecc_mode_name(unsigned int id)
{
int i;
for (i = 0; nand_ecc_modes[i].name; i++)
if (nand_ecc_modes[i].id == id)
return nand_ecc_modes[i].name;
return NULL;
}
static int image_nand_ecc_mode_id(const char *nand_ecc_mode_name)
{
int i;
for (i = 0; nand_ecc_modes[i].name; i++)
if (!strcmp(nand_ecc_modes[i].name, nand_ecc_mode_name))
return nand_ecc_modes[i].id;
return -1;
}
static struct image_cfg_element *
image_find_option(unsigned int optiontype)
{
int i;
for (i = 0; i < cfgn; i++) {
if (image_cfg[i].type == optiontype)
return &image_cfg[i];
}
return NULL;
}
static unsigned int
image_count_options(unsigned int optiontype)
{
int i;
unsigned int count = 0;
for (i = 0; i < cfgn; i++)
if (image_cfg[i].type == optiontype)
count++;
return count;
}
static int image_get_csk_index(void)
{
struct image_cfg_element *e;
e = image_find_option(IMAGE_CFG_CSK_INDEX);
if (!e)
return -1;
return e->csk_idx;
}
static bool image_get_spezialized_img(void)
{
struct image_cfg_element *e;
e = image_find_option(IMAGE_CFG_SEC_SPECIALIZED_IMG);
if (!e)
return false;
return e->sec_specialized_img;
}
static int image_get_bootfrom(void)
{
struct image_cfg_element *e;
e = image_find_option(IMAGE_CFG_BOOT_FROM);
if (!e)
/* fallback to SPI if no BOOT_FROM is not provided */
return IBR_HDR_SPI_ID;
return e->bootfrom;
}
static int image_is_cpu_sheeva(void)
{
struct image_cfg_element *e;
e = image_find_option(IMAGE_CFG_CPU);
if (!e)
return 0;
return e->cpu_sheeva;
}
/*
* Compute a 8-bit checksum of a memory area. This algorithm follows
* the requirements of the Marvell SoC BootROM specifications.
*/
static uint8_t image_checksum8(void *start, uint32_t len)
{
uint8_t csum = 0;
uint8_t *p = start;
/* check len and return zero checksum if invalid */
if (!len)
return 0;
do {
csum += *p;
p++;
} while (--len);
return csum;
}
/*
* Verify checksum over a complete header that includes the checksum field.
* Return 1 when OK, otherwise 0.
*/
static int main_hdr_checksum_ok(void *hdr)
{
/* Offsets of checksum in v0 and v1 headers are the same */
struct main_hdr_v0 *main_hdr = (struct main_hdr_v0 *)hdr;
uint8_t checksum;
checksum = image_checksum8(hdr, kwbheader_size_for_csum(hdr));
/* Calculated checksum includes the header checksum field. Compensate
* for that.
*/
checksum -= main_hdr->checksum;
return checksum == main_hdr->checksum;
}
static uint32_t image_checksum32(void *start, uint32_t len)
{
uint32_t csum = 0;
uint32_t *p = start;
/* check len and return zero checksum if invalid */
if (!len)
return 0;
if (len % sizeof(uint32_t)) {
fprintf(stderr, "Length %d is not in multiple of %zu\n",
len, sizeof(uint32_t));
return 0;
}
do {
csum += *p;
p++;
len -= sizeof(uint32_t);
} while (len > 0);
return csum;
}
static unsigned int options_to_baudrate(uint8_t options)
{
switch (options & 0x7) {
case MAIN_HDR_V1_OPT_BAUD_2400:
return 2400;
case MAIN_HDR_V1_OPT_BAUD_4800:
return 4800;
case MAIN_HDR_V1_OPT_BAUD_9600:
return 9600;
case MAIN_HDR_V1_OPT_BAUD_19200:
return 19200;
case MAIN_HDR_V1_OPT_BAUD_38400:
return 38400;
case MAIN_HDR_V1_OPT_BAUD_57600:
return 57600;
case MAIN_HDR_V1_OPT_BAUD_115200:
return 115200;
case MAIN_HDR_V1_OPT_BAUD_DEFAULT:
default:
return 0;
}
}
static uint8_t baudrate_to_option(unsigned int baudrate)
{
switch (baudrate) {
case 2400:
return MAIN_HDR_V1_OPT_BAUD_2400;
case 4800:
return MAIN_HDR_V1_OPT_BAUD_4800;
case 9600:
return MAIN_HDR_V1_OPT_BAUD_9600;
case 19200:
return MAIN_HDR_V1_OPT_BAUD_19200;
case 38400:
return MAIN_HDR_V1_OPT_BAUD_38400;
case 57600:
return MAIN_HDR_V1_OPT_BAUD_57600;
case 115200:
return MAIN_HDR_V1_OPT_BAUD_115200;
default:
return MAIN_HDR_V1_OPT_BAUD_DEFAULT;
}
}
static void kwb_msg(const char *fmt, ...)
{
if (verbose_mode) {
va_list ap;
va_start(ap, fmt);
vfprintf(stdout, fmt, ap);
va_end(ap);
}
}
static int openssl_err(const char *msg)
{
unsigned long ssl_err = ERR_get_error();
fprintf(stderr, "%s", msg);
fprintf(stderr, ": %s\n",
ERR_error_string(ssl_err, 0));
return -1;
}
static int kwb_load_rsa_key(const char *keydir, const char *name, RSA **p_rsa)
{
char path[PATH_MAX];
RSA *rsa;
FILE *f;
if (!keydir)
keydir = ".";
snprintf(path, sizeof(path), "%s/%s.key", keydir, name);
f = fopen(path, "r");
if (!f) {
fprintf(stderr, "Couldn't open RSA private key: '%s': %s\n",
path, strerror(errno));
return -ENOENT;
}
rsa = PEM_read_RSAPrivateKey(f, 0, NULL, "");
if (!rsa) {
openssl_err("Failure reading private key");
fclose(f);
return -EPROTO;
}
fclose(f);
*p_rsa = rsa;
return 0;
}
static int kwb_load_cfg_key(struct image_tool_params *params,
unsigned int cfg_option, const char *key_name,
RSA **p_key)
{
struct image_cfg_element *e_key;
RSA *key;
int res;
*p_key = NULL;
e_key = image_find_option(cfg_option);
if (!e_key) {
fprintf(stderr, "%s not configured\n", key_name);
return -ENOENT;
}
res = kwb_load_rsa_key(params->keydir, e_key->key_name, &key);
if (res < 0) {
fprintf(stderr, "Failed to load %s\n", key_name);
return -ENOENT;
}
*p_key = key;
return 0;
}
static int kwb_load_kak(struct image_tool_params *params, RSA **p_kak)
{
return kwb_load_cfg_key(params, IMAGE_CFG_KAK, "KAK", p_kak);
}
static int kwb_load_csk(struct image_tool_params *params, RSA **p_csk)
{
return kwb_load_cfg_key(params, IMAGE_CFG_CSK, "CSK", p_csk);
}
static int kwb_compute_pubkey_hash(struct pubkey_der_v1 *pk,
struct hash_v1 *hash)
{
EVP_MD_CTX *ctx;
unsigned int key_size;
unsigned int hash_size;
int ret = 0;
if (!pk || !hash || pk->key[0] != 0x30 || pk->key[1] != 0x82)
return -EINVAL;
key_size = (pk->key[2] << 8) + pk->key[3] + 4;
ctx = EVP_MD_CTX_create();
if (!ctx)
return openssl_err("EVP context creation failed");
EVP_MD_CTX_init(ctx);
if (!EVP_DigestInit(ctx, EVP_sha256())) {
ret = openssl_err("Digest setup failed");
goto hash_err_ctx;
}
if (!EVP_DigestUpdate(ctx, pk->key, key_size)) {
ret = openssl_err("Hashing data failed");
goto hash_err_ctx;
}
if (!EVP_DigestFinal(ctx, hash->hash, &hash_size)) {
ret = openssl_err("Could not obtain hash");
goto hash_err_ctx;
}
EVP_MD_CTX_cleanup(ctx);
hash_err_ctx:
EVP_MD_CTX_destroy(ctx);
return ret;
}
static int kwb_import_pubkey(RSA **key, struct pubkey_der_v1 *src, char *keyname)
{
RSA *rsa;
const unsigned char *ptr;
if (!key || !src)
goto fail;
ptr = src->key;
rsa = d2i_RSAPublicKey(key, &ptr, sizeof(src->key));
if (!rsa) {
openssl_err("error decoding public key");
goto fail;
}
return 0;
fail:
fprintf(stderr, "Failed to decode %s pubkey\n", keyname);
return -EINVAL;
}
static int kwb_export_pubkey(RSA *key, struct pubkey_der_v1 *dst, FILE *hashf,
char *keyname)
{
int size_exp, size_mod, size_seq;
const BIGNUM *key_e, *key_n;
uint8_t *cur;
char *errmsg = "Failed to encode %s\n";
RSA_get0_key(key, NULL, &key_e, NULL);
RSA_get0_key(key, &key_n, NULL, NULL);
if (!key || !key_e || !key_n || !dst) {
fprintf(stderr, "export pk failed: (%p, %p, %p, %p)",
key, key_e, key_n, dst);
fprintf(stderr, errmsg, keyname);
return -EINVAL;
}
/*
* According to the specs, the key should be PKCS#1 DER encoded.
* But unfortunately the really required encoding seems to be different;
* it violates DER...! (But it still conformes to BER.)
* (Length always in long form w/ 2 byte length code; no leading zero
* when MSB of first byte is set...)
* So we cannot use the encoding func provided by OpenSSL and have to
* do the encoding manually.
*/
size_exp = BN_num_bytes(key_e);
size_mod = BN_num_bytes(key_n);
size_seq = 4 + size_mod + 4 + size_exp;
if (size_mod > 256) {
fprintf(stderr, "export pk failed: wrong mod size: %d\n",
size_mod);
fprintf(stderr, errmsg, keyname);
return -EINVAL;
}
if (4 + size_seq > sizeof(dst->key)) {
fprintf(stderr, "export pk failed: seq too large (%d, %zu)\n",
4 + size_seq, sizeof(dst->key));
fprintf(stderr, errmsg, keyname);
return -ENOBUFS;
}
cur = dst->key;
/* PKCS#1 (RFC3447) RSAPublicKey structure */
*cur++ = 0x30; /* SEQUENCE */
*cur++ = 0x82;
*cur++ = (size_seq >> 8) & 0xFF;
*cur++ = size_seq & 0xFF;
/* Modulus */
*cur++ = 0x02; /* INTEGER */
*cur++ = 0x82;
*cur++ = (size_mod >> 8) & 0xFF;
*cur++ = size_mod & 0xFF;
BN_bn2bin(key_n, cur);
cur += size_mod;
/* Exponent */
*cur++ = 0x02; /* INTEGER */
*cur++ = 0x82;
*cur++ = (size_exp >> 8) & 0xFF;
*cur++ = size_exp & 0xFF;
BN_bn2bin(key_e, cur);
if (hashf) {
struct hash_v1 pk_hash;
int i;
int ret = 0;
ret = kwb_compute_pubkey_hash(dst, &pk_hash);
if (ret < 0) {
fprintf(stderr, errmsg, keyname);
return ret;
}
fprintf(hashf, "SHA256 = ");
for (i = 0 ; i < sizeof(pk_hash.hash); ++i)
fprintf(hashf, "%02X", pk_hash.hash[i]);
fprintf(hashf, "\n");
}
return 0;
}
static int kwb_sign(RSA *key, void *data, int datasz, struct sig_v1 *sig,
char *signame)
{
EVP_PKEY *evp_key;
EVP_MD_CTX *ctx;
unsigned int sig_size;
int size;
int ret = 0;
evp_key = EVP_PKEY_new();
if (!evp_key)
return openssl_err("EVP_PKEY object creation failed");
if (!EVP_PKEY_set1_RSA(evp_key, key)) {
ret = openssl_err("EVP key setup failed");
goto err_key;
}
size = EVP_PKEY_size(evp_key);
if (size > sizeof(sig->sig)) {
fprintf(stderr, "Buffer to small for signature (%d bytes)\n",
size);
ret = -ENOBUFS;
goto err_key;
}
ctx = EVP_MD_CTX_create();
if (!ctx) {
ret = openssl_err("EVP context creation failed");
goto err_key;
}
EVP_MD_CTX_init(ctx);
if (!EVP_SignInit(ctx, EVP_sha256())) {
ret = openssl_err("Signer setup failed");
goto err_ctx;
}
if (!EVP_SignUpdate(ctx, data, datasz)) {
ret = openssl_err("Signing data failed");
goto err_ctx;
}
if (!EVP_SignFinal(ctx, sig->sig, &sig_size, evp_key)) {
ret = openssl_err("Could not obtain signature");
goto err_ctx;
}
EVP_MD_CTX_cleanup(ctx);
EVP_MD_CTX_destroy(ctx);
EVP_PKEY_free(evp_key);
return 0;
err_ctx:
EVP_MD_CTX_destroy(ctx);
err_key:
EVP_PKEY_free(evp_key);
fprintf(stderr, "Failed to create %s signature\n", signame);
return ret;
}
static int kwb_verify(RSA *key, void *data, int datasz, struct sig_v1 *sig,
char *signame)
{
EVP_PKEY *evp_key;
EVP_MD_CTX *ctx;
int size;
int ret = 0;
evp_key = EVP_PKEY_new();
if (!evp_key)
return openssl_err("EVP_PKEY object creation failed");
if (!EVP_PKEY_set1_RSA(evp_key, key)) {
ret = openssl_err("EVP key setup failed");
goto err_key;
}
size = EVP_PKEY_size(evp_key);
if (size > sizeof(sig->sig)) {
fprintf(stderr, "Invalid signature size (%d bytes)\n",
size);
ret = -EINVAL;
goto err_key;
}
ctx = EVP_MD_CTX_create();
if (!ctx) {
ret = openssl_err("EVP context creation failed");
goto err_key;
}
EVP_MD_CTX_init(ctx);
if (!EVP_VerifyInit(ctx, EVP_sha256())) {
ret = openssl_err("Verifier setup failed");
goto err_ctx;
}
if (!EVP_VerifyUpdate(ctx, data, datasz)) {
ret = openssl_err("Hashing data failed");
goto err_ctx;
}
if (EVP_VerifyFinal(ctx, sig->sig, sizeof(sig->sig), evp_key) != 1) {
ret = openssl_err("Could not verify signature");
goto err_ctx;
}
EVP_MD_CTX_cleanup(ctx);
EVP_MD_CTX_destroy(ctx);
EVP_PKEY_free(evp_key);
return 0;
err_ctx:
EVP_MD_CTX_destroy(ctx);
err_key:
EVP_PKEY_free(evp_key);
fprintf(stderr, "Failed to verify %s signature\n", signame);
return ret;
}
static int kwb_sign_and_verify(RSA *key, void *data, int datasz,
struct sig_v1 *sig, char *signame)
{
if (kwb_sign(key, data, datasz, sig, signame) < 0)
return -1;
if (kwb_verify(key, data, datasz, sig, signame) < 0)
return -1;
return 0;
}
static int kwb_dump_fuse_cmds_38x(FILE *out, struct secure_hdr_v1 *sec_hdr)
{
struct hash_v1 kak_pub_hash;
struct image_cfg_element *e;
unsigned int fuse_line;
int i, idx;
uint8_t *ptr;
uint32_t val;
int ret = 0;
if (!out || !sec_hdr)
return -EINVAL;
ret = kwb_compute_pubkey_hash(&sec_hdr->kak, &kak_pub_hash);
if (ret < 0)
goto done;
fprintf(out, "# burn KAK pub key hash\n");
ptr = kak_pub_hash.hash;
for (fuse_line = 26; fuse_line <= 30; ++fuse_line) {
fprintf(out, "fuse prog -y %u 0 ", fuse_line);
for (i = 4; i-- > 0;)
fprintf(out, "%02hx", (ushort)ptr[i]);
ptr += 4;
fprintf(out, " 00");
if (fuse_line < 30) {
for (i = 3; i-- > 0;)
fprintf(out, "%02hx", (ushort)ptr[i]);
ptr += 3;
} else {
fprintf(out, "000000");
}
fprintf(out, " 1\n");
}
fprintf(out, "# burn CSK selection\n");
idx = image_get_csk_index();
if (idx < 0 || idx > 15) {
ret = -EINVAL;
goto done;
}
if (idx > 0) {
for (fuse_line = 31; fuse_line < 31 + idx; ++fuse_line)
fprintf(out, "fuse prog -y %u 0 00000001 00000000 1\n",
fuse_line);
} else {
fprintf(out, "# CSK index is 0; no mods needed\n");
}
e = image_find_option(IMAGE_CFG_BOX_ID);
if (e) {
fprintf(out, "# set box ID\n");
fprintf(out, "fuse prog -y 48 0 %08x 00000000 1\n", e->boxid);
}
e = image_find_option(IMAGE_CFG_FLASH_ID);
if (e) {
fprintf(out, "# set flash ID\n");
fprintf(out, "fuse prog -y 47 0 %08x 00000000 1\n", e->flashid);
}
fprintf(out, "# enable secure mode ");
fprintf(out, "(must be the last fuse line written)\n");
val = 1;
e = image_find_option(IMAGE_CFG_SEC_BOOT_DEV);
if (!e) {
fprintf(stderr, "ERROR: secured mode boot device not given\n");
ret = -EINVAL;
goto done;
}
if (e->sec_boot_dev > 0xff) {
fprintf(stderr, "ERROR: secured mode boot device invalid\n");
ret = -EINVAL;
goto done;
}
val |= (e->sec_boot_dev << 8);
fprintf(out, "fuse prog -y 24 0 %08x 0103e0a9 1\n", val);
fprintf(out, "# lock (unused) fuse lines (0-23)s\n");
for (fuse_line = 0; fuse_line < 24; ++fuse_line)
fprintf(out, "fuse prog -y %u 2 1\n", fuse_line);
fprintf(out, "# OK, that's all :-)\n");
done:
return ret;
}
static int kwb_dump_fuse_cmds(struct secure_hdr_v1 *sec_hdr)
{
int ret = 0;
struct image_cfg_element *e;
e = image_find_option(IMAGE_CFG_SEC_FUSE_DUMP);
if (!e)
return 0;
if (!strcmp(e->name, "a38x")) {
FILE *out = fopen("kwb_fuses_a38x.txt", "w+");
if (!out) {
fprintf(stderr, "Couldn't open eFuse settings: '%s': %s\n",
"kwb_fuses_a38x.txt", strerror(errno));
return -ENOENT;
}
kwb_dump_fuse_cmds_38x(out, sec_hdr);
fclose(out);
goto done;
}
ret = -ENOSYS;
done:
return ret;
}
static int image_fill_xip_header(void *image, struct image_tool_params *params)
{
struct main_hdr_v1 *main_hdr = image; /* kwbimage v0 and v1 have same XIP members */
int version = kwbimage_version(image);
uint32_t srcaddr = le32_to_cpu(main_hdr->srcaddr);
uint32_t startaddr = 0;
if (main_hdr->blockid != IBR_HDR_SPI_ID) {
fprintf(stderr, "XIP is supported only for SPI images\n");
return 0;
}
if (version == 0 &&
params->addr >= 0xE8000000 && params->addr < 0xEFFFFFFF &&
params->ep >= 0xE8000000 && params->ep < 0xEFFFFFFF) {
/* Load and Execute address is in SPI address space (kwbimage v0) */
startaddr = 0xE8000000;
} else if (version != 0 &&
params->addr >= 0xD4000000 && params->addr < 0xD7FFFFFF &&
params->ep >= 0xD4000000 && params->ep < 0xD7FFFFFF) {
/* Load and Execute address is in SPI address space (kwbimage v1) */
startaddr = 0xD4000000;
} else if (version != 0 &&
params->addr >= 0xD8000000 && params->addr < 0xDFFFFFFF &&
params->ep >= 0xD8000000 && params->ep < 0xDFFFFFFF) {
/* Load and Execute address is in Device bus space (kwbimage v1) */
startaddr = 0xD8000000;
} else if (params->addr != 0x0) {
/* Load address is non-zero */
if (version == 0)
fprintf(stderr, "XIP Load Address or XIP Entry Point is not in SPI address space\n");
else
fprintf(stderr, "XIP Load Address or XIP Entry Point is not in SPI nor in Device bus address space\n");
return 0;
}
/*
* For XIP destaddr must be set to 0xFFFFFFFF and
* execaddr relative to the start of XIP memory address space.
*/
main_hdr->destaddr = cpu_to_le32(0xFFFFFFFF);
if (startaddr == 0) {
/*
* mkimage's --load-address 0x0 means that binary is Position
* Independent and in this case mkimage's --entry-point address
* is relative offset from beginning of the data part of image.
*/
main_hdr->execaddr = cpu_to_le32(srcaddr + params->ep);
} else {
/* The lowest possible load address is after the header at srcaddr. */
if (params->addr - startaddr < srcaddr) {
fprintf(stderr,
"Invalid XIP Load Address 0x%08x.\n"
"The lowest address for this configuration is 0x%08x.\n",
params->addr, (unsigned)(startaddr + srcaddr));
return 0;
}
main_hdr->srcaddr = cpu_to_le32(params->addr - startaddr);
main_hdr->execaddr = cpu_to_le32(params->ep - startaddr);
}
return 1;
}
static unsigned int image_get_satablksz(void)
{
struct image_cfg_element *e;
e = image_find_option(IMAGE_CFG_SATA_BLKSZ);
return e ? e->satablksz : 512;
}
static size_t image_headersz_align(size_t headersz, uint8_t blockid)
{
/*
* Header needs to be 4-byte aligned, which is already ensured by code
* above. Moreover UART images must have header aligned to 128 bytes
* (xmodem block size), NAND images to 256 bytes (ECC calculation),
* SDIO images to 512 bytes (SDHC/SDXC fixed block size) and SATA
* images to specified storage block size (default 512 bytes).
* Note that SPI images do not have to have header size aligned
* to 256 bytes because it is possible to read from SPI storage from
* any offset (read offset does not have to be aligned to block size).
*/
if (blockid == IBR_HDR_UART_ID)
return ALIGN(headersz, 128);
else if (blockid == IBR_HDR_NAND_ID)
return ALIGN(headersz, 256);
else if (blockid == IBR_HDR_SDIO_ID)
return ALIGN(headersz, 512);
else if (blockid == IBR_HDR_SATA_ID)
return ALIGN(headersz, image_get_satablksz());
else
return headersz;
}
static size_t image_headersz_v0(int *hasext)
{
size_t headersz;
headersz = sizeof(struct main_hdr_v0);
if (image_count_options(IMAGE_CFG_DATA) > 0) {
headersz += sizeof(struct ext_hdr_v0);
if (hasext)
*hasext = 1;
}
return headersz;
}
static void *image_create_v0(size_t *dataoff, struct image_tool_params *params,
int payloadsz)
{
struct image_cfg_element *e;
size_t headersz;
struct main_hdr_v0 *main_hdr;
uint8_t *image;
int has_ext = 0;
/*
* Calculate the size of the header and the offset of the
* payload
*/
headersz = image_headersz_v0(&has_ext);
*dataoff = image_headersz_align(headersz, image_get_bootfrom());
image = malloc(headersz);
if (!image) {
fprintf(stderr, "Cannot allocate memory for image\n");
return NULL;
}
memset(image, 0, headersz);
main_hdr = (struct main_hdr_v0 *)image;
/* Fill in the main header */
main_hdr->blocksize =
cpu_to_le32(payloadsz);
main_hdr->srcaddr = cpu_to_le32(*dataoff);
main_hdr->ext = has_ext;
main_hdr->version = 0;
main_hdr->destaddr = cpu_to_le32(params->addr);
main_hdr->execaddr = cpu_to_le32(params->ep);
main_hdr->blockid = image_get_bootfrom();
e = image_find_option(IMAGE_CFG_NAND_ECC_MODE);
if (e)
main_hdr->nandeccmode = e->nandeccmode;
e = image_find_option(IMAGE_CFG_NAND_BLKSZ);
if (e)
main_hdr->nandblocksize = e->nandblksz / (64 * 1024);
e = image_find_option(IMAGE_CFG_NAND_PAGESZ);
if (e)
main_hdr->nandpagesize = cpu_to_le16(e->nandpagesz);
e = image_find_option(IMAGE_CFG_NAND_BADBLK_LOCATION);
if (e)
main_hdr->nandbadblklocation = e->nandbadblklocation;
/* For SATA srcaddr is specified in number of sectors. */
if (main_hdr->blockid == IBR_HDR_SATA_ID) {
params->bl_len = image_get_satablksz();
main_hdr->srcaddr = cpu_to_le32(le32_to_cpu(main_hdr->srcaddr) / params->bl_len);
}
/* For PCIe srcaddr is not used and must be set to 0xFFFFFFFF. */
if (main_hdr->blockid == IBR_HDR_PEX_ID)
main_hdr->srcaddr = cpu_to_le32(0xFFFFFFFF);
if (params->xflag) {
if (!image_fill_xip_header(main_hdr, params)) {
free(image);
return NULL;
}
*dataoff = le32_to_cpu(main_hdr->srcaddr);
}
/* Generate the ext header */
if (has_ext) {
struct ext_hdr_v0 *ext_hdr;
int cfgi, datai;
ext_hdr = (struct ext_hdr_v0 *)
(image + sizeof(struct main_hdr_v0));
ext_hdr->offset = cpu_to_le32(0x40);
for (cfgi = 0, datai = 0; cfgi < cfgn; cfgi++) {
e = &image_cfg[cfgi];
if (e->type != IMAGE_CFG_DATA)
continue;
ext_hdr->rcfg[datai].raddr =
cpu_to_le32(e->regdata.raddr);
ext_hdr->rcfg[datai].rdata =
cpu_to_le32(e->regdata.rdata);
datai++;
}
ext_hdr->checksum = image_checksum8(ext_hdr,
sizeof(struct ext_hdr_v0));
}
main_hdr->checksum = image_checksum8(image,
sizeof(struct main_hdr_v0));
return image;
}
static size_t image_headersz_v1(int *hasext)
{
struct image_cfg_element *e;
unsigned int count;
size_t headersz;
int cpu_sheeva;
struct stat s;
int cfgi;
int ret;
headersz = sizeof(struct main_hdr_v1);
if (image_get_csk_index() >= 0) {
headersz += sizeof(struct secure_hdr_v1);
if (hasext)
*hasext = 1;
}
cpu_sheeva = image_is_cpu_sheeva();
count = 0;
for (cfgi = 0; cfgi < cfgn; cfgi++) {
e = &image_cfg[cfgi];
if (e->type == IMAGE_CFG_DATA)
count++;
if (e->type == IMAGE_CFG_DATA_DELAY ||
(e->type == IMAGE_CFG_BINARY && count > 0)) {
headersz += sizeof(struct register_set_hdr_v1) + 8 * count + 4;
count = 0;
}
if (e->type != IMAGE_CFG_BINARY)
continue;
ret = stat(e->binary.file, &s);
if (ret < 0) {
char cwd[PATH_MAX];
char *dir = cwd;
memset(cwd, 0, sizeof(cwd));
if (!getcwd(cwd, sizeof(cwd))) {
dir = "current working directory";
perror("getcwd() failed");
}
fprintf(stderr,
"Didn't find the file '%s' in '%s' which is mandatory to generate the image\n"
"This file generally contains the DDR3 training code, and should be extracted from an existing bootable\n"
"image for your board. Use 'dumpimage -T kwbimage -p 1' to extract it from an existing image.\n",
e->binary.file, dir);
return 0;
}
headersz += sizeof(struct opt_hdr_v1) + sizeof(uint32_t) +
(e->binary.nargs) * sizeof(uint32_t);
if (e->binary.loadaddr) {
/*
* BootROM loads kwbimage header (in which the
* executable code is also stored) to address
* 0x40004000 or 0x40000000. Thus there is
* restriction for the load address of the N-th
* BINARY image.
*/
unsigned int base_addr, low_addr, high_addr;
base_addr = cpu_sheeva ? 0x40004000 : 0x40000000;
low_addr = base_addr + headersz;
high_addr = low_addr +
(BINARY_MAX_ARGS - e->binary.nargs) * sizeof(uint32_t);
if (cpu_sheeva && e->binary.loadaddr % 16) {
fprintf(stderr,
"Invalid LOAD_ADDRESS 0x%08x for BINARY %s with %d args.\n"
"Address for CPU SHEEVA must be 16-byte aligned.\n",
e->binary.loadaddr, e->binary.file, e->binary.nargs);
return 0;
}
if (e->binary.loadaddr % 4 || e->binary.loadaddr < low_addr ||
e->binary.loadaddr > high_addr) {
fprintf(stderr,
"Invalid LOAD_ADDRESS 0x%08x for BINARY %s with %d args.\n"
"Address must be 4-byte aligned and in range 0x%08x-0x%08x.\n",
e->binary.loadaddr, e->binary.file,
e->binary.nargs, low_addr, high_addr);
return 0;
}
headersz = e->binary.loadaddr - base_addr;
} else if (cpu_sheeva) {
headersz = ALIGN(headersz, 16);
} else {
headersz = ALIGN(headersz, 4);
}
headersz += ALIGN(s.st_size, 4) + sizeof(uint32_t);
if (hasext)
*hasext = 1;
}
if (count > 0)
headersz += sizeof(struct register_set_hdr_v1) + 8 * count + 4;
/*
* For all images except UART, headersz stored in header itself should
* contains header size without padding. For UART image BootROM rounds
* down headersz to multiply of 128 bytes. Therefore align UART headersz
* to multiply of 128 bytes to ensure that remaining UART header bytes
* are not ignored by BootROM.
*/
if (image_get_bootfrom() == IBR_HDR_UART_ID)
headersz = ALIGN(headersz, 128);
return headersz;
}
static int add_binary_header_v1(uint8_t **cur, uint8_t **next_ext,
struct image_cfg_element *binarye,
struct main_hdr_v1 *main_hdr)
{
struct opt_hdr_v1 *hdr = (struct opt_hdr_v1 *)*cur;
uint32_t base_addr;
uint32_t add_args;
uint32_t offset;
uint32_t *args;
size_t binhdrsz;
int cpu_sheeva;
struct stat s;
int argi;
FILE *bin;
int ret;
hdr->headertype = OPT_HDR_V1_BINARY_TYPE;
bin = fopen(binarye->binary.file, "r");
if (!bin) {
fprintf(stderr, "Cannot open binary file %s\n",
binarye->binary.file);
return -1;
}
if (fstat(fileno(bin), &s)) {
fprintf(stderr, "Cannot stat binary file %s\n",
binarye->binary.file);
goto err_close;
}
*cur += sizeof(struct opt_hdr_v1);
args = (uint32_t *)*cur;
*args = cpu_to_le32(binarye->binary.nargs);
args++;
for (argi = 0; argi < binarye->binary.nargs; argi++)
args[argi] = cpu_to_le32(binarye->binary.args[argi]);
*cur += (binarye->binary.nargs + 1) * sizeof(uint32_t);
/*
* ARM executable code inside the BIN header on platforms with Sheeva
* CPU (A370 and AXP) must always be aligned with the 128-bit boundary.
* In the case when this code is not position independent (e.g. ARM
* SPL), it must be placed at fixed load and execute address.
* This requirement can be met by inserting dummy arguments into
* BIN header, if needed.
*/
cpu_sheeva = image_is_cpu_sheeva();
base_addr = cpu_sheeva ? 0x40004000 : 0x40000000;
offset = *cur - (uint8_t *)main_hdr;
if (binarye->binary.loadaddr)
add_args = (binarye->binary.loadaddr - base_addr - offset) / sizeof(uint32_t);
else if (cpu_sheeva)
add_args = ((16 - offset % 16) % 16) / sizeof(uint32_t);
else
add_args = 0;
if (add_args) {
*(args - 1) = cpu_to_le32(binarye->binary.nargs + add_args);
*cur += add_args * sizeof(uint32_t);
}
ret = fread(*cur, s.st_size, 1, bin);
if (ret != 1) {
fprintf(stderr,
"Could not read binary image %s\n",
binarye->binary.file);
goto err_close;
}
fclose(bin);
*cur += ALIGN(s.st_size, 4);
*((uint32_t *)*cur) = 0x00000000;
**next_ext = 1;
*next_ext = *cur;
*cur += sizeof(uint32_t);
binhdrsz = sizeof(struct opt_hdr_v1) +
(binarye->binary.nargs + add_args + 2) * sizeof(uint32_t) +
ALIGN(s.st_size, 4);
hdr->headersz_lsb = cpu_to_le16(binhdrsz & 0xFFFF);
hdr->headersz_msb = (binhdrsz & 0xFFFF0000) >> 16;
return 0;
err_close:
fclose(bin);
return -1;
}
static int export_pub_kak_hash(RSA *kak, struct secure_hdr_v1 *secure_hdr)
{
FILE *hashf;
int res;
hashf = fopen("pub_kak_hash.txt", "w");
if (!hashf) {
fprintf(stderr, "Couldn't open hash file: '%s': %s\n",
"pub_kak_hash.txt", strerror(errno));
return 1;
}
res = kwb_export_pubkey(kak, &secure_hdr->kak, hashf, "KAK");
fclose(hashf);
return res < 0 ? 1 : 0;
}
static int kwb_sign_csk_with_kak(struct image_tool_params *params,
struct secure_hdr_v1 *secure_hdr, RSA *csk)
{
RSA *kak = NULL;
RSA *kak_pub = NULL;
int csk_idx = image_get_csk_index();
struct sig_v1 tmp_sig;
if (csk_idx < 0 || csk_idx > 15) {
fprintf(stderr, "Invalid CSK index %d\n", csk_idx);
return 1;
}
if (kwb_load_kak(params, &kak) < 0)
return 1;
if (export_pub_kak_hash(kak, secure_hdr))
return 1;
if (kwb_import_pubkey(&kak_pub, &secure_hdr->kak, "KAK") < 0)
return 1;
if (kwb_export_pubkey(csk, &secure_hdr->csk[csk_idx], NULL, "CSK") < 0)
return 1;
if (kwb_sign_and_verify(kak, &secure_hdr->csk,
sizeof(secure_hdr->csk) +
sizeof(secure_hdr->csksig),
&tmp_sig, "CSK") < 0)
return 1;
if (kwb_verify(kak_pub, &secure_hdr->csk,
sizeof(secure_hdr->csk) +
sizeof(secure_hdr->csksig),
&tmp_sig, "CSK (2)") < 0)
return 1;
secure_hdr->csksig = tmp_sig;
return 0;
}
static int add_secure_header_v1(struct image_tool_params *params, uint8_t *image_ptr,
size_t image_size, uint8_t *header_ptr, size_t headersz,
struct secure_hdr_v1 *secure_hdr)
{
struct image_cfg_element *e_jtagdelay;
struct image_cfg_element *e_boxid;
struct image_cfg_element *e_flashid;
RSA *csk = NULL;
struct sig_v1 tmp_sig;
bool specialized_img = image_get_spezialized_img();
kwb_msg("Create secure header content\n");
e_jtagdelay = image_find_option(IMAGE_CFG_JTAG_DELAY);
e_boxid = image_find_option(IMAGE_CFG_BOX_ID);
e_flashid = image_find_option(IMAGE_CFG_FLASH_ID);
if (kwb_load_csk(params, &csk) < 0)
return 1;
secure_hdr->headertype = OPT_HDR_V1_SECURE_TYPE;
secure_hdr->headersz_msb = 0;
secure_hdr->headersz_lsb = cpu_to_le16(sizeof(struct secure_hdr_v1));
if (e_jtagdelay)
secure_hdr->jtag_delay = e_jtagdelay->jtag_delay;
if (e_boxid && specialized_img)
secure_hdr->boxid = cpu_to_le32(e_boxid->boxid);
if (e_flashid && specialized_img)
secure_hdr->flashid = cpu_to_le32(e_flashid->flashid);
if (kwb_sign_csk_with_kak(params, secure_hdr, csk))
return 1;
if (kwb_sign_and_verify(csk, image_ptr, image_size - 4,
&secure_hdr->imgsig, "image") < 0)
return 1;
if (kwb_sign_and_verify(csk, header_ptr, headersz, &tmp_sig, "header") < 0)
return 1;
secure_hdr->hdrsig = tmp_sig;
kwb_dump_fuse_cmds(secure_hdr);
return 0;
}
static void finish_register_set_header_v1(uint8_t **cur, uint8_t **next_ext,
struct register_set_hdr_v1 *register_set_hdr,
int *datai, uint8_t delay)
{
int size = sizeof(struct register_set_hdr_v1) + 8 * (*datai) + 4;
register_set_hdr->headertype = OPT_HDR_V1_REGISTER_TYPE;
register_set_hdr->headersz_lsb = cpu_to_le16(size & 0xFFFF);
register_set_hdr->headersz_msb = size >> 16;
register_set_hdr->data[*datai].last_entry.delay = delay;
*cur += size;
**next_ext = 1;
*next_ext = &register_set_hdr->data[*datai].last_entry.next;
*datai = 0;
}
static void *image_create_v1(size_t *dataoff, struct image_tool_params *params,
uint8_t *ptr, int payloadsz)
{
struct image_cfg_element *e;
struct main_hdr_v1 *main_hdr;
struct register_set_hdr_v1 *register_set_hdr;
struct secure_hdr_v1 *secure_hdr = NULL;
size_t headersz;
uint8_t *image, *cur;
int hasext = 0;
uint8_t *next_ext = NULL;
int cfgi, datai;
uint8_t delay;
/*
* Calculate the size of the header and the offset of the
* payload
*/
headersz = image_headersz_v1(&hasext);
if (headersz == 0)
return NULL;
*dataoff = image_headersz_align(headersz, image_get_bootfrom());
image = malloc(headersz);
if (!image) {
fprintf(stderr, "Cannot allocate memory for image\n");
return NULL;
}
memset(image, 0, headersz);
main_hdr = (struct main_hdr_v1 *)image;
cur = image;
cur += sizeof(struct main_hdr_v1);
next_ext = &main_hdr->ext;
/* Fill the main header */
main_hdr->blocksize =
cpu_to_le32(payloadsz);
main_hdr->headersz_lsb = cpu_to_le16(headersz & 0xFFFF);
main_hdr->headersz_msb = (headersz & 0xFFFF0000) >> 16;
main_hdr->destaddr = cpu_to_le32(params->addr);
main_hdr->execaddr = cpu_to_le32(params->ep);
main_hdr->srcaddr = cpu_to_le32(*dataoff);
main_hdr->ext = hasext;
main_hdr->version = 1;
main_hdr->blockid = image_get_bootfrom();
e = image_find_option(IMAGE_CFG_NAND_BLKSZ);
if (e)
main_hdr->nandblocksize = e->nandblksz / (64 * 1024);
e = image_find_option(IMAGE_CFG_NAND_PAGESZ);
if (e)
main_hdr->nandpagesize = cpu_to_le16(e->nandpagesz);
e = image_find_option(IMAGE_CFG_NAND_BADBLK_LOCATION);
if (e)
main_hdr->nandbadblklocation = e->nandbadblklocation;
e = image_find_option(IMAGE_CFG_BAUDRATE);
if (e)
main_hdr->options |= baudrate_to_option(e->baudrate);
e = image_find_option(IMAGE_CFG_UART_PORT);
if (e)
main_hdr->options |= (e->uart_port & 3) << 3;
e = image_find_option(IMAGE_CFG_UART_MPP);
if (e)
main_hdr->options |= (e->uart_mpp & 7) << 5;
e = image_find_option(IMAGE_CFG_DEBUG);
if (e)
main_hdr->flags = e->debug ? 0x1 : 0;
/* For SATA srcaddr is specified in number of sectors. */
if (main_hdr->blockid == IBR_HDR_SATA_ID) {
params->bl_len = image_get_satablksz();
main_hdr->srcaddr = cpu_to_le32(le32_to_cpu(main_hdr->srcaddr) / params->bl_len);
}
/* For PCIe srcaddr is not used and must be set to 0xFFFFFFFF. */
if (main_hdr->blockid == IBR_HDR_PEX_ID)
main_hdr->srcaddr = cpu_to_le32(0xFFFFFFFF);
if (params->xflag) {
if (!image_fill_xip_header(main_hdr, params)) {
free(image);
return NULL;
}
*dataoff = le32_to_cpu(main_hdr->srcaddr);
}
if (image_get_csk_index() >= 0) {
/*
* only reserve the space here; we fill the header later since
* we need the header to be complete to compute the signatures
*/
secure_hdr = (struct secure_hdr_v1 *)cur;
cur += sizeof(struct secure_hdr_v1);
*next_ext = 1;
next_ext = &secure_hdr->next;
}
datai = 0;
for (cfgi = 0; cfgi < cfgn; cfgi++) {
e = &image_cfg[cfgi];
if (e->type != IMAGE_CFG_DATA &&
e->type != IMAGE_CFG_DATA_DELAY &&
e->type != IMAGE_CFG_BINARY)
continue;
if (datai == 0)
register_set_hdr = (struct register_set_hdr_v1 *)cur;
/* If delay is not specified, use the smallest possible value. */
if (e->type == IMAGE_CFG_DATA_DELAY)
delay = e->regdata_delay;
else
delay = REGISTER_SET_HDR_OPT_DELAY_MS(0);
/*
* DATA_DELAY command is the last entry in the register set
* header and BINARY command inserts new binary header.
* Therefore BINARY command requires to finish register set
* header if some DATA command was specified. And DATA_DELAY
* command automatically finish register set header even when
* there was no DATA command.
*/
if (e->type == IMAGE_CFG_DATA_DELAY ||
(e->type == IMAGE_CFG_BINARY && datai != 0))
finish_register_set_header_v1(&cur, &next_ext, register_set_hdr,
&datai, delay);
if (e->type == IMAGE_CFG_DATA) {
register_set_hdr->data[datai].entry.address =
cpu_to_le32(e->regdata.raddr);
register_set_hdr->data[datai].entry.value =
cpu_to_le32(e->regdata.rdata);
datai++;
}
if (e->type == IMAGE_CFG_BINARY) {
if (add_binary_header_v1(&cur, &next_ext, e, main_hdr))
return NULL;
}
}
if (datai != 0) {
/* Set delay to the smallest possible value. */
delay = REGISTER_SET_HDR_OPT_DELAY_MS(0);
finish_register_set_header_v1(&cur, &next_ext, register_set_hdr,
&datai, delay);
}
if (secure_hdr && add_secure_header_v1(params, ptr + *dataoff, payloadsz,
image, headersz, secure_hdr))
return NULL;
/* Calculate and set the header checksum */
main_hdr->checksum = image_checksum8(main_hdr, headersz);
return image;
}
static int recognize_keyword(char *keyword)
{
int kw_id;
for (kw_id = 1; kw_id < IMAGE_CFG_COUNT; ++kw_id)
if (!strcmp(keyword, id_strs[kw_id]))
return kw_id;
return 0;
}
static int image_create_config_parse_oneline(char *line,
struct image_cfg_element *el)
{
char *keyword, *saveptr, *value1, *value2;
char delimiters[] = " \t";
int keyword_id, ret, argi;
char *unknown_msg = "Ignoring unknown line '%s'\n";
keyword = strtok_r(line, delimiters, &saveptr);
keyword_id = recognize_keyword(keyword);
if (!keyword_id) {
fprintf(stderr, unknown_msg, line);
return 0;
}
el->type = keyword_id;
value1 = strtok_r(NULL, delimiters, &saveptr);
if (!value1) {
fprintf(stderr, "Parameter missing in line '%s'\n", line);
return -1;
}
switch (keyword_id) {
case IMAGE_CFG_VERSION:
el->version = atoi(value1);
break;
case IMAGE_CFG_CPU:
if (strcmp(value1, "FEROCEON") == 0)
el->cpu_sheeva = 0;
else if (strcmp(value1, "SHEEVA") == 0)
el->cpu_sheeva = 1;
else if (strcmp(value1, "A9") == 0)
el->cpu_sheeva = 0;
else {
fprintf(stderr, "Invalid CPU %s\n", value1);
return -1;
}
break;
case IMAGE_CFG_BOOT_FROM:
ret = image_boot_mode_id(value1);
if (ret < 0) {
fprintf(stderr, "Invalid boot media '%s'\n", value1);
return -1;
}
el->bootfrom = ret;
break;
case IMAGE_CFG_NAND_BLKSZ:
el->nandblksz = strtoul(value1, NULL, 16);
break;
case IMAGE_CFG_NAND_BADBLK_LOCATION:
el->nandbadblklocation = strtoul(value1, NULL, 16);
break;
case IMAGE_CFG_NAND_ECC_MODE:
ret = image_nand_ecc_mode_id(value1);
if (ret < 0) {
fprintf(stderr, "Invalid NAND ECC mode '%s'\n", value1);
return -1;
}
el->nandeccmode = ret;
break;
case IMAGE_CFG_NAND_PAGESZ:
el->nandpagesz = strtoul(value1, NULL, 16);
break;
case IMAGE_CFG_SATA_BLKSZ:
el->satablksz = strtoul(value1, NULL, 0);
if (el->satablksz & (el->satablksz-1)) {
fprintf(stderr, "Invalid SATA block size '%s'\n", value1);
return -1;
}
break;
case IMAGE_CFG_BINARY:
argi = 0;
el->binary.file = strdup(value1);
while (1) {
char *value = strtok_r(NULL, delimiters, &saveptr);
char *endptr;
if (!value)
break;
if (!strcmp(value, "LOAD_ADDRESS")) {
value = strtok_r(NULL, delimiters, &saveptr);
if (!value) {
fprintf(stderr,
"Missing address argument for BINARY LOAD_ADDRESS\n");
return -1;
}
el->binary.loadaddr = strtoul(value, &endptr, 16);
if (*endptr) {
fprintf(stderr,
"Invalid argument '%s' for BINARY LOAD_ADDRESS\n",
value);
return -1;
}
value = strtok_r(NULL, delimiters, &saveptr);
if (value) {
fprintf(stderr,
"Unexpected argument '%s' after BINARY LOAD_ADDRESS\n",
value);
return -1;
}
break;
}
el->binary.args[argi] = strtoul(value, &endptr, 16);
if (*endptr) {
fprintf(stderr, "Invalid argument '%s' for BINARY\n", value);
return -1;
}
argi++;
if (argi >= BINARY_MAX_ARGS) {
fprintf(stderr,
"Too many arguments for BINARY\n");
return -1;
}
}
el->binary.nargs = argi;
break;
case IMAGE_CFG_DATA:
value2 = strtok_r(NULL, delimiters, &saveptr);
if (!value1 || !value2) {
fprintf(stderr,
"Invalid number of arguments for DATA\n");
return -1;
}
el->regdata.raddr = strtoul(value1, NULL, 16);
el->regdata.rdata = strtoul(value2, NULL, 16);
break;
case IMAGE_CFG_DATA_DELAY:
if (!strcmp(value1, "SDRAM_SETUP"))
el->regdata_delay = REGISTER_SET_HDR_OPT_DELAY_SDRAM_SETUP;
else
el->regdata_delay = REGISTER_SET_HDR_OPT_DELAY_MS(strtoul(value1, NULL, 10));
if (el->regdata_delay > 255) {
fprintf(stderr, "Maximal DATA_DELAY is 255\n");
return -1;
}
break;
case IMAGE_CFG_BAUDRATE:
el->baudrate = strtoul(value1, NULL, 10);
break;
case IMAGE_CFG_UART_PORT:
el->uart_port = strtoul(value1, NULL, 16);
break;
case IMAGE_CFG_UART_MPP:
el->uart_mpp = strtoul(value1, NULL, 16);
break;
case IMAGE_CFG_DEBUG:
el->debug = strtoul(value1, NULL, 10);
break;
case IMAGE_CFG_KAK:
el->key_name = strdup(value1);
break;
case IMAGE_CFG_CSK:
el->key_name = strdup(value1);
break;
case IMAGE_CFG_CSK_INDEX:
el->csk_idx = strtol(value1, NULL, 0);
break;
case IMAGE_CFG_JTAG_DELAY:
el->jtag_delay = strtoul(value1, NULL, 0);
break;
case IMAGE_CFG_BOX_ID:
el->boxid = strtoul(value1, NULL, 0);
break;
case IMAGE_CFG_FLASH_ID:
el->flashid = strtoul(value1, NULL, 0);
break;
case IMAGE_CFG_SEC_SPECIALIZED_IMG:
el->sec_specialized_img = true;
break;
case IMAGE_CFG_SEC_COMMON_IMG:
el->sec_specialized_img = false;
break;
case IMAGE_CFG_SEC_BOOT_DEV:
el->sec_boot_dev = strtoul(value1, NULL, 0);
break;
case IMAGE_CFG_SEC_FUSE_DUMP:
el->name = strdup(value1);
break;
default:
fprintf(stderr, unknown_msg, line);
}
return 0;
}
/*
* Parse the configuration file 'fcfg' into the array of configuration
* elements 'image_cfg', and return the number of configuration
* elements in 'cfgn'.
*/
static int image_create_config_parse(FILE *fcfg)
{
int ret;
int cfgi = 0;
/* Parse the configuration file */
while (!feof(fcfg)) {
char *line;
char buf[256];
/* Read the current line */
memset(buf, 0, sizeof(buf));
line = fgets(buf, sizeof(buf), fcfg);
if (!line)
break;
/* Ignore useless lines */
if (line[0] == '\n' || line[0] == '#')
continue;
/* Strip final newline */
if (line[strlen(line) - 1] == '\n')
line[strlen(line) - 1] = 0;
/* Parse the current line */
ret = image_create_config_parse_oneline(line,
&image_cfg[cfgi]);
if (ret)
return ret;
cfgi++;
if (cfgi >= IMAGE_CFG_ELEMENT_MAX) {
fprintf(stderr,
"Too many configuration elements in .cfg file\n");
return -1;
}
}
cfgn = cfgi;
return 0;
}
static int image_get_version(void)
{
struct image_cfg_element *e;
e = image_find_option(IMAGE_CFG_VERSION);
if (!e)
return -1;
return e->version;
}
static void kwbimage_set_header(void *ptr, struct stat *sbuf, int ifd,
struct image_tool_params *params)
{
FILE *fcfg;
void *image = NULL;
int version;
size_t dataoff = 0;
size_t datasz;
uint32_t checksum;
struct stat s;
int ret;
params->bl_len = 1;
/*
* Do not use sbuf->st_size as it contains size with padding.
* We need original image data size, so stat original file.
*/
if (params->skipcpy) {
s.st_size = 0;
} else if (stat(params->datafile, &s)) {
fprintf(stderr, "Could not stat data file %s: %s\n",
params->datafile, strerror(errno));
exit(EXIT_FAILURE);
}
datasz = ALIGN(s.st_size, 4);
fcfg = fopen(params->imagename, "r");
if (!fcfg) {
fprintf(stderr, "Could not open input file %s\n",
params->imagename);
exit(EXIT_FAILURE);
}
image_cfg = malloc(IMAGE_CFG_ELEMENT_MAX *
sizeof(struct image_cfg_element));
if (!image_cfg) {
fprintf(stderr, "Cannot allocate memory\n");
fclose(fcfg);
exit(EXIT_FAILURE);
}
memset(image_cfg, 0,
IMAGE_CFG_ELEMENT_MAX * sizeof(struct image_cfg_element));
rewind(fcfg);
ret = image_create_config_parse(fcfg);
fclose(fcfg);
if (ret) {
free(image_cfg);
exit(EXIT_FAILURE);
}
version = image_get_version();
switch (version) {
/*
* Fallback to version 0 if no version is provided in the
* cfg file
*/
case -1:
case 0:
image = image_create_v0(&dataoff, params, datasz + 4);
break;
case 1:
image = image_create_v1(&dataoff, params, ptr, datasz + 4);
break;
default:
fprintf(stderr, "Unsupported version %d\n", version);
free(image_cfg);
exit(EXIT_FAILURE);
}
if (!image) {
fprintf(stderr, "Could not create image\n");
free(image_cfg);
exit(EXIT_FAILURE);
}
free(image_cfg);
/* Build and add image data checksum */
checksum = cpu_to_le32(image_checksum32((uint8_t *)ptr + dataoff,
datasz));
memcpy((uint8_t *)ptr + dataoff + datasz, &checksum, sizeof(uint32_t));
/* Finally copy the header into the image area */
memcpy(ptr, image, kwbheader_size(image));
free(image);
}
static void kwbimage_print_header(const void *ptr, struct image_tool_params *params)
{
struct main_hdr_v0 *mhdr = (struct main_hdr_v0 *)ptr;
struct bin_hdr_v0 *bhdr;
struct opt_hdr_v1 *ohdr;
printf("Image Type: MVEBU Boot from %s Image\n",
image_boot_mode_name(mhdr->blockid));
printf("Image version:%d\n", kwbimage_version(ptr));
for_each_opt_hdr_v1 (ohdr, mhdr) {
if (ohdr->headertype == OPT_HDR_V1_BINARY_TYPE) {
printf("BIN Img Size: ");
genimg_print_size(opt_hdr_v1_size(ohdr) - 12 -
4 * ohdr->data[0]);
printf("BIN Img Offs: ");
genimg_print_size(((uint8_t *)ohdr - (uint8_t *)mhdr) +
8 + 4 * ohdr->data[0]);
}
}
for_each_bin_hdr_v0(bhdr, mhdr) {
printf("BIN Img Size: ");
genimg_print_size(le32_to_cpu(bhdr->size));
printf("BIN Img Addr: %08x\n", le32_to_cpu(bhdr->destaddr));
printf("BIN Img Entr: %08x\n", le32_to_cpu(bhdr->execaddr));
}
printf("Data Size: ");
genimg_print_size(le32_to_cpu(mhdr->blocksize) - sizeof(uint32_t));
printf("Data Offset: ");
if (mhdr->blockid == IBR_HDR_SATA_ID)
printf("%u Sector%s (LBA) = ", le32_to_cpu(mhdr->srcaddr),
le32_to_cpu(mhdr->srcaddr) != 1 ? "s" : "");
genimg_print_size(le32_to_cpu(mhdr->srcaddr) * params->bl_len);
if (mhdr->blockid == IBR_HDR_SATA_ID)
printf("Sector Size: %u Bytes\n", params->bl_len);
if (mhdr->blockid == IBR_HDR_SPI_ID && le32_to_cpu(mhdr->destaddr) == 0xFFFFFFFF) {
printf("Load Address: XIP\n");
printf("Execute Offs: %08x\n", le32_to_cpu(mhdr->execaddr));
} else {
printf("Load Address: %08x\n", le32_to_cpu(mhdr->destaddr));
printf("Entry Point: %08x\n", le32_to_cpu(mhdr->execaddr));
}
}
static int kwbimage_check_image_types(uint8_t type)
{
if (type == IH_TYPE_KWBIMAGE)
return EXIT_SUCCESS;
return EXIT_FAILURE;
}
static int kwbimage_verify_header(unsigned char *ptr, int image_size,
struct image_tool_params *params)
{
size_t header_size = kwbheader_size(ptr);
uint8_t blockid;
uint32_t offset;
uint32_t size;
uint8_t csum;
int blksz;
if (header_size > 192*1024)
return -FDT_ERR_BADSTRUCTURE;
if (header_size > image_size)
return -FDT_ERR_BADSTRUCTURE;
if (!main_hdr_checksum_ok(ptr))
return -FDT_ERR_BADSTRUCTURE;
/* Only version 0 extended header has checksum */
if (kwbimage_version(ptr) == 0) {
struct main_hdr_v0 *mhdr = (struct main_hdr_v0 *)ptr;
struct ext_hdr_v0 *ext_hdr;
struct bin_hdr_v0 *bhdr;
for_each_ext_hdr_v0(ext_hdr, ptr) {
csum = image_checksum8(ext_hdr, sizeof(*ext_hdr) - 1);
if (csum != ext_hdr->checksum)
return -FDT_ERR_BADSTRUCTURE;
}
for_each_bin_hdr_v0(bhdr, ptr) {
csum = image_checksum8(bhdr, (uint8_t *)&bhdr->checksum - (uint8_t *)bhdr - 1);
if (csum != bhdr->checksum)
return -FDT_ERR_BADSTRUCTURE;
if (bhdr->offset > sizeof(*bhdr) || bhdr->offset % 4 != 0)
return -FDT_ERR_BADSTRUCTURE;
if (bhdr->offset + bhdr->size + 4 > sizeof(*bhdr) || bhdr->size % 4 != 0)
return -FDT_ERR_BADSTRUCTURE;
if (image_checksum32((uint8_t *)bhdr + bhdr->offset, bhdr->size) !=
*(uint32_t *)((uint8_t *)bhdr + bhdr->offset + bhdr->size))
return -FDT_ERR_BADSTRUCTURE;
}
blockid = mhdr->blockid;
offset = le32_to_cpu(mhdr->srcaddr);
size = le32_to_cpu(mhdr->blocksize);
} else if (kwbimage_version(ptr) == 1) {
struct main_hdr_v1 *mhdr = (struct main_hdr_v1 *)ptr;
const uint8_t *mhdr_end;
struct opt_hdr_v1 *ohdr;
mhdr_end = (uint8_t *)mhdr + header_size;
for_each_opt_hdr_v1 (ohdr, ptr)
if (!opt_hdr_v1_valid_size(ohdr, mhdr_end))
return -FDT_ERR_BADSTRUCTURE;
blockid = mhdr->blockid;
offset = le32_to_cpu(mhdr->srcaddr);
size = le32_to_cpu(mhdr->blocksize);
} else {
return -FDT_ERR_BADSTRUCTURE;
}
if (size < 4 || size % 4 != 0)
return -FDT_ERR_BADSTRUCTURE;
/*
* For SATA srcaddr is specified in number of sectors.
* Try all possible sector sizes which are power of two,
* at least 512 bytes and up to the 32 kB.
*/
if (blockid == IBR_HDR_SATA_ID) {
for (blksz = 512; blksz < 0x10000; blksz *= 2) {
if (offset * blksz > image_size || offset * blksz + size > image_size)
break;
if (image_checksum32(ptr + offset * blksz, size - 4) ==
*(uint32_t *)(ptr + offset * blksz + size - 4)) {
params->bl_len = blksz;
return 0;
}
}
return -FDT_ERR_BADSTRUCTURE;
}
/*
* For PCIe srcaddr is always set to 0xFFFFFFFF.
* This expects that data starts after all headers.
*/
if (blockid == IBR_HDR_PEX_ID && offset == 0xFFFFFFFF)
offset = header_size;
if (offset % 4 != 0 || offset > image_size || offset + size > image_size)
return -FDT_ERR_BADSTRUCTURE;
if (image_checksum32(ptr + offset, size - 4) !=
*(uint32_t *)(ptr + offset + size - 4))
return -FDT_ERR_BADSTRUCTURE;
params->bl_len = 1;
return 0;
}
static int kwbimage_generate(struct image_tool_params *params,
struct image_type_params *tparams)
{
FILE *fcfg;
struct stat s;
int alloc_len;
int bootfrom;
int version;
void *hdr;
int ret;
int align, size;
unsigned int satablksz;
fcfg = fopen(params->imagename, "r");
if (!fcfg) {
fprintf(stderr, "Could not open input file %s\n",
params->imagename);
exit(EXIT_FAILURE);
}
if (params->skipcpy) {
s.st_size = 0;
} else if (stat(params->datafile, &s)) {
fprintf(stderr, "Could not stat data file %s: %s\n",
params->datafile, strerror(errno));
exit(EXIT_FAILURE);
}
image_cfg = malloc(IMAGE_CFG_ELEMENT_MAX *
sizeof(struct image_cfg_element));
if (!image_cfg) {
fprintf(stderr, "Cannot allocate memory\n");
fclose(fcfg);
exit(EXIT_FAILURE);
}
memset(image_cfg, 0,
IMAGE_CFG_ELEMENT_MAX * sizeof(struct image_cfg_element));
rewind(fcfg);
ret = image_create_config_parse(fcfg);
fclose(fcfg);
if (ret) {
free(image_cfg);
exit(EXIT_FAILURE);
}
bootfrom = image_get_bootfrom();
version = image_get_version();
satablksz = image_get_satablksz();
switch (version) {
/*
* Fallback to version 0 if no version is provided in the
* cfg file
*/
case -1:
case 0:
alloc_len = image_headersz_v0(NULL);
break;
case 1:
alloc_len = image_headersz_v1(NULL);
if (!alloc_len) {
free(image_cfg);
exit(EXIT_FAILURE);
}
if (alloc_len > 192*1024) {
fprintf(stderr, "Header is too big (%u bytes), maximal kwbimage header size is %u bytes\n", alloc_len, 192*1024);
free(image_cfg);
exit(EXIT_FAILURE);
}
break;
default:
fprintf(stderr, "Unsupported version %d\n", version);
free(image_cfg);
exit(EXIT_FAILURE);
}
alloc_len = image_headersz_align(alloc_len, image_get_bootfrom());
free(image_cfg);
hdr = malloc(alloc_len);
if (!hdr) {
fprintf(stderr, "%s: malloc return failure: %s\n",
params->cmdname, strerror(errno));
exit(EXIT_FAILURE);
}
memset(hdr, 0, alloc_len);
tparams->header_size = alloc_len;
tparams->hdr = hdr;
/*
* Final SATA images must be aligned to disk block size.
* Final SDIO images must be aligned to 512 bytes.
* Final SPI and NAND images must be aligned to 256 bytes.
* Final UART image must be aligned to 128 bytes.
*/
if (bootfrom == IBR_HDR_SATA_ID)
align = satablksz;
else if (bootfrom == IBR_HDR_SDIO_ID)
align = 512;
else if (bootfrom == IBR_HDR_SPI_ID || bootfrom == IBR_HDR_NAND_ID)
align = 256;
else if (bootfrom == IBR_HDR_UART_ID)
align = 128;
else
align = 4;
/*
* The resulting image needs to be 4-byte aligned. At least
* the Marvell hdrparser tool complains if its unaligned.
* After the image data is stored 4-byte checksum.
*/
size = 4 + (align - (alloc_len + s.st_size + 4) % align) % align;
/*
* This function should return aligned size of the datafile.
* When skipcpy is set (datafile is skipped) then return value of this
* function is ignored, so we have to put required kwbimage aligning
* into the preallocated header size.
*/
if (params->skipcpy) {
tparams->header_size += size;
return 0;
} else {
return size;
}
}
static int kwbimage_generate_config(void *ptr, struct image_tool_params *params)
{
struct main_hdr_v0 *mhdr0 = (struct main_hdr_v0 *)ptr;
struct main_hdr_v1 *mhdr = (struct main_hdr_v1 *)ptr;
size_t header_size = kwbheader_size(ptr);
struct register_set_hdr_v1 *regset_hdr;
struct ext_hdr_v0_reg *regdata;
struct ext_hdr_v0 *ehdr0;
struct bin_hdr_v0 *bhdr0;
struct opt_hdr_v1 *ohdr;
int regset_count;
int params_count;
unsigned offset;
int is_v0_ext;
int cur_idx;
int version;
FILE *f;
int i;
f = fopen(params->outfile, "w");
if (!f) {
fprintf(stderr, "Can't open \"%s\": %s\n", params->outfile, strerror(errno));
return -1;
}
version = kwbimage_version(ptr);
is_v0_ext = 0;
if (version == 0) {
if (mhdr0->ext > 1 || mhdr0->bin ||
((ehdr0 = ext_hdr_v0_first(ptr)) &&
(ehdr0->match_addr || ehdr0->match_mask || ehdr0->match_value)))
is_v0_ext = 1;
}
if (version != 0)
fprintf(f, "VERSION %d\n", version);
fprintf(f, "BOOT_FROM %s\n", image_boot_mode_name(mhdr->blockid) ?: "<unknown>");
if (version == 0 && mhdr->blockid == IBR_HDR_NAND_ID)
fprintf(f, "NAND_ECC_MODE %s\n", image_nand_ecc_mode_name(mhdr0->nandeccmode));
if (mhdr->blockid == IBR_HDR_NAND_ID)
fprintf(f, "NAND_PAGE_SIZE 0x%x\n", (unsigned)le16_to_cpu(mhdr->nandpagesize));
if (mhdr->blockid == IBR_HDR_NAND_ID && (version != 0 || is_v0_ext || mhdr->nandblocksize != 0)) {
if (mhdr->nandblocksize != 0) /* block size explicitly set in 64 kB unit */
fprintf(f, "NAND_BLKSZ 0x%x\n", (unsigned)mhdr->nandblocksize * 64*1024);
else if (le16_to_cpu(mhdr->nandpagesize) > 512)
fprintf(f, "NAND_BLKSZ 0x10000\n"); /* large page NAND flash = 64 kB block size */
else
fprintf(f, "NAND_BLKSZ 0x4000\n"); /* small page NAND flash = 16 kB block size */
}
if (mhdr->blockid == IBR_HDR_NAND_ID && (version != 0 || is_v0_ext))
fprintf(f, "NAND_BADBLK_LOCATION 0x%x\n", (unsigned)mhdr->nandbadblklocation);
if (version == 0 && mhdr->blockid == IBR_HDR_SATA_ID)
fprintf(f, "SATA_PIO_MODE %u\n", (unsigned)mhdr0->satapiomode);
if (mhdr->blockid == IBR_HDR_SATA_ID)
fprintf(f, "SATA_BLKSZ %u\n", params->bl_len);
/*
* Addresses and sizes which are specified by mkimage command line
* arguments and not in kwbimage config file
*/
if (version != 0)
fprintf(f, "#HEADER_SIZE 0x%x\n",
((unsigned)mhdr->headersz_msb << 8) | le16_to_cpu(mhdr->headersz_lsb));
fprintf(f, "#SRC_ADDRESS 0x%x\n", le32_to_cpu(mhdr->srcaddr));
fprintf(f, "#BLOCK_SIZE 0x%x\n", le32_to_cpu(mhdr->blocksize));
fprintf(f, "#DEST_ADDRESS 0x%08x\n", le32_to_cpu(mhdr->destaddr));
fprintf(f, "#EXEC_ADDRESS 0x%08x\n", le32_to_cpu(mhdr->execaddr));
if (version != 0) {
if (options_to_baudrate(mhdr->options))
fprintf(f, "BAUDRATE %u\n", options_to_baudrate(mhdr->options));
if (options_to_baudrate(mhdr->options) ||
((mhdr->options >> 3) & 0x3) || ((mhdr->options >> 5) & 0x7)) {
fprintf(f, "UART_PORT %u\n", (unsigned)((mhdr->options >> 3) & 0x3));
fprintf(f, "UART_MPP 0x%x\n", (unsigned)((mhdr->options >> 5) & 0x7));
}
if (mhdr->flags & 0x1)
fprintf(f, "DEBUG 1\n");
}
cur_idx = 1;
for_each_opt_hdr_v1(ohdr, ptr) {
if (ohdr->headertype == OPT_HDR_V1_SECURE_TYPE) {
fprintf(f, "#SECURE_HEADER\n");
} else if (ohdr->headertype == OPT_HDR_V1_BINARY_TYPE) {
fprintf(f, "BINARY binary%d.bin", cur_idx);
for (i = 0; i < ohdr->data[0]; i++)
fprintf(f, " 0x%x", le32_to_cpu(((uint32_t *)ohdr->data)[i + 1]));
offset = (unsigned)((uint8_t *)ohdr - (uint8_t *)mhdr) + 8 + 4 * ohdr->data[0];
fprintf(f, " LOAD_ADDRESS 0x%08x\n", 0x40000000 + offset);
fprintf(f, " # for CPU SHEEVA: LOAD_ADDRESS 0x%08x\n", 0x40004000 + offset);
cur_idx++;
} else if (ohdr->headertype == OPT_HDR_V1_REGISTER_TYPE) {
regset_hdr = (struct register_set_hdr_v1 *)ohdr;
if (opt_hdr_v1_size(ohdr) > sizeof(*ohdr))
regset_count = (opt_hdr_v1_size(ohdr) - sizeof(*ohdr)) /
sizeof(regset_hdr->data[0].entry);
else
regset_count = 0;
for (i = 0; i < regset_count; i++)
fprintf(f, "DATA 0x%08x 0x%08x\n",
le32_to_cpu(regset_hdr->data[i].entry.address),
le32_to_cpu(regset_hdr->data[i].entry.value));
if (regset_count > 0) {
if (regset_hdr->data[regset_count-1].last_entry.delay !=
REGISTER_SET_HDR_OPT_DELAY_SDRAM_SETUP)
fprintf(f, "DATA_DELAY %u\n",
(unsigned)regset_hdr->data[regset_count-1].last_entry.delay);
else
fprintf(f, "DATA_DELAY SDRAM_SETUP\n");
}
}
}
if (version == 0 && !is_v0_ext && le16_to_cpu(mhdr0->ddrinitdelay))
fprintf(f, "DDR_INIT_DELAY %u\n", (unsigned)le16_to_cpu(mhdr0->ddrinitdelay));
for_each_ext_hdr_v0(ehdr0, ptr) {
if (is_v0_ext) {
fprintf(f, "\nMATCH ADDRESS 0x%08x MASK 0x%08x VALUE 0x%08x\n",
le32_to_cpu(ehdr0->match_addr),
le32_to_cpu(ehdr0->match_mask),
le32_to_cpu(ehdr0->match_value));
if (ehdr0->rsvd1[0] || ehdr0->rsvd1[1] || ehdr0->rsvd1[2] ||
ehdr0->rsvd1[3] || ehdr0->rsvd1[4] || ehdr0->rsvd1[5] ||
ehdr0->rsvd1[6] || ehdr0->rsvd1[7])
fprintf(f, "#DDR_RSVD1 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x\n",
ehdr0->rsvd1[0], ehdr0->rsvd1[1], ehdr0->rsvd1[2],
ehdr0->rsvd1[3], ehdr0->rsvd1[4], ehdr0->rsvd1[5],
ehdr0->rsvd1[6], ehdr0->rsvd1[7]);
if (ehdr0->rsvd2[0] || ehdr0->rsvd2[1] || ehdr0->rsvd2[2] ||
ehdr0->rsvd2[3] || ehdr0->rsvd2[4] || ehdr0->rsvd2[5] ||
ehdr0->rsvd2[6])
fprintf(f, "#DDR_RSVD2 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x\n",
ehdr0->rsvd2[0], ehdr0->rsvd2[1], ehdr0->rsvd2[2],
ehdr0->rsvd2[3], ehdr0->rsvd2[4], ehdr0->rsvd2[5],
ehdr0->rsvd2[6]);
if (ehdr0->ddrwritetype)
fprintf(f, "DDR_WRITE_TYPE %u\n", (unsigned)ehdr0->ddrwritetype);
if (ehdr0->ddrresetmpp)
fprintf(f, "DDR_RESET_MPP 0x%x\n", (unsigned)ehdr0->ddrresetmpp);
if (ehdr0->ddrclkenmpp)
fprintf(f, "DDR_CLKEN_MPP 0x%x\n", (unsigned)ehdr0->ddrclkenmpp);
if (ehdr0->ddrinitdelay)
fprintf(f, "DDR_INIT_DELAY %u\n", (unsigned)ehdr0->ddrinitdelay);
}
if (ehdr0->offset) {
for (regdata = (struct ext_hdr_v0_reg *)((uint8_t *)ptr + ehdr0->offset);
(uint8_t *)regdata < (uint8_t *)ptr + header_size &&
(regdata->raddr || regdata->rdata);
regdata++)
fprintf(f, "DATA 0x%08x 0x%08x\n", le32_to_cpu(regdata->raddr),
le32_to_cpu(regdata->rdata));
if ((uint8_t *)regdata != (uint8_t *)ptr + ehdr0->offset)
fprintf(f, "DATA 0x0 0x0\n");
}
if (le32_to_cpu(ehdr0->enddelay))
fprintf(f, "DATA_DELAY %u\n", le32_to_cpu(ehdr0->enddelay));
else if (is_v0_ext)
fprintf(f, "DATA_DELAY SDRAM_SETUP\n");
}
cur_idx = 1;
for_each_bin_hdr_v0(bhdr0, ptr) {
fprintf(f, "\nMATCH ADDRESS 0x%08x MASK 0x%08x VALUE 0x%08x\n",
le32_to_cpu(bhdr0->match_addr),
le32_to_cpu(bhdr0->match_mask),
le32_to_cpu(bhdr0->match_value));
fprintf(f, "BINARY binary%d.bin", cur_idx);
params_count = fls4(bhdr0->params_flags & 0xF);
for (i = 0; i < params_count; i++)
fprintf(f, " 0x%x", (bhdr0->params[i] & (1 << i)) ? bhdr0->params[i] : 0);
fprintf(f, " LOAD_ADDRESS 0x%08x", le32_to_cpu(bhdr0->destaddr));
fprintf(f, " EXEC_ADDRESS 0x%08x", le32_to_cpu(bhdr0->execaddr));
fprintf(f, "\n");
fprintf(f, "#BINARY_OFFSET 0x%x\n", le32_to_cpu(bhdr0->offset));
fprintf(f, "#BINARY_SIZE 0x%x\n", le32_to_cpu(bhdr0->size));
if (bhdr0->rsvd1)
fprintf(f, "#BINARY_RSVD1 0x%x\n", (unsigned)bhdr0->rsvd1);
if (bhdr0->rsvd2)
fprintf(f, "#BINARY_RSVD2 0x%x\n", (unsigned)bhdr0->rsvd2);
cur_idx++;
}
/* Undocumented reserved fields */
if (version == 0 && (mhdr0->rsvd1[0] || mhdr0->rsvd1[1] || mhdr0->rsvd1[2]))
fprintf(f, "#RSVD1 0x%x 0x%x 0x%x\n", (unsigned)mhdr0->rsvd1[0],
(unsigned)mhdr0->rsvd1[1], (unsigned)mhdr0->rsvd1[2]);
if (version == 0 && le16_to_cpu(mhdr0->rsvd2))
fprintf(f, "#RSVD2 0x%x\n", (unsigned)le16_to_cpu(mhdr0->rsvd2));
if (version != 0 && mhdr->reserved4)
fprintf(f, "#RESERVED4 0x%x\n", (unsigned)mhdr->reserved4);
if (version != 0 && mhdr->reserved5)
fprintf(f, "#RESERVED5 0x%x\n", (unsigned)le16_to_cpu(mhdr->reserved5));
fclose(f);
return 0;
}
static int kwbimage_extract_subimage(void *ptr, struct image_tool_params *params)
{
struct main_hdr_v1 *mhdr = (struct main_hdr_v1 *)ptr;
size_t header_size = kwbheader_size(ptr);
struct bin_hdr_v0 *bhdr;
struct opt_hdr_v1 *ohdr;
int idx = params->pflag;
int cur_idx;
uint32_t offset;
ulong image;
ulong size;
/* Generate kwbimage config file when '-p -1' is specified */
if (idx == -1)
return kwbimage_generate_config(ptr, params);
image = 0;
size = 0;
if (idx == 0) {
/* Extract data image when -p is not specified or when '-p 0' is specified */
offset = le32_to_cpu(mhdr->srcaddr);
if (mhdr->blockid == IBR_HDR_SATA_ID)
offset *= params->bl_len;
if (mhdr->blockid == IBR_HDR_PEX_ID && offset == 0xFFFFFFFF)
offset = header_size;
image = (ulong)((uint8_t *)ptr + offset);
size = le32_to_cpu(mhdr->blocksize) - 4;
} else {
/* Extract N-th binary header executabe image when other '-p N' is specified */
cur_idx = 1;
for_each_opt_hdr_v1(ohdr, ptr) {
if (ohdr->headertype != OPT_HDR_V1_BINARY_TYPE)
continue;
if (idx == cur_idx) {
image = (ulong)&ohdr->data[4 + 4 * ohdr->data[0]];
size = opt_hdr_v1_size(ohdr) - 12 - 4 * ohdr->data[0];
break;
}
++cur_idx;
}
for_each_bin_hdr_v0(bhdr, ptr) {
if (idx == cur_idx) {
image = (ulong)bhdr + bhdr->offset;
size = bhdr->size;
break;
}
++cur_idx;
}
if (!image) {
fprintf(stderr, "Argument -p %d is invalid\n", idx);
fprintf(stderr, "Available subimages:\n");
fprintf(stderr, " -p -1 - kwbimage config file\n");
fprintf(stderr, " -p 0 - data image\n");
if (cur_idx - 1 > 0)
fprintf(stderr, " -p N - Nth binary header image (totally: %d)\n",
cur_idx - 1);
return -1;
}
}
return imagetool_save_subimage(params->outfile, image, size);
}
static int kwbimage_check_params(struct image_tool_params *params)
{
if (!params->lflag && !params->iflag && !params->pflag &&
(!params->imagename || !strlen(params->imagename))) {
char *msg = "Configuration file for kwbimage creation omitted";
fprintf(stderr, "Error:%s - %s\n", params->cmdname, msg);
return 1;
}
return (params->dflag && (params->fflag || params->lflag || params->skipcpy)) ||
(params->fflag) ||
(params->lflag && (params->dflag || params->fflag));
}
/*
* kwbimage type parameters definition
*/
U_BOOT_IMAGE_TYPE(
kwbimage,
"Marvell MVEBU Boot Image support",
0,
NULL,
kwbimage_check_params,
kwbimage_verify_header,
kwbimage_print_header,
kwbimage_set_header,
kwbimage_extract_subimage,
kwbimage_check_image_types,
NULL,
kwbimage_generate
);