blob: 696855ee3a613bcb9cfaa0eb443df5a45bc510a5 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (c) 2009 Wind River Systems, Inc.
* Tom Rix <Tom.Rix@windriver.com>
*
* This file is a rewrite of the usb device part of
* repository git.omapzoom.org/repo/u-boot.git, branch master,
* file cpu/omap3/fastboot.c
*
* This is the unique part of its copyright :
*
* -------------------------------------------------------------------------
*
* (C) Copyright 2008 - 2009
* Windriver, <www.windriver.com>
* Tom Rix <Tom.Rix@windriver.com>
*
* -------------------------------------------------------------------------
*
* The details of connecting the device to the uboot usb device subsystem
* came from the old omap3 repository www.sakoman.net/u-boot-omap3.git,
* branch omap3-dev-usb, file drivers/usb/usbdcore_musb.c
*
* This is the unique part of its copyright :
*
* -------------------------------------------------------------------------
*
* (C) Copyright 2008 Texas Instruments Incorporated.
*
* Based on
* u-boot OMAP1510 USB drivers (drivers/usbdcore_omap1510.c)
* twl4030 init based on linux (drivers/i2c/chips/twl4030_usb.c)
*
* Author: Diego Dompe (diego.dompe@ridgerun.com)
* Atin Malaviya (atin.malaviya@gmail.com)
*
* -------------------------------------------------------------------------
*/
#include <hang.h>
#include <serial.h>
#include <usbdevice.h>
#include <linux/delay.h>
#include <usb/udc.h>
#include "../gadget/ep0.h"
#include "musb_core.h"
#if defined(CONFIG_USB_OMAP3)
#include "omap3.h"
#elif defined(CONFIG_USB_AM35X)
#include "am35x.h"
#endif
/* Define MUSB_DEBUG for debugging */
/* #define MUSB_DEBUG */
#include "musb_debug.h"
#define MAX_ENDPOINT 15
#define GET_ENDPOINT(dev,ep) \
(((struct usb_device_instance *)(dev))->bus->endpoint_array + ep)
#define SET_EP0_STATE(s) \
do { \
if ((0 <= (s)) && (SET_ADDRESS >= (s))) { \
if ((s) != ep0_state) { \
if ((debug_setup) && (debug_level > 1)) \
serial_printf("INFO : Changing state " \
"from %s to %s in %s at " \
"line %d\n", \
ep0_state_strings[ep0_state],\
ep0_state_strings[s], \
__PRETTY_FUNCTION__, \
__LINE__); \
ep0_state = s; \
} \
} else { \
if (debug_level > 0) \
serial_printf("Error at %s %d with setting " \
"state %d is invalid\n", \
__PRETTY_FUNCTION__, __LINE__, s); \
} \
} while (0)
/* static implies these initialized to 0 or NULL */
static int debug_setup;
static int debug_level;
static struct musb_epinfo epinfo[MAX_ENDPOINT * 2 + 2];
static enum ep0_state_enum {
IDLE = 0,
TX,
RX,
SET_ADDRESS
} ep0_state = IDLE;
static char *ep0_state_strings[4] = {
"IDLE",
"TX",
"RX",
"SET_ADDRESS",
};
static struct urb *ep0_urb;
struct usb_endpoint_instance *ep0_endpoint;
static struct usb_device_instance *udc_device;
static int enabled;
static u16 pending_intrrx;
#ifdef MUSB_DEBUG
static void musb_db_regs(void)
{
u8 b;
u16 w;
b = readb(&musbr->faddr);
serial_printf("\tfaddr 0x%2.2x\n", b);
b = readb(&musbr->power);
musb_print_pwr(b);
w = readw(&musbr->ep[0].ep0.csr0);
musb_print_csr0(w);
b = readb(&musbr->devctl);
musb_print_devctl(b);
b = readb(&musbr->ep[0].ep0.configdata);
musb_print_config(b);
w = readw(&musbr->frame);
serial_printf("\tframe 0x%4.4x\n", w);
b = readb(&musbr->index);
serial_printf("\tindex 0x%2.2x\n", b);
w = readw(&musbr->ep[1].epN.rxmaxp);
musb_print_rxmaxp(w);
w = readw(&musbr->ep[1].epN.rxcsr);
musb_print_rxcsr(w);
w = readw(&musbr->ep[1].epN.txmaxp);
musb_print_txmaxp(w);
w = readw(&musbr->ep[1].epN.txcsr);
musb_print_txcsr(w);
}
#else
#define musb_db_regs()
#endif /* DEBUG_MUSB */
static void musb_peri_softconnect(void)
{
u8 power, devctl;
/* Power off MUSB */
power = readb(&musbr->power);
power &= ~MUSB_POWER_SOFTCONN;
writeb(power, &musbr->power);
/* Read intr to clear */
readb(&musbr->intrusb);
readw(&musbr->intrrx);
readw(&musbr->intrtx);
udelay(1000 * 1000); /* 1 sec */
/* Power on MUSB */
power = readb(&musbr->power);
power |= MUSB_POWER_SOFTCONN;
/*
* The usb device interface is usb 1.1
* Disable 2.0 high speed by clearring the hsenable bit.
*/
power &= ~MUSB_POWER_HSENAB;
writeb(power, &musbr->power);
/* Check if device is in b-peripheral mode */
devctl = readb(&musbr->devctl);
if (!(devctl & MUSB_DEVCTL_BDEVICE) ||
(devctl & MUSB_DEVCTL_HM)) {
serial_printf("ERROR : Unsupport USB mode\n");
serial_printf("Check that mini-B USB cable is attached "
"to the device\n");
}
if (debug_setup && (debug_level > 1))
musb_db_regs();
}
static void musb_peri_reset(void)
{
if ((debug_setup) && (debug_level > 1))
serial_printf("INFO : %s reset\n", __PRETTY_FUNCTION__);
if (ep0_endpoint)
ep0_endpoint->endpoint_address = 0xff;
/* Sync sw and hw addresses */
writeb(udc_device->address, &musbr->faddr);
SET_EP0_STATE(IDLE);
}
static void musb_peri_resume(void)
{
/* noop */
}
static void musb_peri_ep0_stall(void)
{
u16 csr0;
csr0 = readw(&musbr->ep[0].ep0.csr0);
csr0 |= MUSB_CSR0_P_SENDSTALL;
writew(csr0, &musbr->ep[0].ep0.csr0);
if ((debug_setup) && (debug_level > 1))
serial_printf("INFO : %s stall\n", __PRETTY_FUNCTION__);
}
static void musb_peri_ep0_ack_req(void)
{
u16 csr0;
csr0 = readw(&musbr->ep[0].ep0.csr0);
csr0 |= MUSB_CSR0_P_SVDRXPKTRDY;
writew(csr0, &musbr->ep[0].ep0.csr0);
}
static void musb_ep0_tx_ready(void)
{
u16 csr0;
csr0 = readw(&musbr->ep[0].ep0.csr0);
csr0 |= MUSB_CSR0_TXPKTRDY;
writew(csr0, &musbr->ep[0].ep0.csr0);
}
static void musb_ep0_tx_ready_and_last(void)
{
u16 csr0;
csr0 = readw(&musbr->ep[0].ep0.csr0);
csr0 |= (MUSB_CSR0_TXPKTRDY | MUSB_CSR0_P_DATAEND);
writew(csr0, &musbr->ep[0].ep0.csr0);
}
static void musb_peri_ep0_last(void)
{
u16 csr0;
csr0 = readw(&musbr->ep[0].ep0.csr0);
csr0 |= MUSB_CSR0_P_DATAEND;
writew(csr0, &musbr->ep[0].ep0.csr0);
}
static void musb_peri_ep0_set_address(void)
{
u8 faddr;
writeb(udc_device->address, &musbr->faddr);
/* Verify */
faddr = readb(&musbr->faddr);
if (udc_device->address == faddr) {
SET_EP0_STATE(IDLE);
usbd_device_event_irq(udc_device, DEVICE_ADDRESS_ASSIGNED, 0);
if ((debug_setup) && (debug_level > 1))
serial_printf("INFO : %s Address set to %d\n",
__PRETTY_FUNCTION__, udc_device->address);
} else {
if (debug_level > 0)
serial_printf("ERROR : %s Address mismatch "
"sw %d vs hw %d\n",
__PRETTY_FUNCTION__,
udc_device->address, faddr);
}
}
static void musb_peri_rx_ack(unsigned int ep)
{
u16 peri_rxcsr;
peri_rxcsr = readw(&musbr->ep[ep].epN.rxcsr);
peri_rxcsr &= ~MUSB_RXCSR_RXPKTRDY;
writew(peri_rxcsr, &musbr->ep[ep].epN.rxcsr);
}
static void musb_peri_tx_ready(unsigned int ep)
{
u16 peri_txcsr;
peri_txcsr = readw(&musbr->ep[ep].epN.txcsr);
peri_txcsr |= MUSB_TXCSR_TXPKTRDY;
writew(peri_txcsr, &musbr->ep[ep].epN.txcsr);
}
static void musb_peri_ep0_zero_data_request(int err)
{
musb_peri_ep0_ack_req();
if (err) {
musb_peri_ep0_stall();
SET_EP0_STATE(IDLE);
} else {
musb_peri_ep0_last();
/* USBD state */
switch (ep0_urb->device_request.bRequest) {
case USB_REQ_SET_ADDRESS:
if ((debug_setup) && (debug_level > 1))
serial_printf("INFO : %s received set "
"address\n", __PRETTY_FUNCTION__);
break;
case USB_REQ_SET_CONFIGURATION:
if ((debug_setup) && (debug_level > 1))
serial_printf("INFO : %s Configured\n",
__PRETTY_FUNCTION__);
usbd_device_event_irq(udc_device, DEVICE_CONFIGURED, 0);
break;
}
/* EP0 state */
if (USB_REQ_SET_ADDRESS == ep0_urb->device_request.bRequest) {
SET_EP0_STATE(SET_ADDRESS);
} else {
SET_EP0_STATE(IDLE);
}
}
}
static void musb_peri_ep0_rx_data_request(void)
{
/*
* This is the completion of the data OUT / RX
*
* Host is sending data to ep0 that is not
* part of setup. This comes from the cdc_recv_setup
* op that is device specific.
*
*/
musb_peri_ep0_ack_req();
ep0_endpoint->rcv_urb = ep0_urb;
ep0_urb->actual_length = 0;
SET_EP0_STATE(RX);
}
static void musb_peri_ep0_tx_data_request(int err)
{
if (err) {
musb_peri_ep0_stall();
SET_EP0_STATE(IDLE);
} else {
musb_peri_ep0_ack_req();
ep0_endpoint->tx_urb = ep0_urb;
ep0_endpoint->sent = 0;
SET_EP0_STATE(TX);
}
}
static void musb_peri_ep0_idle(void)
{
u16 count0;
int err;
u16 csr0;
/*
* Verify addresses
* A lot of confusion can be caused if the address
* in software, udc layer, does not agree with the
* hardware. Since the setting of the hardware address
* must be set after the set address request, the
* usb state machine is out of sync for a few frame.
* It is a good idea to run this check when changes
* are made to the state machine.
*/
if ((debug_level > 0) &&
(ep0_state != SET_ADDRESS)) {
u8 faddr;
faddr = readb(&musbr->faddr);
if (udc_device->address != faddr) {
serial_printf("ERROR : %s addresses do not"
"match sw %d vs hw %d\n",
__PRETTY_FUNCTION__,
udc_device->address, faddr);
udelay(1000 * 1000);
hang();
}
}
csr0 = readw(&musbr->ep[0].ep0.csr0);
if (!(MUSB_CSR0_RXPKTRDY & csr0))
goto end;
count0 = readw(&musbr->ep[0].ep0.count0);
if (count0 == 0)
goto end;
if (count0 != 8) {
if ((debug_setup) && (debug_level > 1))
serial_printf("WARN : %s SETUP incorrect size %d\n",
__PRETTY_FUNCTION__, count0);
musb_peri_ep0_stall();
goto end;
}
read_fifo(0, count0, &ep0_urb->device_request);
if (debug_level > 2)
print_usb_device_request(&ep0_urb->device_request);
if (ep0_urb->device_request.wLength == 0) {
err = ep0_recv_setup(ep0_urb);
/* Zero data request */
musb_peri_ep0_zero_data_request(err);
} else {
/* Is data coming or going ? */
u8 reqType = ep0_urb->device_request.bmRequestType;
if (USB_REQ_DEVICE2HOST == (reqType & USB_REQ_DIRECTION_MASK)) {
err = ep0_recv_setup(ep0_urb);
/* Device to host */
musb_peri_ep0_tx_data_request(err);
} else {
/*
* Host to device
*
* The RX routine will call ep0_recv_setup
* when the data packet has arrived.
*/
musb_peri_ep0_rx_data_request();
}
}
end:
return;
}
static void musb_peri_ep0_rx(void)
{
/*
* This is the completion of the data OUT / RX
*
* Host is sending data to ep0 that is not
* part of setup. This comes from the cdc_recv_setup
* op that is device specific.
*
* Pass the data back to driver ep0_recv_setup which
* should give the cdc_recv_setup the chance to handle
* the rx
*/
u16 csr0;
u16 count0;
if (debug_level > 3) {
if (0 != ep0_urb->actual_length) {
serial_printf("%s finished ? %d of %d\n",
__PRETTY_FUNCTION__,
ep0_urb->actual_length,
ep0_urb->device_request.wLength);
}
}
if (ep0_urb->device_request.wLength == ep0_urb->actual_length) {
musb_peri_ep0_last();
SET_EP0_STATE(IDLE);
ep0_recv_setup(ep0_urb);
return;
}
csr0 = readw(&musbr->ep[0].ep0.csr0);
if (!(MUSB_CSR0_RXPKTRDY & csr0))
return;
count0 = readw(&musbr->ep[0].ep0.count0);
if (count0) {
struct usb_endpoint_instance *endpoint;
u32 length;
u8 *data;
endpoint = ep0_endpoint;
if (endpoint && endpoint->rcv_urb) {
struct urb *urb = endpoint->rcv_urb;
unsigned int remaining_space = urb->buffer_length -
urb->actual_length;
if (remaining_space) {
int urb_bad = 0; /* urb is good */
if (count0 > remaining_space)
length = remaining_space;
else
length = count0;
data = (u8 *) urb->buffer_data;
data += urb->actual_length;
/* The common musb fifo reader */
read_fifo(0, length, data);
musb_peri_ep0_ack_req();
/*
* urb's actual_length is updated in
* usbd_rcv_complete
*/
usbd_rcv_complete(endpoint, length, urb_bad);
} else {
if (debug_level > 0)
serial_printf("ERROR : %s no space in "
"rcv buffer\n",
__PRETTY_FUNCTION__);
}
} else {
if (debug_level > 0)
serial_printf("ERROR : %s problem with "
"endpoint\n",
__PRETTY_FUNCTION__);
}
} else {
if (debug_level > 0)
serial_printf("ERROR : %s with nothing to do\n",
__PRETTY_FUNCTION__);
}
}
static void musb_peri_ep0_tx(void)
{
u16 csr0;
int transfer_size = 0;
unsigned int p, pm;
csr0 = readw(&musbr->ep[0].ep0.csr0);
/* Check for pending tx */
if (csr0 & MUSB_CSR0_TXPKTRDY)
goto end;
/* Check if this is the last packet sent */
if (ep0_endpoint->sent >= ep0_urb->actual_length) {
SET_EP0_STATE(IDLE);
goto end;
}
transfer_size = ep0_urb->actual_length - ep0_endpoint->sent;
/* Is the transfer size negative ? */
if (transfer_size <= 0) {
if (debug_level > 0)
serial_printf("ERROR : %s problem with the"
" transfer size %d\n",
__PRETTY_FUNCTION__,
transfer_size);
SET_EP0_STATE(IDLE);
goto end;
}
/* Truncate large transfers to the fifo size */
if (transfer_size > ep0_endpoint->tx_packetSize)
transfer_size = ep0_endpoint->tx_packetSize;
write_fifo(0, transfer_size, &ep0_urb->buffer[ep0_endpoint->sent]);
ep0_endpoint->sent += transfer_size;
/* Done or more to send ? */
if (ep0_endpoint->sent >= ep0_urb->actual_length)
musb_ep0_tx_ready_and_last();
else
musb_ep0_tx_ready();
/* Wait a bit */
pm = 10;
for (p = 0; p < pm; p++) {
csr0 = readw(&musbr->ep[0].ep0.csr0);
if (!(csr0 & MUSB_CSR0_TXPKTRDY))
break;
/* Double the delay. */
udelay(1 << pm);
}
if ((ep0_endpoint->sent >= ep0_urb->actual_length) && (p < pm))
SET_EP0_STATE(IDLE);
end:
return;
}
static void musb_peri_ep0(void)
{
u16 csr0;
if (SET_ADDRESS == ep0_state)
return;
csr0 = readw(&musbr->ep[0].ep0.csr0);
/* Error conditions */
if (MUSB_CSR0_P_SENTSTALL & csr0) {
csr0 &= ~MUSB_CSR0_P_SENTSTALL;
writew(csr0, &musbr->ep[0].ep0.csr0);
SET_EP0_STATE(IDLE);
}
if (MUSB_CSR0_P_SETUPEND & csr0) {
csr0 |= MUSB_CSR0_P_SVDSETUPEND;
writew(csr0, &musbr->ep[0].ep0.csr0);
SET_EP0_STATE(IDLE);
if ((debug_setup) && (debug_level > 1))
serial_printf("WARN: %s SETUPEND\n",
__PRETTY_FUNCTION__);
}
/* Normal states */
if (IDLE == ep0_state)
musb_peri_ep0_idle();
if (TX == ep0_state)
musb_peri_ep0_tx();
if (RX == ep0_state)
musb_peri_ep0_rx();
}
static void musb_peri_rx_ep(unsigned int ep)
{
u16 peri_rxcount;
u16 peri_rxcsr = readw(&musbr->ep[ep].epN.rxcsr);
if (!(peri_rxcsr & MUSB_RXCSR_RXPKTRDY)) {
if (debug_level > 0)
serial_printf("ERROR : %s %d without MUSB_RXCSR_RXPKTRDY set\n",
__PRETTY_FUNCTION__, ep);
return;
}
peri_rxcount = readw(&musbr->ep[ep].epN.rxcount);
if (peri_rxcount) {
struct usb_endpoint_instance *endpoint;
u32 length;
u8 *data;
endpoint = GET_ENDPOINT(udc_device, ep);
if (endpoint && endpoint->rcv_urb) {
struct urb *urb = endpoint->rcv_urb;
unsigned int remaining_space = urb->buffer_length -
urb->actual_length;
if (remaining_space) {
int urb_bad = 0; /* urb is good */
if (peri_rxcount > remaining_space)
length = remaining_space;
else
length = peri_rxcount;
data = (u8 *) urb->buffer_data;
data += urb->actual_length;
/* The common musb fifo reader */
read_fifo(ep, length, data);
if (length == peri_rxcount)
musb_peri_rx_ack(ep);
else
pending_intrrx |= (1 << ep);
/*
* urb's actual_length is updated in
* usbd_rcv_complete
*/
usbd_rcv_complete(endpoint, length, urb_bad);
} else {
if (debug_level > 0)
serial_printf("ERROR : %s %d no space "
"in rcv buffer\n",
__PRETTY_FUNCTION__, ep);
pending_intrrx |= (1 << ep);
}
} else {
if (debug_level > 0)
serial_printf("ERROR : %s %d problem with "
"endpoint\n",
__PRETTY_FUNCTION__, ep);
pending_intrrx |= (1 << ep);
}
} else {
if (debug_level > 0)
serial_printf("ERROR : %s %d with nothing to do\n",
__PRETTY_FUNCTION__, ep);
musb_peri_rx_ack(ep);
}
}
static void musb_peri_rx(u16 intr)
{
unsigned int ep;
/* First bit is reserved and does not indicate interrupt for EP0 */
for (ep = 1; ep < 16; ep++) {
if ((1 << ep) & intr)
musb_peri_rx_ep(ep);
}
}
static void musb_peri_tx(u16 intr)
{
unsigned int ep;
/* Check for EP0: first bit indicates interrupt for both RX and TX */
if (0x01 & intr)
musb_peri_ep0();
for (ep = 1; ep < 16; ep++) {
if ((1 << ep) & intr)
udc_endpoint_write(GET_ENDPOINT(udc_device, ep));
}
}
void udc_irq(void)
{
/* This is a high freq called function */
if (enabled) {
u8 intrusb;
intrusb = readb(&musbr->intrusb);
/*
* See drivers/usb/gadget/mpc8xx_udc.c for
* state diagram going from detached through
* configuration.
*/
if (MUSB_INTR_RESUME & intrusb) {
usbd_device_event_irq(udc_device,
DEVICE_BUS_ACTIVITY, 0);
musb_peri_resume();
}
if (MUSB_INTR_RESET & intrusb) {
usbd_device_event_irq(udc_device, DEVICE_RESET, 0);
musb_peri_reset();
}
if (MUSB_INTR_DISCONNECT & intrusb) {
/* cable unplugged from hub/host */
usbd_device_event_irq(udc_device, DEVICE_RESET, 0);
musb_peri_reset();
usbd_device_event_irq(udc_device, DEVICE_HUB_RESET, 0);
}
if (MUSB_INTR_SOF & intrusb) {
usbd_device_event_irq(udc_device,
DEVICE_BUS_ACTIVITY, 0);
musb_peri_resume();
}
if (MUSB_INTR_SUSPEND & intrusb) {
usbd_device_event_irq(udc_device,
DEVICE_BUS_INACTIVE, 0);
}
if (ep0_state != SET_ADDRESS) {
u16 intrrx, intrtx;
intrrx = readw(&musbr->intrrx);
intrtx = readw(&musbr->intrtx);
intrrx |= pending_intrrx;
pending_intrrx = 0;
if (intrrx)
musb_peri_rx(intrrx);
if (intrtx)
musb_peri_tx(intrtx);
} else {
if (readw(&musbr->intrtx) & 0x1) {
u8 faddr;
faddr = readb(&musbr->faddr);
/*
* Setting of the address can fail.
* Normally it succeeds the second time.
*/
if (udc_device->address != faddr)
musb_peri_ep0_set_address();
}
}
}
}
void udc_set_nak(int ep_num)
{
/* noop */
}
void udc_unset_nak(int ep_num)
{
/* noop */
}
int udc_endpoint_write(struct usb_endpoint_instance *endpoint)
{
int ret = 0;
/* Transmit only if the hardware is available */
if (endpoint->tx_urb && endpoint->state == 0) {
unsigned int ep = endpoint->endpoint_address &
USB_ENDPOINT_NUMBER_MASK;
u16 peri_txcsr = readw(&musbr->ep[ep].epN.txcsr);
/* Error conditions */
if (peri_txcsr & MUSB_TXCSR_P_UNDERRUN) {
peri_txcsr &= ~MUSB_TXCSR_P_UNDERRUN;
writew(peri_txcsr, &musbr->ep[ep].epN.txcsr);
}
if (debug_level > 1)
musb_print_txcsr(peri_txcsr);
/* Check if a packet is waiting to be sent */
if (!(peri_txcsr & MUSB_TXCSR_TXPKTRDY)) {
u32 length;
u8 *data;
struct urb *urb = endpoint->tx_urb;
unsigned int remaining_packet = urb->actual_length -
endpoint->sent;
if (endpoint->tx_packetSize < remaining_packet)
length = endpoint->tx_packetSize;
else
length = remaining_packet;
data = (u8 *) urb->buffer;
data += endpoint->sent;
/* common musb fifo function */
write_fifo(ep, length, data);
musb_peri_tx_ready(ep);
endpoint->last = length;
/* usbd_tx_complete will take care of updating 'sent' */
usbd_tx_complete(endpoint);
}
} else {
if (debug_level > 0)
serial_printf("ERROR : %s Problem with urb %p "
"or ep state %d\n",
__PRETTY_FUNCTION__,
endpoint->tx_urb, endpoint->state);
}
return ret;
}
void udc_setup_ep(struct usb_device_instance *device, unsigned int id,
struct usb_endpoint_instance *endpoint)
{
if (0 == id) {
/* EP0 */
ep0_endpoint = endpoint;
ep0_endpoint->endpoint_address = 0xff;
ep0_urb = usbd_alloc_urb(device, endpoint);
} else if (MAX_ENDPOINT >= id) {
epinfo[(id * 2) + 0].epsize = endpoint->rcv_packetSize;
epinfo[(id * 2) + 1].epsize = endpoint->tx_packetSize;
musb_configure_ep(&epinfo[0], ARRAY_SIZE(epinfo));
} else {
if (debug_level > 0)
serial_printf("ERROR : %s endpoint request %d "
"exceeds maximum %d\n",
__PRETTY_FUNCTION__, id, MAX_ENDPOINT);
}
}
void udc_connect(void)
{
/* noop */
}
void udc_disconnect(void)
{
/* noop */
}
void udc_enable(struct usb_device_instance *device)
{
/* Save the device structure pointer */
udc_device = device;
enabled = 1;
}
void udc_disable(void)
{
enabled = 0;
}
void udc_startup_events(struct usb_device_instance *device)
{
/* The DEVICE_INIT event puts the USB device in the state STATE_INIT. */
usbd_device_event_irq(device, DEVICE_INIT, 0);
/*
* The DEVICE_CREATE event puts the USB device in the state
* STATE_ATTACHED.
*/
usbd_device_event_irq(device, DEVICE_CREATE, 0);
/* Resets the address to 0 */
usbd_device_event_irq(device, DEVICE_RESET, 0);
udc_enable(device);
}
int udc_init(void)
{
int ret;
int ep_loop;
ret = musb_platform_init();
if (ret < 0)
goto end;
/* Configure all the endpoint FIFO's and start usb controller */
musbr = musb_cfg.regs;
/* Initialize the endpoints */
for (ep_loop = 0; ep_loop <= MAX_ENDPOINT * 2; ep_loop++) {
epinfo[ep_loop].epnum = (ep_loop / 2) + 1;
epinfo[ep_loop].epdir = ep_loop % 2; /* OUT, IN */
epinfo[ep_loop].epsize = 0;
}
musb_peri_softconnect();
ret = 0;
end:
return ret;
}