| // SPDX-License-Identifier: (GPL-2.0 OR MIT) |
| /* |
| * Microsemi SoCs spi driver |
| * |
| * Copyright (c) 2018 Microsemi Corporation |
| */ |
| |
| #include <dm.h> |
| #include <errno.h> |
| #include <log.h> |
| #include <malloc.h> |
| #include <spi.h> |
| #include <asm/gpio.h> |
| #include <asm/io.h> |
| #include <linux/bitops.h> |
| #include <linux/delay.h> |
| |
| struct mscc_bb_priv { |
| void __iomem *regs; |
| u32 deactivate_delay_us; |
| bool cs_active; /* State flag as to whether CS is asserted */ |
| int cs_num; |
| u32 svalue; /* Value to start transfer with */ |
| u32 clk1; /* Clock value start */ |
| u32 clk2; /* Clock value 2nd phase */ |
| }; |
| |
| /* Delay 24 instructions for this particular application */ |
| #define hold_time_delay() mscc_vcoreiii_nop_delay(3) |
| |
| static int mscc_bb_spi_cs_activate(struct mscc_bb_priv *priv, int mode, int cs) |
| { |
| if (!priv->cs_active) { |
| int cpha = mode & SPI_CPHA; |
| u32 cs_value; |
| |
| priv->cs_num = cs; |
| |
| if (cpha) { |
| /* Initial clock starts SCK=1 */ |
| priv->clk1 = ICPU_SW_MODE_SW_SPI_SCK; |
| priv->clk2 = 0; |
| } else { |
| /* Initial clock starts SCK=0 */ |
| priv->clk1 = 0; |
| priv->clk2 = ICPU_SW_MODE_SW_SPI_SCK; |
| } |
| |
| /* Enable bitbang, SCK_OE, SDO_OE */ |
| priv->svalue = (ICPU_SW_MODE_SW_PIN_CTRL_MODE | /* Bitbang */ |
| ICPU_SW_MODE_SW_SPI_SCK_OE | /* SCK_OE */ |
| ICPU_SW_MODE_SW_SPI_SDO_OE); /* SDO OE */ |
| |
| /* Add CS */ |
| if (cs >= 0) { |
| cs_value = |
| ICPU_SW_MODE_SW_SPI_CS_OE(BIT(cs)) | |
| ICPU_SW_MODE_SW_SPI_CS(BIT(cs)); |
| } else { |
| cs_value = 0; |
| } |
| |
| priv->svalue |= cs_value; |
| |
| /* Enable the CS in HW, Initial clock value */ |
| writel(priv->svalue | priv->clk2, priv->regs); |
| |
| priv->cs_active = true; |
| debug("Activated CS%d\n", priv->cs_num); |
| } |
| |
| return 0; |
| } |
| |
| static int mscc_bb_spi_cs_deactivate(struct mscc_bb_priv *priv, int deact_delay) |
| { |
| if (priv->cs_active) { |
| /* Keep driving the CLK to its current value while |
| * actively deselecting CS. |
| */ |
| u32 value = readl(priv->regs); |
| |
| value &= ~ICPU_SW_MODE_SW_SPI_CS_M; |
| writel(value, priv->regs); |
| hold_time_delay(); |
| |
| /* Stop driving the clock, but keep CS with nCS == 1 */ |
| value &= ~ICPU_SW_MODE_SW_SPI_SCK_OE; |
| writel(value, priv->regs); |
| |
| /* Deselect hold time delay */ |
| if (deact_delay) |
| udelay(deact_delay); |
| |
| /* Drop everything */ |
| writel(0, priv->regs); |
| |
| priv->cs_active = false; |
| debug("Deactivated CS%d\n", priv->cs_num); |
| } |
| |
| return 0; |
| } |
| |
| int mscc_bb_spi_claim_bus(struct udevice *dev) |
| { |
| return 0; |
| } |
| |
| int mscc_bb_spi_release_bus(struct udevice *dev) |
| { |
| return 0; |
| } |
| |
| int mscc_bb_spi_xfer(struct udevice *dev, unsigned int bitlen, |
| const void *dout, void *din, unsigned long flags) |
| { |
| struct udevice *bus = dev_get_parent(dev); |
| struct dm_spi_slave_plat *plat = dev_get_parent_plat(dev); |
| struct mscc_bb_priv *priv = dev_get_priv(bus); |
| u32 i, count; |
| const u8 *txd = dout; |
| u8 *rxd = din; |
| |
| debug("spi_xfer: slave %s:%s cs%d mode %d, dout %p din %p bitlen %u\n", |
| dev->parent->name, dev->name, plat->cs[0], plat->mode, dout, |
| din, bitlen); |
| |
| if (flags & SPI_XFER_BEGIN) |
| mscc_bb_spi_cs_activate(priv, plat->mode, plat->cs[0]); |
| |
| count = bitlen / 8; |
| for (i = 0; i < count; i++) { |
| u32 rx = 0, mask = 0x80, value; |
| |
| while (mask) { |
| /* Initial condition: CLK is low. */ |
| value = priv->svalue; |
| if (txd && txd[i] & mask) |
| value |= ICPU_SW_MODE_SW_SPI_SDO; |
| |
| /* Drive data while taking CLK low. The device |
| * we're accessing will sample on the |
| * following rising edge and will output data |
| * on this edge for us to be sampled at the |
| * end of this loop. |
| */ |
| writel(value | priv->clk1, priv->regs); |
| |
| /* Wait for t_setup. All devices do have a |
| * setup-time, so we always insert some delay |
| * here. Some devices have a very long |
| * setup-time, which can be adjusted by the |
| * user through vcoreiii_device->delay. |
| */ |
| hold_time_delay(); |
| |
| /* Drive the clock high. */ |
| writel(value | priv->clk2, priv->regs); |
| |
| /* Wait for t_hold. See comment about t_setup |
| * above. |
| */ |
| hold_time_delay(); |
| |
| /* We sample as close to the next falling edge |
| * as possible. |
| */ |
| value = readl(priv->regs); |
| if (value & ICPU_SW_MODE_SW_SPI_SDI) |
| rx |= mask; |
| mask >>= 1; |
| } |
| if (rxd) { |
| debug("Read 0x%02x\n", rx); |
| rxd[i] = (u8)rx; |
| } |
| debug("spi_xfer: byte %d/%d\n", i + 1, count); |
| } |
| |
| debug("spi_xfer: done\n"); |
| |
| if (flags & SPI_XFER_END) |
| mscc_bb_spi_cs_deactivate(priv, priv->deactivate_delay_us); |
| |
| return 0; |
| } |
| |
| int mscc_bb_spi_set_speed(struct udevice *dev, unsigned int speed) |
| { |
| /* Accept any speed */ |
| return 0; |
| } |
| |
| int mscc_bb_spi_set_mode(struct udevice *dev, unsigned int mode) |
| { |
| return 0; |
| } |
| |
| static const struct dm_spi_ops mscc_bb_ops = { |
| .claim_bus = mscc_bb_spi_claim_bus, |
| .release_bus = mscc_bb_spi_release_bus, |
| .xfer = mscc_bb_spi_xfer, |
| .set_speed = mscc_bb_spi_set_speed, |
| .set_mode = mscc_bb_spi_set_mode, |
| }; |
| |
| static const struct udevice_id mscc_bb_ids[] = { |
| { .compatible = "mscc,luton-bb-spi" }, |
| { } |
| }; |
| |
| static int mscc_bb_spi_probe(struct udevice *bus) |
| { |
| struct mscc_bb_priv *priv = dev_get_priv(bus); |
| |
| debug("%s: loaded, priv %p\n", __func__, priv); |
| |
| priv->regs = dev_read_addr_ptr(bus); |
| |
| priv->deactivate_delay_us = |
| dev_read_u32_default(bus, "spi-deactivate-delay", 0); |
| |
| priv->cs_active = false; |
| |
| return 0; |
| } |
| |
| U_BOOT_DRIVER(mscc_bb) = { |
| .name = "mscc_bb", |
| .id = UCLASS_SPI, |
| .of_match = mscc_bb_ids, |
| .ops = &mscc_bb_ops, |
| .priv_auto = sizeof(struct mscc_bb_priv), |
| .probe = mscc_bb_spi_probe, |
| }; |