| #include <command.h> |
| #include <console.h> |
| #include <linux/delay.h> |
| #include "e1000.h" |
| #include <malloc.h> |
| #include <vsprintf.h> |
| #include <linux/compiler.h> |
| |
| /*----------------------------------------------------------------------- |
| * SPI transfer |
| * |
| * This writes "bitlen" bits out the SPI MOSI port and simultaneously clocks |
| * "bitlen" bits in the SPI MISO port. That's just the way SPI works. |
| * |
| * The source of the outgoing bits is the "dout" parameter and the |
| * destination of the input bits is the "din" parameter. Note that "dout" |
| * and "din" can point to the same memory location, in which case the |
| * input data overwrites the output data (since both are buffered by |
| * temporary variables, this is OK). |
| * |
| * This may be interrupted with Ctrl-C if "intr" is true, otherwise it will |
| * never return an error. |
| */ |
| static int e1000_spi_xfer(struct e1000_hw *hw, unsigned int bitlen, |
| const void *dout_mem, void *din_mem, bool intr) |
| { |
| const uint8_t *dout = dout_mem; |
| uint8_t *din = din_mem; |
| |
| uint8_t mask = 0; |
| uint32_t eecd; |
| unsigned long i; |
| |
| /* Pre-read the control register */ |
| eecd = E1000_READ_REG(hw, EECD); |
| |
| /* Iterate over each bit */ |
| for (i = 0, mask = 0x80; i < bitlen; i++, mask = (mask >> 1)?:0x80) { |
| /* Check for interrupt */ |
| if (intr && ctrlc()) |
| return -1; |
| |
| /* Determine the output bit */ |
| if (dout && dout[i >> 3] & mask) |
| eecd |= E1000_EECD_DI; |
| else |
| eecd &= ~E1000_EECD_DI; |
| |
| /* Write the output bit and wait 50us */ |
| E1000_WRITE_REG(hw, EECD, eecd); |
| E1000_WRITE_FLUSH(hw); |
| udelay(50); |
| |
| /* Poke the clock (waits 50us) */ |
| e1000_raise_ee_clk(hw, &eecd); |
| |
| /* Now read the input bit */ |
| eecd = E1000_READ_REG(hw, EECD); |
| if (din) { |
| if (eecd & E1000_EECD_DO) |
| din[i >> 3] |= mask; |
| else |
| din[i >> 3] &= ~mask; |
| } |
| |
| /* Poke the clock again (waits 50us) */ |
| e1000_lower_ee_clk(hw, &eecd); |
| } |
| |
| /* Now clear any remaining bits of the input */ |
| if (din && (i & 7)) |
| din[i >> 3] &= ~((mask << 1) - 1); |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_E1000_SPI_GENERIC |
| static inline struct e1000_hw *e1000_hw_from_spi(struct spi_slave *spi) |
| { |
| return container_of(spi, struct e1000_hw, spi); |
| } |
| |
| struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs, |
| unsigned int max_hz, unsigned int mode) |
| { |
| /* Find the right PCI device */ |
| struct e1000_hw *hw = e1000_find_card(bus); |
| if (!hw) { |
| printf("ERROR: No such e1000 device: e1000#%u\n", bus); |
| return NULL; |
| } |
| |
| /* Make sure it has an SPI chip */ |
| if (hw->eeprom.type != e1000_eeprom_spi) { |
| E1000_ERR(hw, "No attached SPI EEPROM found!\n"); |
| return NULL; |
| } |
| |
| /* Argument sanity checks */ |
| if (cs != 0) { |
| E1000_ERR(hw, "No such SPI chip: %u\n", cs); |
| return NULL; |
| } |
| if (mode != SPI_MODE_0) { |
| E1000_ERR(hw, "Only SPI MODE-0 is supported!\n"); |
| return NULL; |
| } |
| |
| /* TODO: Use max_hz somehow */ |
| E1000_DBG(hw->nic, "EEPROM SPI access requested\n"); |
| return &hw->spi; |
| } |
| |
| void spi_free_slave(struct spi_slave *spi) |
| { |
| __maybe_unused struct e1000_hw *hw = e1000_hw_from_spi(spi); |
| E1000_DBG(hw->nic, "EEPROM SPI access released\n"); |
| } |
| |
| int spi_claim_bus(struct spi_slave *spi) |
| { |
| struct e1000_hw *hw = e1000_hw_from_spi(spi); |
| |
| if (e1000_acquire_eeprom(hw)) { |
| E1000_ERR(hw, "EEPROM SPI cannot be acquired!\n"); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| void spi_release_bus(struct spi_slave *spi) |
| { |
| struct e1000_hw *hw = e1000_hw_from_spi(spi); |
| e1000_release_eeprom(hw); |
| } |
| |
| /* Skinny wrapper around e1000_spi_xfer */ |
| int spi_xfer(struct spi_slave *spi, unsigned int bitlen, |
| const void *dout_mem, void *din_mem, unsigned long flags) |
| { |
| struct e1000_hw *hw = e1000_hw_from_spi(spi); |
| int ret; |
| |
| if (flags & SPI_XFER_BEGIN) |
| e1000_standby_eeprom(hw); |
| |
| ret = e1000_spi_xfer(hw, bitlen, dout_mem, din_mem, true); |
| |
| if (flags & SPI_XFER_END) |
| e1000_standby_eeprom(hw); |
| |
| return ret; |
| } |
| |
| #endif /* not CONFIG_E1000_SPI_GENERIC */ |
| |
| #ifdef CONFIG_CMD_E1000 |
| |
| /* The EEPROM opcodes */ |
| #define SPI_EEPROM_ENABLE_WR 0x06 |
| #define SPI_EEPROM_DISABLE_WR 0x04 |
| #define SPI_EEPROM_WRITE_STATUS 0x01 |
| #define SPI_EEPROM_READ_STATUS 0x05 |
| #define SPI_EEPROM_WRITE_PAGE 0x02 |
| #define SPI_EEPROM_READ_PAGE 0x03 |
| |
| /* The EEPROM status bits */ |
| #define SPI_EEPROM_STATUS_BUSY 0x01 |
| #define SPI_EEPROM_STATUS_WREN 0x02 |
| |
| static int e1000_spi_eeprom_enable_wr(struct e1000_hw *hw, bool intr) |
| { |
| u8 op[] = { SPI_EEPROM_ENABLE_WR }; |
| e1000_standby_eeprom(hw); |
| return e1000_spi_xfer(hw, 8*sizeof(op), op, NULL, intr); |
| } |
| |
| /* |
| * These have been tested to perform correctly, but they are not used by any |
| * of the EEPROM commands at this time. |
| */ |
| static __maybe_unused int e1000_spi_eeprom_disable_wr(struct e1000_hw *hw, |
| bool intr) |
| { |
| u8 op[] = { SPI_EEPROM_DISABLE_WR }; |
| e1000_standby_eeprom(hw); |
| return e1000_spi_xfer(hw, 8*sizeof(op), op, NULL, intr); |
| } |
| |
| static __maybe_unused int e1000_spi_eeprom_write_status(struct e1000_hw *hw, |
| u8 status, bool intr) |
| { |
| u8 op[] = { SPI_EEPROM_WRITE_STATUS, status }; |
| e1000_standby_eeprom(hw); |
| return e1000_spi_xfer(hw, 8*sizeof(op), op, NULL, intr); |
| } |
| |
| static int e1000_spi_eeprom_read_status(struct e1000_hw *hw, bool intr) |
| { |
| u8 op[] = { SPI_EEPROM_READ_STATUS, 0 }; |
| e1000_standby_eeprom(hw); |
| if (e1000_spi_xfer(hw, 8*sizeof(op), op, op, intr)) |
| return -1; |
| return op[1]; |
| } |
| |
| static int e1000_spi_eeprom_write_page(struct e1000_hw *hw, |
| const void *data, u16 off, u16 len, bool intr) |
| { |
| u8 op[] = { |
| SPI_EEPROM_WRITE_PAGE, |
| (off >> (hw->eeprom.address_bits - 8)) & 0xff, off & 0xff |
| }; |
| |
| e1000_standby_eeprom(hw); |
| |
| if (e1000_spi_xfer(hw, 8 + hw->eeprom.address_bits, op, NULL, intr)) |
| return -1; |
| if (e1000_spi_xfer(hw, len << 3, data, NULL, intr)) |
| return -1; |
| |
| return 0; |
| } |
| |
| static int e1000_spi_eeprom_read_page(struct e1000_hw *hw, |
| void *data, u16 off, u16 len, bool intr) |
| { |
| u8 op[] = { |
| SPI_EEPROM_READ_PAGE, |
| (off >> (hw->eeprom.address_bits - 8)) & 0xff, off & 0xff |
| }; |
| |
| e1000_standby_eeprom(hw); |
| |
| if (e1000_spi_xfer(hw, 8 + hw->eeprom.address_bits, op, NULL, intr)) |
| return -1; |
| if (e1000_spi_xfer(hw, len << 3, NULL, data, intr)) |
| return -1; |
| |
| return 0; |
| } |
| |
| static int e1000_spi_eeprom_poll_ready(struct e1000_hw *hw, bool intr) |
| { |
| int status; |
| while ((status = e1000_spi_eeprom_read_status(hw, intr)) >= 0) { |
| if (!(status & SPI_EEPROM_STATUS_BUSY)) |
| return 0; |
| } |
| return -1; |
| } |
| |
| static int e1000_spi_eeprom_dump(struct e1000_hw *hw, |
| void *data, u16 off, unsigned int len, bool intr) |
| { |
| /* Interruptibly wait for the EEPROM to be ready */ |
| if (e1000_spi_eeprom_poll_ready(hw, intr)) |
| return -1; |
| |
| /* Dump each page in sequence */ |
| while (len) { |
| /* Calculate the data bytes on this page */ |
| u16 pg_off = off & (hw->eeprom.page_size - 1); |
| u16 pg_len = hw->eeprom.page_size - pg_off; |
| if (pg_len > len) |
| pg_len = len; |
| |
| /* Now dump the page */ |
| if (e1000_spi_eeprom_read_page(hw, data, off, pg_len, intr)) |
| return -1; |
| |
| /* Otherwise go on to the next page */ |
| len -= pg_len; |
| off += pg_len; |
| data += pg_len; |
| } |
| |
| /* We're done! */ |
| return 0; |
| } |
| |
| static int e1000_spi_eeprom_program(struct e1000_hw *hw, |
| const void *data, u16 off, u16 len, bool intr) |
| { |
| /* Program each page in sequence */ |
| while (len) { |
| /* Calculate the data bytes on this page */ |
| u16 pg_off = off & (hw->eeprom.page_size - 1); |
| u16 pg_len = hw->eeprom.page_size - pg_off; |
| if (pg_len > len) |
| pg_len = len; |
| |
| /* Interruptibly wait for the EEPROM to be ready */ |
| if (e1000_spi_eeprom_poll_ready(hw, intr)) |
| return -1; |
| |
| /* Enable write access */ |
| if (e1000_spi_eeprom_enable_wr(hw, intr)) |
| return -1; |
| |
| /* Now program the page */ |
| if (e1000_spi_eeprom_write_page(hw, data, off, pg_len, intr)) |
| return -1; |
| |
| /* Otherwise go on to the next page */ |
| len -= pg_len; |
| off += pg_len; |
| data += pg_len; |
| } |
| |
| /* Wait for the last write to complete */ |
| if (e1000_spi_eeprom_poll_ready(hw, intr)) |
| return -1; |
| |
| /* We're done! */ |
| return 0; |
| } |
| |
| static int do_e1000_spi_show(struct cmd_tbl *cmdtp, struct e1000_hw *hw, |
| int argc, char *const argv[]) |
| { |
| unsigned int length = 0; |
| u16 i, offset = 0; |
| u8 *buffer; |
| int err; |
| |
| if (argc > 2) { |
| cmd_usage(cmdtp); |
| return 1; |
| } |
| |
| /* Parse the offset and length */ |
| if (argc >= 1) |
| offset = simple_strtoul(argv[0], NULL, 0); |
| if (argc == 2) |
| length = simple_strtoul(argv[1], NULL, 0); |
| else if (offset < (hw->eeprom.word_size << 1)) |
| length = (hw->eeprom.word_size << 1) - offset; |
| |
| /* Extra sanity checks */ |
| if (!length) { |
| E1000_ERR(hw, "Requested zero-sized dump!\n"); |
| return 1; |
| } |
| if ((0x10000 < length) || (0x10000 - length < offset)) { |
| E1000_ERR(hw, "Can't dump past 0xFFFF!\n"); |
| return 1; |
| } |
| |
| /* Allocate a buffer to hold stuff */ |
| buffer = malloc(length); |
| if (!buffer) { |
| E1000_ERR(hw, "Out of Memory!\n"); |
| return 1; |
| } |
| |
| /* Acquire the EEPROM and perform the dump */ |
| if (e1000_acquire_eeprom(hw)) { |
| E1000_ERR(hw, "EEPROM SPI cannot be acquired!\n"); |
| free(buffer); |
| return 1; |
| } |
| err = e1000_spi_eeprom_dump(hw, buffer, offset, length, true); |
| e1000_release_eeprom(hw); |
| if (err) { |
| E1000_ERR(hw, "Interrupted!\n"); |
| free(buffer); |
| return 1; |
| } |
| |
| /* Now hexdump the result */ |
| printf("%s: ===== Intel e1000 EEPROM (0x%04hX - 0x%04hX) =====", |
| hw->name, offset, offset + length - 1); |
| for (i = 0; i < length; i++) { |
| if ((i & 0xF) == 0) |
| printf("\n%s: %04hX: ", hw->name, offset + i); |
| else if ((i & 0xF) == 0x8) |
| printf(" "); |
| printf(" %02hx", buffer[i]); |
| } |
| printf("\n"); |
| |
| /* Success! */ |
| free(buffer); |
| return 0; |
| } |
| |
| static int do_e1000_spi_dump(struct cmd_tbl *cmdtp, struct e1000_hw *hw, |
| int argc, char *const argv[]) |
| { |
| unsigned int length; |
| u16 offset; |
| void *dest; |
| |
| if (argc != 3) { |
| cmd_usage(cmdtp); |
| return 1; |
| } |
| |
| /* Parse the arguments */ |
| dest = (void *)hextoul(argv[0], NULL); |
| offset = simple_strtoul(argv[1], NULL, 0); |
| length = simple_strtoul(argv[2], NULL, 0); |
| |
| /* Extra sanity checks */ |
| if (!length) { |
| E1000_ERR(hw, "Requested zero-sized dump!\n"); |
| return 1; |
| } |
| if ((0x10000 < length) || (0x10000 - length < offset)) { |
| E1000_ERR(hw, "Can't dump past 0xFFFF!\n"); |
| return 1; |
| } |
| |
| /* Acquire the EEPROM */ |
| if (e1000_acquire_eeprom(hw)) { |
| E1000_ERR(hw, "EEPROM SPI cannot be acquired!\n"); |
| return 1; |
| } |
| |
| /* Perform the programming operation */ |
| if (e1000_spi_eeprom_dump(hw, dest, offset, length, true) < 0) { |
| E1000_ERR(hw, "Interrupted!\n"); |
| e1000_release_eeprom(hw); |
| return 1; |
| } |
| |
| e1000_release_eeprom(hw); |
| printf("%s: ===== EEPROM DUMP COMPLETE =====\n", hw->name); |
| return 0; |
| } |
| |
| static int do_e1000_spi_program(struct cmd_tbl *cmdtp, struct e1000_hw *hw, |
| int argc, char *const argv[]) |
| { |
| unsigned int length; |
| const void *source; |
| u16 offset; |
| |
| if (argc != 3) { |
| cmd_usage(cmdtp); |
| return 1; |
| } |
| |
| /* Parse the arguments */ |
| source = (const void *)hextoul(argv[0], NULL); |
| offset = simple_strtoul(argv[1], NULL, 0); |
| length = simple_strtoul(argv[2], NULL, 0); |
| |
| /* Acquire the EEPROM */ |
| if (e1000_acquire_eeprom(hw)) { |
| E1000_ERR(hw, "EEPROM SPI cannot be acquired!\n"); |
| return 1; |
| } |
| |
| /* Perform the programming operation */ |
| if (e1000_spi_eeprom_program(hw, source, offset, length, true) < 0) { |
| E1000_ERR(hw, "Interrupted!\n"); |
| e1000_release_eeprom(hw); |
| return 1; |
| } |
| |
| e1000_release_eeprom(hw); |
| printf("%s: ===== EEPROM PROGRAMMED =====\n", hw->name); |
| return 0; |
| } |
| |
| static int do_e1000_spi_checksum(struct cmd_tbl *cmdtp, struct e1000_hw *hw, |
| int argc, char *const argv[]) |
| { |
| uint16_t i, length, checksum = 0, checksum_reg; |
| uint16_t *buffer; |
| bool upd; |
| |
| if (argc == 0) |
| upd = 0; |
| else if ((argc == 1) && !strcmp(argv[0], "update")) |
| upd = 1; |
| else { |
| cmd_usage(cmdtp); |
| return 1; |
| } |
| |
| /* Allocate a temporary buffer */ |
| length = sizeof(uint16_t) * (EEPROM_CHECKSUM_REG + 1); |
| buffer = malloc(length); |
| if (!buffer) { |
| E1000_ERR(hw, "Unable to allocate EEPROM buffer!\n"); |
| return 1; |
| } |
| |
| /* Acquire the EEPROM */ |
| if (e1000_acquire_eeprom(hw)) { |
| E1000_ERR(hw, "EEPROM SPI cannot be acquired!\n"); |
| return 1; |
| } |
| |
| /* Read the EEPROM */ |
| if (e1000_spi_eeprom_dump(hw, buffer, 0, length, true) < 0) { |
| E1000_ERR(hw, "Interrupted!\n"); |
| e1000_release_eeprom(hw); |
| return 1; |
| } |
| |
| /* Compute the checksum and read the expected value */ |
| for (i = 0; i < EEPROM_CHECKSUM_REG; i++) |
| checksum += le16_to_cpu(buffer[i]); |
| checksum = ((uint16_t)EEPROM_SUM) - checksum; |
| checksum_reg = le16_to_cpu(buffer[i]); |
| |
| /* Verify it! */ |
| if (checksum_reg == checksum) { |
| printf("%s: INFO: EEPROM checksum is correct! (0x%04hx)\n", |
| hw->name, checksum); |
| e1000_release_eeprom(hw); |
| return 0; |
| } |
| |
| /* Hrm, verification failed, print an error */ |
| E1000_ERR(hw, "EEPROM checksum is incorrect!\n"); |
| E1000_ERR(hw, " ...register was 0x%04hx, calculated 0x%04hx\n", |
| checksum_reg, checksum); |
| |
| /* If they didn't ask us to update it, just return an error */ |
| if (!upd) { |
| e1000_release_eeprom(hw); |
| return 1; |
| } |
| |
| /* Ok, correct it! */ |
| printf("%s: Reprogramming the EEPROM checksum...\n", hw->name); |
| buffer[i] = cpu_to_le16(checksum); |
| if (e1000_spi_eeprom_program(hw, &buffer[i], i * sizeof(uint16_t), |
| sizeof(uint16_t), true)) { |
| E1000_ERR(hw, "Interrupted!\n"); |
| e1000_release_eeprom(hw); |
| return 1; |
| } |
| |
| e1000_release_eeprom(hw); |
| return 0; |
| } |
| |
| int do_e1000_spi(struct cmd_tbl *cmdtp, struct e1000_hw *hw, |
| int argc, char *const argv[]) |
| { |
| if (argc < 1) { |
| cmd_usage(cmdtp); |
| return 1; |
| } |
| |
| /* Make sure it has an SPI chip */ |
| if (hw->eeprom.type != e1000_eeprom_spi) { |
| E1000_ERR(hw, "No attached SPI EEPROM found (%d)!\n", |
| hw->eeprom.type); |
| return 1; |
| } |
| |
| /* Check the eeprom sub-sub-command arguments */ |
| if (!strcmp(argv[0], "show")) |
| return do_e1000_spi_show(cmdtp, hw, argc - 1, argv + 1); |
| |
| if (!strcmp(argv[0], "dump")) |
| return do_e1000_spi_dump(cmdtp, hw, argc - 1, argv + 1); |
| |
| if (!strcmp(argv[0], "program")) |
| return do_e1000_spi_program(cmdtp, hw, argc - 1, argv + 1); |
| |
| if (!strcmp(argv[0], "checksum")) |
| return do_e1000_spi_checksum(cmdtp, hw, argc - 1, argv + 1); |
| |
| cmd_usage(cmdtp); |
| return 1; |
| } |
| |
| #endif /* not CONFIG_CMD_E1000 */ |