blob: e9dd33845635481a74c49f928c6aa59dc967fff8 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* (C) Copyright 2007
* Sascha Hauer, Pengutronix
*
* (C) Copyright 2009 Freescale Semiconductor, Inc.
* Copyright 2021 NXP
*/
#include <env.h>
#include <init.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <asm/io.h>
#include <asm/arch/imx-regs.h>
#include <asm/arch/clock.h>
#include <asm/arch/sys_proto.h>
#include <asm/bootm.h>
#include <asm/mach-imx/boot_mode.h>
#include <asm/mach-imx/dma.h>
#include <asm/mach-imx/hab.h>
#include <stdbool.h>
#include <asm/arch/mxc_hdmi.h>
#include <asm/arch/crm_regs.h>
#include <dm.h>
#include <imx_thermal.h>
#include <mmc.h>
#define has_err007805() \
(is_mx6sl() || is_mx6dl() || is_mx6solo() || is_mx6ull())
struct scu_regs {
u32 ctrl;
u32 config;
u32 status;
u32 invalidate;
u32 fpga_rev;
};
#if !defined(CONFIG_XPL_BUILD) && defined(CONFIG_IMX_THERMAL)
static const struct imx_thermal_plat imx6_thermal_plat = {
.regs = (void *)ANATOP_BASE_ADDR,
.fuse_bank = 1,
.fuse_word = 6,
};
U_BOOT_DRVINFO(imx6_thermal) = {
.name = "imx_thermal",
.plat = &imx6_thermal_plat,
};
#endif
#if defined(CONFIG_IMX_HAB)
struct imx_fuse const imx_sec_config_fuse = {
.bank = 0,
.word = 6,
};
#endif
u32 get_nr_cpus(void)
{
struct scu_regs *scu = (struct scu_regs *)SCU_BASE_ADDR;
return readl(&scu->config) & 3;
}
u32 get_cpu_rev(void)
{
struct anatop_regs *anatop = (struct anatop_regs *)ANATOP_BASE_ADDR;
u32 reg = readl(&anatop->digprog_sololite);
u32 type = ((reg >> 16) & 0xff);
u32 major, cfg = 0;
if (type != MXC_CPU_MX6SL) {
reg = readl(&anatop->digprog);
struct scu_regs *scu = (struct scu_regs *)SCU_BASE_ADDR;
cfg = readl(&scu->config) & 3;
type = ((reg >> 16) & 0xff);
if (type == MXC_CPU_MX6DL) {
if (!cfg)
type = MXC_CPU_MX6SOLO;
}
if (type == MXC_CPU_MX6Q) {
if (cfg == 1)
type = MXC_CPU_MX6D;
}
if (type == MXC_CPU_MX6ULL) {
if (readl(SRC_BASE_ADDR + 0x1c) & (1 << 6))
type = MXC_CPU_MX6ULZ;
}
}
major = ((reg >> 8) & 0xff);
if ((major >= 1) &&
((type == MXC_CPU_MX6Q) || (type == MXC_CPU_MX6D))) {
major--;
type = MXC_CPU_MX6QP;
if (cfg == 1)
type = MXC_CPU_MX6DP;
}
reg &= 0xff; /* mx6 silicon revision */
/* For 6DQ, the value 0x00630005 is Silicon revision 1.3*/
if (((type == MXC_CPU_MX6Q) || (type == MXC_CPU_MX6D)) && (reg == 0x5))
reg = 0x3;
return (type << 12) | (reg + (0x10 * (major + 1)));
}
/*
* OCOTP_CFG3[17:16] (see Fusemap Description Table offset 0x440)
* defines a 2-bit SPEED_GRADING
*/
#define OCOTP_CFG3_SPEED_SHIFT 16
#define OCOTP_CFG3_SPEED_800MHZ 0
#define OCOTP_CFG3_SPEED_850MHZ 1
#define OCOTP_CFG3_SPEED_1GHZ 2
#define OCOTP_CFG3_SPEED_1P2GHZ 3
/*
* For i.MX6UL
*/
#define OCOTP_CFG3_SPEED_528MHZ 1
#define OCOTP_CFG3_SPEED_696MHZ 2
/*
* For i.MX6ULL
*/
#define OCOTP_CFG3_SPEED_792MHZ 2
#define OCOTP_CFG3_SPEED_900MHZ 3
u32 get_cpu_speed_grade_hz(void)
{
struct ocotp_regs *ocotp = (struct ocotp_regs *)OCOTP_BASE_ADDR;
struct fuse_bank *bank = &ocotp->bank[0];
struct fuse_bank0_regs *fuse =
(struct fuse_bank0_regs *)bank->fuse_regs;
uint32_t val;
val = readl(&fuse->cfg3);
val >>= OCOTP_CFG3_SPEED_SHIFT;
val &= 0x3;
if (is_mx6ul()) {
if (val == OCOTP_CFG3_SPEED_528MHZ)
return 528000000;
else if (val == OCOTP_CFG3_SPEED_696MHZ)
return 696000000;
else
return 0;
}
if (is_mx6ull()) {
if (val == OCOTP_CFG3_SPEED_528MHZ)
return 528000000;
else if (val == OCOTP_CFG3_SPEED_792MHZ)
return 792000000;
else if (val == OCOTP_CFG3_SPEED_900MHZ)
return 900000000;
else
return 0;
}
switch (val) {
/* Valid for IMX6DQ */
case OCOTP_CFG3_SPEED_1P2GHZ:
if (is_mx6dq() || is_mx6dqp())
return 1200000000;
/* Valid for IMX6SX/IMX6SDL/IMX6DQ */
case OCOTP_CFG3_SPEED_1GHZ:
return 996000000;
/* Valid for IMX6DQ */
case OCOTP_CFG3_SPEED_850MHZ:
if (is_mx6dq() || is_mx6dqp())
return 852000000;
/* Valid for IMX6SX/IMX6SDL/IMX6DQ */
case OCOTP_CFG3_SPEED_800MHZ:
return 792000000;
}
return 0;
}
/*
* OCOTP_MEM0[7:6] (see Fusemap Description Table offset 0x480)
* defines a 2-bit Temperature Grade
*
* return temperature grade and min/max temperature in Celsius
*/
#define OCOTP_MEM0_TEMP_SHIFT 6
u32 get_cpu_temp_grade(int *minc, int *maxc)
{
struct ocotp_regs *ocotp = (struct ocotp_regs *)OCOTP_BASE_ADDR;
struct fuse_bank *bank = &ocotp->bank[1];
struct fuse_bank1_regs *fuse =
(struct fuse_bank1_regs *)bank->fuse_regs;
uint32_t val;
val = readl(&fuse->mem0);
val >>= OCOTP_MEM0_TEMP_SHIFT;
val &= 0x3;
if (minc && maxc) {
if (val == TEMP_AUTOMOTIVE) {
*minc = -40;
*maxc = 125;
} else if (val == TEMP_INDUSTRIAL) {
*minc = -40;
*maxc = 105;
} else if (val == TEMP_EXTCOMMERCIAL) {
*minc = -20;
*maxc = 105;
} else {
*minc = 0;
*maxc = 95;
}
}
return val;
}
#ifdef CONFIG_REVISION_TAG
u32 __weak get_board_rev(void)
{
u32 cpurev = get_cpu_rev();
u32 type = ((cpurev >> 12) & 0xff);
if (type == MXC_CPU_MX6SOLO)
cpurev = (MXC_CPU_MX6DL) << 12 | (cpurev & 0xFFF);
if (type == MXC_CPU_MX6D)
cpurev = (MXC_CPU_MX6Q) << 12 | (cpurev & 0xFFF);
return cpurev;
}
#endif
static void clear_ldo_ramp(void)
{
struct anatop_regs *anatop = (struct anatop_regs *)ANATOP_BASE_ADDR;
int reg;
/* ROM may modify LDO ramp up time according to fuse setting, so in
* order to be in the safe side we neeed to reset these settings to
* match the reset value: 0'b00
*/
reg = readl(&anatop->ana_misc2);
reg &= ~(0x3f << 24);
writel(reg, &anatop->ana_misc2);
}
/*
* Set the PMU_REG_CORE register
*
* Set LDO_SOC/PU/ARM regulators to the specified millivolt level.
* Possible values are from 0.725V to 1.450V in steps of
* 0.025V (25mV).
*/
int set_ldo_voltage(enum ldo_reg ldo, u32 mv)
{
struct anatop_regs *anatop = (struct anatop_regs *)ANATOP_BASE_ADDR;
u32 val, step, old, reg = readl(&anatop->reg_core);
u8 shift;
/* No LDO_SOC/PU/ARM */
if (is_mx6sll())
return 0;
if (mv < 725)
val = 0x00; /* Power gated off */
else if (mv > 1450)
val = 0x1F; /* Power FET switched full on. No regulation */
else
val = (mv - 700) / 25;
clear_ldo_ramp();
switch (ldo) {
case LDO_SOC:
shift = 18;
break;
case LDO_PU:
shift = 9;
break;
case LDO_ARM:
shift = 0;
break;
default:
return -EINVAL;
}
old = (reg & (0x1F << shift)) >> shift;
step = abs(val - old);
if (step == 0)
return 0;
reg = (reg & ~(0x1F << shift)) | (val << shift);
writel(reg, &anatop->reg_core);
/*
* The LDO ramp-up is based on 64 clock cycles of 24 MHz = 2.6 us per
* step
*/
udelay(3 * step);
return 0;
}
static void set_ahb_rate(u32 val)
{
struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
u32 reg, div;
div = get_periph_clk() / val - 1;
reg = readl(&mxc_ccm->cbcdr);
writel((reg & (~MXC_CCM_CBCDR_AHB_PODF_MASK)) |
(div << MXC_CCM_CBCDR_AHB_PODF_OFFSET), &mxc_ccm->cbcdr);
}
static void clear_mmdc_ch_mask(void)
{
struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
u32 reg;
reg = readl(&mxc_ccm->ccdr);
/* Clear MMDC channel mask */
if (is_mx6sx() || is_mx6ul() || is_mx6ull() || is_mx6sl() || is_mx6sll())
reg &= ~(MXC_CCM_CCDR_MMDC_CH1_HS_MASK);
else
reg &= ~(MXC_CCM_CCDR_MMDC_CH1_HS_MASK | MXC_CCM_CCDR_MMDC_CH0_HS_MASK);
writel(reg, &mxc_ccm->ccdr);
}
#define OCOTP_MEM0_REFTOP_TRIM_SHIFT 8
static void init_bandgap(void)
{
struct anatop_regs *anatop = (struct anatop_regs *)ANATOP_BASE_ADDR;
struct ocotp_regs *ocotp = (struct ocotp_regs *)OCOTP_BASE_ADDR;
struct fuse_bank *bank = &ocotp->bank[1];
struct fuse_bank1_regs *fuse =
(struct fuse_bank1_regs *)bank->fuse_regs;
uint32_t val;
/*
* Ensure the bandgap has stabilized.
*/
while (!(readl(&anatop->ana_misc0) & 0x80))
;
/*
* For best noise performance of the analog blocks using the
* outputs of the bandgap, the reftop_selfbiasoff bit should
* be set.
*/
writel(BM_ANADIG_ANA_MISC0_REFTOP_SELBIASOFF, &anatop->ana_misc0_set);
/*
* On i.MX6ULL,we need to set VBGADJ bits according to the
* REFTOP_TRIM[3:0] in fuse table
* 000 - set REFTOP_VBGADJ[2:0] to 3b'110,
* 110 - set REFTOP_VBGADJ[2:0] to 3b'000,
* 001 - set REFTOP_VBGADJ[2:0] to 3b'001,
* 010 - set REFTOP_VBGADJ[2:0] to 3b'010,
* 011 - set REFTOP_VBGADJ[2:0] to 3b'011,
* 100 - set REFTOP_VBGADJ[2:0] to 3b'100,
* 101 - set REFTOP_VBGADJ[2:0] to 3b'101,
* 111 - set REFTOP_VBGADJ[2:0] to 3b'111,
*/
if (is_mx6ull()) {
static const u32 map[] = {6, 1, 2, 3, 4, 5, 0, 7};
val = readl(&fuse->mem0);
val >>= OCOTP_MEM0_REFTOP_TRIM_SHIFT;
val &= 0x7;
writel(map[val] << BM_ANADIG_ANA_MISC0_REFTOP_VBGADJ_SHIFT,
&anatop->ana_misc0_set);
}
}
#if defined(CONFIG_MX6Q) || defined(CONFIG_MX6QDL)
static void noc_setup(void)
{
enable_ipu_clock();
writel(0x80000201, 0xbb0608);
/* Bypass IPU1 QoS generator */
writel(0x00000002, 0x00bb048c);
/* Bypass IPU2 QoS generator */
writel(0x00000002, 0x00bb050c);
/* Bandwidth THR for of PRE0 */
writel(0x00000200, 0x00bb0690);
/* Bandwidth THR for of PRE1 */
writel(0x00000200, 0x00bb0710);
/* Bandwidth THR for of PRE2 */
writel(0x00000200, 0x00bb0790);
/* Bandwidth THR for of PRE3 */
writel(0x00000200, 0x00bb0810);
/* Saturation THR for of PRE0 */
writel(0x00000010, 0x00bb0694);
/* Saturation THR for of PRE1 */
writel(0x00000010, 0x00bb0714);
/* Saturation THR for of PRE2 */
writel(0x00000010, 0x00bb0794);
/* Saturation THR for of PRE */
writel(0x00000010, 0x00bb0814);
disable_ipu_clock();
}
#endif
int arch_cpu_init(void)
{
struct mxc_ccm_reg *ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
init_aips();
/* Need to clear MMDC_CHx_MASK to make warm reset work. */
clear_mmdc_ch_mask();
/*
* Disable self-bias circuit in the analog bandap.
* The self-bias circuit is used by the bandgap during startup.
* This bit should be set after the bandgap has initialized.
*/
init_bandgap();
if (!is_mx6ul() && !is_mx6ull()) {
/*
* When low freq boot is enabled, ROM will not set AHB
* freq, so we need to ensure AHB freq is 132MHz in such
* scenario.
*
* To i.MX6UL, when power up, default ARM core and
* AHB rate is 396M and 132M.
*/
if (mxc_get_clock(MXC_ARM_CLK) == 396000000)
set_ahb_rate(132000000);
}
if (is_mx6ul()) {
if (is_soc_rev(CHIP_REV_1_0) == 0) {
/*
* According to the design team's requirement on
* i.MX6UL,the PMIC_STBY_REQ PAD should be configured
* as open drain 100K (0x0000b8a0).
* Only exists on TO1.0
*/
writel(0x0000b8a0, IOMUXC_BASE_ADDR + 0x29c);
} else {
/*
* From TO1.1, SNVS adds internal pull up control
* for POR_B, the register filed is GPBIT[1:0],
* after system boot up, it can be set to 2b'01
* to disable internal pull up.It can save about
* 30uA power in SNVS mode.
*/
writel((readl(MX6UL_SNVS_LP_BASE_ADDR + 0x10) &
(~0x1400)) | 0x400,
MX6UL_SNVS_LP_BASE_ADDR + 0x10);
}
}
if (is_mx6ull()) {
/*
* GPBIT[1:0] is suggested to set to 2'b11:
* 2'b00 : always PUP100K
* 2'b01 : PUP100K when PMIC_ON_REQ or SOC_NOT_FAIL
* 2'b10 : always disable PUP100K
* 2'b11 : PDN100K when SOC_FAIL, PUP100K when SOC_NOT_FAIL
* register offset is different from i.MX6UL, since
* i.MX6UL is fixed by ECO.
*/
writel(readl(MX6UL_SNVS_LP_BASE_ADDR) |
0x3, MX6UL_SNVS_LP_BASE_ADDR);
}
/* Set perclk to source from OSC 24MHz */
if (has_err007805())
setbits_le32(&ccm->cscmr1, MXC_CCM_CSCMR1_PER_CLK_SEL_MASK);
imx_wdog_disable_powerdown(); /* Disable PDE bit of WMCR register */
if (is_mx6sx())
setbits_le32(&ccm->cscdr1, MXC_CCM_CSCDR1_UART_CLK_SEL);
init_src();
#if defined(CONFIG_MX6Q) || defined(CONFIG_MX6QDL)
if (is_mx6dqp())
noc_setup();
#endif
enable_ca7_smp();
return 0;
}
#ifdef CONFIG_ENV_IS_IN_MMC
__weak int board_mmc_get_env_dev(int devno)
{
return CONFIG_SYS_MMC_ENV_DEV;
}
static int mmc_get_boot_dev(void)
{
u32 soc_sbmr = imx6_src_get_boot_mode();
u32 bootsel;
int devno;
/*
* Refer to
* "i.MX 6Dual/6Quad Applications Processor Reference Manual"
* Chapter "8.5.3.1 Expansion Device eFUSE Configuration"
* i.MX6SL/SX/UL has same layout.
*/
bootsel = (soc_sbmr & 0x000000FF) >> 6;
/* No boot from sd/mmc */
if (bootsel != 1)
return -1;
/* BOOT_CFG2[3] and BOOT_CFG2[4] */
devno = (soc_sbmr & 0x00001800) >> 11;
return devno;
}
int mmc_get_env_dev(void)
{
int devno = mmc_get_boot_dev();
/* If not boot from sd/mmc, use default value */
if (devno < 0)
return CONFIG_SYS_MMC_ENV_DEV;
return board_mmc_get_env_dev(devno);
}
#ifdef CONFIG_SYS_MMC_ENV_PART
__weak int board_mmc_get_env_part(int devno)
{
return CONFIG_SYS_MMC_ENV_PART;
}
uint mmc_get_env_part(struct mmc *mmc)
{
int devno = mmc_get_boot_dev();
/* If not boot from sd/mmc, use default value */
if (devno < 0)
return CONFIG_SYS_MMC_ENV_PART;
return board_mmc_get_env_part(devno);
}
#endif
#endif
int board_postclk_init(void)
{
/* NO LDO SOC on i.MX6SLL */
if (is_mx6sll())
return 0;
set_ldo_voltage(LDO_SOC, 1175); /* Set VDDSOC to 1.175V */
return 0;
}
#ifndef CONFIG_XPL_BUILD
/*
* cfg_val will be used for
* Boot_cfg4[7:0]:Boot_cfg3[7:0]:Boot_cfg2[7:0]:Boot_cfg1[7:0]
* After reset, if GPR10[28] is 1, ROM will use GPR9[25:0]
* instead of SBMR1 to determine the boot device.
*/
const struct boot_mode soc_boot_modes[] = {
{"normal", MAKE_CFGVAL(0x00, 0x00, 0x00, 0x00)},
/* reserved value should start rom usb */
#if defined(CONFIG_MX6UL) || defined(CONFIG_MX6ULL)
{"usb", MAKE_CFGVAL(0x20, 0x00, 0x00, 0x00)},
#else
{"usb", MAKE_CFGVAL(0x10, 0x00, 0x00, 0x00)},
#endif
{"sata", MAKE_CFGVAL(0x20, 0x00, 0x00, 0x00)},
{"ecspi1:0", MAKE_CFGVAL(0x30, 0x00, 0x00, 0x08)},
{"ecspi1:1", MAKE_CFGVAL(0x30, 0x00, 0x00, 0x18)},
{"ecspi1:2", MAKE_CFGVAL(0x30, 0x00, 0x00, 0x28)},
{"ecspi1:3", MAKE_CFGVAL(0x30, 0x00, 0x00, 0x38)},
{"ecspi3:0", MAKE_CFGVAL(0x30, 0x00, 0x00, 0x0a)},
{"ecspi3:1", MAKE_CFGVAL(0x30, 0x00, 0x00, 0x1a)},
{"ecspi3:2", MAKE_CFGVAL(0x30, 0x00, 0x00, 0x2a)},
{"ecspi3:3", MAKE_CFGVAL(0x30, 0x00, 0x00, 0x3a)},
/* 4 bit bus width */
{"esdhc1", MAKE_CFGVAL(0x40, 0x20, 0x00, 0x00)},
{"esdhc2", MAKE_CFGVAL(0x40, 0x28, 0x00, 0x00)},
{"esdhc3", MAKE_CFGVAL(0x40, 0x30, 0x00, 0x00)},
{"esdhc4", MAKE_CFGVAL(0x40, 0x38, 0x00, 0x00)},
{NULL, 0},
};
#endif
void reset_misc(void)
{
#ifndef CONFIG_XPL_BUILD
#if defined(CONFIG_VIDEO_MXS) && !defined(CONFIG_VIDEO)
lcdif_power_down();
#endif
#endif
}
void s_init(void)
{
struct anatop_regs *anatop = (struct anatop_regs *)ANATOP_BASE_ADDR;
struct mxc_ccm_reg *ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
u32 mask480;
u32 mask528;
u32 reg, periph1, periph2;
if (is_mx6sx() || is_mx6ul() || is_mx6ull() || is_mx6sll())
return;
/* Due to hardware limitation, on MX6Q we need to gate/ungate all PFDs
* to make sure PFD is working right, otherwise, PFDs may
* not output clock after reset, MX6DL and MX6SL have added 396M pfd
* workaround in ROM code, as bus clock need it
*/
mask480 = ANATOP_PFD_CLKGATE_MASK(0) |
ANATOP_PFD_CLKGATE_MASK(1) |
ANATOP_PFD_CLKGATE_MASK(2) |
ANATOP_PFD_CLKGATE_MASK(3);
mask528 = ANATOP_PFD_CLKGATE_MASK(1) |
ANATOP_PFD_CLKGATE_MASK(3);
reg = readl(&ccm->cbcmr);
periph2 = ((reg & MXC_CCM_CBCMR_PRE_PERIPH2_CLK_SEL_MASK)
>> MXC_CCM_CBCMR_PRE_PERIPH2_CLK_SEL_OFFSET);
periph1 = ((reg & MXC_CCM_CBCMR_PRE_PERIPH_CLK_SEL_MASK)
>> MXC_CCM_CBCMR_PRE_PERIPH_CLK_SEL_OFFSET);
/* Checking if PLL2 PFD0 or PLL2 PFD2 is using for periph clock */
if ((periph2 != 0x2) && (periph1 != 0x2))
mask528 |= ANATOP_PFD_CLKGATE_MASK(0);
if ((periph2 != 0x1) && (periph1 != 0x1) &&
(periph2 != 0x3) && (periph1 != 0x3))
mask528 |= ANATOP_PFD_CLKGATE_MASK(2);
writel(mask480, &anatop->pfd_480_set);
writel(mask528, &anatop->pfd_528_set);
writel(mask480, &anatop->pfd_480_clr);
writel(mask528, &anatop->pfd_528_clr);
}
#ifdef CONFIG_IMX_HDMI
void imx_enable_hdmi_phy(void)
{
struct hdmi_regs *hdmi = (struct hdmi_regs *)HDMI_ARB_BASE_ADDR;
u8 reg;
reg = readb(&hdmi->phy_conf0);
reg |= HDMI_PHY_CONF0_PDZ_MASK;
writeb(reg, &hdmi->phy_conf0);
udelay(3000);
reg |= HDMI_PHY_CONF0_ENTMDS_MASK;
writeb(reg, &hdmi->phy_conf0);
udelay(3000);
reg |= HDMI_PHY_CONF0_GEN2_TXPWRON_MASK;
writeb(reg, &hdmi->phy_conf0);
writeb(HDMI_MC_PHYRSTZ_ASSERT, &hdmi->mc_phyrstz);
}
void imx_setup_hdmi(void)
{
struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
struct hdmi_regs *hdmi = (struct hdmi_regs *)HDMI_ARB_BASE_ADDR;
int reg, count;
u8 val;
/* Turn on HDMI PHY clock */
reg = readl(&mxc_ccm->CCGR2);
reg |= MXC_CCM_CCGR2_HDMI_TX_IAHBCLK_MASK|
MXC_CCM_CCGR2_HDMI_TX_ISFRCLK_MASK;
writel(reg, &mxc_ccm->CCGR2);
writeb(HDMI_MC_PHYRSTZ_DEASSERT, &hdmi->mc_phyrstz);
reg = readl(&mxc_ccm->chsccdr);
reg &= ~(MXC_CCM_CHSCCDR_IPU1_DI0_PRE_CLK_SEL_MASK|
MXC_CCM_CHSCCDR_IPU1_DI0_PODF_MASK|
MXC_CCM_CHSCCDR_IPU1_DI0_CLK_SEL_MASK);
reg |= (CHSCCDR_PODF_DIVIDE_BY_3
<< MXC_CCM_CHSCCDR_IPU1_DI0_PODF_OFFSET)
|(CHSCCDR_IPU_PRE_CLK_540M_PFD
<< MXC_CCM_CHSCCDR_IPU1_DI0_PRE_CLK_SEL_OFFSET);
writel(reg, &mxc_ccm->chsccdr);
/* Clear the overflow condition */
if (readb(&hdmi->ih_fc_stat2) & HDMI_IH_FC_STAT2_OVERFLOW_MASK) {
/* TMDS software reset */
writeb((u8)~HDMI_MC_SWRSTZ_TMDSSWRST_REQ, &hdmi->mc_swrstz);
val = readb(&hdmi->fc_invidconf);
/* Need minimum 3 times to write to clear the register */
for (count = 0 ; count < 5 ; count++)
writeb(val, &hdmi->fc_invidconf);
}
}
#endif
#ifdef CONFIG_ARCH_MISC_INIT
/*
* UNIQUE_ID describes a unique ID based on silicon wafer
* and die X/Y position
*
* UNIQUE_ID offset 0x410
* 31:0 fuse 0
* FSL-wide unique, encoded LOT ID STD II/SJC CHALLENGE/ Unique ID
*
* UNIQUE_ID offset 0x420
* 31:24 fuse 1
* The X-coordinate of the die location on the wafer/SJC CHALLENGE/ Unique ID
* 23:16 fuse 1
* The Y-coordinate of the die location on the wafer/SJC CHALLENGE/ Unique ID
* 15:11 fuse 1
* The wafer number of the wafer on which the device was fabricated/SJC
* CHALLENGE/ Unique ID
* 10:0 fuse 1
* FSL-wide unique, encoded LOT ID STD II/SJC CHALLENGE/ Unique ID
*/
static void setup_serial_number(void)
{
char serial_string[17];
struct ocotp_regs *ocotp = (struct ocotp_regs *)OCOTP_BASE_ADDR;
struct fuse_bank *bank = &ocotp->bank[0];
struct fuse_bank0_regs *fuse =
(struct fuse_bank0_regs *)bank->fuse_regs;
if (env_get("serial#"))
return;
snprintf(serial_string, sizeof(serial_string), "%08x%08x",
fuse->uid_low, fuse->uid_high);
env_set("serial#", serial_string);
}
int arch_misc_init(void)
{
if (IS_ENABLED(CONFIG_FSL_CAAM)) {
struct udevice *dev;
int ret;
ret = uclass_get_device_by_driver(UCLASS_MISC, DM_DRIVER_GET(caam_jr), &dev);
if (ret)
printf("Failed to initialize caam_jr: %d\n", ret);
}
if (IS_ENABLED(CONFIG_FSL_DCP_RNG)) {
struct udevice *dev;
int ret;
ret = uclass_get_device_by_driver(UCLASS_RNG, DM_DRIVER_GET(dcp_rng), &dev);
if (ret)
printf("Failed to initialize dcp rng: %d\n", ret);
}
setup_serial_number();
return 0;
}
#endif
/*
* gpr_init() function is common for boards using MX6S, MX6DL, MX6D,
* MX6Q and MX6QP processors
*/
void gpr_init(void)
{
struct iomuxc *iomux = (struct iomuxc *)IOMUXC_BASE_ADDR;
/*
* If this function is used in a common MX6 spl implementation
* we have to ensure that it is only called for suitable cpu types,
* otherwise it breaks hardware parts like enet1, can1, can2, etc.
*/
if (!is_mx6dqp() && !is_mx6dq() && !is_mx6sdl())
return;
/* enable AXI cache for VDOA/VPU/IPU */
writel(0xF00000CF, &iomux->gpr[4]);
if (is_mx6dqp()) {
/* set IPU AXI-id1 Qos=0x1 AXI-id0/2/3 Qos=0x7 */
writel(0x77177717, &iomux->gpr[6]);
writel(0x77177717, &iomux->gpr[7]);
} else {
/* set IPU AXI-id0 Qos=0xf(bypass) AXI-id1 Qos=0x7 */
writel(0x007F007F, &iomux->gpr[6]);
writel(0x007F007F, &iomux->gpr[7]);
}
}