mtd: nand: omap_gpmc: Fix NAND in SPL for AM335x

AM335x uses a special driver "am335x_spl_bch.c" as SPL
NAND loader. This driver expects 1 sector at a time ECC
and doesn't work well with multi-sector ECC that was implemented in
commit 04fcd2587321 ("mtd: rawnand: omap_gpmc: Fix BCH6/16 HW based correction")

Additionally, the omap_elm driver does not support multi sector ECC and will
need more work and tests to get multi sector working correctly on all
platforms.

Switch back to 1 sector at a time read/ECC.

Fixes: 04fcd2587321 ("mtd: rawnand: omap_gpmc: Fix BCH6/16 HW based correction")
Signed-off-by: Roger Quadros <rogerq@kernel.org>
Tested-by: Enrico Leto <enrico.leto@siemens.com>
Tested-by: Heiko Schocher <hs@denx.de>
Link: https://lore.kernel.org/all/20231211114600.4414-2-rogerq@kernel.org/
Signed-off-by: Dario Binacchi <dario.binacchi@amarulasolutions.com>
diff --git a/drivers/mtd/nand/raw/omap_gpmc.c b/drivers/mtd/nand/raw/omap_gpmc.c
index 0e25bd5..4141331 100644
--- a/drivers/mtd/nand/raw/omap_gpmc.c
+++ b/drivers/mtd/nand/raw/omap_gpmc.c
@@ -294,7 +294,7 @@
 		break;
 	case OMAP_ECC_BCH8_CODE_HW:
 		bch_type = 1;
-		nsectors = chip->ecc.steps;
+		nsectors = 1;
 		if (mode == NAND_ECC_READ) {
 			wr_mode   = BCH_WRAPMODE_1;
 			ecc_size0 = BCH8R_ECC_SIZE0;
@@ -307,7 +307,7 @@
 		break;
 	case OMAP_ECC_BCH16_CODE_HW:
 		bch_type = 0x2;
-		nsectors = chip->ecc.steps;
+		nsectors = 1;
 		if (mode == NAND_ECC_READ) {
 			wr_mode   = 0x01;
 			ecc_size0 = 52; /* ECC bits in nibbles per sector */
@@ -346,17 +346,16 @@
 }
 
 /**
- * _omap_calculate_ecc_bch - Generate BCH ECC bytes for one sector
+ * omap_calculate_ecc_bch - Generate BCH ECC bytes for one sector
  * @mtd:        MTD device structure
  * @dat:        The pointer to data on which ecc is computed
  * @ecc_code:   The ecc_code buffer
- * @sector:     The sector number (for a multi sector page)
  *
  * Support calculating of BCH4/8/16 ECC vectors for one sector
  * within a page. Sector number is in @sector.
  */
-static int _omap_calculate_ecc_bch(struct mtd_info *mtd, const u8 *dat,
-				   u8 *ecc_code, int sector)
+static int __maybe_unused omap_calculate_ecc_bch(struct mtd_info *mtd, const u8 *dat,
+						 u8 *ecc_code)
 {
 	struct nand_chip *chip = mtd_to_nand(mtd);
 	struct omap_nand_info *info = nand_get_controller_data(chip);
@@ -369,7 +368,7 @@
 	case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
 #endif
 	case OMAP_ECC_BCH8_CODE_HW:
-		ptr = &gpmc_cfg->bch_result_0_3[sector].bch_result_x[3];
+		ptr = &gpmc_cfg->bch_result_0_3[0].bch_result_x[3];
 		val = readl(ptr);
 		ecc_code[i++] = (val >>  0) & 0xFF;
 		ptr--;
@@ -384,21 +383,21 @@
 
 		break;
 	case OMAP_ECC_BCH16_CODE_HW:
-		val = readl(&gpmc_cfg->bch_result_4_6[sector].bch_result_x[2]);
+		val = readl(&gpmc_cfg->bch_result_4_6[0].bch_result_x[2]);
 		ecc_code[i++] = (val >>  8) & 0xFF;
 		ecc_code[i++] = (val >>  0) & 0xFF;
-		val = readl(&gpmc_cfg->bch_result_4_6[sector].bch_result_x[1]);
+		val = readl(&gpmc_cfg->bch_result_4_6[0].bch_result_x[1]);
 		ecc_code[i++] = (val >> 24) & 0xFF;
 		ecc_code[i++] = (val >> 16) & 0xFF;
 		ecc_code[i++] = (val >>  8) & 0xFF;
 		ecc_code[i++] = (val >>  0) & 0xFF;
-		val = readl(&gpmc_cfg->bch_result_4_6[sector].bch_result_x[0]);
+		val = readl(&gpmc_cfg->bch_result_4_6[0].bch_result_x[0]);
 		ecc_code[i++] = (val >> 24) & 0xFF;
 		ecc_code[i++] = (val >> 16) & 0xFF;
 		ecc_code[i++] = (val >>  8) & 0xFF;
 		ecc_code[i++] = (val >>  0) & 0xFF;
 		for (j = 3; j >= 0; j--) {
-			val = readl(&gpmc_cfg->bch_result_0_3[sector].bch_result_x[j]
+			val = readl(&gpmc_cfg->bch_result_0_3[0].bch_result_x[j]
 									);
 			ecc_code[i++] = (val >> 24) & 0xFF;
 			ecc_code[i++] = (val >> 16) & 0xFF;
@@ -432,22 +431,6 @@
 	return 0;
 }
 
-/**
- * omap_calculate_ecc_bch - ECC generator for 1 sector
- * @mtd:        MTD device structure
- * @dat:	The pointer to data on which ecc is computed
- * @ecc_code:	The ecc_code buffer
- *
- * Support calculating of BCH4/8/16 ECC vectors for one sector. This is used
- * when SW based correction is required as ECC is required for one sector
- * at a time.
- */
-static int __maybe_unused omap_calculate_ecc_bch(struct mtd_info *mtd,
-				  const u_char *dat, u_char *ecc_calc)
-{
-	return _omap_calculate_ecc_bch(mtd, dat, ecc_calc, 0);
-}
-
 static inline void omap_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
 {
 	struct nand_chip *chip = mtd_to_nand(mtd);
@@ -573,34 +556,6 @@
 
 #ifdef CONFIG_NAND_OMAP_ELM
 
-/**
- * omap_calculate_ecc_bch_multi - Generate ECC for multiple sectors
- * @mtd:	MTD device structure
- * @dat:	The pointer to data on which ecc is computed
- * @ecc_code:	The ecc_code buffer
- *
- * Support calculating of BCH4/8/16 ecc vectors for the entire page in one go.
- */
-static int omap_calculate_ecc_bch_multi(struct mtd_info *mtd,
-					const u_char *dat, u_char *ecc_calc)
-{
-	struct nand_chip *chip = mtd_to_nand(mtd);
-	int eccbytes = chip->ecc.bytes;
-	unsigned long nsectors;
-	int i, ret;
-
-	nsectors = ((readl(&gpmc_cfg->ecc_config) >> 4) & 0x7) + 1;
-	for (i = 0; i < nsectors; i++) {
-		ret = _omap_calculate_ecc_bch(mtd, dat, ecc_calc, i);
-		if (ret)
-			return ret;
-
-		ecc_calc += eccbytes;
-	}
-
-	return 0;
-}
-
 /*
  * omap_reverse_list - re-orders list elements in reverse order [internal]
  * @list:	pointer to start of list
@@ -753,7 +708,6 @@
 {
 	int i, eccsize = chip->ecc.size;
 	int eccbytes = chip->ecc.bytes;
-	int ecctotal = chip->ecc.total;
 	int eccsteps = chip->ecc.steps;
 	uint8_t *p = buf;
 	uint8_t *ecc_calc = chip->buffers->ecccalc;
@@ -761,24 +715,30 @@
 	uint32_t *eccpos = chip->ecc.layout->eccpos;
 	uint8_t *oob = chip->oob_poi;
 	uint32_t oob_pos;
+	u32 data_pos = 0;
 
 	/* oob area start */
 	oob_pos = (eccsize * eccsteps) + chip->ecc.layout->eccpos[0];
 	oob += chip->ecc.layout->eccpos[0];
 
-	/* Enable ECC engine */
-	chip->ecc.hwctl(mtd, NAND_ECC_READ);
+	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize,
+	     oob += eccbytes) {
+		/* Enable ECC engine */
+		chip->ecc.hwctl(mtd, NAND_ECC_READ);
 
-	/* read entire page */
-	chip->cmdfunc(mtd, NAND_CMD_RNDOUT, 0, -1);
-	chip->read_buf(mtd, buf, mtd->writesize);
+		/* read data */
+		chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_pos, -1);
+		chip->read_buf(mtd, p, eccsize);
 
-	/* read all ecc bytes from oob area */
-	chip->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_pos, -1);
-	chip->read_buf(mtd, oob, ecctotal);
+		/* read respective ecc from oob area */
+		chip->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_pos, -1);
+		chip->read_buf(mtd, oob, eccbytes);
+		/* read syndrome */
+		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
 
-	/* Calculate ecc bytes */
-	omap_calculate_ecc_bch_multi(mtd, buf, ecc_calc);
+		data_pos += eccsize;
+		oob_pos += eccbytes;
+	}
 
 	for (i = 0; i < chip->ecc.total; i++)
 		ecc_code[i] = chip->oob_poi[eccpos[i]];
@@ -946,6 +906,7 @@
 		nand->ecc.hwctl		= omap_enable_hwecc_bch;
 		nand->ecc.correct	= omap_correct_data_bch_sw;
 		nand->ecc.calculate	= omap_calculate_ecc_bch;
+		nand->ecc.steps		= eccsteps;
 		/* define ecc-layout */
 		ecclayout->eccbytes	= nand->ecc.bytes * eccsteps;
 		ecclayout->eccpos[0]	= BADBLOCK_MARKER_LENGTH;
@@ -988,6 +949,7 @@
 		nand->ecc.correct	= omap_correct_data_bch;
 		nand->ecc.calculate	= omap_calculate_ecc_bch;
 		nand->ecc.read_page	= omap_read_page_bch;
+		nand->ecc.steps		= eccsteps;
 		/* define ecc-layout */
 		ecclayout->eccbytes	= nand->ecc.bytes * eccsteps;
 		for (i = 0; i < ecclayout->eccbytes; i++)
@@ -1021,6 +983,7 @@
 		nand->ecc.correct	= omap_correct_data_bch;
 		nand->ecc.calculate	= omap_calculate_ecc_bch;
 		nand->ecc.read_page	= omap_read_page_bch;
+		nand->ecc.steps		= eccsteps;
 		/* define ecc-layout */
 		ecclayout->eccbytes	= nand->ecc.bytes * eccsteps;
 		for (i = 0; i < ecclayout->eccbytes; i++)