blob: 60187bd8d294c06a18fa37c426b621cfaa174ffe [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* (C) Copyright 2009
* Marvell Semiconductor <www.marvell.com>
* Prafulla Wadaskar <prafulla@marvell.com>
*
* (C) Copyright 2009
* Stefan Roese, DENX Software Engineering, sr@denx.de.
*
* (C) Copyright 2010
* Heiko Schocher, DENX Software Engineering, hs@denx.de.
*/
#include <common.h>
#include <env.h>
#include <i2c.h>
#include <init.h>
#include <nand.h>
#include <net.h>
#include <netdev.h>
#include <miiphy.h>
#include <spi.h>
#include <asm/io.h>
#include <asm/arch/cpu.h>
#include <asm/arch/soc.h>
#include <asm/arch/mpp.h>
#include "../common/common.h"
DECLARE_GLOBAL_DATA_PTR;
/*
* BOCO FPGA definitions
*/
#define BOCO 0x10
#define REG_CTRL_H 0x02
#define MASK_WRL_UNITRUN 0x01
#define MASK_RBX_PGY_PRESENT 0x40
#define REG_IRQ_CIRQ2 0x2d
#define MASK_RBI_DEFECT_16 0x01
/*
* PHY registers definitions
*/
#define PHY_MARVELL_OUI 0x5043
#define PHY_MARVELL_88E1118_MODEL 0x0022
#define PHY_MARVELL_88E1118R_MODEL 0x0024
#define PHY_MARVELL_PAGE_REG 0x0016
#define PHY_MARVELL_DEFAULT_PAGE 0x0000
#define PHY_MARVELL_88E1118R_LED_CTRL_PAGE 0x0003
#define PHY_MARVELL_88E1118R_LED_CTRL_REG 0x0010
#define PHY_MARVELL_88E1118R_LED_CTRL_RESERVED 0x1000
#define PHY_MARVELL_88E1118R_LED_CTRL_LED0_1000MB (0x7 << 0)
#define PHY_MARVELL_88E1118R_LED_CTRL_LED1_ACT (0x3 << 4)
#define PHY_MARVELL_88E1118R_LED_CTRL_LED2_LINK (0x0 << 8)
/* I/O pin to erase flash RGPP09 = MPP43 */
#define KM_FLASH_ERASE_ENABLE 43
/* Multi-Purpose Pins Functionality configuration */
static const u32 kwmpp_config[] = {
MPP0_NF_IO2,
MPP1_NF_IO3,
MPP2_NF_IO4,
MPP3_NF_IO5,
MPP4_NF_IO6,
MPP5_NF_IO7,
MPP6_SYSRST_OUTn,
MPP7_PEX_RST_OUTn,
#if defined(CONFIG_SYS_I2C_SOFT)
MPP8_GPIO, /* SDA */
MPP9_GPIO, /* SCL */
#endif
MPP10_UART0_TXD,
MPP11_UART0_RXD,
MPP12_GPO, /* Reserved */
MPP13_UART1_TXD,
MPP14_UART1_RXD,
MPP15_GPIO, /* Not used */
MPP16_GPIO, /* Not used */
MPP17_GPIO, /* Reserved */
MPP18_NF_IO0,
MPP19_NF_IO1,
MPP20_GPIO,
MPP21_GPIO,
MPP22_GPIO,
MPP23_GPIO,
MPP24_GPIO,
MPP25_GPIO,
MPP26_GPIO,
MPP27_GPIO,
MPP28_GPIO,
MPP29_GPIO,
MPP30_GPIO,
MPP31_GPIO,
MPP32_GPIO,
MPP33_GPIO,
MPP34_GPIO, /* CDL1 (input) */
MPP35_GPIO, /* CDL2 (input) */
MPP36_GPIO, /* MAIN_IRQ (input) */
MPP37_GPIO, /* BOARD_LED */
MPP38_GPIO, /* Piggy3 LED[1] */
MPP39_GPIO, /* Piggy3 LED[2] */
MPP40_GPIO, /* Piggy3 LED[3] */
MPP41_GPIO, /* Piggy3 LED[4] */
MPP42_GPIO, /* Piggy3 LED[5] */
MPP43_GPIO, /* Piggy3 LED[6] */
MPP44_GPIO, /* Piggy3 LED[7], BIST_EN_L */
MPP45_GPIO, /* Piggy3 LED[8] */
MPP46_GPIO, /* Reserved */
MPP47_GPIO, /* Reserved */
MPP48_GPIO, /* Reserved */
MPP49_GPIO, /* SW_INTOUTn */
0
};
static uchar ivm_content[CONFIG_SYS_IVM_EEPROM_MAX_LEN];
#if (defined(CONFIG_KM_PIGGY4_88E6061)|defined(CONFIG_KM_PIGGY4_88E6352))
/*
* All boards with PIGGY4 connected via a simple switch have ethernet always
* present.
*/
int ethernet_present(void)
{
return 1;
}
#else
int ethernet_present(void)
{
uchar buf;
int ret = 0;
if (i2c_read(BOCO, REG_CTRL_H, 1, &buf, 1) != 0) {
printf("%s: Error reading Boco\n", __func__);
return -1;
}
if ((buf & MASK_RBX_PGY_PRESENT) == MASK_RBX_PGY_PRESENT)
ret = 1;
return ret;
}
#endif
static int initialize_unit_leds(void)
{
/*
* Init the unit LEDs per default they all are
* ok apart from bootstat
*/
uchar buf;
if (i2c_read(BOCO, REG_CTRL_H, 1, &buf, 1) != 0) {
printf("%s: Error reading Boco\n", __func__);
return -1;
}
buf |= MASK_WRL_UNITRUN;
if (i2c_write(BOCO, REG_CTRL_H, 1, &buf, 1) != 0) {
printf("%s: Error writing Boco\n", __func__);
return -1;
}
return 0;
}
static void set_bootcount_addr(void)
{
uchar buf[32];
unsigned int bootcountaddr;
bootcountaddr = gd->ram_size - BOOTCOUNT_ADDR;
sprintf((char *)buf, "0x%x", bootcountaddr);
env_set("bootcountaddr", (char *)buf);
}
int misc_init_r(void)
{
ivm_read_eeprom(ivm_content, CONFIG_SYS_IVM_EEPROM_MAX_LEN,
CONFIG_PIGGY_MAC_ADDRESS_OFFSET);
initialize_unit_leds();
set_km_env();
set_bootcount_addr();
return 0;
}
int board_early_init_f(void)
{
#if defined(CONFIG_SYS_I2C_SOFT)
u32 tmp;
/* set the 2 bitbang i2c pins as output gpios */
tmp = readl(MVEBU_GPIO0_BASE + 4);
writel(tmp & (~KM_KIRKWOOD_SOFT_I2C_GPIOS), MVEBU_GPIO0_BASE + 4);
#endif
/* adjust SDRAM size for bank 0 */
mvebu_sdram_size_adjust(0);
kirkwood_mpp_conf(kwmpp_config, NULL);
return 0;
}
int board_init(void)
{
/* address of boot parameters */
gd->bd->bi_boot_params = mvebu_sdram_bar(0) + 0x100;
/*
* The KM_FLASH_GPIO_PIN switches between using a
* NAND or a SPI FLASH. Set this pin on start
* to NAND mode.
*/
kw_gpio_set_valid(KM_FLASH_GPIO_PIN, 1);
kw_gpio_direction_output(KM_FLASH_GPIO_PIN, 1);
#if defined(CONFIG_SYS_I2C_SOFT)
/*
* Reinit the GPIO for I2C Bitbang driver so that the now
* available gpio framework is consistent. The calls to
* direction output in are not necessary, they are already done in
* board_early_init_f
*/
kw_gpio_set_valid(KM_KIRKWOOD_SDA_PIN, 1);
kw_gpio_set_valid(KM_KIRKWOOD_SCL_PIN, 1);
#endif
#if defined(CONFIG_SYS_EEPROM_WREN)
kw_gpio_set_valid(KM_KIRKWOOD_ENV_WP, 38);
kw_gpio_direction_output(KM_KIRKWOOD_ENV_WP, 1);
#endif
#if defined(CONFIG_KM_FPGA_CONFIG)
trigger_fpga_config();
#endif
return 0;
}
int board_late_init(void)
{
#if defined(CONFIG_KM_COGE5UN)
u8 dip_switch = kw_gpio_get_value(KM_FLASH_ERASE_ENABLE);
/* if pin 1 do full erase */
if (dip_switch != 0) {
/* start bootloader */
puts("DIP: Enabled\n");
env_set("actual_bank", "0");
}
#endif
#if defined(CONFIG_KM_FPGA_CONFIG)
wait_for_fpga_config();
fpga_reset();
toggle_eeprom_spi_bus();
#endif
return 0;
}
static const u32 spi_mpp_config[] = {
MPP1_SPI_MOSI,
MPP2_SPI_SCK,
MPP3_SPI_MISO,
0
};
static u32 spi_mpp_backup[4];
int mvebu_board_spi_claim_bus(struct udevice *dev)
{
spi_mpp_backup[3] = 0;
/* set new spi mpp config and save current one */
kirkwood_mpp_conf(spi_mpp_config, spi_mpp_backup);
kw_gpio_set_value(KM_FLASH_GPIO_PIN, 0);
return 0;
}
int mvebu_board_spi_release_bus(struct udevice *dev)
{
/* restore saved mpp config */
kirkwood_mpp_conf(spi_mpp_backup, NULL);
kw_gpio_set_value(KM_FLASH_GPIO_PIN, 1);
return 0;
}
#if (defined(CONFIG_KM_PIGGY4_88E6061))
#define PHY_LED_SEL_REG 0x18
#define PHY_LED0_LINK (0x5)
#define PHY_LED1_ACT (0x8 << 4)
#define PHY_LED2_INT (0xe << 8)
#define PHY_SPEC_CTRL_REG 0x1c
#define PHY_RGMII_CLK_STABLE (0x1 << 10)
#define PHY_CLSA (0x1 << 1)
/* Configure and enable MV88E3018 PHY */
void reset_phy(void)
{
char *name = "egiga0";
unsigned short reg;
if (miiphy_set_current_dev(name))
return;
/* RGMII clk transition on data stable */
if (miiphy_read(name, CONFIG_PHY_BASE_ADR, PHY_SPEC_CTRL_REG, &reg))
printf("Error reading PHY spec ctrl reg\n");
if (miiphy_write(name, CONFIG_PHY_BASE_ADR, PHY_SPEC_CTRL_REG,
reg | PHY_RGMII_CLK_STABLE | PHY_CLSA))
printf("Error writing PHY spec ctrl reg\n");
/* leds setup */
if (miiphy_write(name, CONFIG_PHY_BASE_ADR, PHY_LED_SEL_REG,
PHY_LED0_LINK | PHY_LED1_ACT | PHY_LED2_INT))
printf("Error writing PHY LED reg\n");
/* reset the phy */
miiphy_reset(name, CONFIG_PHY_BASE_ADR);
}
#elif defined(CONFIG_KM_PIGGY4_88E6352)
#include <mv88e6352.h>
#if defined(CONFIG_KM_NUSA)
struct mv88e_sw_reg extsw_conf[] = {
/*
* port 0, PIGGY4, autoneg
* first the fix for the 1000Mbits Autoneg, this is from
* a Marvell errata, the regs are undocumented
*/
{ PHY(0), PHY_PAGE, AN1000FIX_PAGE },
{ PHY(0), PHY_STATUS, AN1000FIX },
{ PHY(0), PHY_PAGE, 0 },
/* now the real port and phy configuration */
{ PORT(0), PORT_PHY, NO_SPEED_FOR },
{ PORT(0), PORT_CTRL, FORWARDING | EGRS_FLD_ALL },
{ PHY(0), PHY_1000_CTRL, NO_ADV },
{ PHY(0), PHY_SPEC_CTRL, AUTO_MDIX_EN },
{ PHY(0), PHY_CTRL, PHY_100_MBPS | AUTONEG_EN | AUTONEG_RST |
FULL_DUPLEX },
/* port 1, unused */
{ PORT(1), PORT_CTRL, PORT_DIS },
{ PHY(1), PHY_CTRL, PHY_PWR_DOWN },
{ PHY(1), PHY_SPEC_CTRL, SPEC_PWR_DOWN },
/* port 2, unused */
{ PORT(2), PORT_CTRL, PORT_DIS },
{ PHY(2), PHY_CTRL, PHY_PWR_DOWN },
{ PHY(2), PHY_SPEC_CTRL, SPEC_PWR_DOWN },
/* port 3, unused */
{ PORT(3), PORT_CTRL, PORT_DIS },
{ PHY(3), PHY_CTRL, PHY_PWR_DOWN },
{ PHY(3), PHY_SPEC_CTRL, SPEC_PWR_DOWN },
/* port 4, ICNEV, SerDes, SGMII */
{ PORT(4), PORT_STATUS, NO_PHY_DETECT },
{ PORT(4), PORT_PHY, SPEED_1000_FOR },
{ PORT(4), PORT_CTRL, FORWARDING | EGRS_FLD_ALL },
{ PHY(4), PHY_CTRL, PHY_PWR_DOWN },
{ PHY(4), PHY_SPEC_CTRL, SPEC_PWR_DOWN },
/* port 5, CPU_RGMII */
{ PORT(5), PORT_PHY, RX_RGMII_TIM | TX_RGMII_TIM | FLOW_CTRL_EN |
FLOW_CTRL_FOR | LINK_VAL | LINK_FOR | FULL_DPX |
FULL_DPX_FOR | SPEED_1000_FOR },
{ PORT(5), PORT_CTRL, FORWARDING | EGRS_FLD_ALL },
/* port 6, unused, this port has no phy */
{ PORT(6), PORT_CTRL, PORT_DIS },
};
#else
struct mv88e_sw_reg extsw_conf[] = {};
#endif
void reset_phy(void)
{
#if defined(CONFIG_KM_MVEXTSW_ADDR)
char *name = "egiga0";
if (miiphy_set_current_dev(name))
return;
mv88e_sw_program(name, CONFIG_KM_MVEXTSW_ADDR, extsw_conf,
ARRAY_SIZE(extsw_conf));
mv88e_sw_reset(name, CONFIG_KM_MVEXTSW_ADDR);
#endif
}
#else
/* Configure and enable MV88E1118 PHY on the piggy*/
void reset_phy(void)
{
unsigned int oui;
unsigned char model, rev;
char *name = "egiga0";
if (miiphy_set_current_dev(name))
return;
/* reset the phy */
miiphy_reset(name, CONFIG_PHY_BASE_ADR);
/* get PHY model */
if (miiphy_info(name, CONFIG_PHY_BASE_ADR, &oui, &model, &rev))
return;
/* check for Marvell 88E1118R Gigabit PHY (PIGGY3) */
if (oui == PHY_MARVELL_OUI &&
model == PHY_MARVELL_88E1118R_MODEL) {
/* set page register to 3 */
if (miiphy_write(name, CONFIG_PHY_BASE_ADR,
PHY_MARVELL_PAGE_REG,
PHY_MARVELL_88E1118R_LED_CTRL_PAGE))
printf("Error writing PHY page reg\n");
/*
* leds setup as printed on PCB:
* LED2 (Link): 0x0 (On Link, Off No Link)
* LED1 (Activity): 0x3 (On Activity, Off No Activity)
* LED0 (Speed): 0x7 (On 1000 MBits, Off Else)
*/
if (miiphy_write(name, CONFIG_PHY_BASE_ADR,
PHY_MARVELL_88E1118R_LED_CTRL_REG,
PHY_MARVELL_88E1118R_LED_CTRL_RESERVED |
PHY_MARVELL_88E1118R_LED_CTRL_LED0_1000MB |
PHY_MARVELL_88E1118R_LED_CTRL_LED1_ACT |
PHY_MARVELL_88E1118R_LED_CTRL_LED2_LINK))
printf("Error writing PHY LED reg\n");
/* set page register back to 0 */
if (miiphy_write(name, CONFIG_PHY_BASE_ADR,
PHY_MARVELL_PAGE_REG,
PHY_MARVELL_DEFAULT_PAGE))
printf("Error writing PHY page reg\n");
}
}
#endif
#if defined(CONFIG_HUSH_INIT_VAR)
int hush_init_var(void)
{
ivm_analyze_eeprom(ivm_content, CONFIG_SYS_IVM_EEPROM_MAX_LEN);
return 0;
}
#endif
#if defined(CONFIG_SYS_I2C_SOFT)
void set_sda(int state)
{
I2C_ACTIVE;
I2C_SDA(state);
}
void set_scl(int state)
{
I2C_SCL(state);
}
int get_sda(void)
{
I2C_TRISTATE;
return I2C_READ;
}
int get_scl(void)
{
return kw_gpio_get_value(KM_KIRKWOOD_SCL_PIN) ? 1 : 0;
}
#endif
#if defined(CONFIG_POST)
#define KM_POST_EN_L 44
#define POST_WORD_OFF 8
int post_hotkeys_pressed(void)
{
if (IS_ENABLED(CONFIG_KM_COGE5UN))
return kw_gpio_get_value(KM_POST_EN_L);
else
return !kw_gpio_get_value(KM_POST_EN_L);
}
ulong post_word_load(void)
{
void *addr = (void *)(gd->ram_size - BOOTCOUNT_ADDR + POST_WORD_OFF);
return in_le32(addr);
}
void post_word_store(ulong value)
{
void *addr = (void *)(gd->ram_size - BOOTCOUNT_ADDR + POST_WORD_OFF);
out_le32(addr, value);
}
int arch_memory_test_prepare(u32 *vstart, u32 *size, phys_addr_t *phys_offset)
{
*vstart = CONFIG_SYS_SDRAM_BASE;
/* we go up to relocation plus a 1 MB margin */
*size = CONFIG_SYS_TEXT_BASE - (1 << 20);
return 0;
}
#endif
#if defined(CONFIG_SYS_EEPROM_WREN)
int eeprom_write_enable(unsigned int dev_addr, int state)
{
kw_gpio_set_value(KM_KIRKWOOD_ENV_WP, !state);
return !kw_gpio_get_value(KM_KIRKWOOD_ENV_WP);
}
#endif