| // SPDX-License-Identifier: Intel |
| /* |
| * Copyright (C) 2013, Intel Corporation |
| * Copyright (C) 2015, Bin Meng <bmeng.cn@gmail.com> |
| * |
| * Ported from Intel released Quark UEFI BIOS |
| * QuarkSocPkg/QuarkNorthCluster/MemoryInit/Pei |
| */ |
| |
| #include <pci.h> |
| #include <asm/arch/device.h> |
| #include <asm/arch/mrc.h> |
| #include <asm/arch/msg_port.h> |
| #include <asm/u-boot-x86.h> |
| #include <linux/string.h> |
| #include "mrc_util.h" |
| #include "hte.h" |
| #include "smc.h" |
| |
| /* t_ck clock period in picoseconds per speed index 800, 1066, 1333 */ |
| static const uint32_t t_ck[3] = { |
| 2500, |
| 1875, |
| 1500 |
| }; |
| |
| /* Global variables */ |
| static const uint16_t ddr_wclk[] = {193, 158}; |
| #ifdef BACKUP_WCTL |
| static const uint16_t ddr_wctl[] = {1, 217}; |
| #endif |
| #ifdef BACKUP_WCMD |
| static const uint16_t ddr_wcmd[] = {1, 220}; |
| #endif |
| |
| #ifdef BACKUP_RCVN |
| static const uint16_t ddr_rcvn[] = {129, 498}; |
| #endif |
| |
| #ifdef BACKUP_WDQS |
| static const uint16_t ddr_wdqs[] = {65, 289}; |
| #endif |
| |
| #ifdef BACKUP_RDQS |
| static const uint8_t ddr_rdqs[] = {32, 24}; |
| #endif |
| |
| #ifdef BACKUP_WDQ |
| static const uint16_t ddr_wdq[] = {32, 257}; |
| #endif |
| |
| /* Stop self refresh driven by MCU */ |
| void clear_self_refresh(struct mrc_params *mrc_params) |
| { |
| ENTERFN(); |
| |
| /* clear the PMSTS Channel Self Refresh bits */ |
| mrc_write_mask(MEM_CTLR, PMSTS, PMSTS_DISR, PMSTS_DISR); |
| |
| LEAVEFN(); |
| } |
| |
| /* It will initialize timing registers in the MCU (DTR0..DTR4) */ |
| void prog_ddr_timing_control(struct mrc_params *mrc_params) |
| { |
| uint8_t tcl, wl; |
| uint8_t trp, trcd, tras, twr, twtr, trrd, trtp, tfaw; |
| uint32_t tck; |
| u32 dtr0, dtr1, dtr2, dtr3, dtr4; |
| u32 tmp1, tmp2; |
| |
| ENTERFN(); |
| |
| /* mcu_init starts */ |
| mrc_post_code(0x02, 0x00); |
| |
| dtr0 = msg_port_read(MEM_CTLR, DTR0); |
| dtr1 = msg_port_read(MEM_CTLR, DTR1); |
| dtr2 = msg_port_read(MEM_CTLR, DTR2); |
| dtr3 = msg_port_read(MEM_CTLR, DTR3); |
| dtr4 = msg_port_read(MEM_CTLR, DTR4); |
| |
| tck = t_ck[mrc_params->ddr_speed]; /* Clock in picoseconds */ |
| tcl = mrc_params->params.cl; /* CAS latency in clocks */ |
| trp = tcl; /* Per CAT MRC */ |
| trcd = tcl; /* Per CAT MRC */ |
| tras = MCEIL(mrc_params->params.ras, tck); |
| |
| /* Per JEDEC: tWR=15000ps DDR2/3 from 800-1600 */ |
| twr = MCEIL(15000, tck); |
| |
| twtr = MCEIL(mrc_params->params.wtr, tck); |
| trrd = MCEIL(mrc_params->params.rrd, tck); |
| trtp = 4; /* Valid for 800 and 1066, use 5 for 1333 */ |
| tfaw = MCEIL(mrc_params->params.faw, tck); |
| |
| wl = 5 + mrc_params->ddr_speed; |
| |
| dtr0 &= ~DTR0_DFREQ_MASK; |
| dtr0 |= mrc_params->ddr_speed; |
| dtr0 &= ~DTR0_TCL_MASK; |
| tmp1 = tcl - 5; |
| dtr0 |= ((tcl - 5) << 12); |
| dtr0 &= ~DTR0_TRP_MASK; |
| dtr0 |= ((trp - 5) << 4); /* 5 bit DRAM Clock */ |
| dtr0 &= ~DTR0_TRCD_MASK; |
| dtr0 |= ((trcd - 5) << 8); /* 5 bit DRAM Clock */ |
| |
| dtr1 &= ~DTR1_TWCL_MASK; |
| tmp2 = wl - 3; |
| dtr1 |= (wl - 3); |
| dtr1 &= ~DTR1_TWTP_MASK; |
| dtr1 |= ((wl + 4 + twr - 14) << 8); /* Change to tWTP */ |
| dtr1 &= ~DTR1_TRTP_MASK; |
| dtr1 |= ((MMAX(trtp, 4) - 3) << 28); /* 4 bit DRAM Clock */ |
| dtr1 &= ~DTR1_TRRD_MASK; |
| dtr1 |= ((trrd - 4) << 24); /* 4 bit DRAM Clock */ |
| dtr1 &= ~DTR1_TCMD_MASK; |
| dtr1 |= (1 << 4); |
| dtr1 &= ~DTR1_TRAS_MASK; |
| dtr1 |= ((tras - 14) << 20); /* 6 bit DRAM Clock */ |
| dtr1 &= ~DTR1_TFAW_MASK; |
| dtr1 |= ((((tfaw + 1) >> 1) - 5) << 16);/* 4 bit DRAM Clock */ |
| /* Set 4 Clock CAS to CAS delay (multi-burst) */ |
| dtr1 &= ~DTR1_TCCD_MASK; |
| |
| dtr2 &= ~DTR2_TRRDR_MASK; |
| dtr2 |= 1; |
| dtr2 &= ~DTR2_TWWDR_MASK; |
| dtr2 |= (2 << 8); |
| dtr2 &= ~DTR2_TRWDR_MASK; |
| dtr2 |= (2 << 16); |
| |
| dtr3 &= ~DTR3_TWRDR_MASK; |
| dtr3 |= 2; |
| dtr3 &= ~DTR3_TXXXX_MASK; |
| dtr3 |= (2 << 4); |
| |
| dtr3 &= ~DTR3_TRWSR_MASK; |
| if (mrc_params->ddr_speed == DDRFREQ_800) { |
| /* Extended RW delay (+1) */ |
| dtr3 |= ((tcl - 5 + 1) << 8); |
| } else if (mrc_params->ddr_speed == DDRFREQ_1066) { |
| /* Extended RW delay (+1) */ |
| dtr3 |= ((tcl - 5 + 1) << 8); |
| } |
| |
| dtr3 &= ~DTR3_TWRSR_MASK; |
| dtr3 |= ((4 + wl + twtr - 11) << 13); |
| |
| dtr3 &= ~DTR3_TXP_MASK; |
| if (mrc_params->ddr_speed == DDRFREQ_800) |
| dtr3 |= ((MMAX(0, 1 - 1)) << 22); |
| else |
| dtr3 |= ((MMAX(0, 2 - 1)) << 22); |
| |
| dtr4 &= ~DTR4_WRODTSTRT_MASK; |
| dtr4 |= 1; |
| dtr4 &= ~DTR4_WRODTSTOP_MASK; |
| dtr4 |= (1 << 4); |
| dtr4 &= ~DTR4_XXXX1_MASK; |
| dtr4 |= ((1 + tmp1 - tmp2 + 2) << 8); |
| dtr4 &= ~DTR4_XXXX2_MASK; |
| dtr4 |= ((1 + tmp1 - tmp2 + 2) << 12); |
| dtr4 &= ~(DTR4_ODTDIS | DTR4_TRGSTRDIS); |
| |
| msg_port_write(MEM_CTLR, DTR0, dtr0); |
| msg_port_write(MEM_CTLR, DTR1, dtr1); |
| msg_port_write(MEM_CTLR, DTR2, dtr2); |
| msg_port_write(MEM_CTLR, DTR3, dtr3); |
| msg_port_write(MEM_CTLR, DTR4, dtr4); |
| |
| LEAVEFN(); |
| } |
| |
| /* Configure MCU before jedec init sequence */ |
| void prog_decode_before_jedec(struct mrc_params *mrc_params) |
| { |
| u32 drp; |
| u32 drfc; |
| u32 dcal; |
| u32 dsch; |
| u32 dpmc0; |
| |
| ENTERFN(); |
| |
| /* Disable power saving features */ |
| dpmc0 = msg_port_read(MEM_CTLR, DPMC0); |
| dpmc0 |= (DPMC0_CLKGTDIS | DPMC0_DISPWRDN); |
| dpmc0 &= ~DPMC0_PCLSTO_MASK; |
| dpmc0 &= ~DPMC0_DYNSREN; |
| msg_port_write(MEM_CTLR, DPMC0, dpmc0); |
| |
| /* Disable out of order transactions */ |
| dsch = msg_port_read(MEM_CTLR, DSCH); |
| dsch |= (DSCH_OOODIS | DSCH_NEWBYPDIS); |
| msg_port_write(MEM_CTLR, DSCH, dsch); |
| |
| /* Disable issuing the REF command */ |
| drfc = msg_port_read(MEM_CTLR, DRFC); |
| drfc &= ~DRFC_TREFI_MASK; |
| msg_port_write(MEM_CTLR, DRFC, drfc); |
| |
| /* Disable ZQ calibration short */ |
| dcal = msg_port_read(MEM_CTLR, DCAL); |
| dcal &= ~DCAL_ZQCINT_MASK; |
| dcal &= ~DCAL_SRXZQCL_MASK; |
| msg_port_write(MEM_CTLR, DCAL, dcal); |
| |
| /* |
| * Training performed in address mode 0, rank population has limited |
| * impact, however simulator complains if enabled non-existing rank. |
| */ |
| drp = 0; |
| if (mrc_params->rank_enables & 1) |
| drp |= DRP_RKEN0; |
| if (mrc_params->rank_enables & 2) |
| drp |= DRP_RKEN1; |
| msg_port_write(MEM_CTLR, DRP, drp); |
| |
| LEAVEFN(); |
| } |
| |
| /* |
| * After Cold Reset, BIOS should set COLDWAKE bit to 1 before |
| * sending the WAKE message to the Dunit. |
| * |
| * For Standby Exit, or any other mode in which the DRAM is in |
| * SR, this bit must be set to 0. |
| */ |
| void perform_ddr_reset(struct mrc_params *mrc_params) |
| { |
| ENTERFN(); |
| |
| /* Set COLDWAKE bit before sending the WAKE message */ |
| mrc_write_mask(MEM_CTLR, DRMC, DRMC_COLDWAKE, DRMC_COLDWAKE); |
| |
| /* Send wake command to DUNIT (MUST be done before JEDEC) */ |
| dram_wake_command(); |
| |
| /* Set default value */ |
| msg_port_write(MEM_CTLR, DRMC, |
| mrc_params->rd_odt_value == 0 ? DRMC_ODTMODE : 0); |
| |
| LEAVEFN(); |
| } |
| |
| |
| /* |
| * This function performs some initialization on the DDRIO unit. |
| * This function is dependent on BOARD_ID, DDR_SPEED, and CHANNEL_ENABLES. |
| */ |
| void ddrphy_init(struct mrc_params *mrc_params) |
| { |
| uint32_t temp; |
| uint8_t ch; /* channel counter */ |
| uint8_t rk; /* rank counter */ |
| uint8_t bl_grp; /* byte lane group counter (2 BLs per module) */ |
| uint8_t bl_divisor = 1; /* byte lane divisor */ |
| /* For DDR3 --> 0 == 800, 1 == 1066, 2 == 1333 */ |
| uint8_t speed = mrc_params->ddr_speed & 3; |
| uint8_t cas; |
| uint8_t cwl; |
| |
| ENTERFN(); |
| |
| cas = mrc_params->params.cl; |
| cwl = 5 + mrc_params->ddr_speed; |
| |
| /* ddrphy_init starts */ |
| mrc_post_code(0x03, 0x00); |
| |
| /* |
| * HSD#231531 |
| * Make sure IOBUFACT is deasserted before initializing the DDR PHY |
| * |
| * HSD#234845 |
| * Make sure WRPTRENABLE is deasserted before initializing the DDR PHY |
| */ |
| for (ch = 0; ch < NUM_CHANNELS; ch++) { |
| if (mrc_params->channel_enables & (1 << ch)) { |
| /* Deassert DDRPHY Initialization Complete */ |
| mrc_alt_write_mask(DDRPHY, |
| CMDPMCONFIG0 + ch * DDRIOCCC_CH_OFFSET, |
| ~(1 << 20), 1 << 20); /* SPID_INIT_COMPLETE=0 */ |
| /* Deassert IOBUFACT */ |
| mrc_alt_write_mask(DDRPHY, |
| CMDCFGREG0 + ch * DDRIOCCC_CH_OFFSET, |
| ~(1 << 2), 1 << 2); /* IOBUFACTRST_N=0 */ |
| /* Disable WRPTR */ |
| mrc_alt_write_mask(DDRPHY, |
| CMDPTRREG + ch * DDRIOCCC_CH_OFFSET, |
| ~(1 << 0), 1 << 0); /* WRPTRENABLE=0 */ |
| } |
| } |
| |
| /* Put PHY in reset */ |
| mrc_alt_write_mask(DDRPHY, MASTERRSTN, 0, 1); |
| |
| /* Initialize DQ01, DQ23, CMD, CLK-CTL, COMP modules */ |
| |
| /* STEP0 */ |
| mrc_post_code(0x03, 0x10); |
| for (ch = 0; ch < NUM_CHANNELS; ch++) { |
| if (mrc_params->channel_enables & (1 << ch)) { |
| /* DQ01-DQ23 */ |
| for (bl_grp = 0; |
| bl_grp < (NUM_BYTE_LANES / bl_divisor) / 2; |
| bl_grp++) { |
| /* Analog MUX select - IO2xCLKSEL */ |
| mrc_alt_write_mask(DDRPHY, |
| DQOBSCKEBBCTL + |
| bl_grp * DDRIODQ_BL_OFFSET + |
| ch * DDRIODQ_CH_OFFSET, |
| bl_grp ? 0 : (1 << 22), 1 << 22); |
| |
| /* ODT Strength */ |
| switch (mrc_params->rd_odt_value) { |
| case 1: |
| temp = 0x3; |
| break; /* 60 ohm */ |
| case 2: |
| temp = 0x3; |
| break; /* 120 ohm */ |
| case 3: |
| temp = 0x3; |
| break; /* 180 ohm */ |
| default: |
| temp = 0x3; |
| break; /* 120 ohm */ |
| } |
| |
| /* ODT strength */ |
| mrc_alt_write_mask(DDRPHY, |
| B0RXIOBUFCTL + |
| bl_grp * DDRIODQ_BL_OFFSET + |
| ch * DDRIODQ_CH_OFFSET, |
| temp << 5, 0x60); |
| /* ODT strength */ |
| mrc_alt_write_mask(DDRPHY, |
| B1RXIOBUFCTL + |
| bl_grp * DDRIODQ_BL_OFFSET + |
| ch * DDRIODQ_CH_OFFSET, |
| temp << 5, 0x60); |
| |
| /* Dynamic ODT/DIFFAMP */ |
| temp = (cas << 24) | (cas << 16) | |
| (cas << 8) | (cas << 0); |
| switch (speed) { |
| case 0: |
| temp -= 0x01010101; |
| break; /* 800 */ |
| case 1: |
| temp -= 0x02020202; |
| break; /* 1066 */ |
| case 2: |
| temp -= 0x03030303; |
| break; /* 1333 */ |
| case 3: |
| temp -= 0x04040404; |
| break; /* 1600 */ |
| } |
| |
| /* Launch Time: ODT, DIFFAMP, ODT, DIFFAMP */ |
| mrc_alt_write_mask(DDRPHY, |
| B01LATCTL1 + |
| bl_grp * DDRIODQ_BL_OFFSET + |
| ch * DDRIODQ_CH_OFFSET, |
| temp, 0x1f1f1f1f); |
| switch (speed) { |
| /* HSD#234715 */ |
| case 0: |
| temp = (0x06 << 16) | (0x07 << 8); |
| break; /* 800 */ |
| case 1: |
| temp = (0x07 << 16) | (0x08 << 8); |
| break; /* 1066 */ |
| case 2: |
| temp = (0x09 << 16) | (0x0a << 8); |
| break; /* 1333 */ |
| case 3: |
| temp = (0x0a << 16) | (0x0b << 8); |
| break; /* 1600 */ |
| } |
| |
| /* On Duration: ODT, DIFFAMP */ |
| mrc_alt_write_mask(DDRPHY, |
| B0ONDURCTL + |
| bl_grp * DDRIODQ_BL_OFFSET + |
| ch * DDRIODQ_CH_OFFSET, |
| temp, 0x003f3f00); |
| /* On Duration: ODT, DIFFAMP */ |
| mrc_alt_write_mask(DDRPHY, |
| B1ONDURCTL + |
| bl_grp * DDRIODQ_BL_OFFSET + |
| ch * DDRIODQ_CH_OFFSET, |
| temp, 0x003f3f00); |
| |
| switch (mrc_params->rd_odt_value) { |
| case 0: |
| /* override DIFFAMP=on, ODT=off */ |
| temp = (0x3f << 16) | (0x3f << 10); |
| break; |
| default: |
| /* override DIFFAMP=on, ODT=on */ |
| temp = (0x3f << 16) | (0x2a << 10); |
| break; |
| } |
| |
| /* Override: DIFFAMP, ODT */ |
| mrc_alt_write_mask(DDRPHY, |
| B0OVRCTL + |
| bl_grp * DDRIODQ_BL_OFFSET + |
| ch * DDRIODQ_CH_OFFSET, |
| temp, 0x003ffc00); |
| /* Override: DIFFAMP, ODT */ |
| mrc_alt_write_mask(DDRPHY, |
| B1OVRCTL + |
| bl_grp * DDRIODQ_BL_OFFSET + |
| ch * DDRIODQ_CH_OFFSET, |
| temp, 0x003ffc00); |
| |
| /* DLL Setup */ |
| |
| /* 1xCLK Domain Timings: tEDP,RCVEN,WDQS (PO) */ |
| mrc_alt_write_mask(DDRPHY, |
| B0LATCTL0 + |
| bl_grp * DDRIODQ_BL_OFFSET + |
| ch * DDRIODQ_CH_OFFSET, |
| ((cas + 7) << 16) | ((cas - 4) << 8) | |
| ((cwl - 2) << 0), 0x003f1f1f); |
| mrc_alt_write_mask(DDRPHY, |
| B1LATCTL0 + |
| bl_grp * DDRIODQ_BL_OFFSET + |
| ch * DDRIODQ_CH_OFFSET, |
| ((cas + 7) << 16) | ((cas - 4) << 8) | |
| ((cwl - 2) << 0), 0x003f1f1f); |
| |
| /* RCVEN Bypass (PO) */ |
| mrc_alt_write_mask(DDRPHY, |
| B0RXIOBUFCTL + |
| bl_grp * DDRIODQ_BL_OFFSET + |
| ch * DDRIODQ_CH_OFFSET, |
| 0, 0x81); |
| mrc_alt_write_mask(DDRPHY, |
| B1RXIOBUFCTL + |
| bl_grp * DDRIODQ_BL_OFFSET + |
| ch * DDRIODQ_CH_OFFSET, |
| 0, 0x81); |
| |
| /* TX */ |
| mrc_alt_write_mask(DDRPHY, |
| DQCTL + |
| bl_grp * DDRIODQ_BL_OFFSET + |
| ch * DDRIODQ_CH_OFFSET, |
| 1 << 16, 1 << 16); |
| mrc_alt_write_mask(DDRPHY, |
| B01PTRCTL1 + |
| bl_grp * DDRIODQ_BL_OFFSET + |
| ch * DDRIODQ_CH_OFFSET, |
| 1 << 8, 1 << 8); |
| |
| /* RX (PO) */ |
| /* Internal Vref Code, Enable#, Ext_or_Int (1=Ext) */ |
| mrc_alt_write_mask(DDRPHY, |
| B0VREFCTL + |
| bl_grp * DDRIODQ_BL_OFFSET + |
| ch * DDRIODQ_CH_OFFSET, |
| (0x03 << 2) | (0x0 << 1) | (0x0 << 0), |
| 0xff); |
| /* Internal Vref Code, Enable#, Ext_or_Int (1=Ext) */ |
| mrc_alt_write_mask(DDRPHY, |
| B1VREFCTL + |
| bl_grp * DDRIODQ_BL_OFFSET + |
| ch * DDRIODQ_CH_OFFSET, |
| (0x03 << 2) | (0x0 << 1) | (0x0 << 0), |
| 0xff); |
| /* Per-Bit De-Skew Enable */ |
| mrc_alt_write_mask(DDRPHY, |
| B0RXIOBUFCTL + |
| bl_grp * DDRIODQ_BL_OFFSET + |
| ch * DDRIODQ_CH_OFFSET, |
| 0, 0x10); |
| /* Per-Bit De-Skew Enable */ |
| mrc_alt_write_mask(DDRPHY, |
| B1RXIOBUFCTL + |
| bl_grp * DDRIODQ_BL_OFFSET + |
| ch * DDRIODQ_CH_OFFSET, |
| 0, 0x10); |
| } |
| |
| /* CLKEBB */ |
| mrc_alt_write_mask(DDRPHY, |
| CMDOBSCKEBBCTL + ch * DDRIOCCC_CH_OFFSET, |
| 0, 1 << 23); |
| |
| /* Enable tristate control of cmd/address bus */ |
| mrc_alt_write_mask(DDRPHY, |
| CMDCFGREG0 + ch * DDRIOCCC_CH_OFFSET, |
| 0, 0x03); |
| |
| /* ODT RCOMP */ |
| mrc_alt_write_mask(DDRPHY, |
| CMDRCOMPODT + ch * DDRIOCCC_CH_OFFSET, |
| (0x03 << 5) | (0x03 << 0), 0x3ff); |
| |
| /* CMDPM* registers must be programmed in this order */ |
| |
| /* Turn On Delays: SFR (regulator), MPLL */ |
| mrc_alt_write_mask(DDRPHY, |
| CMDPMDLYREG4 + ch * DDRIOCCC_CH_OFFSET, |
| 0xffffffff, 0xffffffff); |
| /* |
| * Delays: ASSERT_IOBUFACT_to_ALLON0_for_PM_MSG_3, |
| * VREG (MDLL) Turn On, ALLON0_to_DEASSERT_IOBUFACT |
| * for_PM_MSG_gt0, MDLL Turn On |
| */ |
| mrc_alt_write_mask(DDRPHY, |
| CMDPMDLYREG3 + ch * DDRIOCCC_CH_OFFSET, |
| 0xfffff616, 0xffffffff); |
| /* MPLL Divider Reset Delays */ |
| mrc_alt_write_mask(DDRPHY, |
| CMDPMDLYREG2 + ch * DDRIOCCC_CH_OFFSET, |
| 0xffffffff, 0xffffffff); |
| /* Turn Off Delays: VREG, Staggered MDLL, MDLL, PI */ |
| mrc_alt_write_mask(DDRPHY, |
| CMDPMDLYREG1 + ch * DDRIOCCC_CH_OFFSET, |
| 0xffffffff, 0xffffffff); |
| /* Turn On Delays: MPLL, Staggered MDLL, PI, IOBUFACT */ |
| mrc_alt_write_mask(DDRPHY, |
| CMDPMDLYREG0 + ch * DDRIOCCC_CH_OFFSET, |
| 0xffffffff, 0xffffffff); |
| /* Allow PUnit signals */ |
| mrc_alt_write_mask(DDRPHY, |
| CMDPMCONFIG0 + ch * DDRIOCCC_CH_OFFSET, |
| (0x6 << 8) | (0x1 << 6) | (0x4 << 0), |
| 0xffe00f4f); |
| /* DLL_VREG Bias Trim, VREF Tuning for DLL_VREG */ |
| mrc_alt_write_mask(DDRPHY, |
| CMDMDLLCTL + ch * DDRIOCCC_CH_OFFSET, |
| (0x3 << 4) | (0x7 << 0), 0x7f); |
| |
| /* CLK-CTL */ |
| mrc_alt_write_mask(DDRPHY, |
| CCOBSCKEBBCTL + ch * DDRIOCCC_CH_OFFSET, |
| 0, 1 << 24); /* CLKEBB */ |
| /* Buffer Enable: CS,CKE,ODT,CLK */ |
| mrc_alt_write_mask(DDRPHY, |
| CCCFGREG0 + ch * DDRIOCCC_CH_OFFSET, |
| 0x1f, 0x000ffff1); |
| /* ODT RCOMP */ |
| mrc_alt_write_mask(DDRPHY, |
| CCRCOMPODT + ch * DDRIOCCC_CH_OFFSET, |
| (0x03 << 8) | (0x03 << 0), 0x00001f1f); |
| /* DLL_VREG Bias Trim, VREF Tuning for DLL_VREG */ |
| mrc_alt_write_mask(DDRPHY, |
| CCMDLLCTL + ch * DDRIOCCC_CH_OFFSET, |
| (0x3 << 4) | (0x7 << 0), 0x7f); |
| |
| /* |
| * COMP (RON channel specific) |
| * - DQ/DQS/DM RON: 32 Ohm |
| * - CTRL/CMD RON: 27 Ohm |
| * - CLK RON: 26 Ohm |
| */ |
| /* RCOMP Vref PU/PD */ |
| mrc_alt_write_mask(DDRPHY, |
| DQVREFCH0 + ch * DDRCOMP_CH_OFFSET, |
| (0x08 << 24) | (0x03 << 16), 0x3f3f0000); |
| /* RCOMP Vref PU/PD */ |
| mrc_alt_write_mask(DDRPHY, |
| CMDVREFCH0 + ch * DDRCOMP_CH_OFFSET, |
| (0x0C << 24) | (0x03 << 16), 0x3f3f0000); |
| /* RCOMP Vref PU/PD */ |
| mrc_alt_write_mask(DDRPHY, |
| CLKVREFCH0 + ch * DDRCOMP_CH_OFFSET, |
| (0x0F << 24) | (0x03 << 16), 0x3f3f0000); |
| /* RCOMP Vref PU/PD */ |
| mrc_alt_write_mask(DDRPHY, |
| DQSVREFCH0 + ch * DDRCOMP_CH_OFFSET, |
| (0x08 << 24) | (0x03 << 16), 0x3f3f0000); |
| /* RCOMP Vref PU/PD */ |
| mrc_alt_write_mask(DDRPHY, |
| CTLVREFCH0 + ch * DDRCOMP_CH_OFFSET, |
| (0x0C << 24) | (0x03 << 16), 0x3f3f0000); |
| |
| /* DQS Swapped Input Enable */ |
| mrc_alt_write_mask(DDRPHY, |
| COMPEN1CH0 + ch * DDRCOMP_CH_OFFSET, |
| (1 << 19) | (1 << 17), 0xc00ac000); |
| |
| /* ODT VREF = 1.5 x 274/360+274 = 0.65V (code of ~50) */ |
| /* ODT Vref PU/PD */ |
| mrc_alt_write_mask(DDRPHY, |
| DQVREFCH0 + ch * DDRCOMP_CH_OFFSET, |
| (0x32 << 8) | (0x03 << 0), 0x00003f3f); |
| /* ODT Vref PU/PD */ |
| mrc_alt_write_mask(DDRPHY, |
| DQSVREFCH0 + ch * DDRCOMP_CH_OFFSET, |
| (0x32 << 8) | (0x03 << 0), 0x00003f3f); |
| /* ODT Vref PU/PD */ |
| mrc_alt_write_mask(DDRPHY, |
| CLKVREFCH0 + ch * DDRCOMP_CH_OFFSET, |
| (0x0E << 8) | (0x05 << 0), 0x00003f3f); |
| |
| /* |
| * Slew rate settings are frequency specific, |
| * numbers below are for 800Mhz (speed == 0) |
| * - DQ/DQS/DM/CLK SR: 4V/ns, |
| * - CTRL/CMD SR: 1.5V/ns |
| */ |
| temp = (0x0e << 16) | (0x0e << 12) | (0x08 << 8) | |
| (0x0b << 4) | (0x0b << 0); |
| /* DCOMP Delay Select: CTL,CMD,CLK,DQS,DQ */ |
| mrc_alt_write_mask(DDRPHY, |
| DLYSELCH0 + ch * DDRCOMP_CH_OFFSET, |
| temp, 0x000fffff); |
| /* TCO Vref CLK,DQS,DQ */ |
| mrc_alt_write_mask(DDRPHY, |
| TCOVREFCH0 + ch * DDRCOMP_CH_OFFSET, |
| (0x05 << 16) | (0x05 << 8) | (0x05 << 0), |
| 0x003f3f3f); |
| /* ODTCOMP CMD/CTL PU/PD */ |
| mrc_alt_write_mask(DDRPHY, |
| CCBUFODTCH0 + ch * DDRCOMP_CH_OFFSET, |
| (0x03 << 8) | (0x03 << 0), |
| 0x00001f1f); |
| /* COMP */ |
| mrc_alt_write_mask(DDRPHY, |
| COMPEN0CH0 + ch * DDRCOMP_CH_OFFSET, |
| 0, 0xc0000100); |
| |
| #ifdef BACKUP_COMPS |
| /* DQ COMP Overrides */ |
| /* RCOMP PU */ |
| mrc_alt_write_mask(DDRPHY, |
| DQDRVPUCTLCH0 + ch * DDRCOMP_CH_OFFSET, |
| (1 << 31) | (0x0a << 16), |
| 0x801f0000); |
| /* RCOMP PD */ |
| mrc_alt_write_mask(DDRPHY, |
| DQDRVPDCTLCH0 + ch * DDRCOMP_CH_OFFSET, |
| (1 << 31) | (0x0a << 16), |
| 0x801f0000); |
| /* DCOMP PU */ |
| mrc_alt_write_mask(DDRPHY, |
| DQDLYPUCTLCH0 + ch * DDRCOMP_CH_OFFSET, |
| (1 << 31) | (0x10 << 16), |
| 0x801f0000); |
| /* DCOMP PD */ |
| mrc_alt_write_mask(DDRPHY, |
| DQDLYPDCTLCH0 + ch * DDRCOMP_CH_OFFSET, |
| (1 << 31) | (0x10 << 16), |
| 0x801f0000); |
| /* ODTCOMP PU */ |
| mrc_alt_write_mask(DDRPHY, |
| DQODTPUCTLCH0 + ch * DDRCOMP_CH_OFFSET, |
| (1 << 31) | (0x0b << 16), |
| 0x801f0000); |
| /* ODTCOMP PD */ |
| mrc_alt_write_mask(DDRPHY, |
| DQODTPDCTLCH0 + ch * DDRCOMP_CH_OFFSET, |
| (1 << 31) | (0x0b << 16), |
| 0x801f0000); |
| /* TCOCOMP PU */ |
| mrc_alt_write_mask(DDRPHY, |
| DQTCOPUCTLCH0 + ch * DDRCOMP_CH_OFFSET, |
| 1 << 31, 1 << 31); |
| /* TCOCOMP PD */ |
| mrc_alt_write_mask(DDRPHY, |
| DQTCOPDCTLCH0 + ch * DDRCOMP_CH_OFFSET, |
| 1 << 31, 1 << 31); |
| |
| /* DQS COMP Overrides */ |
| /* RCOMP PU */ |
| mrc_alt_write_mask(DDRPHY, |
| DQSDRVPUCTLCH0 + ch * DDRCOMP_CH_OFFSET, |
| (1 << 31) | (0x0a << 16), |
| 0x801f0000); |
| /* RCOMP PD */ |
| mrc_alt_write_mask(DDRPHY, |
| DQSDRVPDCTLCH0 + ch * DDRCOMP_CH_OFFSET, |
| (1 << 31) | (0x0a << 16), |
| 0x801f0000); |
| /* DCOMP PU */ |
| mrc_alt_write_mask(DDRPHY, |
| DQSDLYPUCTLCH0 + ch * DDRCOMP_CH_OFFSET, |
| (1 << 31) | (0x10 << 16), |
| 0x801f0000); |
| /* DCOMP PD */ |
| mrc_alt_write_mask(DDRPHY, |
| DQSDLYPDCTLCH0 + ch * DDRCOMP_CH_OFFSET, |
| (1 << 31) | (0x10 << 16), |
| 0x801f0000); |
| /* ODTCOMP PU */ |
| mrc_alt_write_mask(DDRPHY, |
| DQSODTPUCTLCH0 + ch * DDRCOMP_CH_OFFSET, |
| (1 << 31) | (0x0b << 16), |
| 0x801f0000); |
| /* ODTCOMP PD */ |
| mrc_alt_write_mask(DDRPHY, |
| DQSODTPDCTLCH0 + ch * DDRCOMP_CH_OFFSET, |
| (1 << 31) | (0x0b << 16), |
| 0x801f0000); |
| /* TCOCOMP PU */ |
| mrc_alt_write_mask(DDRPHY, |
| DQSTCOPUCTLCH0 + ch * DDRCOMP_CH_OFFSET, |
| 1 << 31, 1 << 31); |
| /* TCOCOMP PD */ |
| mrc_alt_write_mask(DDRPHY, |
| DQSTCOPDCTLCH0 + ch * DDRCOMP_CH_OFFSET, |
| 1 << 31, 1 << 31); |
| |
| /* CLK COMP Overrides */ |
| /* RCOMP PU */ |
| mrc_alt_write_mask(DDRPHY, |
| CLKDRVPUCTLCH0 + ch * DDRCOMP_CH_OFFSET, |
| (1 << 31) | (0x0c << 16), |
| 0x801f0000); |
| /* RCOMP PD */ |
| mrc_alt_write_mask(DDRPHY, |
| CLKDRVPDCTLCH0 + ch * DDRCOMP_CH_OFFSET, |
| (1 << 31) | (0x0c << 16), |
| 0x801f0000); |
| /* DCOMP PU */ |
| mrc_alt_write_mask(DDRPHY, |
| CLKDLYPUCTLCH0 + ch * DDRCOMP_CH_OFFSET, |
| (1 << 31) | (0x07 << 16), |
| 0x801f0000); |
| /* DCOMP PD */ |
| mrc_alt_write_mask(DDRPHY, |
| CLKDLYPDCTLCH0 + ch * DDRCOMP_CH_OFFSET, |
| (1 << 31) | (0x07 << 16), |
| 0x801f0000); |
| /* ODTCOMP PU */ |
| mrc_alt_write_mask(DDRPHY, |
| CLKODTPUCTLCH0 + ch * DDRCOMP_CH_OFFSET, |
| (1 << 31) | (0x0b << 16), |
| 0x801f0000); |
| /* ODTCOMP PD */ |
| mrc_alt_write_mask(DDRPHY, |
| CLKODTPDCTLCH0 + ch * DDRCOMP_CH_OFFSET, |
| (1 << 31) | (0x0b << 16), |
| 0x801f0000); |
| /* TCOCOMP PU */ |
| mrc_alt_write_mask(DDRPHY, |
| CLKTCOPUCTLCH0 + ch * DDRCOMP_CH_OFFSET, |
| 1 << 31, 1 << 31); |
| /* TCOCOMP PD */ |
| mrc_alt_write_mask(DDRPHY, |
| CLKTCOPDCTLCH0 + ch * DDRCOMP_CH_OFFSET, |
| 1 << 31, 1 << 31); |
| |
| /* CMD COMP Overrides */ |
| /* RCOMP PU */ |
| mrc_alt_write_mask(DDRPHY, |
| CMDDRVPUCTLCH0 + ch * DDRCOMP_CH_OFFSET, |
| (1 << 31) | (0x0d << 16), |
| 0x803f0000); |
| /* RCOMP PD */ |
| mrc_alt_write_mask(DDRPHY, |
| CMDDRVPDCTLCH0 + ch * DDRCOMP_CH_OFFSET, |
| (1 << 31) | (0x0d << 16), |
| 0x803f0000); |
| /* DCOMP PU */ |
| mrc_alt_write_mask(DDRPHY, |
| CMDDLYPUCTLCH0 + ch * DDRCOMP_CH_OFFSET, |
| (1 << 31) | (0x0a << 16), |
| 0x801f0000); |
| /* DCOMP PD */ |
| mrc_alt_write_mask(DDRPHY, |
| CMDDLYPDCTLCH0 + ch * DDRCOMP_CH_OFFSET, |
| (1 << 31) | (0x0a << 16), |
| 0x801f0000); |
| |
| /* CTL COMP Overrides */ |
| /* RCOMP PU */ |
| mrc_alt_write_mask(DDRPHY, |
| CTLDRVPUCTLCH0 + ch * DDRCOMP_CH_OFFSET, |
| (1 << 31) | (0x0d << 16), |
| 0x803f0000); |
| /* RCOMP PD */ |
| mrc_alt_write_mask(DDRPHY, |
| CTLDRVPDCTLCH0 + ch * DDRCOMP_CH_OFFSET, |
| (1 << 31) | (0x0d << 16), |
| 0x803f0000); |
| /* DCOMP PU */ |
| mrc_alt_write_mask(DDRPHY, |
| CTLDLYPUCTLCH0 + ch * DDRCOMP_CH_OFFSET, |
| (1 << 31) | (0x0a << 16), |
| 0x801f0000); |
| /* DCOMP PD */ |
| mrc_alt_write_mask(DDRPHY, |
| CTLDLYPDCTLCH0 + ch * DDRCOMP_CH_OFFSET, |
| (1 << 31) | (0x0a << 16), |
| 0x801f0000); |
| #else |
| /* DQ TCOCOMP Overrides */ |
| /* TCOCOMP PU */ |
| mrc_alt_write_mask(DDRPHY, |
| DQTCOPUCTLCH0 + ch * DDRCOMP_CH_OFFSET, |
| (1 << 31) | (0x1f << 16), |
| 0x801f0000); |
| /* TCOCOMP PD */ |
| mrc_alt_write_mask(DDRPHY, |
| DQTCOPDCTLCH0 + ch * DDRCOMP_CH_OFFSET, |
| (1 << 31) | (0x1f << 16), |
| 0x801f0000); |
| |
| /* DQS TCOCOMP Overrides */ |
| /* TCOCOMP PU */ |
| mrc_alt_write_mask(DDRPHY, |
| DQSTCOPUCTLCH0 + ch * DDRCOMP_CH_OFFSET, |
| (1 << 31) | (0x1f << 16), |
| 0x801f0000); |
| /* TCOCOMP PD */ |
| mrc_alt_write_mask(DDRPHY, |
| DQSTCOPDCTLCH0 + ch * DDRCOMP_CH_OFFSET, |
| (1 << 31) | (0x1f << 16), |
| 0x801f0000); |
| |
| /* CLK TCOCOMP Overrides */ |
| /* TCOCOMP PU */ |
| mrc_alt_write_mask(DDRPHY, |
| CLKTCOPUCTLCH0 + ch * DDRCOMP_CH_OFFSET, |
| (1 << 31) | (0x1f << 16), |
| 0x801f0000); |
| /* TCOCOMP PD */ |
| mrc_alt_write_mask(DDRPHY, |
| CLKTCOPDCTLCH0 + ch * DDRCOMP_CH_OFFSET, |
| (1 << 31) | (0x1f << 16), |
| 0x801f0000); |
| #endif |
| |
| /* program STATIC delays */ |
| #ifdef BACKUP_WCMD |
| set_wcmd(ch, ddr_wcmd[PLATFORM_ID]); |
| #else |
| set_wcmd(ch, ddr_wclk[PLATFORM_ID] + HALF_CLK); |
| #endif |
| |
| for (rk = 0; rk < NUM_RANKS; rk++) { |
| if (mrc_params->rank_enables & (1 << rk)) { |
| set_wclk(ch, rk, ddr_wclk[PLATFORM_ID]); |
| #ifdef BACKUP_WCTL |
| set_wctl(ch, rk, ddr_wctl[PLATFORM_ID]); |
| #else |
| set_wctl(ch, rk, ddr_wclk[PLATFORM_ID] + HALF_CLK); |
| #endif |
| } |
| } |
| } |
| } |
| |
| /* COMP (non channel specific) */ |
| /* RCOMP: Dither PU Enable */ |
| mrc_alt_write_mask(DDRPHY, DQANADRVPUCTL, 1 << 30, 1 << 30); |
| /* RCOMP: Dither PD Enable */ |
| mrc_alt_write_mask(DDRPHY, DQANADRVPDCTL, 1 << 30, 1 << 30); |
| /* RCOMP: Dither PU Enable */ |
| mrc_alt_write_mask(DDRPHY, CMDANADRVPUCTL, 1 << 30, 1 << 30); |
| /* RCOMP: Dither PD Enable */ |
| mrc_alt_write_mask(DDRPHY, CMDANADRVPDCTL, 1 << 30, 1 << 30); |
| /* RCOMP: Dither PU Enable */ |
| mrc_alt_write_mask(DDRPHY, CLKANADRVPUCTL, 1 << 30, 1 << 30); |
| /* RCOMP: Dither PD Enable */ |
| mrc_alt_write_mask(DDRPHY, CLKANADRVPDCTL, 1 << 30, 1 << 30); |
| /* RCOMP: Dither PU Enable */ |
| mrc_alt_write_mask(DDRPHY, DQSANADRVPUCTL, 1 << 30, 1 << 30); |
| /* RCOMP: Dither PD Enable */ |
| mrc_alt_write_mask(DDRPHY, DQSANADRVPDCTL, 1 << 30, 1 << 30); |
| /* RCOMP: Dither PU Enable */ |
| mrc_alt_write_mask(DDRPHY, CTLANADRVPUCTL, 1 << 30, 1 << 30); |
| /* RCOMP: Dither PD Enable */ |
| mrc_alt_write_mask(DDRPHY, CTLANADRVPDCTL, 1 << 30, 1 << 30); |
| /* ODT: Dither PU Enable */ |
| mrc_alt_write_mask(DDRPHY, DQANAODTPUCTL, 1 << 30, 1 << 30); |
| /* ODT: Dither PD Enable */ |
| mrc_alt_write_mask(DDRPHY, DQANAODTPDCTL, 1 << 30, 1 << 30); |
| /* ODT: Dither PU Enable */ |
| mrc_alt_write_mask(DDRPHY, CLKANAODTPUCTL, 1 << 30, 1 << 30); |
| /* ODT: Dither PD Enable */ |
| mrc_alt_write_mask(DDRPHY, CLKANAODTPDCTL, 1 << 30, 1 << 30); |
| /* ODT: Dither PU Enable */ |
| mrc_alt_write_mask(DDRPHY, DQSANAODTPUCTL, 1 << 30, 1 << 30); |
| /* ODT: Dither PD Enable */ |
| mrc_alt_write_mask(DDRPHY, DQSANAODTPDCTL, 1 << 30, 1 << 30); |
| /* DCOMP: Dither PU Enable */ |
| mrc_alt_write_mask(DDRPHY, DQANADLYPUCTL, 1 << 30, 1 << 30); |
| /* DCOMP: Dither PD Enable */ |
| mrc_alt_write_mask(DDRPHY, DQANADLYPDCTL, 1 << 30, 1 << 30); |
| /* DCOMP: Dither PU Enable */ |
| mrc_alt_write_mask(DDRPHY, CMDANADLYPUCTL, 1 << 30, 1 << 30); |
| /* DCOMP: Dither PD Enable */ |
| mrc_alt_write_mask(DDRPHY, CMDANADLYPDCTL, 1 << 30, 1 << 30); |
| /* DCOMP: Dither PU Enable */ |
| mrc_alt_write_mask(DDRPHY, CLKANADLYPUCTL, 1 << 30, 1 << 30); |
| /* DCOMP: Dither PD Enable */ |
| mrc_alt_write_mask(DDRPHY, CLKANADLYPDCTL, 1 << 30, 1 << 30); |
| /* DCOMP: Dither PU Enable */ |
| mrc_alt_write_mask(DDRPHY, DQSANADLYPUCTL, 1 << 30, 1 << 30); |
| /* DCOMP: Dither PD Enable */ |
| mrc_alt_write_mask(DDRPHY, DQSANADLYPDCTL, 1 << 30, 1 << 30); |
| /* DCOMP: Dither PU Enable */ |
| mrc_alt_write_mask(DDRPHY, CTLANADLYPUCTL, 1 << 30, 1 << 30); |
| /* DCOMP: Dither PD Enable */ |
| mrc_alt_write_mask(DDRPHY, CTLANADLYPDCTL, 1 << 30, 1 << 30); |
| /* TCO: Dither PU Enable */ |
| mrc_alt_write_mask(DDRPHY, DQANATCOPUCTL, 1 << 30, 1 << 30); |
| /* TCO: Dither PD Enable */ |
| mrc_alt_write_mask(DDRPHY, DQANATCOPDCTL, 1 << 30, 1 << 30); |
| /* TCO: Dither PU Enable */ |
| mrc_alt_write_mask(DDRPHY, CLKANATCOPUCTL, 1 << 30, 1 << 30); |
| /* TCO: Dither PD Enable */ |
| mrc_alt_write_mask(DDRPHY, CLKANATCOPDCTL, 1 << 30, 1 << 30); |
| /* TCO: Dither PU Enable */ |
| mrc_alt_write_mask(DDRPHY, DQSANATCOPUCTL, 1 << 30, 1 << 30); |
| /* TCO: Dither PD Enable */ |
| mrc_alt_write_mask(DDRPHY, DQSANATCOPDCTL, 1 << 30, 1 << 30); |
| /* TCOCOMP: Pulse Count */ |
| mrc_alt_write_mask(DDRPHY, TCOCNTCTRL, 1, 3); |
| /* ODT: CMD/CTL PD/PU */ |
| mrc_alt_write_mask(DDRPHY, CHNLBUFSTATIC, |
| (0x03 << 24) | (0x03 << 16), 0x1f1f0000); |
| /* Set 1us counter */ |
| mrc_alt_write_mask(DDRPHY, MSCNTR, 0x64, 0xff); |
| mrc_alt_write_mask(DDRPHY, LATCH1CTL, 0x1 << 28, 0x70000000); |
| |
| /* Release PHY from reset */ |
| mrc_alt_write_mask(DDRPHY, MASTERRSTN, 1, 1); |
| |
| /* STEP1 */ |
| mrc_post_code(0x03, 0x11); |
| |
| for (ch = 0; ch < NUM_CHANNELS; ch++) { |
| if (mrc_params->channel_enables & (1 << ch)) { |
| /* DQ01-DQ23 */ |
| for (bl_grp = 0; |
| bl_grp < (NUM_BYTE_LANES / bl_divisor) / 2; |
| bl_grp++) { |
| mrc_alt_write_mask(DDRPHY, |
| DQMDLLCTL + |
| bl_grp * DDRIODQ_BL_OFFSET + |
| ch * DDRIODQ_CH_OFFSET, |
| 1 << 13, |
| 1 << 13); /* Enable VREG */ |
| delay_n(3); |
| } |
| |
| /* ECC */ |
| mrc_alt_write_mask(DDRPHY, ECCMDLLCTL, |
| 1 << 13, 1 << 13); /* Enable VREG */ |
| delay_n(3); |
| /* CMD */ |
| mrc_alt_write_mask(DDRPHY, |
| CMDMDLLCTL + ch * DDRIOCCC_CH_OFFSET, |
| 1 << 13, 1 << 13); /* Enable VREG */ |
| delay_n(3); |
| /* CLK-CTL */ |
| mrc_alt_write_mask(DDRPHY, |
| CCMDLLCTL + ch * DDRIOCCC_CH_OFFSET, |
| 1 << 13, 1 << 13); /* Enable VREG */ |
| delay_n(3); |
| } |
| } |
| |
| /* STEP2 */ |
| mrc_post_code(0x03, 0x12); |
| delay_n(200); |
| |
| for (ch = 0; ch < NUM_CHANNELS; ch++) { |
| if (mrc_params->channel_enables & (1 << ch)) { |
| /* DQ01-DQ23 */ |
| for (bl_grp = 0; |
| bl_grp < (NUM_BYTE_LANES / bl_divisor) / 2; |
| bl_grp++) { |
| mrc_alt_write_mask(DDRPHY, |
| DQMDLLCTL + |
| bl_grp * DDRIODQ_BL_OFFSET + |
| ch * DDRIODQ_CH_OFFSET, |
| 1 << 17, |
| 1 << 17); /* Enable MCDLL */ |
| delay_n(50); |
| } |
| |
| /* ECC */ |
| mrc_alt_write_mask(DDRPHY, ECCMDLLCTL, |
| 1 << 17, 1 << 17); /* Enable MCDLL */ |
| delay_n(50); |
| /* CMD */ |
| mrc_alt_write_mask(DDRPHY, |
| CMDMDLLCTL + ch * DDRIOCCC_CH_OFFSET, |
| 1 << 18, 1 << 18); /* Enable MCDLL */ |
| delay_n(50); |
| /* CLK-CTL */ |
| mrc_alt_write_mask(DDRPHY, |
| CCMDLLCTL + ch * DDRIOCCC_CH_OFFSET, |
| 1 << 18, 1 << 18); /* Enable MCDLL */ |
| delay_n(50); |
| } |
| } |
| |
| /* STEP3: */ |
| mrc_post_code(0x03, 0x13); |
| delay_n(100); |
| |
| for (ch = 0; ch < NUM_CHANNELS; ch++) { |
| if (mrc_params->channel_enables & (1 << ch)) { |
| /* DQ01-DQ23 */ |
| for (bl_grp = 0; |
| bl_grp < (NUM_BYTE_LANES / bl_divisor) / 2; |
| bl_grp++) { |
| #ifdef FORCE_16BIT_DDRIO |
| temp = (bl_grp && |
| (mrc_params->channel_width == X16)) ? |
| 0x11ff : 0xffff; |
| #else |
| temp = 0xffff; |
| #endif |
| /* Enable TXDLL */ |
| mrc_alt_write_mask(DDRPHY, |
| DQDLLTXCTL + |
| bl_grp * DDRIODQ_BL_OFFSET + |
| ch * DDRIODQ_CH_OFFSET, |
| temp, 0xffff); |
| delay_n(3); |
| /* Enable RXDLL */ |
| mrc_alt_write_mask(DDRPHY, |
| DQDLLRXCTL + |
| bl_grp * DDRIODQ_BL_OFFSET + |
| ch * DDRIODQ_CH_OFFSET, |
| 0xf, 0xf); |
| delay_n(3); |
| /* Enable RXDLL Overrides BL0 */ |
| mrc_alt_write_mask(DDRPHY, |
| B0OVRCTL + |
| bl_grp * DDRIODQ_BL_OFFSET + |
| ch * DDRIODQ_CH_OFFSET, |
| 0xf, 0xf); |
| } |
| |
| /* ECC */ |
| temp = 0xffff; |
| mrc_alt_write_mask(DDRPHY, ECCDLLTXCTL, |
| temp, 0xffff); |
| delay_n(3); |
| |
| /* CMD (PO) */ |
| mrc_alt_write_mask(DDRPHY, |
| CMDDLLTXCTL + ch * DDRIOCCC_CH_OFFSET, |
| temp, 0xffff); |
| delay_n(3); |
| } |
| } |
| |
| /* STEP4 */ |
| mrc_post_code(0x03, 0x14); |
| |
| for (ch = 0; ch < NUM_CHANNELS; ch++) { |
| if (mrc_params->channel_enables & (1 << ch)) { |
| /* Host To Memory Clock Alignment (HMC) for 800/1066 */ |
| for (bl_grp = 0; |
| bl_grp < (NUM_BYTE_LANES / bl_divisor) / 2; |
| bl_grp++) { |
| /* CLK_ALIGN_MOD_ID */ |
| mrc_alt_write_mask(DDRPHY, |
| DQCLKALIGNREG2 + |
| bl_grp * DDRIODQ_BL_OFFSET + |
| ch * DDRIODQ_CH_OFFSET, |
| bl_grp ? 3 : 1, |
| 0xf); |
| } |
| |
| mrc_alt_write_mask(DDRPHY, |
| ECCCLKALIGNREG2 + ch * DDRIODQ_CH_OFFSET, |
| 0x2, 0xf); |
| mrc_alt_write_mask(DDRPHY, |
| CMDCLKALIGNREG2 + ch * DDRIODQ_CH_OFFSET, |
| 0x0, 0xf); |
| mrc_alt_write_mask(DDRPHY, |
| CCCLKALIGNREG2 + ch * DDRIODQ_CH_OFFSET, |
| 0x2, 0xf); |
| mrc_alt_write_mask(DDRPHY, |
| CMDCLKALIGNREG0 + ch * DDRIOCCC_CH_OFFSET, |
| 0x20, 0x30); |
| /* |
| * NUM_SAMPLES, MAX_SAMPLES, |
| * MACRO_PI_STEP, MICRO_PI_STEP |
| */ |
| mrc_alt_write_mask(DDRPHY, |
| CMDCLKALIGNREG1 + ch * DDRIOCCC_CH_OFFSET, |
| (0x18 << 16) | (0x10 << 8) | |
| (0x8 << 2) | (0x1 << 0), |
| 0x007f7fff); |
| /* TOTAL_NUM_MODULES, FIRST_U_PARTITION */ |
| mrc_alt_write_mask(DDRPHY, |
| CMDCLKALIGNREG2 + ch * DDRIOCCC_CH_OFFSET, |
| (0x10 << 16) | (0x4 << 8) | (0x2 << 4), |
| 0x001f0ff0); |
| #ifdef HMC_TEST |
| /* START_CLK_ALIGN=1 */ |
| mrc_alt_write_mask(DDRPHY, |
| CMDCLKALIGNREG0 + ch * DDRIOCCC_CH_OFFSET, |
| 1 << 24, 1 << 24); |
| while (msg_port_alt_read(DDRPHY, |
| CMDCLKALIGNREG0 + ch * DDRIOCCC_CH_OFFSET) & |
| (1 << 24)) |
| ; /* wait for START_CLK_ALIGN=0 */ |
| #endif |
| |
| /* Set RD/WR Pointer Seperation & COUNTEN & FIFOPTREN */ |
| mrc_alt_write_mask(DDRPHY, |
| CMDPTRREG + ch * DDRIOCCC_CH_OFFSET, |
| 1, 1); /* WRPTRENABLE=1 */ |
| |
| /* COMP initial */ |
| /* enable bypass for CLK buffer (PO) */ |
| mrc_alt_write_mask(DDRPHY, |
| COMPEN0CH0 + ch * DDRCOMP_CH_OFFSET, |
| 1 << 5, 1 << 5); |
| /* Initial COMP Enable */ |
| mrc_alt_write_mask(DDRPHY, CMPCTRL, 1, 1); |
| /* wait for Initial COMP Enable = 0 */ |
| while (msg_port_alt_read(DDRPHY, CMPCTRL) & 1) |
| ; |
| /* disable bypass for CLK buffer (PO) */ |
| mrc_alt_write_mask(DDRPHY, |
| COMPEN0CH0 + ch * DDRCOMP_CH_OFFSET, |
| ~(1 << 5), 1 << 5); |
| |
| /* IOBUFACT */ |
| |
| /* STEP4a */ |
| mrc_alt_write_mask(DDRPHY, |
| CMDCFGREG0 + ch * DDRIOCCC_CH_OFFSET, |
| 1 << 2, 1 << 2); /* IOBUFACTRST_N=1 */ |
| |
| /* DDRPHY initialization complete */ |
| mrc_alt_write_mask(DDRPHY, |
| CMDPMCONFIG0 + ch * DDRIOCCC_CH_OFFSET, |
| 1 << 20, 1 << 20); /* SPID_INIT_COMPLETE=1 */ |
| } |
| } |
| |
| LEAVEFN(); |
| } |
| |
| /* This function performs JEDEC initialization on all enabled channels */ |
| void perform_jedec_init(struct mrc_params *mrc_params) |
| { |
| uint8_t twr, wl, rank; |
| uint32_t tck; |
| u32 dtr0; |
| u32 drp; |
| u32 drmc; |
| u32 mrs0_cmd = 0; |
| u32 emrs1_cmd = 0; |
| u32 emrs2_cmd = 0; |
| u32 emrs3_cmd = 0; |
| |
| ENTERFN(); |
| |
| /* jedec_init starts */ |
| mrc_post_code(0x04, 0x00); |
| |
| /* DDR3_RESET_SET=0, DDR3_RESET_RESET=1 */ |
| mrc_alt_write_mask(DDRPHY, CCDDR3RESETCTL, 2, 0x102); |
| |
| /* Assert RESET# for 200us */ |
| delay_u(200); |
| |
| /* DDR3_RESET_SET=1, DDR3_RESET_RESET=0 */ |
| mrc_alt_write_mask(DDRPHY, CCDDR3RESETCTL, 0x100, 0x102); |
| |
| dtr0 = msg_port_read(MEM_CTLR, DTR0); |
| |
| /* |
| * Set CKEVAL for populated ranks |
| * then send NOP to each rank (#4550197) |
| */ |
| |
| drp = msg_port_read(MEM_CTLR, DRP); |
| drp &= 0x3; |
| |
| drmc = msg_port_read(MEM_CTLR, DRMC); |
| drmc &= 0xfffffffc; |
| drmc |= (DRMC_CKEMODE | drp); |
| |
| msg_port_write(MEM_CTLR, DRMC, drmc); |
| |
| for (rank = 0; rank < NUM_RANKS; rank++) { |
| /* Skip to next populated rank */ |
| if ((mrc_params->rank_enables & (1 << rank)) == 0) |
| continue; |
| |
| dram_init_command(DCMD_NOP(rank)); |
| } |
| |
| msg_port_write(MEM_CTLR, DRMC, |
| (mrc_params->rd_odt_value == 0 ? DRMC_ODTMODE : 0)); |
| |
| /* |
| * setup for emrs 2 |
| * BIT[15:11] --> Always "0" |
| * BIT[10:09] --> Rtt_WR: want "Dynamic ODT Off" (0) |
| * BIT[08] --> Always "0" |
| * BIT[07] --> SRT: use sr_temp_range |
| * BIT[06] --> ASR: want "Manual SR Reference" (0) |
| * BIT[05:03] --> CWL: use oem_tCWL |
| * BIT[02:00] --> PASR: want "Full Array" (0) |
| */ |
| emrs2_cmd |= (2 << 3); |
| wl = 5 + mrc_params->ddr_speed; |
| emrs2_cmd |= ((wl - 5) << 9); |
| emrs2_cmd |= (mrc_params->sr_temp_range << 13); |
| |
| /* |
| * setup for emrs 3 |
| * BIT[15:03] --> Always "0" |
| * BIT[02] --> MPR: want "Normal Operation" (0) |
| * BIT[01:00] --> MPR_Loc: want "Predefined Pattern" (0) |
| */ |
| emrs3_cmd |= (3 << 3); |
| |
| /* |
| * setup for emrs 1 |
| * BIT[15:13] --> Always "0" |
| * BIT[12:12] --> Qoff: want "Output Buffer Enabled" (0) |
| * BIT[11:11] --> TDQS: want "Disabled" (0) |
| * BIT[10:10] --> Always "0" |
| * BIT[09,06,02] --> Rtt_nom: use rtt_nom_value |
| * BIT[08] --> Always "0" |
| * BIT[07] --> WR_LVL: want "Disabled" (0) |
| * BIT[05,01] --> DIC: use ron_value |
| * BIT[04:03] --> AL: additive latency want "0" (0) |
| * BIT[00] --> DLL: want "Enable" (0) |
| * |
| * (BIT5|BIT1) set Ron value |
| * 00 --> RZQ/6 (40ohm) |
| * 01 --> RZQ/7 (34ohm) |
| * 1* --> RESERVED |
| * |
| * (BIT9|BIT6|BIT2) set Rtt_nom value |
| * 000 --> Disabled |
| * 001 --> RZQ/4 ( 60ohm) |
| * 010 --> RZQ/2 (120ohm) |
| * 011 --> RZQ/6 ( 40ohm) |
| * 1** --> RESERVED |
| */ |
| emrs1_cmd |= (1 << 3); |
| emrs1_cmd &= ~(1 << 6); |
| |
| if (mrc_params->ron_value == 0) |
| emrs1_cmd |= (1 << 7); |
| else |
| emrs1_cmd &= ~(1 << 7); |
| |
| if (mrc_params->rtt_nom_value == 0) |
| emrs1_cmd |= (DDR3_EMRS1_RTTNOM_40 << 6); |
| else if (mrc_params->rtt_nom_value == 1) |
| emrs1_cmd |= (DDR3_EMRS1_RTTNOM_60 << 6); |
| else if (mrc_params->rtt_nom_value == 2) |
| emrs1_cmd |= (DDR3_EMRS1_RTTNOM_120 << 6); |
| |
| /* save MRS1 value (excluding control fields) */ |
| mrc_params->mrs1 = emrs1_cmd >> 6; |
| |
| /* |
| * setup for mrs 0 |
| * BIT[15:13] --> Always "0" |
| * BIT[12] --> PPD: for Quark (1) |
| * BIT[11:09] --> WR: use oem_tWR |
| * BIT[08] --> DLL: want "Reset" (1, self clearing) |
| * BIT[07] --> MODE: want "Normal" (0) |
| * BIT[06:04,02] --> CL: use oem_tCAS |
| * BIT[03] --> RD_BURST_TYPE: want "Interleave" (1) |
| * BIT[01:00] --> BL: want "8 Fixed" (0) |
| * WR: |
| * 0 --> 16 |
| * 1 --> 5 |
| * 2 --> 6 |
| * 3 --> 7 |
| * 4 --> 8 |
| * 5 --> 10 |
| * 6 --> 12 |
| * 7 --> 14 |
| * CL: |
| * BIT[02:02] "0" if oem_tCAS <= 11 (1866?) |
| * BIT[06:04] use oem_tCAS-4 |
| */ |
| mrs0_cmd |= (1 << 14); |
| mrs0_cmd |= (1 << 18); |
| mrs0_cmd |= ((((dtr0 >> 12) & 7) + 1) << 10); |
| |
| tck = t_ck[mrc_params->ddr_speed]; |
| /* Per JEDEC: tWR=15000ps DDR2/3 from 800-1600 */ |
| twr = MCEIL(15000, tck); |
| mrs0_cmd |= ((twr - 4) << 15); |
| |
| for (rank = 0; rank < NUM_RANKS; rank++) { |
| /* Skip to next populated rank */ |
| if ((mrc_params->rank_enables & (1 << rank)) == 0) |
| continue; |
| |
| emrs2_cmd |= (rank << 22); |
| dram_init_command(emrs2_cmd); |
| |
| emrs3_cmd |= (rank << 22); |
| dram_init_command(emrs3_cmd); |
| |
| emrs1_cmd |= (rank << 22); |
| dram_init_command(emrs1_cmd); |
| |
| mrs0_cmd |= (rank << 22); |
| dram_init_command(mrs0_cmd); |
| |
| dram_init_command(DCMD_ZQCL(rank)); |
| } |
| |
| LEAVEFN(); |
| } |
| |
| /* |
| * Dunit Initialization Complete |
| * |
| * Indicates that initialization of the Dunit has completed. |
| * |
| * Memory accesses are permitted and maintenance operation begins. |
| * Until this bit is set to a 1, the memory controller will not accept |
| * DRAM requests from the MEMORY_MANAGER or HTE. |
| */ |
| void set_ddr_init_complete(struct mrc_params *mrc_params) |
| { |
| u32 dco; |
| |
| ENTERFN(); |
| |
| dco = msg_port_read(MEM_CTLR, DCO); |
| dco &= ~DCO_PMICTL; |
| dco |= DCO_IC; |
| msg_port_write(MEM_CTLR, DCO, dco); |
| |
| LEAVEFN(); |
| } |
| |
| /* |
| * This function will retrieve relevant timing data |
| * |
| * This data will be used on subsequent boots to speed up boot times |
| * and is required for Suspend To RAM capabilities. |
| */ |
| void restore_timings(struct mrc_params *mrc_params) |
| { |
| uint8_t ch, rk, bl; |
| const struct mrc_timings *mt = &mrc_params->timings; |
| |
| for (ch = 0; ch < NUM_CHANNELS; ch++) { |
| for (rk = 0; rk < NUM_RANKS; rk++) { |
| for (bl = 0; bl < NUM_BYTE_LANES; bl++) { |
| set_rcvn(ch, rk, bl, mt->rcvn[ch][rk][bl]); |
| set_rdqs(ch, rk, bl, mt->rdqs[ch][rk][bl]); |
| set_wdqs(ch, rk, bl, mt->wdqs[ch][rk][bl]); |
| set_wdq(ch, rk, bl, mt->wdq[ch][rk][bl]); |
| if (rk == 0) { |
| /* VREF (RANK0 only) */ |
| set_vref(ch, bl, mt->vref[ch][bl]); |
| } |
| } |
| set_wctl(ch, rk, mt->wctl[ch][rk]); |
| } |
| set_wcmd(ch, mt->wcmd[ch]); |
| } |
| } |
| |
| /* |
| * Configure default settings normally set as part of read training |
| * |
| * Some defaults have to be set earlier as they may affect earlier |
| * training steps. |
| */ |
| void default_timings(struct mrc_params *mrc_params) |
| { |
| uint8_t ch, rk, bl; |
| |
| for (ch = 0; ch < NUM_CHANNELS; ch++) { |
| for (rk = 0; rk < NUM_RANKS; rk++) { |
| for (bl = 0; bl < NUM_BYTE_LANES; bl++) { |
| set_rdqs(ch, rk, bl, 24); |
| if (rk == 0) { |
| /* VREF (RANK0 only) */ |
| set_vref(ch, bl, 32); |
| } |
| } |
| } |
| } |
| } |
| |
| /* |
| * This function will perform our RCVEN Calibration Algorithm. |
| * We will only use the 2xCLK domain timings to perform RCVEN Calibration. |
| * All byte lanes will be calibrated "simultaneously" per channel per rank. |
| */ |
| void rcvn_cal(struct mrc_params *mrc_params) |
| { |
| uint8_t ch; /* channel counter */ |
| uint8_t rk; /* rank counter */ |
| uint8_t bl; /* byte lane counter */ |
| uint8_t bl_divisor = (mrc_params->channel_width == X16) ? 2 : 1; |
| |
| #ifdef R2R_SHARING |
| /* used to find placement for rank2rank sharing configs */ |
| uint32_t final_delay[NUM_CHANNELS][NUM_BYTE_LANES]; |
| #ifndef BACKUP_RCVN |
| /* used to find placement for rank2rank sharing configs */ |
| uint32_t num_ranks_enabled = 0; |
| #endif |
| #endif |
| |
| #ifdef BACKUP_RCVN |
| #else |
| uint32_t temp; |
| /* absolute PI value to be programmed on the byte lane */ |
| uint32_t delay[NUM_BYTE_LANES]; |
| u32 dtr1, dtr1_save; |
| #endif |
| |
| ENTERFN(); |
| |
| /* rcvn_cal starts */ |
| mrc_post_code(0x05, 0x00); |
| |
| #ifndef BACKUP_RCVN |
| /* need separate burst to sample DQS preamble */ |
| dtr1 = msg_port_read(MEM_CTLR, DTR1); |
| dtr1_save = dtr1; |
| dtr1 |= DTR1_TCCD_12CLK; |
| msg_port_write(MEM_CTLR, DTR1, dtr1); |
| #endif |
| |
| #ifdef R2R_SHARING |
| /* need to set "final_delay[][]" elements to "0" */ |
| memset((void *)(final_delay), 0x00, (size_t)sizeof(final_delay)); |
| #endif |
| |
| /* loop through each enabled channel */ |
| for (ch = 0; ch < NUM_CHANNELS; ch++) { |
| if (mrc_params->channel_enables & (1 << ch)) { |
| /* perform RCVEN Calibration on a per rank basis */ |
| for (rk = 0; rk < NUM_RANKS; rk++) { |
| if (mrc_params->rank_enables & (1 << rk)) { |
| /* |
| * POST_CODE here indicates the current |
| * channel and rank being calibrated |
| */ |
| mrc_post_code(0x05, 0x10 + ((ch << 4) | rk)); |
| |
| #ifdef BACKUP_RCVN |
| /* et hard-coded timing values */ |
| for (bl = 0; bl < (NUM_BYTE_LANES / bl_divisor); bl++) |
| set_rcvn(ch, rk, bl, ddr_rcvn[PLATFORM_ID]); |
| #else |
| /* enable FIFORST */ |
| for (bl = 0; bl < (NUM_BYTE_LANES / bl_divisor); bl += 2) { |
| mrc_alt_write_mask(DDRPHY, |
| B01PTRCTL1 + |
| (bl >> 1) * DDRIODQ_BL_OFFSET + |
| ch * DDRIODQ_CH_OFFSET, |
| 0, 1 << 8); |
| } |
| /* initialize the starting delay to 128 PI (cas +1 CLK) */ |
| for (bl = 0; bl < (NUM_BYTE_LANES / bl_divisor); bl++) { |
| /* 1x CLK domain timing is cas-4 */ |
| delay[bl] = (4 + 1) * FULL_CLK; |
| |
| set_rcvn(ch, rk, bl, delay[bl]); |
| } |
| |
| /* now find the rising edge */ |
| find_rising_edge(mrc_params, delay, ch, rk, true); |
| |
| /* Now increase delay by 32 PI (1/4 CLK) to place in center of high pulse */ |
| for (bl = 0; bl < (NUM_BYTE_LANES / bl_divisor); bl++) { |
| delay[bl] += QRTR_CLK; |
| set_rcvn(ch, rk, bl, delay[bl]); |
| } |
| /* Now decrement delay by 128 PI (1 CLK) until we sample a "0" */ |
| do { |
| temp = sample_dqs(mrc_params, ch, rk, true); |
| for (bl = 0; bl < (NUM_BYTE_LANES / bl_divisor); bl++) { |
| if (temp & (1 << bl)) { |
| if (delay[bl] >= FULL_CLK) { |
| delay[bl] -= FULL_CLK; |
| set_rcvn(ch, rk, bl, delay[bl]); |
| } else { |
| /* not enough delay */ |
| training_message(ch, rk, bl); |
| mrc_post_code(0xee, 0x50); |
| } |
| } |
| } |
| } while (temp & 0xff); |
| |
| #ifdef R2R_SHARING |
| /* increment "num_ranks_enabled" */ |
| num_ranks_enabled++; |
| /* Finally increment delay by 32 PI (1/4 CLK) to place in center of preamble */ |
| for (bl = 0; bl < (NUM_BYTE_LANES / bl_divisor); bl++) { |
| delay[bl] += QRTR_CLK; |
| /* add "delay[]" values to "final_delay[][]" for rolling average */ |
| final_delay[ch][bl] += delay[bl]; |
| /* set timing based on rolling average values */ |
| set_rcvn(ch, rk, bl, final_delay[ch][bl] / num_ranks_enabled); |
| } |
| #else |
| /* Finally increment delay by 32 PI (1/4 CLK) to place in center of preamble */ |
| for (bl = 0; bl < (NUM_BYTE_LANES / bl_divisor); bl++) { |
| delay[bl] += QRTR_CLK; |
| set_rcvn(ch, rk, bl, delay[bl]); |
| } |
| #endif |
| |
| /* disable FIFORST */ |
| for (bl = 0; bl < (NUM_BYTE_LANES / bl_divisor); bl += 2) { |
| mrc_alt_write_mask(DDRPHY, |
| B01PTRCTL1 + |
| (bl >> 1) * DDRIODQ_BL_OFFSET + |
| ch * DDRIODQ_CH_OFFSET, |
| 1 << 8, 1 << 8); |
| } |
| #endif |
| } |
| } |
| } |
| } |
| |
| #ifndef BACKUP_RCVN |
| /* restore original */ |
| msg_port_write(MEM_CTLR, DTR1, dtr1_save); |
| #endif |
| |
| LEAVEFN(); |
| } |
| |
| /* |
| * This function will perform the Write Levelling algorithm |
| * (align WCLK and WDQS). |
| * |
| * This algorithm will act on each rank in each channel separately. |
| */ |
| void wr_level(struct mrc_params *mrc_params) |
| { |
| uint8_t ch; /* channel counter */ |
| uint8_t rk; /* rank counter */ |
| uint8_t bl; /* byte lane counter */ |
| uint8_t bl_divisor = (mrc_params->channel_width == X16) ? 2 : 1; |
| |
| #ifdef R2R_SHARING |
| /* used to find placement for rank2rank sharing configs */ |
| uint32_t final_delay[NUM_CHANNELS][NUM_BYTE_LANES]; |
| #ifndef BACKUP_WDQS |
| /* used to find placement for rank2rank sharing configs */ |
| uint32_t num_ranks_enabled = 0; |
| #endif |
| #endif |
| |
| #ifdef BACKUP_WDQS |
| #else |
| /* determines stop condition for CRS_WR_LVL */ |
| bool all_edges_found; |
| /* absolute PI value to be programmed on the byte lane */ |
| uint32_t delay[NUM_BYTE_LANES]; |
| /* |
| * static makes it so the data is loaded in the heap once by shadow(), |
| * where non-static copies the data onto the stack every time this |
| * function is called |
| */ |
| uint32_t address; /* address to be checked during COARSE_WR_LVL */ |
| u32 dtr4, dtr4_save; |
| #endif |
| |
| ENTERFN(); |
| |
| /* wr_level starts */ |
| mrc_post_code(0x06, 0x00); |
| |
| #ifdef R2R_SHARING |
| /* need to set "final_delay[][]" elements to "0" */ |
| memset((void *)(final_delay), 0x00, (size_t)sizeof(final_delay)); |
| #endif |
| |
| /* loop through each enabled channel */ |
| for (ch = 0; ch < NUM_CHANNELS; ch++) { |
| if (mrc_params->channel_enables & (1 << ch)) { |
| /* perform WRITE LEVELING algorithm on a per rank basis */ |
| for (rk = 0; rk < NUM_RANKS; rk++) { |
| if (mrc_params->rank_enables & (1 << rk)) { |
| /* |
| * POST_CODE here indicates the current |
| * rank and channel being calibrated |
| */ |
| mrc_post_code(0x06, 0x10 + ((ch << 4) | rk)); |
| |
| #ifdef BACKUP_WDQS |
| for (bl = 0; bl < (NUM_BYTE_LANES / bl_divisor); bl++) { |
| set_wdqs(ch, rk, bl, ddr_wdqs[PLATFORM_ID]); |
| set_wdq(ch, rk, bl, ddr_wdqs[PLATFORM_ID] - QRTR_CLK); |
| } |
| #else |
| /* |
| * perform a single PRECHARGE_ALL command to |
| * make DRAM state machine go to IDLE state |
| */ |
| dram_init_command(DCMD_PREA(rk)); |
| |
| /* |
| * enable Write Levelling Mode |
| * (EMRS1 w/ Write Levelling Mode Enable) |
| */ |
| dram_init_command(DCMD_MRS1(rk, 0x82)); |
| |
| /* |
| * set ODT DRAM Full Time Termination |
| * disable in MCU |
| */ |
| |
| dtr4 = msg_port_read(MEM_CTLR, DTR4); |
| dtr4_save = dtr4; |
| dtr4 |= DTR4_ODTDIS; |
| msg_port_write(MEM_CTLR, DTR4, dtr4); |
| |
| for (bl = 0; bl < (NUM_BYTE_LANES / bl_divisor) / 2; bl++) { |
| /* |
| * Enable Sandy Bridge Mode (WDQ Tri-State) & |
| * Ensure 5 WDQS pulses during Write Leveling |
| */ |
| mrc_alt_write_mask(DDRPHY, |
| DQCTL + DDRIODQ_BL_OFFSET * bl + DDRIODQ_CH_OFFSET * ch, |
| 0x10000154, |
| 0x100003fc); |
| } |
| |
| /* Write Leveling Mode enabled in IO */ |
| mrc_alt_write_mask(DDRPHY, |
| CCDDR3RESETCTL + DDRIOCCC_CH_OFFSET * ch, |
| 1 << 16, 1 << 16); |
| |
| /* Initialize the starting delay to WCLK */ |
| for (bl = 0; bl < (NUM_BYTE_LANES / bl_divisor); bl++) { |
| /* |
| * CLK0 --> RK0 |
| * CLK1 --> RK1 |
| */ |
| delay[bl] = get_wclk(ch, rk); |
| |
| set_wdqs(ch, rk, bl, delay[bl]); |
| } |
| |
| /* now find the rising edge */ |
| find_rising_edge(mrc_params, delay, ch, rk, false); |
| |
| /* disable Write Levelling Mode */ |
| mrc_alt_write_mask(DDRPHY, |
| CCDDR3RESETCTL + DDRIOCCC_CH_OFFSET * ch, |
| 0, 1 << 16); |
| |
| for (bl = 0; bl < (NUM_BYTE_LANES / bl_divisor) / 2; bl++) { |
| /* Disable Sandy Bridge Mode & Ensure 4 WDQS pulses during normal operation */ |
| mrc_alt_write_mask(DDRPHY, |
| DQCTL + DDRIODQ_BL_OFFSET * bl + DDRIODQ_CH_OFFSET * ch, |
| 0x00000154, |
| 0x100003fc); |
| } |
| |
| /* restore original DTR4 */ |
| msg_port_write(MEM_CTLR, DTR4, dtr4_save); |
| |
| /* |
| * restore original value |
| * (Write Levelling Mode Disable) |
| */ |
| dram_init_command(DCMD_MRS1(rk, mrc_params->mrs1)); |
| |
| /* |
| * perform a single PRECHARGE_ALL command to |
| * make DRAM state machine go to IDLE state |
| */ |
| dram_init_command(DCMD_PREA(rk)); |
| |
| mrc_post_code(0x06, 0x30 + ((ch << 4) | rk)); |
| |
| /* |
| * COARSE WRITE LEVEL: |
| * check that we're on the correct clock edge |
| */ |
| |
| /* hte reconfiguration request */ |
| mrc_params->hte_setup = 1; |
| |
| /* start CRS_WR_LVL with WDQS = WDQS + 128 PI */ |
| for (bl = 0; bl < (NUM_BYTE_LANES / bl_divisor); bl++) { |
| delay[bl] = get_wdqs(ch, rk, bl) + FULL_CLK; |
| set_wdqs(ch, rk, bl, delay[bl]); |
| /* |
| * program WDQ timings based on WDQS |
| * (WDQ = WDQS - 32 PI) |
| */ |
| set_wdq(ch, rk, bl, (delay[bl] - QRTR_CLK)); |
| } |
| |
| /* get an address in the targeted channel/rank */ |
| address = get_addr(ch, rk); |
| do { |
| uint32_t coarse_result = 0x00; |
| uint32_t coarse_result_mask = byte_lane_mask(mrc_params); |
| /* assume pass */ |
| all_edges_found = true; |
| |
| mrc_params->hte_setup = 1; |
| coarse_result = check_rw_coarse(mrc_params, address); |
| |
| /* check for failures and margin the byte lane back 128 PI (1 CLK) */ |
| for (bl = 0; bl < NUM_BYTE_LANES / bl_divisor; bl++) { |
| if (coarse_result & (coarse_result_mask << bl)) { |
| all_edges_found = false; |
| delay[bl] -= FULL_CLK; |
| set_wdqs(ch, rk, bl, delay[bl]); |
| /* program WDQ timings based on WDQS (WDQ = WDQS - 32 PI) */ |
| set_wdq(ch, rk, bl, delay[bl] - QRTR_CLK); |
| } |
| } |
| } while (!all_edges_found); |
| |
| #ifdef R2R_SHARING |
| /* increment "num_ranks_enabled" */ |
| num_ranks_enabled++; |
| /* accumulate "final_delay[][]" values from "delay[]" values for rolling average */ |
| for (bl = 0; bl < NUM_BYTE_LANES / bl_divisor; bl++) { |
| final_delay[ch][bl] += delay[bl]; |
| set_wdqs(ch, rk, bl, final_delay[ch][bl] / num_ranks_enabled); |
| /* program WDQ timings based on WDQS (WDQ = WDQS - 32 PI) */ |
| set_wdq(ch, rk, bl, final_delay[ch][bl] / num_ranks_enabled - QRTR_CLK); |
| } |
| #endif |
| #endif |
| } |
| } |
| } |
| } |
| |
| LEAVEFN(); |
| } |
| |
| void prog_page_ctrl(struct mrc_params *mrc_params) |
| { |
| u32 dpmc0; |
| |
| ENTERFN(); |
| |
| dpmc0 = msg_port_read(MEM_CTLR, DPMC0); |
| dpmc0 &= ~DPMC0_PCLSTO_MASK; |
| dpmc0 |= (4 << 16); |
| dpmc0 |= DPMC0_PREAPWDEN; |
| msg_port_write(MEM_CTLR, DPMC0, dpmc0); |
| } |
| |
| /* |
| * This function will perform the READ TRAINING Algorithm on all |
| * channels/ranks/byte_lanes simultaneously to minimize execution time. |
| * |
| * The idea here is to train the VREF and RDQS (and eventually RDQ) values |
| * to achieve maximum READ margins. The algorithm will first determine the |
| * X coordinate (RDQS setting). This is done by collapsing the VREF eye |
| * until we find a minimum required RDQS eye for VREF_MIN and VREF_MAX. |
| * Then we take the averages of the RDQS eye at VREF_MIN and VREF_MAX, |
| * then average those; this will be the final X coordinate. The algorithm |
| * will then determine the Y coordinate (VREF setting). This is done by |
| * collapsing the RDQS eye until we find a minimum required VREF eye for |
| * RDQS_MIN and RDQS_MAX. Then we take the averages of the VREF eye at |
| * RDQS_MIN and RDQS_MAX, then average those; this will be the final Y |
| * coordinate. |
| * |
| * NOTE: this algorithm assumes the eye curves have a one-to-one relationship, |
| * meaning for each X the curve has only one Y and vice-a-versa. |
| */ |
| void rd_train(struct mrc_params *mrc_params) |
| { |
| uint8_t ch; /* channel counter */ |
| uint8_t rk; /* rank counter */ |
| uint8_t bl; /* byte lane counter */ |
| uint8_t bl_divisor = (mrc_params->channel_width == X16) ? 2 : 1; |
| #ifdef BACKUP_RDQS |
| #else |
| uint8_t side_x; /* tracks LEFT/RIGHT approach vectors */ |
| uint8_t side_y; /* tracks BOTTOM/TOP approach vectors */ |
| /* X coordinate data (passing RDQS values) for approach vectors */ |
| uint8_t x_coordinate[2][2][NUM_CHANNELS][NUM_RANKS][NUM_BYTE_LANES]; |
| /* Y coordinate data (passing VREF values) for approach vectors */ |
| uint8_t y_coordinate[2][2][NUM_CHANNELS][NUM_BYTE_LANES]; |
| /* centered X (RDQS) */ |
| uint8_t x_center[NUM_CHANNELS][NUM_RANKS][NUM_BYTE_LANES]; |
| /* centered Y (VREF) */ |
| uint8_t y_center[NUM_CHANNELS][NUM_BYTE_LANES]; |
| uint32_t address; /* target address for check_bls_ex() */ |
| uint32_t result; /* result of check_bls_ex() */ |
| uint32_t bl_mask; /* byte lane mask for result checking */ |
| #ifdef R2R_SHARING |
| /* used to find placement for rank2rank sharing configs */ |
| uint32_t final_delay[NUM_CHANNELS][NUM_BYTE_LANES]; |
| /* used to find placement for rank2rank sharing configs */ |
| uint32_t num_ranks_enabled = 0; |
| #endif |
| #endif |
| |
| /* rd_train starts */ |
| mrc_post_code(0x07, 0x00); |
| |
| ENTERFN(); |
| |
| #ifdef BACKUP_RDQS |
| for (ch = 0; ch < NUM_CHANNELS; ch++) { |
| if (mrc_params->channel_enables & (1 << ch)) { |
| for (rk = 0; rk < NUM_RANKS; rk++) { |
| if (mrc_params->rank_enables & (1 << rk)) { |
| for (bl = 0; |
| bl < NUM_BYTE_LANES / bl_divisor; |
| bl++) { |
| set_rdqs(ch, rk, bl, ddr_rdqs[PLATFORM_ID]); |
| } |
| } |
| } |
| } |
| } |
| #else |
| /* initialize x/y_coordinate arrays */ |
| for (ch = 0; ch < NUM_CHANNELS; ch++) { |
| if (mrc_params->channel_enables & (1 << ch)) { |
| for (rk = 0; rk < NUM_RANKS; rk++) { |
| if (mrc_params->rank_enables & (1 << rk)) { |
| for (bl = 0; |
| bl < NUM_BYTE_LANES / bl_divisor; |
| bl++) { |
| /* x_coordinate */ |
| x_coordinate[L][B][ch][rk][bl] = RDQS_MIN; |
| x_coordinate[R][B][ch][rk][bl] = RDQS_MAX; |
| x_coordinate[L][T][ch][rk][bl] = RDQS_MIN; |
| x_coordinate[R][T][ch][rk][bl] = RDQS_MAX; |
| /* y_coordinate */ |
| y_coordinate[L][B][ch][bl] = VREF_MIN; |
| y_coordinate[R][B][ch][bl] = VREF_MIN; |
| y_coordinate[L][T][ch][bl] = VREF_MAX; |
| y_coordinate[R][T][ch][bl] = VREF_MAX; |
| } |
| } |
| } |
| } |
| } |
| |
| /* initialize other variables */ |
| bl_mask = byte_lane_mask(mrc_params); |
| address = get_addr(0, 0); |
| |
| #ifdef R2R_SHARING |
| /* need to set "final_delay[][]" elements to "0" */ |
| memset((void *)(final_delay), 0x00, (size_t)sizeof(final_delay)); |
| #endif |
| |
| /* look for passing coordinates */ |
| for (side_y = B; side_y <= T; side_y++) { |
| for (side_x = L; side_x <= R; side_x++) { |
| mrc_post_code(0x07, 0x10 + side_y * 2 + side_x); |
| |
| /* find passing values */ |
| for (ch = 0; ch < NUM_CHANNELS; ch++) { |
| if (mrc_params->channel_enables & (0x1 << ch)) { |
| for (rk = 0; rk < NUM_RANKS; rk++) { |
| if (mrc_params->rank_enables & |
| (0x1 << rk)) { |
| /* set x/y_coordinate search starting settings */ |
| for (bl = 0; |
| bl < NUM_BYTE_LANES / bl_divisor; |
| bl++) { |
| set_rdqs(ch, rk, bl, |
| x_coordinate[side_x][side_y][ch][rk][bl]); |
| set_vref(ch, bl, |
| y_coordinate[side_x][side_y][ch][bl]); |
| } |
| |
| /* get an address in the target channel/rank */ |
| address = get_addr(ch, rk); |
| |
| /* request HTE reconfiguration */ |
| mrc_params->hte_setup = 1; |
| |
| /* test the settings */ |
| do { |
| /* result[07:00] == failing byte lane (MAX 8) */ |
| result = check_bls_ex(mrc_params, address); |
| |
| /* check for failures */ |
| if (result & 0xff) { |
| /* at least 1 byte lane failed */ |
| for (bl = 0; bl < NUM_BYTE_LANES / bl_divisor; bl++) { |
| if (result & |
| (bl_mask << bl)) { |
| /* adjust the RDQS values accordingly */ |
| if (side_x == L) |
| x_coordinate[L][side_y][ch][rk][bl] += RDQS_STEP; |
| else |
| x_coordinate[R][side_y][ch][rk][bl] -= RDQS_STEP; |
| |
| /* check that we haven't closed the RDQS_EYE too much */ |
| if ((x_coordinate[L][side_y][ch][rk][bl] > (RDQS_MAX - MIN_RDQS_EYE)) || |
| (x_coordinate[R][side_y][ch][rk][bl] < (RDQS_MIN + MIN_RDQS_EYE)) || |
| (x_coordinate[L][side_y][ch][rk][bl] == |
| x_coordinate[R][side_y][ch][rk][bl])) { |
| /* |
| * not enough RDQS margin available at this VREF |
| * update VREF values accordingly |
| */ |
| if (side_y == B) |
| y_coordinate[side_x][B][ch][bl] += VREF_STEP; |
| else |
| y_coordinate[side_x][T][ch][bl] -= VREF_STEP; |
| |
| /* check that we haven't closed the VREF_EYE too much */ |
| if ((y_coordinate[side_x][B][ch][bl] > (VREF_MAX - MIN_VREF_EYE)) || |
| (y_coordinate[side_x][T][ch][bl] < (VREF_MIN + MIN_VREF_EYE)) || |
| (y_coordinate[side_x][B][ch][bl] == y_coordinate[side_x][T][ch][bl])) { |
| /* VREF_EYE collapsed below MIN_VREF_EYE */ |
| training_message(ch, rk, bl); |
| mrc_post_code(0xEE, 0x70 + side_y * 2 + side_x); |
| } else { |
| /* update the VREF setting */ |
| set_vref(ch, bl, y_coordinate[side_x][side_y][ch][bl]); |
| /* reset the X coordinate to begin the search at the new VREF */ |
| x_coordinate[side_x][side_y][ch][rk][bl] = |
| (side_x == L) ? RDQS_MIN : RDQS_MAX; |
| } |
| } |
| |
| /* update the RDQS setting */ |
| set_rdqs(ch, rk, bl, x_coordinate[side_x][side_y][ch][rk][bl]); |
| } |
| } |
| } |
| } while (result & 0xff); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| mrc_post_code(0x07, 0x20); |
| |
| /* find final RDQS (X coordinate) & final VREF (Y coordinate) */ |
| for (ch = 0; ch < NUM_CHANNELS; ch++) { |
| if (mrc_params->channel_enables & (1 << ch)) { |
| for (rk = 0; rk < NUM_RANKS; rk++) { |
| if (mrc_params->rank_enables & (1 << rk)) { |
| for (bl = 0; bl < (NUM_BYTE_LANES / bl_divisor); bl++) { |
| uint32_t temp1; |
| uint32_t temp2; |
| |
| /* x_coordinate */ |
| DPF(D_INFO, |
| "RDQS T/B eye rank%d lane%d : %d-%d %d-%d\n", |
| rk, bl, |
| x_coordinate[L][T][ch][rk][bl], |
| x_coordinate[R][T][ch][rk][bl], |
| x_coordinate[L][B][ch][rk][bl], |
| x_coordinate[R][B][ch][rk][bl]); |
| |
| /* average the TOP side LEFT & RIGHT values */ |
| temp1 = (x_coordinate[R][T][ch][rk][bl] + x_coordinate[L][T][ch][rk][bl]) / 2; |
| /* average the BOTTOM side LEFT & RIGHT values */ |
| temp2 = (x_coordinate[R][B][ch][rk][bl] + x_coordinate[L][B][ch][rk][bl]) / 2; |
| /* average the above averages */ |
| x_center[ch][rk][bl] = (uint8_t) ((temp1 + temp2) / 2); |
| |
| /* y_coordinate */ |
| DPF(D_INFO, |
| "VREF R/L eye lane%d : %d-%d %d-%d\n", |
| bl, |
| y_coordinate[R][B][ch][bl], |
| y_coordinate[R][T][ch][bl], |
| y_coordinate[L][B][ch][bl], |
| y_coordinate[L][T][ch][bl]); |
| |
| /* average the RIGHT side TOP & BOTTOM values */ |
| temp1 = (y_coordinate[R][T][ch][bl] + y_coordinate[R][B][ch][bl]) / 2; |
| /* average the LEFT side TOP & BOTTOM values */ |
| temp2 = (y_coordinate[L][T][ch][bl] + y_coordinate[L][B][ch][bl]) / 2; |
| /* average the above averages */ |
| y_center[ch][bl] = (uint8_t) ((temp1 + temp2) / 2); |
| } |
| } |
| } |
| } |
| } |
| |
| #ifdef RX_EYE_CHECK |
| /* perform an eye check */ |
| for (side_y = B; side_y <= T; side_y++) { |
| for (side_x = L; side_x <= R; side_x++) { |
| mrc_post_code(0x07, 0x30 + side_y * 2 + side_x); |
| |
| /* update the settings for the eye check */ |
| for (ch = 0; ch < NUM_CHANNELS; ch++) { |
| if (mrc_params->channel_enables & (1 << ch)) { |
| for (rk = 0; rk < NUM_RANKS; rk++) { |
| if (mrc_params->rank_enables & (1 << rk)) { |
| for (bl = 0; bl < NUM_BYTE_LANES / bl_divisor; bl++) { |
| if (side_x == L) |
| set_rdqs(ch, rk, bl, x_center[ch][rk][bl] - (MIN_RDQS_EYE / 2)); |
| else |
| set_rdqs(ch, rk, bl, x_center[ch][rk][bl] + (MIN_RDQS_EYE / 2)); |
| |
| if (side_y == B) |
| set_vref(ch, bl, y_center[ch][bl] - (MIN_VREF_EYE / 2)); |
| else |
| set_vref(ch, bl, y_center[ch][bl] + (MIN_VREF_EYE / 2)); |
| } |
| } |
| } |
| } |
| } |
| |
| /* request HTE reconfiguration */ |
| mrc_params->hte_setup = 1; |
| |
| /* check the eye */ |
| if (check_bls_ex(mrc_params, address) & 0xff) { |
| /* one or more byte lanes failed */ |
| mrc_post_code(0xee, 0x74 + side_x * 2 + side_y); |
| } |
| } |
| } |
| #endif |
| |
| mrc_post_code(0x07, 0x40); |
| |
| /* set final placements */ |
| for (ch = 0; ch < NUM_CHANNELS; ch++) { |
| if (mrc_params->channel_enables & (1 << ch)) { |
| for (rk = 0; rk < NUM_RANKS; rk++) { |
| if (mrc_params->rank_enables & (1 << rk)) { |
| #ifdef R2R_SHARING |
| /* increment "num_ranks_enabled" */ |
| num_ranks_enabled++; |
| #endif |
| for (bl = 0; bl < (NUM_BYTE_LANES / bl_divisor); bl++) { |
| /* x_coordinate */ |
| #ifdef R2R_SHARING |
| final_delay[ch][bl] += x_center[ch][rk][bl]; |
| set_rdqs(ch, rk, bl, final_delay[ch][bl] / num_ranks_enabled); |
| #else |
| set_rdqs(ch, rk, bl, x_center[ch][rk][bl]); |
| #endif |
| /* y_coordinate */ |
| set_vref(ch, bl, y_center[ch][bl]); |
| } |
| } |
| } |
| } |
| } |
| #endif |
| |
| LEAVEFN(); |
| } |
| |
| /* |
| * This function will perform the WRITE TRAINING Algorithm on all |
| * channels/ranks/byte_lanes simultaneously to minimize execution time. |
| * |
| * The idea here is to train the WDQ timings to achieve maximum WRITE margins. |
| * The algorithm will start with WDQ at the current WDQ setting (tracks WDQS |
| * in WR_LVL) +/- 32 PIs (+/- 1/4 CLK) and collapse the eye until all data |
| * patterns pass. This is because WDQS will be aligned to WCLK by the |
| * Write Leveling algorithm and WDQ will only ever have a 1/2 CLK window |
| * of validity. |
| */ |
| void wr_train(struct mrc_params *mrc_params) |
| { |
| uint8_t ch; /* channel counter */ |
| uint8_t rk; /* rank counter */ |
| uint8_t bl; /* byte lane counter */ |
| uint8_t bl_divisor = (mrc_params->channel_width == X16) ? 2 : 1; |
| #ifdef BACKUP_WDQ |
| #else |
| uint8_t side; /* LEFT/RIGHT side indicator (0=L, 1=R) */ |
| uint32_t temp; /* temporary DWORD */ |
| /* 2 arrays, for L & R side passing delays */ |
| uint32_t delay[2][NUM_CHANNELS][NUM_RANKS][NUM_BYTE_LANES]; |
| uint32_t address; /* target address for check_bls_ex() */ |
| uint32_t result; /* result of check_bls_ex() */ |
| uint32_t bl_mask; /* byte lane mask for result checking */ |
| #ifdef R2R_SHARING |
| /* used to find placement for rank2rank sharing configs */ |
| uint32_t final_delay[NUM_CHANNELS][NUM_BYTE_LANES]; |
| /* used to find placement for rank2rank sharing configs */ |
| uint32_t num_ranks_enabled = 0; |
| #endif |
| #endif |
| |
| /* wr_train starts */ |
| mrc_post_code(0x08, 0x00); |
| |
| ENTERFN(); |
| |
| #ifdef BACKUP_WDQ |
| for (ch = 0; ch < NUM_CHANNELS; ch++) { |
| if (mrc_params->channel_enables & (1 << ch)) { |
| for (rk = 0; rk < NUM_RANKS; rk++) { |
| if (mrc_params->rank_enables & (1 << rk)) { |
| for (bl = 0; |
| bl < NUM_BYTE_LANES / bl_divisor; |
| bl++) { |
| set_wdq(ch, rk, bl, ddr_wdq[PLATFORM_ID]); |
| } |
| } |
| } |
| } |
| } |
| #else |
| /* initialize "delay" */ |
| for (ch = 0; ch < NUM_CHANNELS; ch++) { |
| if (mrc_params->channel_enables & (1 << ch)) { |
| for (rk = 0; rk < NUM_RANKS; rk++) { |
| if (mrc_params->rank_enables & (1 << rk)) { |
| for (bl = 0; |
| bl < NUM_BYTE_LANES / bl_divisor; |
| bl++) { |
| /* |
| * want to start with |
| * WDQ = (WDQS - QRTR_CLK) |
| * +/- QRTR_CLK |
| */ |
| temp = get_wdqs(ch, rk, bl) - QRTR_CLK; |
| delay[L][ch][rk][bl] = temp - QRTR_CLK; |
| delay[R][ch][rk][bl] = temp + QRTR_CLK; |
| } |
| } |
| } |
| } |
| } |
| |
| /* initialize other variables */ |
| bl_mask = byte_lane_mask(mrc_params); |
| address = get_addr(0, 0); |
| |
| #ifdef R2R_SHARING |
| /* need to set "final_delay[][]" elements to "0" */ |
| memset((void *)(final_delay), 0x00, (size_t)sizeof(final_delay)); |
| #endif |
| |
| /* |
| * start algorithm on the LEFT side and train each channel/bl |
| * until no failures are observed, then repeat for the RIGHT side. |
| */ |
| for (side = L; side <= R; side++) { |
| mrc_post_code(0x08, 0x10 + side); |
| |
| /* set starting values */ |
| for (ch = 0; ch < NUM_CHANNELS; ch++) { |
| if (mrc_params->channel_enables & (1 << ch)) { |
| for (rk = 0; rk < NUM_RANKS; rk++) { |
| if (mrc_params->rank_enables & |
| (1 << rk)) { |
| for (bl = 0; |
| bl < NUM_BYTE_LANES / bl_divisor; |
| bl++) { |
| set_wdq(ch, rk, bl, delay[side][ch][rk][bl]); |
| } |
| } |
| } |
| } |
| } |
| |
| /* find passing values */ |
| for (ch = 0; ch < NUM_CHANNELS; ch++) { |
| if (mrc_params->channel_enables & (1 << ch)) { |
| for (rk = 0; rk < NUM_RANKS; rk++) { |
| if (mrc_params->rank_enables & |
| (1 << rk)) { |
| /* get an address in the target channel/rank */ |
| address = get_addr(ch, rk); |
| |
| /* request HTE reconfiguration */ |
| mrc_params->hte_setup = 1; |
| |
| /* check the settings */ |
| do { |
| /* result[07:00] == failing byte lane (MAX 8) */ |
| result = check_bls_ex(mrc_params, address); |
| /* check for failures */ |
| if (result & 0xff) { |
| /* at least 1 byte lane failed */ |
| for (bl = 0; bl < NUM_BYTE_LANES / bl_divisor; bl++) { |
| if (result & |
| (bl_mask << bl)) { |
| if (side == L) |
| delay[L][ch][rk][bl] += WDQ_STEP; |
| else |
| delay[R][ch][rk][bl] -= WDQ_STEP; |
| |
| /* check for algorithm failure */ |
| if (delay[L][ch][rk][bl] != delay[R][ch][rk][bl]) { |
| /* |
| * margin available |
| * update delay setting |
| */ |
| set_wdq(ch, rk, bl, |
| delay[side][ch][rk][bl]); |
| } else { |
| /* |
| * no margin available |
| * notify the user and halt |
| */ |
| training_message(ch, rk, bl); |
| mrc_post_code(0xee, 0x80 + side); |
| } |
| } |
| } |
| } |
| /* stop when all byte lanes pass */ |
| } while (result & 0xff); |
| } |
| } |
| } |
| } |
| } |
| |
| /* program WDQ to the middle of passing window */ |
| for (ch = 0; ch < NUM_CHANNELS; ch++) { |
| if (mrc_params->channel_enables & (1 << ch)) { |
| for (rk = 0; rk < NUM_RANKS; rk++) { |
| if (mrc_params->rank_enables & (1 << rk)) { |
| #ifdef R2R_SHARING |
| /* increment "num_ranks_enabled" */ |
| num_ranks_enabled++; |
| #endif |
| for (bl = 0; bl < NUM_BYTE_LANES / bl_divisor; bl++) { |
| DPF(D_INFO, |
| "WDQ eye rank%d lane%d : %d-%d\n", |
| rk, bl, |
| delay[L][ch][rk][bl], |
| delay[R][ch][rk][bl]); |
| |
| temp = (delay[R][ch][rk][bl] + delay[L][ch][rk][bl]) / 2; |
| |
| #ifdef R2R_SHARING |
| final_delay[ch][bl] += temp; |
| set_wdq(ch, rk, bl, |
| final_delay[ch][bl] / num_ranks_enabled); |
| #else |
| set_wdq(ch, rk, bl, temp); |
| #endif |
| } |
| } |
| } |
| } |
| } |
| #endif |
| |
| LEAVEFN(); |
| } |
| |
| /* |
| * This function will store relevant timing data |
| * |
| * This data will be used on subsequent boots to speed up boot times |
| * and is required for Suspend To RAM capabilities. |
| */ |
| void store_timings(struct mrc_params *mrc_params) |
| { |
| uint8_t ch, rk, bl; |
| struct mrc_timings *mt = &mrc_params->timings; |
| |
| for (ch = 0; ch < NUM_CHANNELS; ch++) { |
| for (rk = 0; rk < NUM_RANKS; rk++) { |
| for (bl = 0; bl < NUM_BYTE_LANES; bl++) { |
| mt->rcvn[ch][rk][bl] = get_rcvn(ch, rk, bl); |
| mt->rdqs[ch][rk][bl] = get_rdqs(ch, rk, bl); |
| mt->wdqs[ch][rk][bl] = get_wdqs(ch, rk, bl); |
| mt->wdq[ch][rk][bl] = get_wdq(ch, rk, bl); |
| |
| if (rk == 0) |
| mt->vref[ch][bl] = get_vref(ch, bl); |
| } |
| |
| mt->wctl[ch][rk] = get_wctl(ch, rk); |
| } |
| |
| mt->wcmd[ch] = get_wcmd(ch); |
| } |
| |
| /* need to save for a case of changing frequency after warm reset */ |
| mt->ddr_speed = mrc_params->ddr_speed; |
| } |
| |
| /* |
| * The purpose of this function is to ensure the SEC comes out of reset |
| * and IA initiates the SEC enabling Memory Scrambling. |
| */ |
| void enable_scrambling(struct mrc_params *mrc_params) |
| { |
| uint32_t lfsr = 0; |
| uint8_t i; |
| |
| if (mrc_params->scrambling_enables == 0) |
| return; |
| |
| ENTERFN(); |
| |
| /* 32 bit seed is always stored in BIOS NVM */ |
| lfsr = mrc_params->timings.scrambler_seed; |
| |
| if (mrc_params->boot_mode == BM_COLD) { |
| /* |
| * factory value is 0 and in first boot, |
| * a clock based seed is loaded. |
| */ |
| if (lfsr == 0) { |
| /* |
| * get seed from system clock |
| * and make sure it is not all 1's |
| */ |
| lfsr = rdtsc() & 0x0fffffff; |
| } else { |
| /* |
| * Need to replace scrambler |
| * |
| * get next 32bit LFSR 16 times which is the last |
| * part of the previous scrambler vector |
| */ |
| for (i = 0; i < 16; i++) |
| lfsr32(&lfsr); |
| } |
| |
| /* save new seed */ |
| mrc_params->timings.scrambler_seed = lfsr; |
| } |
| |
| /* |
| * In warm boot or S3 exit, we have the previous seed. |
| * In cold boot, we have the last 32bit LFSR which is the new seed. |
| */ |
| lfsr32(&lfsr); /* shift to next value */ |
| msg_port_write(MEM_CTLR, SCRMSEED, (lfsr & 0x0003ffff)); |
| |
| for (i = 0; i < 2; i++) |
| msg_port_write(MEM_CTLR, SCRMLO + i, (lfsr & 0xaaaaaaaa)); |
| |
| LEAVEFN(); |
| } |
| |
| /* |
| * Configure MCU Power Management Control Register |
| * and Scheduler Control Register |
| */ |
| void prog_ddr_control(struct mrc_params *mrc_params) |
| { |
| u32 dsch; |
| u32 dpmc0; |
| |
| ENTERFN(); |
| |
| dsch = msg_port_read(MEM_CTLR, DSCH); |
| dsch &= ~(DSCH_OOODIS | DSCH_OOOST3DIS | DSCH_NEWBYPDIS); |
| msg_port_write(MEM_CTLR, DSCH, dsch); |
| |
| dpmc0 = msg_port_read(MEM_CTLR, DPMC0); |
| dpmc0 &= ~DPMC0_DISPWRDN; |
| dpmc0 |= (mrc_params->power_down_disable << 25); |
| dpmc0 &= ~DPMC0_CLKGTDIS; |
| dpmc0 &= ~DPMC0_PCLSTO_MASK; |
| dpmc0 |= (4 << 16); |
| dpmc0 |= DPMC0_PREAPWDEN; |
| msg_port_write(MEM_CTLR, DPMC0, dpmc0); |
| |
| /* CMDTRIST = 2h - CMD/ADDR are tristated when no valid command */ |
| mrc_write_mask(MEM_CTLR, DPMC1, 0x20, 0x30); |
| |
| LEAVEFN(); |
| } |
| |
| /* |
| * After training complete configure MCU Rank Population Register |
| * specifying: ranks enabled, device width, density, address mode |
| */ |
| void prog_dra_drb(struct mrc_params *mrc_params) |
| { |
| u32 drp; |
| u32 dco; |
| u8 density = mrc_params->params.density; |
| |
| ENTERFN(); |
| |
| dco = msg_port_read(MEM_CTLR, DCO); |
| dco &= ~DCO_IC; |
| msg_port_write(MEM_CTLR, DCO, dco); |
| |
| drp = 0; |
| if (mrc_params->rank_enables & 1) |
| drp |= DRP_RKEN0; |
| if (mrc_params->rank_enables & 2) |
| drp |= DRP_RKEN1; |
| if (mrc_params->dram_width == X16) { |
| drp |= (1 << 4); |
| drp |= (1 << 9); |
| } |
| |
| /* |
| * Density encoding in struct dram_params: 0=512Mb, 1=Gb, 2=2Gb, 3=4Gb |
| * has to be mapped RANKDENSx encoding (0=1Gb) |
| */ |
| if (density == 0) |
| density = 4; |
| |
| drp |= ((density - 1) << 6); |
| drp |= ((density - 1) << 11); |
| |
| /* Address mode can be overwritten if ECC enabled */ |
| drp |= (mrc_params->address_mode << 14); |
| |
| msg_port_write(MEM_CTLR, DRP, drp); |
| |
| dco &= ~DCO_PMICTL; |
| dco |= DCO_IC; |
| msg_port_write(MEM_CTLR, DCO, dco); |
| |
| LEAVEFN(); |
| } |
| |
| /* Send DRAM wake command */ |
| void perform_wake(struct mrc_params *mrc_params) |
| { |
| ENTERFN(); |
| |
| dram_wake_command(); |
| |
| LEAVEFN(); |
| } |
| |
| /* |
| * Configure refresh rate and short ZQ calibration interval |
| * Activate dynamic self refresh |
| */ |
| void change_refresh_period(struct mrc_params *mrc_params) |
| { |
| u32 drfc; |
| u32 dcal; |
| u32 dpmc0; |
| |
| ENTERFN(); |
| |
| drfc = msg_port_read(MEM_CTLR, DRFC); |
| drfc &= ~DRFC_TREFI_MASK; |
| drfc |= (mrc_params->refresh_rate << 12); |
| drfc |= DRFC_REFDBTCLR; |
| msg_port_write(MEM_CTLR, DRFC, drfc); |
| |
| dcal = msg_port_read(MEM_CTLR, DCAL); |
| dcal &= ~DCAL_ZQCINT_MASK; |
| dcal |= (3 << 8); /* 63ms */ |
| msg_port_write(MEM_CTLR, DCAL, dcal); |
| |
| dpmc0 = msg_port_read(MEM_CTLR, DPMC0); |
| dpmc0 |= (DPMC0_DYNSREN | DPMC0_ENPHYCLKGATE); |
| msg_port_write(MEM_CTLR, DPMC0, dpmc0); |
| |
| LEAVEFN(); |
| } |
| |
| /* |
| * Configure DDRPHY for Auto-Refresh, Periodic Compensations, |
| * Dynamic Diff-Amp, ZQSPERIOD, Auto-Precharge, CKE Power-Down |
| */ |
| void set_auto_refresh(struct mrc_params *mrc_params) |
| { |
| uint32_t channel; |
| uint32_t rank; |
| uint32_t bl; |
| uint32_t bl_divisor = 1; |
| uint32_t temp; |
| |
| ENTERFN(); |
| |
| /* |
| * Enable Auto-Refresh, Periodic Compensations, Dynamic Diff-Amp, |
| * ZQSPERIOD, Auto-Precharge, CKE Power-Down |
| */ |
| for (channel = 0; channel < NUM_CHANNELS; channel++) { |
| if (mrc_params->channel_enables & (1 << channel)) { |
| /* Enable Periodic RCOMPS */ |
| mrc_alt_write_mask(DDRPHY, CMPCTRL, 2, 2); |
| |
| /* Enable Dynamic DiffAmp & Set Read ODT Value */ |
| switch (mrc_params->rd_odt_value) { |
| case 0: |
| temp = 0x3f; /* OFF */ |
| break; |
| default: |
| temp = 0x00; /* Auto */ |
| break; |
| } |
| |
| for (bl = 0; bl < (NUM_BYTE_LANES / bl_divisor) / 2; bl++) { |
| /* Override: DIFFAMP, ODT */ |
| mrc_alt_write_mask(DDRPHY, |
| B0OVRCTL + bl * DDRIODQ_BL_OFFSET + |
| channel * DDRIODQ_CH_OFFSET, |
| temp << 10, |
| 0x003ffc00); |
| |
| /* Override: DIFFAMP, ODT */ |
| mrc_alt_write_mask(DDRPHY, |
| B1OVRCTL + bl * DDRIODQ_BL_OFFSET + |
| channel * DDRIODQ_CH_OFFSET, |
| temp << 10, |
| 0x003ffc00); |
| } |
| |
| /* Issue ZQCS command */ |
| for (rank = 0; rank < NUM_RANKS; rank++) { |
| if (mrc_params->rank_enables & (1 << rank)) |
| dram_init_command(DCMD_ZQCS(rank)); |
| } |
| } |
| } |
| |
| clear_pointers(); |
| |
| LEAVEFN(); |
| } |
| |
| /* |
| * Depending on configuration enables ECC support |
| * |
| * Available memory size is decreased, and updated with 0s |
| * in order to clear error status. Address mode 2 forced. |
| */ |
| void ecc_enable(struct mrc_params *mrc_params) |
| { |
| u32 drp; |
| u32 dsch; |
| u32 ecc_ctrl; |
| |
| if (mrc_params->ecc_enables == 0) |
| return; |
| |
| ENTERFN(); |
| |
| /* Configuration required in ECC mode */ |
| drp = msg_port_read(MEM_CTLR, DRP); |
| drp &= ~DRP_ADDRMAP_MASK; |
| drp |= DRP_ADDRMAP_MAP1; |
| drp |= DRP_PRI64BSPLITEN; |
| msg_port_write(MEM_CTLR, DRP, drp); |
| |
| /* Disable new request bypass */ |
| dsch = msg_port_read(MEM_CTLR, DSCH); |
| dsch |= DSCH_NEWBYPDIS; |
| msg_port_write(MEM_CTLR, DSCH, dsch); |
| |
| /* Enable ECC */ |
| ecc_ctrl = (DECCCTRL_SBEEN | DECCCTRL_DBEEN | DECCCTRL_ENCBGEN); |
| msg_port_write(MEM_CTLR, DECCCTRL, ecc_ctrl); |
| |
| /* Assume 8 bank memory, one bank is gone for ECC */ |
| mrc_params->mem_size -= mrc_params->mem_size / 8; |
| |
| /* For S3 resume memory content has to be preserved */ |
| if (mrc_params->boot_mode != BM_S3) { |
| select_hte(); |
| hte_mem_init(mrc_params, MRC_MEM_INIT); |
| select_mem_mgr(); |
| } |
| |
| LEAVEFN(); |
| } |
| |
| /* |
| * Execute memory test |
| * if error detected it is indicated in mrc_params->status |
| */ |
| void memory_test(struct mrc_params *mrc_params) |
| { |
| uint32_t result = 0; |
| |
| ENTERFN(); |
| |
| select_hte(); |
| result = hte_mem_init(mrc_params, MRC_MEM_TEST); |
| select_mem_mgr(); |
| |
| DPF(D_INFO, "Memory test result %x\n", result); |
| mrc_params->status = ((result == 0) ? MRC_SUCCESS : MRC_E_MEMTEST); |
| LEAVEFN(); |
| } |
| |
| /* Lock MCU registers at the end of initialization sequence */ |
| void lock_registers(struct mrc_params *mrc_params) |
| { |
| u32 dco; |
| |
| ENTERFN(); |
| |
| dco = msg_port_read(MEM_CTLR, DCO); |
| dco &= ~(DCO_PMICTL | DCO_PMIDIS); |
| dco |= (DCO_DRPLOCK | DCO_CPGCLOCK); |
| msg_port_write(MEM_CTLR, DCO, dco); |
| |
| LEAVEFN(); |
| } |