| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * Copyright (c) 2020, Linaro Limited |
| */ |
| |
| #define LOG_CATEGORY LOGC_EFI |
| #include <bootm.h> |
| #include <env.h> |
| #include <image.h> |
| #include <log.h> |
| #include <malloc.h> |
| #include <mapmem.h> |
| #include <dm.h> |
| #include <fs.h> |
| #include <efi_api.h> |
| #include <efi_load_initrd.h> |
| #include <efi_loader.h> |
| #include <efi_variable.h> |
| #include <linux/libfdt.h> |
| #include <linux/list.h> |
| |
| #if defined(CONFIG_CMD_EFIDEBUG) || defined(CONFIG_EFI_LOAD_FILE2_INITRD) |
| /* GUID used by Linux to identify the LoadFile2 protocol with the initrd */ |
| const efi_guid_t efi_lf2_initrd_guid = EFI_INITRD_MEDIA_GUID; |
| #endif |
| |
| /** |
| * efi_create_current_boot_var() - Return Boot#### name were #### is replaced by |
| * the value of BootCurrent |
| * |
| * @var_name: variable name |
| * @var_name_size: size of var_name |
| * |
| * Return: Status code |
| */ |
| static efi_status_t efi_create_current_boot_var(u16 var_name[], |
| size_t var_name_size) |
| { |
| efi_uintn_t boot_current_size; |
| efi_status_t ret; |
| u16 boot_current; |
| u16 *pos; |
| |
| boot_current_size = sizeof(boot_current); |
| ret = efi_get_variable_int(u"BootCurrent", |
| &efi_global_variable_guid, NULL, |
| &boot_current_size, &boot_current, NULL); |
| if (ret != EFI_SUCCESS) |
| goto out; |
| |
| pos = efi_create_indexed_name(var_name, var_name_size, "Boot", |
| boot_current); |
| if (!pos) { |
| ret = EFI_OUT_OF_RESOURCES; |
| goto out; |
| } |
| |
| out: |
| return ret; |
| } |
| |
| /** |
| * efi_get_dp_from_boot() - Retrieve and return a device path from an EFI |
| * Boot### variable. |
| * A boot option may contain an array of device paths. |
| * We use a VenMedia() with a specific GUID to identify |
| * the usage of the array members. This function is |
| * used to extract a specific device path |
| * |
| * @guid: vendor GUID of the VenMedia() device path node identifying the |
| * device path |
| * |
| * Return: device path or NULL. Caller must free the returned value |
| */ |
| struct efi_device_path *efi_get_dp_from_boot(const efi_guid_t *guid) |
| { |
| struct efi_load_option lo; |
| void *var_value; |
| efi_uintn_t size; |
| efi_status_t ret; |
| u16 var_name[16]; |
| |
| ret = efi_create_current_boot_var(var_name, sizeof(var_name)); |
| if (ret != EFI_SUCCESS) |
| return NULL; |
| |
| var_value = efi_get_var(var_name, &efi_global_variable_guid, &size); |
| if (!var_value) |
| return NULL; |
| |
| ret = efi_deserialize_load_option(&lo, var_value, &size); |
| if (ret != EFI_SUCCESS) |
| goto err; |
| |
| return efi_dp_from_lo(&lo, guid); |
| |
| err: |
| free(var_value); |
| return NULL; |
| } |
| |
| /** |
| * efi_load_option_dp_join() - join device-paths for load option |
| * |
| * @dp: in: binary device-path, out: joined device-path |
| * @dp_size: size of joined device-path |
| * @initrd_dp: initrd device-path or NULL |
| * @fdt_dp: device-tree device-path or NULL |
| * Return: status_code |
| */ |
| efi_status_t efi_load_option_dp_join(struct efi_device_path **dp, |
| size_t *dp_size, |
| struct efi_device_path *initrd_dp, |
| struct efi_device_path *fdt_dp) |
| { |
| if (!dp) |
| return EFI_INVALID_PARAMETER; |
| |
| *dp_size = efi_dp_size(*dp); |
| |
| if (initrd_dp) { |
| struct efi_device_path *tmp_dp = *dp; |
| |
| *dp = efi_dp_concat(tmp_dp, initrd_dp, *dp_size); |
| efi_free_pool(tmp_dp); |
| if (!*dp) |
| return EFI_OUT_OF_RESOURCES; |
| *dp_size += efi_dp_size(initrd_dp) + sizeof(END); |
| } |
| |
| if (fdt_dp) { |
| struct efi_device_path *tmp_dp = *dp; |
| |
| *dp = efi_dp_concat(tmp_dp, fdt_dp, *dp_size); |
| efi_free_pool(tmp_dp); |
| if (!dp) |
| return EFI_OUT_OF_RESOURCES; |
| *dp_size += efi_dp_size(fdt_dp) + sizeof(END); |
| } |
| |
| *dp_size += sizeof(END); |
| |
| return EFI_SUCCESS; |
| } |
| |
| const struct guid_to_hash_map { |
| efi_guid_t guid; |
| const char algo[32]; |
| u32 bits; |
| } guid_to_hash[] = { |
| { |
| EFI_CERT_X509_SHA256_GUID, |
| "sha256", |
| SHA256_SUM_LEN * 8, |
| }, |
| { |
| EFI_CERT_SHA256_GUID, |
| "sha256", |
| SHA256_SUM_LEN * 8, |
| }, |
| { |
| EFI_CERT_X509_SHA384_GUID, |
| "sha384", |
| SHA384_SUM_LEN * 8, |
| }, |
| { |
| EFI_CERT_X509_SHA512_GUID, |
| "sha512", |
| SHA512_SUM_LEN * 8, |
| }, |
| }; |
| |
| #define MAX_GUID_TO_HASH_COUNT ARRAY_SIZE(guid_to_hash) |
| |
| /** guid_to_sha_str - return the sha string e.g "sha256" for a given guid |
| * used on EFI security databases |
| * |
| * @guid: guid to check |
| * |
| * Return: len or 0 if no match is found |
| */ |
| const char *guid_to_sha_str(const efi_guid_t *guid) |
| { |
| size_t i; |
| |
| for (i = 0; i < MAX_GUID_TO_HASH_COUNT; i++) { |
| if (!guidcmp(guid, &guid_to_hash[i].guid)) |
| return guid_to_hash[i].algo; |
| } |
| |
| return NULL; |
| } |
| |
| /** algo_to_len - return the sha size in bytes for a given string |
| * |
| * @algo: string indicating hashing algorithm to check |
| * |
| * Return: length of hash in bytes or 0 if no match is found |
| */ |
| int algo_to_len(const char *algo) |
| { |
| size_t i; |
| |
| for (i = 0; i < MAX_GUID_TO_HASH_COUNT; i++) { |
| if (!strcmp(algo, guid_to_hash[i].algo)) |
| return guid_to_hash[i].bits / 8; |
| } |
| |
| return 0; |
| } |
| |
| /** efi_link_dev - link the efi_handle_t and udevice |
| * |
| * @handle: efi handle to associate with udevice |
| * @dev: udevice to associate with efi handle |
| * |
| * Return: 0 on success, negative on failure |
| */ |
| int efi_link_dev(efi_handle_t handle, struct udevice *dev) |
| { |
| handle->dev = dev; |
| return dev_tag_set_ptr(dev, DM_TAG_EFI, handle); |
| } |
| |
| /** |
| * efi_unlink_dev() - unlink udevice and handle |
| * |
| * @handle: EFI handle to unlink |
| * |
| * Return: 0 on success, negative on failure |
| */ |
| int efi_unlink_dev(efi_handle_t handle) |
| { |
| int ret; |
| |
| ret = dev_tag_del(handle->dev, DM_TAG_EFI); |
| if (ret) |
| return ret; |
| handle->dev = NULL; |
| |
| return 0; |
| } |
| |
| static int u16_tohex(u16 c) |
| { |
| if (c >= '0' && c <= '9') |
| return c - '0'; |
| if (c >= 'A' && c <= 'F') |
| return c - 'A' + 10; |
| |
| /* not hexadecimal */ |
| return -1; |
| } |
| |
| bool efi_varname_is_load_option(u16 *var_name16, int *index) |
| { |
| int id, i, digit; |
| |
| if (memcmp(var_name16, u"Boot", 8)) |
| return false; |
| |
| for (id = 0, i = 0; i < 4; i++) { |
| digit = u16_tohex(var_name16[4 + i]); |
| if (digit < 0) |
| break; |
| id = (id << 4) + digit; |
| } |
| if (i == 4 && !var_name16[8]) { |
| if (index) |
| *index = id; |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /** |
| * efi_next_variable_name() - get next variable name |
| * |
| * This function is a wrapper of efi_get_next_variable_name_int(). |
| * If efi_get_next_variable_name_int() returns EFI_BUFFER_TOO_SMALL, |
| * @size and @buf are updated by new buffer size and realloced buffer. |
| * |
| * @size: pointer to the buffer size |
| * @buf: pointer to the buffer |
| * @guid: pointer to the guid |
| * Return: status code |
| */ |
| efi_status_t efi_next_variable_name(efi_uintn_t *size, u16 **buf, efi_guid_t *guid) |
| { |
| u16 *p; |
| efi_status_t ret; |
| efi_uintn_t buf_size = *size; |
| |
| ret = efi_get_next_variable_name_int(&buf_size, *buf, guid); |
| if (ret == EFI_NOT_FOUND) |
| return ret; |
| if (ret == EFI_BUFFER_TOO_SMALL) { |
| p = realloc(*buf, buf_size); |
| if (!p) |
| return EFI_OUT_OF_RESOURCES; |
| |
| *buf = p; |
| *size = buf_size; |
| ret = efi_get_next_variable_name_int(&buf_size, *buf, guid); |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * efi_search_bootorder() - search the boot option index in BootOrder |
| * |
| * @bootorder: pointer to the BootOrder variable |
| * @num: number of BootOrder entry |
| * @target: target boot option index to search |
| * @index: pointer to store the index of BootOrder variable |
| * Return: true if exists, false otherwise |
| */ |
| bool efi_search_bootorder(u16 *bootorder, efi_uintn_t num, u32 target, u32 *index) |
| { |
| u32 i; |
| |
| for (i = 0; i < num; i++) { |
| if (target == bootorder[i]) { |
| if (index) |
| *index = i; |
| |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| /** |
| * efi_env_set_load_options() - set load options from environment variable |
| * |
| * @handle: the image handle |
| * @env_var: name of the environment variable |
| * @load_options: pointer to load options (output) |
| * Return: status code |
| */ |
| efi_status_t efi_env_set_load_options(efi_handle_t handle, |
| const char *env_var, |
| u16 **load_options) |
| { |
| const char *env = env_get(env_var); |
| size_t size; |
| u16 *pos; |
| efi_status_t ret; |
| |
| *load_options = NULL; |
| if (!env) |
| return EFI_SUCCESS; |
| size = sizeof(u16) * (utf8_utf16_strlen(env) + 1); |
| pos = calloc(size, 1); |
| if (!pos) |
| return EFI_OUT_OF_RESOURCES; |
| *load_options = pos; |
| utf8_utf16_strcpy(&pos, env); |
| ret = efi_set_load_options(handle, size, *load_options); |
| if (ret != EFI_SUCCESS) { |
| free(*load_options); |
| *load_options = NULL; |
| } |
| return ret; |
| } |
| |
| /** |
| * copy_fdt() - Copy the device tree to a new location available to EFI |
| * |
| * The FDT is copied to a suitable location within the EFI memory map. |
| * Additional 12 KiB are added to the space in case the device tree needs to be |
| * expanded later with fdt_open_into(). |
| * |
| * @fdtp: On entry a pointer to the flattened device tree. |
| * On exit a pointer to the copy of the flattened device tree. |
| * FDT start |
| * Return: status code |
| */ |
| static efi_status_t copy_fdt(void **fdtp) |
| { |
| unsigned long fdt_ram_start = -1L, fdt_pages; |
| efi_status_t ret = 0; |
| void *fdt, *new_fdt; |
| u64 new_fdt_addr; |
| uint fdt_size; |
| int i; |
| |
| for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++) { |
| u64 ram_start = gd->bd->bi_dram[i].start; |
| u64 ram_size = gd->bd->bi_dram[i].size; |
| |
| if (!ram_size) |
| continue; |
| |
| if (ram_start < fdt_ram_start) |
| fdt_ram_start = ram_start; |
| } |
| |
| /* |
| * Give us at least 12 KiB of breathing room in case the device tree |
| * needs to be expanded later. |
| */ |
| fdt = *fdtp; |
| fdt_pages = efi_size_in_pages(fdt_totalsize(fdt) + 0x3000); |
| fdt_size = fdt_pages << EFI_PAGE_SHIFT; |
| |
| ret = efi_allocate_pages(EFI_ALLOCATE_ANY_PAGES, |
| EFI_ACPI_RECLAIM_MEMORY, fdt_pages, |
| &new_fdt_addr); |
| if (ret != EFI_SUCCESS) { |
| log_err("ERROR: Failed to reserve space for FDT\n"); |
| goto done; |
| } |
| new_fdt = (void *)(uintptr_t)new_fdt_addr; |
| memcpy(new_fdt, fdt, fdt_totalsize(fdt)); |
| fdt_set_totalsize(new_fdt, fdt_size); |
| |
| *fdtp = (void *)(uintptr_t)new_fdt_addr; |
| done: |
| return ret; |
| } |
| |
| /** |
| * efi_get_configuration_table() - get configuration table |
| * |
| * @guid: GUID of the configuration table |
| * Return: pointer to configuration table or NULL |
| */ |
| void *efi_get_configuration_table(const efi_guid_t *guid) |
| { |
| size_t i; |
| |
| for (i = 0; i < systab.nr_tables; i++) { |
| if (!guidcmp(guid, &systab.tables[i].guid)) |
| return systab.tables[i].table; |
| } |
| return NULL; |
| } |
| |
| /** |
| * efi_install_fdt() - install device tree |
| * |
| * If fdt is not EFI_FDT_USE_INTERNAL, the device tree located at that memory |
| * address will be installed as configuration table, otherwise the device |
| * tree located at the address indicated by environment variable fdt_addr or as |
| * fallback fdtcontroladdr will be used. |
| * |
| * On architectures using ACPI tables device trees shall not be installed as |
| * configuration table. |
| * |
| * @fdt: address of device tree or EFI_FDT_USE_INTERNAL to use |
| * the hardware device tree as indicated by environment variable |
| * fdt_addr or as fallback the internal device tree as indicated by |
| * the environment variable fdtcontroladdr |
| * Return: status code |
| */ |
| efi_status_t efi_install_fdt(void *fdt) |
| { |
| struct bootm_headers img = { 0 }; |
| efi_status_t ret; |
| |
| /* |
| * The EBBR spec requires that we have either an FDT or an ACPI table |
| * but not both. |
| */ |
| if (CONFIG_IS_ENABLED(GENERATE_ACPI_TABLE) && fdt) |
| log_warning("WARNING: Can't have ACPI table and device tree - ignoring DT.\n"); |
| |
| if (fdt == EFI_FDT_USE_INTERNAL) { |
| const char *fdt_opt; |
| uintptr_t fdt_addr; |
| |
| /* Look for device tree that is already installed */ |
| if (efi_get_configuration_table(&efi_guid_fdt)) |
| return EFI_SUCCESS; |
| /* Check if there is a hardware device tree */ |
| fdt_opt = env_get("fdt_addr"); |
| /* Use our own device tree as fallback */ |
| if (!fdt_opt) { |
| fdt_opt = env_get("fdtcontroladdr"); |
| if (!fdt_opt) { |
| log_err("ERROR: need device tree\n"); |
| return EFI_NOT_FOUND; |
| } |
| } |
| fdt_addr = hextoul(fdt_opt, NULL); |
| if (!fdt_addr) { |
| log_err("ERROR: invalid $fdt_addr or $fdtcontroladdr\n"); |
| return EFI_LOAD_ERROR; |
| } |
| fdt = map_sysmem(fdt_addr, 0); |
| } |
| |
| /* Install device tree */ |
| if (fdt_check_header(fdt)) { |
| log_err("ERROR: invalid device tree\n"); |
| return EFI_LOAD_ERROR; |
| } |
| |
| if (CONFIG_IS_ENABLED(GENERATE_ACPI_TABLE)) { |
| /* Create memory reservations as indicated by the device tree */ |
| efi_carve_out_dt_rsv(fdt); |
| return EFI_SUCCESS; |
| } |
| |
| /* Prepare device tree for payload */ |
| ret = copy_fdt(&fdt); |
| if (ret) { |
| log_err("ERROR: out of memory\n"); |
| return EFI_OUT_OF_RESOURCES; |
| } |
| |
| if (image_setup_libfdt(&img, fdt, NULL)) { |
| log_err("ERROR: failed to process device tree\n"); |
| return EFI_LOAD_ERROR; |
| } |
| |
| /* Create memory reservations as indicated by the device tree */ |
| efi_carve_out_dt_rsv(fdt); |
| |
| efi_try_purge_kaslr_seed(fdt); |
| |
| if (CONFIG_IS_ENABLED(EFI_TCG2_PROTOCOL_MEASURE_DTB)) { |
| ret = efi_tcg2_measure_dtb(fdt); |
| if (ret == EFI_SECURITY_VIOLATION) { |
| log_err("ERROR: failed to measure DTB\n"); |
| return ret; |
| } |
| } |
| |
| /* Install device tree as UEFI table */ |
| ret = efi_install_configuration_table(&efi_guid_fdt, fdt); |
| if (ret != EFI_SUCCESS) { |
| log_err("ERROR: failed to install device tree\n"); |
| return ret; |
| } |
| |
| return EFI_SUCCESS; |
| } |
| |
| /** |
| * do_bootefi_exec() - execute EFI binary |
| * |
| * The image indicated by @handle is started. When it returns the allocated |
| * memory for the @load_options is freed. |
| * |
| * @handle: handle of loaded image |
| * @load_options: load options |
| * Return: status code |
| * |
| * Load the EFI binary into a newly assigned memory unwinding the relocation |
| * information, install the loaded image protocol, and call the binary. |
| */ |
| efi_status_t do_bootefi_exec(efi_handle_t handle, void *load_options) |
| { |
| efi_status_t ret; |
| efi_uintn_t exit_data_size = 0; |
| u16 *exit_data = NULL; |
| struct efi_event *evt; |
| |
| /* On ARM switch from EL3 or secure mode to EL2 or non-secure mode */ |
| switch_to_non_secure_mode(); |
| |
| /* |
| * The UEFI standard requires that the watchdog timer is set to five |
| * minutes when invoking an EFI boot option. |
| * |
| * Unified Extensible Firmware Interface (UEFI), version 2.7 Errata A |
| * 7.5. Miscellaneous Boot Services - EFI_BOOT_SERVICES.SetWatchdogTimer |
| */ |
| ret = efi_set_watchdog(300); |
| if (ret != EFI_SUCCESS) { |
| log_err("ERROR: Failed to set watchdog timer\n"); |
| goto out; |
| } |
| |
| /* Call our payload! */ |
| ret = EFI_CALL(efi_start_image(handle, &exit_data_size, &exit_data)); |
| if (ret != EFI_SUCCESS) { |
| log_err("## Application failed, r = %lu\n", |
| ret & ~EFI_ERROR_MASK); |
| if (exit_data) { |
| log_err("## %ls\n", exit_data); |
| efi_free_pool(exit_data); |
| } |
| } |
| |
| out: |
| free(load_options); |
| |
| /* Notify EFI_EVENT_GROUP_RETURN_TO_EFIBOOTMGR event group. */ |
| list_for_each_entry(evt, &efi_events, link) { |
| if (evt->group && |
| !guidcmp(evt->group, |
| &efi_guid_event_group_return_to_efibootmgr)) { |
| efi_signal_event(evt); |
| EFI_CALL(systab.boottime->close_event(evt)); |
| break; |
| } |
| } |
| |
| /* Control is returned to U-Boot, disable EFI watchdog */ |
| efi_set_watchdog(0); |
| |
| return ret; |
| } |