blob: 7ebbe19766024d11004c23ef081ee0bb39f56e21 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* (C) Copyright 2020
* Tim Harvey, Gateworks Corporation
*/
#include <dm.h>
#include <dm/device_compat.h>
#include <dm/device-internal.h>
#include <dm/lists.h>
#include <eth_phy.h>
#include <linux/delay.h>
#include <miiphy.h>
#if CONFIG_IS_ENABLED(DM_I2C)
# include <i2c.h>
#endif
#if CONFIG_IS_ENABLED(DM_SPI)
# include <spi.h>
#endif
#include <net/dsa.h>
#include <asm-generic/gpio.h>
/* Used with variable features to indicate capabilities. */
#define NEW_XMII BIT(1)
#define IS_9893 BIT(2)
/* Global registers */
/* Chip ID */
#define REG_CHIP_ID0__1 0x0000
/* Operation control */
#define REG_SW_OPERATION 0x0300
#define SW_RESET BIT(1)
#define SW_START BIT(0)
/* Port Specific Registers */
#define PORT_CTRL_ADDR(port, addr) ((addr) | (((port) + 1) << 12))
/* Port Control */
#define REG_PORT_XMII_CTRL_1 0x0301
#define PORT_MII_NOT_1GBIT BIT(6)
#define PORT_MII_SEL_EDGE BIT(5)
#define PORT_RGMII_ID_IG_ENABLE BIT(4)
#define PORT_RGMII_ID_EG_ENABLE BIT(3)
#define PORT_MII_MAC_MODE BIT(2)
#define PORT_MII_SEL_M 0x3
#define PORT_RGMII_SEL 0x0
#define PORT_RMII_SEL 0x1
#define PORT_GMII_SEL 0x2
#define PORT_MII_SEL 0x3
/* S1 */
#define PORT_MII_1000MBIT_S1 BIT(6)
/* S1 */
#define PORT_MII_SEL_S1 0x0
#define PORT_RMII_SEL_S1 0x1
#define PORT_GMII_SEL_S1 0x2
#define PORT_RGMII_SEL_S1 0x3
/* Port MSTP State Register */
#define REG_PORT_MSTP_STATE 0x0b04
#define PORT_TX_ENABLE BIT(2)
#define PORT_RX_ENABLE BIT(1)
#define PORT_LEARN_DISABLE BIT(0)
/* MMD */
#define REG_PORT_PHY_MMD_SETUP 0x011A
#define PORT_MMD_OP_MODE_M 0x3
#define PORT_MMD_OP_MODE_S 14
#define PORT_MMD_OP_INDEX 0
#define PORT_MMD_OP_DATA_NO_INCR 1
#define PORT_MMD_OP_DATA_INCR_RW 2
#define PORT_MMD_OP_DATA_INCR_W 3
#define PORT_MMD_DEVICE_ID_M 0x1F
#define MMD_SETUP(mode, dev) (((u16)(mode) << PORT_MMD_OP_MODE_S) | (dev))
#define REG_PORT_PHY_MMD_INDEX_DATA 0x011C
/* SPI specific define (opcodes) */
#define KSZ_SPI_OP_RD 3
#define KSZ_SPI_OP_WR 2
#define KSZ9477_SPI_ADDR_SHIFT 24
#define KSZ9477_SPI_ADDR_ALIGN 3
#define KSZ9477_SPI_TURNAROUND_SHIFT 5
/**
* struct ksz_phy_ops - low-level KSZ bus operations
*/
struct ksz_phy_ops {
/* read() - Read bytes from the device
*
* @udev: bus device
* @reg: register offset
* @val: data read
* @len: Number of bytes to read
*
* @return: 0 on success, negative on failure
*/
int (*read)(struct udevice *udev, u32 reg, u8 *val, int len);
/* write() - Write bytes to the device
*
* @udev: bus device
* @reg: register offset
* @val: data to write
* @len: Number of bytes to write
*
* @return: 0 on success, negative on failure
*/
int (*write)(struct udevice *udev, u32 reg, u8 *val, int len);
};
struct ksz_dsa_priv {
struct udevice *dev;
struct ksz_phy_ops *phy_ops;
u32 features; /* chip specific features */
};
#if CONFIG_IS_ENABLED(DM_I2C)
static inline int ksz_i2c_read(struct udevice *dev, u32 reg, u8 *val, int len)
{
return dm_i2c_read(dev, reg, val, len);
}
static inline int ksz_i2c_write(struct udevice *dev, u32 reg, u8 *val, int len)
{
return dm_i2c_write(dev, reg, val, len);
}
static struct ksz_phy_ops phy_i2c_ops = {
.read = ksz_i2c_read,
.write = ksz_i2c_write,
};
#endif
#if CONFIG_IS_ENABLED(DM_SPI)
/**
* ksz_spi_xfer() - only used for 8/16/32 bits bus access
*
* @dev: The SPI slave device which will be sending/receiving the data.
* @reg: register address.
* @out: Pointer to a string of bits to send out. The bits are
* held in a byte array and are sent MSB first.
* @in: Pointer to a string of bits that will be filled in.
* @len: number of bytes to read.
*
* Return: 0 on success, not 0 on failure
*/
static int ksz_spi_xfer(struct udevice *dev, u32 reg, const u8 *out,
u8 *in, u16 len)
{
int ret;
u32 addr = 0;
u8 opcode;
if (in && out) {
printf("%s: can't do full duplex\n", __func__);
return -EINVAL;
}
if (len > 4 || len == 0) {
printf("%s: only 8/16/32 bits bus access supported\n",
__func__);
return -EINVAL;
}
ret = dm_spi_claim_bus(dev);
if (ret < 0) {
printf("%s: could not claim bus\n", __func__);
return ret;
}
opcode = (in ? KSZ_SPI_OP_RD : KSZ_SPI_OP_WR);
/* The actual device address space is 16 bits (A15 - A0),
* so the values of address bits A23 - A16 in the SPI
* command/address phase are “don't care”.
*/
addr |= opcode << (KSZ9477_SPI_ADDR_SHIFT + KSZ9477_SPI_TURNAROUND_SHIFT);
addr |= reg << KSZ9477_SPI_TURNAROUND_SHIFT;
addr = __swab32(addr);
ret = dm_spi_xfer(dev, 32, &addr, NULL, SPI_XFER_BEGIN);
if (ret) {
printf("%s ERROR: dm_spi_xfer addr (%u)\n", __func__, ret);
goto release_bus;
}
ret = dm_spi_xfer(dev, len * 8, out, in, SPI_XFER_END);
if (ret) {
printf("%s ERROR: dm_spi_xfer data (%u)\n", __func__, ret);
goto release_bus;
}
release_bus:
/* If an error occurred, release the chip by deasserting the CS */
if (ret < 0)
dm_spi_xfer(dev, 0, NULL, NULL, SPI_XFER_END);
dm_spi_release_bus(dev);
return ret;
}
static inline int ksz_spi_read(struct udevice *dev, u32 reg, u8 *val, int len)
{
return ksz_spi_xfer(dev, reg, NULL, val, len);
}
static inline int ksz_spi_write(struct udevice *dev, u32 reg, u8 *val, int len)
{
return ksz_spi_xfer(dev, reg, val, NULL, len);
}
static struct ksz_phy_ops phy_spi_ops = {
.read = ksz_spi_read,
.write = ksz_spi_write,
};
#endif
static inline int ksz_read8(struct udevice *dev, u32 reg, u8 *val)
{
struct ksz_dsa_priv *priv = dev_get_priv(dev);
struct ksz_phy_ops *phy_ops = priv->phy_ops;
int ret = phy_ops->read(dev, reg, val, 1);
dev_dbg(dev, "%s 0x%04x<<0x%02x\n", __func__, reg, *val);
return ret;
}
static inline int ksz_pread8(struct udevice *dev, int port, int reg, u8 *val)
{
return ksz_read8(dev, PORT_CTRL_ADDR(port, reg), val);
}
static inline int ksz_write8(struct udevice *dev, u32 reg, u8 val)
{
struct ksz_dsa_priv *priv = dev_get_priv(dev);
struct ksz_phy_ops *phy_ops = priv->phy_ops;
dev_dbg(dev, "%s 0x%04x>>0x%02x\n", __func__, reg, val);
return phy_ops->write(dev, reg, &val, 1);
}
static inline int ksz_pwrite8(struct udevice *dev, int port, int reg, u8 val)
{
return ksz_write8(dev, PORT_CTRL_ADDR(port, reg), val);
}
static inline int ksz_write16(struct udevice *dev, u32 reg, u16 val)
{
struct ksz_dsa_priv *priv = dev_get_priv(dev);
struct ksz_phy_ops *phy_ops = priv->phy_ops;
u8 buf[2];
buf[1] = val & 0xff;
buf[0] = val >> 8;
dev_dbg(dev, "%s 0x%04x>>0x%04x\n", __func__, reg, val);
return phy_ops->write(dev, reg, buf, 2);
}
static inline int ksz_pwrite16(struct udevice *dev, int port, int reg, u16 val)
{
return ksz_write16(dev, PORT_CTRL_ADDR(port, reg), val);
}
static inline int ksz_read16(struct udevice *dev, u32 reg, u16 *val)
{
struct ksz_dsa_priv *priv = dev_get_priv(dev);
struct ksz_phy_ops *phy_ops = priv->phy_ops;
u8 buf[2];
int ret;
ret = phy_ops->read(dev, reg, buf, 2);
*val = (buf[0] << 8) | buf[1];
dev_dbg(dev, "%s 0x%04x<<0x%04x\n", __func__, reg, *val);
return ret;
}
static inline int ksz_pread16(struct udevice *dev, int port, int reg, u16 *val)
{
return ksz_read16(dev, PORT_CTRL_ADDR(port, reg), val);
}
static inline int ksz_read32(struct udevice *dev, u32 reg, u32 *val)
{
struct ksz_dsa_priv *priv = dev_get_priv(dev);
struct ksz_phy_ops *phy_ops = priv->phy_ops;
return phy_ops->read(dev, reg, (u8 *)val, 4);
}
static inline int ksz_pread32(struct udevice *dev, int port, int reg, u32 *val)
{
return ksz_read32(dev, PORT_CTRL_ADDR(port, reg), val);
}
static inline int ksz_write32(struct udevice *dev, u32 reg, u32 val)
{
struct ksz_dsa_priv *priv = dev_get_priv(dev);
struct ksz_phy_ops *phy_ops = priv->phy_ops;
u8 buf[4];
buf[3] = val & 0xff;
buf[2] = (val >> 24) & 0xff;
buf[1] = (val >> 16) & 0xff;
buf[0] = (val >> 8) & 0xff;
dev_dbg(dev, "%s 0x%04x>>0x%04x\n", __func__, reg, val);
return phy_ops->write(dev, reg, buf, 4);
}
static inline int ksz_pwrite32(struct udevice *dev, int port, int reg, u32 val)
{
return ksz_write32(dev, PORT_CTRL_ADDR(port, reg), val);
}
static __maybe_unused void ksz_port_mmd_read(struct udevice *dev, int port,
u8 addr, u16 reg, u16 *val)
{
ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_SETUP, MMD_SETUP(PORT_MMD_OP_INDEX, addr));
ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_INDEX_DATA, reg);
ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_SETUP, MMD_SETUP(PORT_MMD_OP_DATA_NO_INCR, addr));
ksz_pread16(dev, port, REG_PORT_PHY_MMD_INDEX_DATA, val);
dev_dbg(dev, "%s P%d 0x%02x:0x%04x<<0x%04x\n", __func__, port + 1, addr, reg, *val);
}
static void ksz_port_mmd_write(struct udevice *dev, int port, u8 addr, u16 reg, u16 val)
{
dev_dbg(dev, "%s P%d 0x%02x:0x%04x>>0x%04x\n", __func__, port + 1, addr, addr, val);
ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_SETUP, MMD_SETUP(PORT_MMD_OP_INDEX, addr));
ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_INDEX_DATA, addr);
ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_SETUP, MMD_SETUP(PORT_MMD_OP_DATA_NO_INCR, addr));
ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_INDEX_DATA, val);
}
/* Apply PHY settings to address errata listed in KSZ9477, KSZ9897, KSZ9896, KSZ9567
* Silicon Errata and Data Sheet Clarification documents
*/
static void ksz_phy_errata_setup(struct udevice *dev, int port)
{
dev_dbg(dev, "%s P%d\n", __func__, port + 1);
/* Register settings are needed to improve PHY receive performance */
ksz_port_mmd_write(dev, port, 0x01, 0x6f, 0xdd0b);
ksz_port_mmd_write(dev, port, 0x01, 0x8f, 0x6032);
ksz_port_mmd_write(dev, port, 0x01, 0x9d, 0x248c);
ksz_port_mmd_write(dev, port, 0x01, 0x75, 0x0060);
ksz_port_mmd_write(dev, port, 0x01, 0xd3, 0x7777);
ksz_port_mmd_write(dev, port, 0x1c, 0x06, 0x3008);
ksz_port_mmd_write(dev, port, 0x1c, 0x08, 0x2001);
/* Transmit waveform amplitude can be improved (1000BASE-T, 100BASE-TX, 10BASE-Te) */
ksz_port_mmd_write(dev, port, 0x1c, 0x04, 0x00d0);
/* Energy Efficient Ethernet (EEE) feature select must be manually disabled */
ksz_port_mmd_write(dev, port, 0x07, 0x3c, 0x0000);
/* Register settings are required to meet data sheet supply current specifications */
ksz_port_mmd_write(dev, port, 0x1c, 0x13, 0x6eff);
ksz_port_mmd_write(dev, port, 0x1c, 0x14, 0xe6ff);
ksz_port_mmd_write(dev, port, 0x1c, 0x15, 0x6eff);
ksz_port_mmd_write(dev, port, 0x1c, 0x16, 0xe6ff);
ksz_port_mmd_write(dev, port, 0x1c, 0x17, 0x00ff);
ksz_port_mmd_write(dev, port, 0x1c, 0x18, 0x43ff);
ksz_port_mmd_write(dev, port, 0x1c, 0x19, 0xc3ff);
ksz_port_mmd_write(dev, port, 0x1c, 0x1a, 0x6fff);
ksz_port_mmd_write(dev, port, 0x1c, 0x1b, 0x07ff);
ksz_port_mmd_write(dev, port, 0x1c, 0x1c, 0x0fff);
ksz_port_mmd_write(dev, port, 0x1c, 0x1d, 0xe7ff);
ksz_port_mmd_write(dev, port, 0x1c, 0x1e, 0xefff);
ksz_port_mmd_write(dev, port, 0x1c, 0x20, 0xeeee);
}
/*
* mii bus driver
*/
#define KSZ_MDIO_CHILD_DRV_NAME "ksz_mdio"
struct ksz_mdio_priv {
struct ksz_dsa_priv *ksz;
};
static int dm_ksz_mdio_read(struct udevice *dev, int addr, int devad, int reg)
{
struct ksz_mdio_priv *priv = dev_get_priv(dev);
struct ksz_dsa_priv *ksz = priv->ksz;
u16 val = 0xffff;
ksz_pread16(ksz->dev, addr, 0x100 + (reg << 1), &val);
dev_dbg(ksz->dev, "%s P%d reg=0x%04x:0x%04x<<0x%04x\n", __func__,
addr + 1, reg, 0x100 + (reg << 1), val);
return val;
};
static int dm_ksz_mdio_write(struct udevice *dev, int addr, int devad, int reg, u16 val)
{
struct ksz_mdio_priv *priv = dev_get_priv(dev);
struct ksz_dsa_priv *ksz = priv->ksz;
dev_dbg(ksz->dev, "%s P%d reg=0x%04x:%04x>>0x%04x\n",
__func__, addr + 1, reg, 0x100 + (reg << 1), val);
ksz_pwrite16(ksz->dev, addr, 0x100 + (reg << 1), val);
return 0;
}
static const struct mdio_ops ksz_mdio_ops = {
.read = dm_ksz_mdio_read,
.write = dm_ksz_mdio_write,
};
static int ksz_mdio_bind(struct udevice *dev)
{
char name[16];
static int num_devices;
dev_dbg(dev, "%s\n", __func__);
sprintf(name, "ksz-mdio-%d", num_devices++);
device_set_name(dev, name);
return 0;
}
static int ksz_mdio_probe(struct udevice *dev)
{
struct ksz_mdio_priv *priv = dev_get_priv(dev);
dev_dbg(dev, "%s\n", __func__);
priv->ksz = dev_get_priv(dev->parent);
return 0;
}
static const struct udevice_id ksz_mdio_ids[] = {
{ .compatible = "microchip,ksz-mdio" },
{ }
};
U_BOOT_DRIVER(ksz_mdio) = {
.name = KSZ_MDIO_CHILD_DRV_NAME,
.id = UCLASS_MDIO,
.of_match = ksz_mdio_ids,
.bind = ksz_mdio_bind,
.probe = ksz_mdio_probe,
.ops = &ksz_mdio_ops,
.priv_auto = sizeof(struct ksz_mdio_priv),
.plat_auto = sizeof(struct mdio_perdev_priv),
};
static void ksz9477_set_gbit(struct ksz_dsa_priv *priv, bool gbit, u8 *data)
{
if (priv->features & NEW_XMII) {
if (gbit)
*data &= ~PORT_MII_NOT_1GBIT;
else
*data |= PORT_MII_NOT_1GBIT;
} else {
if (gbit)
*data |= PORT_MII_1000MBIT_S1;
else
*data &= ~PORT_MII_1000MBIT_S1;
}
}
static void ksz9477_set_xmii(struct ksz_dsa_priv *priv, int mode, u8 *data)
{
u8 xmii;
if (priv->features & NEW_XMII) {
switch (mode) {
case 0:
xmii = PORT_MII_SEL;
break;
case 1:
xmii = PORT_RMII_SEL;
break;
case 2:
xmii = PORT_GMII_SEL;
break;
default:
xmii = PORT_RGMII_SEL;
break;
}
} else {
switch (mode) {
case 0:
xmii = PORT_MII_SEL_S1;
break;
case 1:
xmii = PORT_RMII_SEL_S1;
break;
case 2:
xmii = PORT_GMII_SEL_S1;
break;
default:
xmii = PORT_RGMII_SEL_S1;
break;
}
}
*data &= ~PORT_MII_SEL_M;
*data |= xmii;
}
static int ksz_port_setup(struct udevice *dev, int port,
phy_interface_t interface)
{
struct dsa_pdata *pdata = dev_get_uclass_plat(dev);
struct ksz_dsa_priv *priv = dev_get_priv(dev);
u8 data8;
dev_dbg(dev, "%s P%d %s\n", __func__, port + 1,
(port == pdata->cpu_port) ? "cpu" : "");
if (port != pdata->cpu_port) {
if (priv->features & NEW_XMII)
/* phy port: config errata and leds */
ksz_phy_errata_setup(dev, port);
} else {
/* cpu port: configure MAC interface mode */
ksz_pread8(dev, port, REG_PORT_XMII_CTRL_1, &data8);
dev_dbg(dev, "%s P%d cpu interface %s\n", __func__, port + 1,
phy_string_for_interface(interface));
switch (interface) {
case PHY_INTERFACE_MODE_MII:
ksz9477_set_xmii(priv, 0, &data8);
ksz9477_set_gbit(priv, false, &data8);
break;
case PHY_INTERFACE_MODE_RMII:
ksz9477_set_xmii(priv, 1, &data8);
ksz9477_set_gbit(priv, false, &data8);
break;
case PHY_INTERFACE_MODE_GMII:
ksz9477_set_xmii(priv, 2, &data8);
ksz9477_set_gbit(priv, true, &data8);
break;
default:
ksz9477_set_xmii(priv, 3, &data8);
ksz9477_set_gbit(priv, true, &data8);
data8 &= ~PORT_RGMII_ID_IG_ENABLE;
data8 &= ~PORT_RGMII_ID_EG_ENABLE;
if (interface == PHY_INTERFACE_MODE_RGMII_ID ||
interface == PHY_INTERFACE_MODE_RGMII_RXID)
data8 |= PORT_RGMII_ID_IG_ENABLE;
if (interface == PHY_INTERFACE_MODE_RGMII_ID ||
interface == PHY_INTERFACE_MODE_RGMII_TXID)
data8 |= PORT_RGMII_ID_EG_ENABLE;
if (priv->features & IS_9893)
data8 &= ~PORT_MII_MAC_MODE;
break;
}
ksz_write8(dev, PORT_CTRL_ADDR(port, REG_PORT_XMII_CTRL_1), data8);
}
return 0;
}
static int ksz_port_probe(struct udevice *dev, int port, struct phy_device *phy)
{
int supported = PHY_GBIT_FEATURES;
/* configure phy */
phy->supported &= supported;
phy->advertising &= supported;
return phy_config(phy);
}
static int ksz_port_enable(struct udevice *dev, int port, struct phy_device *phy)
{
struct dsa_pdata *pdata = dev_get_uclass_plat(dev);
struct ksz_dsa_priv *priv = dev_get_priv(dev);
u8 data8;
int ret;
dev_dbg(dev, "%s P%d 0x%x %s\n", __func__, port + 1, phy->phy_id,
phy_string_for_interface(phy->interface));
/* setup this port */
ret = ksz_port_setup(dev, port, phy->interface);
if (ret) {
dev_err(dev, "port setup failed: %d\n", ret);
return ret;
}
/* enable port forwarding for this port */
ksz_pread8(priv->dev, port, REG_PORT_MSTP_STATE, &data8);
data8 &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE);
data8 |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
ksz_pwrite8(priv->dev, port, REG_PORT_MSTP_STATE, data8);
/* if cpu master we are done */
if (port == pdata->cpu_port)
return 0;
/* start switch */
ksz_read8(priv->dev, REG_SW_OPERATION, &data8);
data8 |= SW_START;
ksz_write8(priv->dev, REG_SW_OPERATION, data8);
return phy_startup(phy);
}
static void ksz_port_disable(struct udevice *dev, int port, struct phy_device *phy)
{
struct dsa_pdata *pdata = dev_get_uclass_plat(dev);
struct ksz_dsa_priv *priv = dev_get_priv(dev);
u8 data8;
dev_dbg(dev, "%s P%d 0x%x\n", __func__, port + 1, phy->phy_id);
/* can't disable CPU port without re-configuring/re-starting switch */
if (port == pdata->cpu_port)
return;
/* disable port */
ksz_pread8(priv->dev, port, REG_PORT_MSTP_STATE, &data8);
data8 &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE);
data8 |= PORT_LEARN_DISABLE;
ksz_pwrite8(priv->dev, port, REG_PORT_MSTP_STATE, data8);
/*
* we don't call phy_shutdown here to avoid waiting next time we use
* the port, but the downside is that remote side will think we're
* actively processing traffic although we are not.
*/
}
static const struct dsa_ops ksz_dsa_ops = {
.port_probe = ksz_port_probe,
.port_enable = ksz_port_enable,
.port_disable = ksz_port_disable,
};
static int ksz_probe_mdio(struct udevice *dev)
{
ofnode node, mdios;
int ret;
mdios = dev_read_subnode(dev, "mdios");
if (ofnode_valid(mdios)) {
ofnode_for_each_subnode(node, mdios) {
const char *name = ofnode_get_name(node);
struct udevice *pdev;
ret = device_bind_driver_to_node(dev,
KSZ_MDIO_CHILD_DRV_NAME,
name, node, &pdev);
if (ret)
dev_err(dev, "failed to probe %s: %d\n", name, ret);
}
}
return 0;
}
static void ksz_ops_register(struct udevice *dev, struct ksz_phy_ops *ops)
{
struct ksz_dsa_priv *priv = dev_get_priv(dev);
priv->phy_ops = ops;
}
static bool dsa_ksz_check_ops(struct ksz_phy_ops *phy_ops)
{
if (!phy_ops || !phy_ops->read || !phy_ops->write)
return false;
return true;
}
static int ksz_probe(struct udevice *dev)
{
struct dsa_pdata *pdata = dev_get_uclass_plat(dev);
struct ksz_dsa_priv *priv = dev_get_priv(dev);
enum uclass_id parent_id = UCLASS_INVALID;
int i, ret;
u8 data8;
u32 id;
parent_id = device_get_uclass_id(dev_get_parent(dev));
switch (parent_id) {
#if CONFIG_IS_ENABLED(DM_I2C)
case UCLASS_I2C: {
ksz_ops_register(dev, &phy_i2c_ops);
ret = i2c_set_chip_offset_len(dev, 2);
if (ret) {
printf("i2c_set_chip_offset_len failed: %d\n", ret);
return ret;
}
break;
}
#endif
#if CONFIG_IS_ENABLED(DM_SPI)
case UCLASS_SPI: {
ksz_ops_register(dev, &phy_spi_ops);
break;
}
#endif
default:
dev_err(dev, "invalid parent bus (%s)\n",
uclass_get_name(parent_id));
return -EINVAL;
}
if (!dsa_ksz_check_ops(priv->phy_ops)) {
printf("Driver bug. No bus ops defined\n");
return -EINVAL;
}
/* default config */
priv->dev = dev;
/* chip level reset */
ksz_read8(priv->dev, REG_SW_OPERATION, &data8);
data8 |= SW_RESET;
ksz_write8(priv->dev, REG_SW_OPERATION, data8);
/* read chip id */
ret = ksz_read32(dev, REG_CHIP_ID0__1, &id);
if (ret)
return ret;
id = __swab32(id);
dev_dbg(dev, "%s id=0x%08x\n", __func__, id);
switch (id & 0xffffff00) {
case 0x00947700:
puts("KSZ9477S: ");
break;
case 0x00956700:
puts("KSZ9567R: ");
break;
case 0x00989600:
puts("KSZ9896C: ");
break;
case 0x00989700:
puts("KSZ9897S: ");
break;
case 0x00989300:
puts("KSZ9893R: ");
break;
default:
dev_err(dev, "invalid chip id: 0x%08x\n", id);
return -EINVAL;
}
if ((id & 0xf00) == 0x300)
priv->features |= IS_9893;
else
priv->features |= NEW_XMII;
/* probe mdio bus */
ret = ksz_probe_mdio(dev);
if (ret)
return ret;
/* disable ports by default */
for (i = 0; i < pdata->num_ports; i++) {
ksz_pread8(priv->dev, i, REG_PORT_MSTP_STATE, &data8);
data8 &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE);
ksz_pwrite8(priv->dev, i, REG_PORT_MSTP_STATE, data8);
}
return 0;
};
static const struct udevice_id ksz_ids[] = {
{ .compatible = "microchip,ksz9897" },
{ .compatible = "microchip,ksz9477" },
{ .compatible = "microchip,ksz9567" },
{ .compatible = "microchip,ksz9893" },
{ .compatible = "microchip,ksz9896" },
{ }
};
U_BOOT_DRIVER(ksz) = {
.name = "ksz-switch",
.id = UCLASS_DSA,
.of_match = ksz_ids,
.probe = ksz_probe,
.ops = &ksz_dsa_ops,
.priv_auto = sizeof(struct ksz_dsa_priv),
};