| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * Image manipulator for Marvell SoCs |
| * supports Kirkwood, Dove, Armada 370, Armada XP, Armada 375, Armada 38x and |
| * Armada 39x |
| * |
| * (C) Copyright 2013 Thomas Petazzoni |
| * <thomas.petazzoni@free-electrons.com> |
| * |
| * (C) Copyright 2022 Pali Rohár <pali@kernel.org> |
| */ |
| |
| #define OPENSSL_API_COMPAT 0x10101000L |
| |
| #include "imagetool.h" |
| #include <limits.h> |
| #include <image.h> |
| #include <stdarg.h> |
| #include <stdint.h> |
| #include "kwbimage.h" |
| |
| #include <openssl/bn.h> |
| #include <openssl/rsa.h> |
| #include <openssl/pem.h> |
| #include <openssl/err.h> |
| #include <openssl/evp.h> |
| |
| #if OPENSSL_VERSION_NUMBER < 0x10100000L || \ |
| (defined(LIBRESSL_VERSION_NUMBER) && LIBRESSL_VERSION_NUMBER < 0x2070000fL) |
| static void RSA_get0_key(const RSA *r, |
| const BIGNUM **n, const BIGNUM **e, const BIGNUM **d) |
| { |
| if (n != NULL) |
| *n = r->n; |
| if (e != NULL) |
| *e = r->e; |
| if (d != NULL) |
| *d = r->d; |
| } |
| |
| #elif !defined(LIBRESSL_VERSION_NUMBER) |
| void EVP_MD_CTX_cleanup(EVP_MD_CTX *ctx) |
| { |
| EVP_MD_CTX_reset(ctx); |
| } |
| #endif |
| |
| /* fls - find last (most-significant) bit set in 4-bit integer */ |
| static inline int fls4(int num) |
| { |
| if (num & 0x8) |
| return 4; |
| else if (num & 0x4) |
| return 3; |
| else if (num & 0x2) |
| return 2; |
| else if (num & 0x1) |
| return 1; |
| else |
| return 0; |
| } |
| |
| static struct image_cfg_element *image_cfg; |
| static int cfgn; |
| static int verbose_mode; |
| |
| struct boot_mode { |
| unsigned int id; |
| const char *name; |
| }; |
| |
| /* |
| * SHA2-256 hash |
| */ |
| struct hash_v1 { |
| uint8_t hash[32]; |
| }; |
| |
| struct boot_mode boot_modes[] = { |
| { IBR_HDR_I2C_ID, "i2c" }, |
| { IBR_HDR_SPI_ID, "spi" }, |
| { IBR_HDR_NAND_ID, "nand" }, |
| { IBR_HDR_SATA_ID, "sata" }, |
| { IBR_HDR_PEX_ID, "pex" }, |
| { IBR_HDR_UART_ID, "uart" }, |
| { IBR_HDR_SDIO_ID, "sdio" }, |
| {}, |
| }; |
| |
| struct nand_ecc_mode { |
| unsigned int id; |
| const char *name; |
| }; |
| |
| struct nand_ecc_mode nand_ecc_modes[] = { |
| { IBR_HDR_ECC_DEFAULT, "default" }, |
| { IBR_HDR_ECC_FORCED_HAMMING, "hamming" }, |
| { IBR_HDR_ECC_FORCED_RS, "rs" }, |
| { IBR_HDR_ECC_DISABLED, "disabled" }, |
| {}, |
| }; |
| |
| /* Used to identify an undefined execution or destination address */ |
| #define ADDR_INVALID ((uint32_t)-1) |
| |
| #define BINARY_MAX_ARGS 255 |
| |
| /* In-memory representation of a line of the configuration file */ |
| |
| enum image_cfg_type { |
| IMAGE_CFG_VERSION = 0x1, |
| IMAGE_CFG_BOOT_FROM, |
| IMAGE_CFG_DEST_ADDR, |
| IMAGE_CFG_EXEC_ADDR, |
| IMAGE_CFG_NAND_BLKSZ, |
| IMAGE_CFG_NAND_BADBLK_LOCATION, |
| IMAGE_CFG_NAND_ECC_MODE, |
| IMAGE_CFG_NAND_PAGESZ, |
| IMAGE_CFG_SATA_BLKSZ, |
| IMAGE_CFG_CPU, |
| IMAGE_CFG_BINARY, |
| IMAGE_CFG_DATA, |
| IMAGE_CFG_DATA_DELAY, |
| IMAGE_CFG_BAUDRATE, |
| IMAGE_CFG_UART_PORT, |
| IMAGE_CFG_UART_MPP, |
| IMAGE_CFG_DEBUG, |
| IMAGE_CFG_KAK, |
| IMAGE_CFG_CSK, |
| IMAGE_CFG_CSK_INDEX, |
| IMAGE_CFG_JTAG_DELAY, |
| IMAGE_CFG_BOX_ID, |
| IMAGE_CFG_FLASH_ID, |
| IMAGE_CFG_SEC_COMMON_IMG, |
| IMAGE_CFG_SEC_SPECIALIZED_IMG, |
| IMAGE_CFG_SEC_BOOT_DEV, |
| IMAGE_CFG_SEC_FUSE_DUMP, |
| |
| IMAGE_CFG_COUNT |
| } type; |
| |
| static const char * const id_strs[] = { |
| [IMAGE_CFG_VERSION] = "VERSION", |
| [IMAGE_CFG_BOOT_FROM] = "BOOT_FROM", |
| [IMAGE_CFG_DEST_ADDR] = "DEST_ADDR", |
| [IMAGE_CFG_EXEC_ADDR] = "EXEC_ADDR", |
| [IMAGE_CFG_NAND_BLKSZ] = "NAND_BLKSZ", |
| [IMAGE_CFG_NAND_BADBLK_LOCATION] = "NAND_BADBLK_LOCATION", |
| [IMAGE_CFG_NAND_ECC_MODE] = "NAND_ECC_MODE", |
| [IMAGE_CFG_NAND_PAGESZ] = "NAND_PAGE_SIZE", |
| [IMAGE_CFG_SATA_BLKSZ] = "SATA_BLKSZ", |
| [IMAGE_CFG_CPU] = "CPU", |
| [IMAGE_CFG_BINARY] = "BINARY", |
| [IMAGE_CFG_DATA] = "DATA", |
| [IMAGE_CFG_DATA_DELAY] = "DATA_DELAY", |
| [IMAGE_CFG_BAUDRATE] = "BAUDRATE", |
| [IMAGE_CFG_UART_PORT] = "UART_PORT", |
| [IMAGE_CFG_UART_MPP] = "UART_MPP", |
| [IMAGE_CFG_DEBUG] = "DEBUG", |
| [IMAGE_CFG_KAK] = "KAK", |
| [IMAGE_CFG_CSK] = "CSK", |
| [IMAGE_CFG_CSK_INDEX] = "CSK_INDEX", |
| [IMAGE_CFG_JTAG_DELAY] = "JTAG_DELAY", |
| [IMAGE_CFG_BOX_ID] = "BOX_ID", |
| [IMAGE_CFG_FLASH_ID] = "FLASH_ID", |
| [IMAGE_CFG_SEC_COMMON_IMG] = "SEC_COMMON_IMG", |
| [IMAGE_CFG_SEC_SPECIALIZED_IMG] = "SEC_SPECIALIZED_IMG", |
| [IMAGE_CFG_SEC_BOOT_DEV] = "SEC_BOOT_DEV", |
| [IMAGE_CFG_SEC_FUSE_DUMP] = "SEC_FUSE_DUMP" |
| }; |
| |
| struct image_cfg_element { |
| enum image_cfg_type type; |
| union { |
| unsigned int version; |
| unsigned int cpu_sheeva; |
| unsigned int bootfrom; |
| struct { |
| const char *file; |
| unsigned int loadaddr; |
| unsigned int args[BINARY_MAX_ARGS]; |
| unsigned int nargs; |
| } binary; |
| unsigned int dstaddr; |
| unsigned int execaddr; |
| unsigned int nandblksz; |
| unsigned int nandbadblklocation; |
| unsigned int nandeccmode; |
| unsigned int nandpagesz; |
| unsigned int satablksz; |
| struct ext_hdr_v0_reg regdata; |
| unsigned int regdata_delay; |
| unsigned int baudrate; |
| unsigned int uart_port; |
| unsigned int uart_mpp; |
| unsigned int debug; |
| const char *key_name; |
| int csk_idx; |
| uint8_t jtag_delay; |
| uint32_t boxid; |
| uint32_t flashid; |
| bool sec_specialized_img; |
| unsigned int sec_boot_dev; |
| const char *name; |
| }; |
| }; |
| |
| #define IMAGE_CFG_ELEMENT_MAX 256 |
| |
| /* |
| * Utility functions to manipulate boot mode and ecc modes (convert |
| * them back and forth between description strings and the |
| * corresponding numerical identifiers). |
| */ |
| |
| static const char *image_boot_mode_name(unsigned int id) |
| { |
| int i; |
| |
| for (i = 0; boot_modes[i].name; i++) |
| if (boot_modes[i].id == id) |
| return boot_modes[i].name; |
| return NULL; |
| } |
| |
| static int image_boot_mode_id(const char *boot_mode_name) |
| { |
| int i; |
| |
| for (i = 0; boot_modes[i].name; i++) |
| if (!strcmp(boot_modes[i].name, boot_mode_name)) |
| return boot_modes[i].id; |
| |
| return -1; |
| } |
| |
| static const char *image_nand_ecc_mode_name(unsigned int id) |
| { |
| int i; |
| |
| for (i = 0; nand_ecc_modes[i].name; i++) |
| if (nand_ecc_modes[i].id == id) |
| return nand_ecc_modes[i].name; |
| |
| return NULL; |
| } |
| |
| static int image_nand_ecc_mode_id(const char *nand_ecc_mode_name) |
| { |
| int i; |
| |
| for (i = 0; nand_ecc_modes[i].name; i++) |
| if (!strcmp(nand_ecc_modes[i].name, nand_ecc_mode_name)) |
| return nand_ecc_modes[i].id; |
| return -1; |
| } |
| |
| static struct image_cfg_element * |
| image_find_option(unsigned int optiontype) |
| { |
| int i; |
| |
| for (i = 0; i < cfgn; i++) { |
| if (image_cfg[i].type == optiontype) |
| return &image_cfg[i]; |
| } |
| |
| return NULL; |
| } |
| |
| static unsigned int |
| image_count_options(unsigned int optiontype) |
| { |
| int i; |
| unsigned int count = 0; |
| |
| for (i = 0; i < cfgn; i++) |
| if (image_cfg[i].type == optiontype) |
| count++; |
| |
| return count; |
| } |
| |
| static int image_get_csk_index(void) |
| { |
| struct image_cfg_element *e; |
| |
| e = image_find_option(IMAGE_CFG_CSK_INDEX); |
| if (!e) |
| return -1; |
| |
| return e->csk_idx; |
| } |
| |
| static bool image_get_spezialized_img(void) |
| { |
| struct image_cfg_element *e; |
| |
| e = image_find_option(IMAGE_CFG_SEC_SPECIALIZED_IMG); |
| if (!e) |
| return false; |
| |
| return e->sec_specialized_img; |
| } |
| |
| static int image_get_bootfrom(void) |
| { |
| struct image_cfg_element *e; |
| |
| e = image_find_option(IMAGE_CFG_BOOT_FROM); |
| if (!e) |
| /* fallback to SPI if no BOOT_FROM is not provided */ |
| return IBR_HDR_SPI_ID; |
| |
| return e->bootfrom; |
| } |
| |
| static int image_is_cpu_sheeva(void) |
| { |
| struct image_cfg_element *e; |
| |
| e = image_find_option(IMAGE_CFG_CPU); |
| if (!e) |
| return 0; |
| |
| return e->cpu_sheeva; |
| } |
| |
| /* |
| * Compute a 8-bit checksum of a memory area. This algorithm follows |
| * the requirements of the Marvell SoC BootROM specifications. |
| */ |
| static uint8_t image_checksum8(void *start, uint32_t len) |
| { |
| uint8_t csum = 0; |
| uint8_t *p = start; |
| |
| /* check len and return zero checksum if invalid */ |
| if (!len) |
| return 0; |
| |
| do { |
| csum += *p; |
| p++; |
| } while (--len); |
| |
| return csum; |
| } |
| |
| /* |
| * Verify checksum over a complete header that includes the checksum field. |
| * Return 1 when OK, otherwise 0. |
| */ |
| static int main_hdr_checksum_ok(void *hdr) |
| { |
| /* Offsets of checksum in v0 and v1 headers are the same */ |
| struct main_hdr_v0 *main_hdr = (struct main_hdr_v0 *)hdr; |
| uint8_t checksum; |
| |
| checksum = image_checksum8(hdr, kwbheader_size_for_csum(hdr)); |
| /* Calculated checksum includes the header checksum field. Compensate |
| * for that. |
| */ |
| checksum -= main_hdr->checksum; |
| |
| return checksum == main_hdr->checksum; |
| } |
| |
| static uint32_t image_checksum32(void *start, uint32_t len) |
| { |
| uint32_t csum = 0; |
| uint32_t *p = start; |
| |
| /* check len and return zero checksum if invalid */ |
| if (!len) |
| return 0; |
| |
| if (len % sizeof(uint32_t)) { |
| fprintf(stderr, "Length %d is not in multiple of %zu\n", |
| len, sizeof(uint32_t)); |
| return 0; |
| } |
| |
| do { |
| csum += *p; |
| p++; |
| len -= sizeof(uint32_t); |
| } while (len > 0); |
| |
| return csum; |
| } |
| |
| static unsigned int options_to_baudrate(uint8_t options) |
| { |
| switch (options & 0x7) { |
| case MAIN_HDR_V1_OPT_BAUD_2400: |
| return 2400; |
| case MAIN_HDR_V1_OPT_BAUD_4800: |
| return 4800; |
| case MAIN_HDR_V1_OPT_BAUD_9600: |
| return 9600; |
| case MAIN_HDR_V1_OPT_BAUD_19200: |
| return 19200; |
| case MAIN_HDR_V1_OPT_BAUD_38400: |
| return 38400; |
| case MAIN_HDR_V1_OPT_BAUD_57600: |
| return 57600; |
| case MAIN_HDR_V1_OPT_BAUD_115200: |
| return 115200; |
| case MAIN_HDR_V1_OPT_BAUD_DEFAULT: |
| default: |
| return 0; |
| } |
| } |
| |
| static uint8_t baudrate_to_option(unsigned int baudrate) |
| { |
| switch (baudrate) { |
| case 2400: |
| return MAIN_HDR_V1_OPT_BAUD_2400; |
| case 4800: |
| return MAIN_HDR_V1_OPT_BAUD_4800; |
| case 9600: |
| return MAIN_HDR_V1_OPT_BAUD_9600; |
| case 19200: |
| return MAIN_HDR_V1_OPT_BAUD_19200; |
| case 38400: |
| return MAIN_HDR_V1_OPT_BAUD_38400; |
| case 57600: |
| return MAIN_HDR_V1_OPT_BAUD_57600; |
| case 115200: |
| return MAIN_HDR_V1_OPT_BAUD_115200; |
| default: |
| return MAIN_HDR_V1_OPT_BAUD_DEFAULT; |
| } |
| } |
| |
| static void kwb_msg(const char *fmt, ...) |
| { |
| if (verbose_mode) { |
| va_list ap; |
| |
| va_start(ap, fmt); |
| vfprintf(stdout, fmt, ap); |
| va_end(ap); |
| } |
| } |
| |
| static int openssl_err(const char *msg) |
| { |
| unsigned long ssl_err = ERR_get_error(); |
| |
| fprintf(stderr, "%s", msg); |
| fprintf(stderr, ": %s\n", |
| ERR_error_string(ssl_err, 0)); |
| |
| return -1; |
| } |
| |
| static int kwb_load_rsa_key(const char *keydir, const char *name, RSA **p_rsa) |
| { |
| char path[PATH_MAX]; |
| RSA *rsa; |
| FILE *f; |
| |
| if (!keydir) |
| keydir = "."; |
| |
| snprintf(path, sizeof(path), "%s/%s.key", keydir, name); |
| f = fopen(path, "r"); |
| if (!f) { |
| fprintf(stderr, "Couldn't open RSA private key: '%s': %s\n", |
| path, strerror(errno)); |
| return -ENOENT; |
| } |
| |
| rsa = PEM_read_RSAPrivateKey(f, 0, NULL, ""); |
| if (!rsa) { |
| openssl_err("Failure reading private key"); |
| fclose(f); |
| return -EPROTO; |
| } |
| fclose(f); |
| *p_rsa = rsa; |
| |
| return 0; |
| } |
| |
| static int kwb_load_cfg_key(struct image_tool_params *params, |
| unsigned int cfg_option, const char *key_name, |
| RSA **p_key) |
| { |
| struct image_cfg_element *e_key; |
| RSA *key; |
| int res; |
| |
| *p_key = NULL; |
| |
| e_key = image_find_option(cfg_option); |
| if (!e_key) { |
| fprintf(stderr, "%s not configured\n", key_name); |
| return -ENOENT; |
| } |
| |
| res = kwb_load_rsa_key(params->keydir, e_key->key_name, &key); |
| if (res < 0) { |
| fprintf(stderr, "Failed to load %s\n", key_name); |
| return -ENOENT; |
| } |
| |
| *p_key = key; |
| |
| return 0; |
| } |
| |
| static int kwb_load_kak(struct image_tool_params *params, RSA **p_kak) |
| { |
| return kwb_load_cfg_key(params, IMAGE_CFG_KAK, "KAK", p_kak); |
| } |
| |
| static int kwb_load_csk(struct image_tool_params *params, RSA **p_csk) |
| { |
| return kwb_load_cfg_key(params, IMAGE_CFG_CSK, "CSK", p_csk); |
| } |
| |
| static int kwb_compute_pubkey_hash(struct pubkey_der_v1 *pk, |
| struct hash_v1 *hash) |
| { |
| EVP_MD_CTX *ctx; |
| unsigned int key_size; |
| unsigned int hash_size; |
| int ret = 0; |
| |
| if (!pk || !hash || pk->key[0] != 0x30 || pk->key[1] != 0x82) |
| return -EINVAL; |
| |
| key_size = (pk->key[2] << 8) + pk->key[3] + 4; |
| |
| ctx = EVP_MD_CTX_create(); |
| if (!ctx) |
| return openssl_err("EVP context creation failed"); |
| |
| EVP_MD_CTX_init(ctx); |
| if (!EVP_DigestInit(ctx, EVP_sha256())) { |
| ret = openssl_err("Digest setup failed"); |
| goto hash_err_ctx; |
| } |
| |
| if (!EVP_DigestUpdate(ctx, pk->key, key_size)) { |
| ret = openssl_err("Hashing data failed"); |
| goto hash_err_ctx; |
| } |
| |
| if (!EVP_DigestFinal(ctx, hash->hash, &hash_size)) { |
| ret = openssl_err("Could not obtain hash"); |
| goto hash_err_ctx; |
| } |
| |
| EVP_MD_CTX_cleanup(ctx); |
| |
| hash_err_ctx: |
| EVP_MD_CTX_destroy(ctx); |
| return ret; |
| } |
| |
| static int kwb_import_pubkey(RSA **key, struct pubkey_der_v1 *src, char *keyname) |
| { |
| RSA *rsa; |
| const unsigned char *ptr; |
| |
| if (!key || !src) |
| goto fail; |
| |
| ptr = src->key; |
| rsa = d2i_RSAPublicKey(key, &ptr, sizeof(src->key)); |
| if (!rsa) { |
| openssl_err("error decoding public key"); |
| goto fail; |
| } |
| |
| return 0; |
| fail: |
| fprintf(stderr, "Failed to decode %s pubkey\n", keyname); |
| return -EINVAL; |
| } |
| |
| static int kwb_export_pubkey(RSA *key, struct pubkey_der_v1 *dst, FILE *hashf, |
| char *keyname) |
| { |
| int size_exp, size_mod, size_seq; |
| const BIGNUM *key_e, *key_n; |
| uint8_t *cur; |
| char *errmsg = "Failed to encode %s\n"; |
| |
| RSA_get0_key(key, NULL, &key_e, NULL); |
| RSA_get0_key(key, &key_n, NULL, NULL); |
| |
| if (!key || !key_e || !key_n || !dst) { |
| fprintf(stderr, "export pk failed: (%p, %p, %p, %p)", |
| key, key_e, key_n, dst); |
| fprintf(stderr, errmsg, keyname); |
| return -EINVAL; |
| } |
| |
| /* |
| * According to the specs, the key should be PKCS#1 DER encoded. |
| * But unfortunately the really required encoding seems to be different; |
| * it violates DER...! (But it still conformes to BER.) |
| * (Length always in long form w/ 2 byte length code; no leading zero |
| * when MSB of first byte is set...) |
| * So we cannot use the encoding func provided by OpenSSL and have to |
| * do the encoding manually. |
| */ |
| |
| size_exp = BN_num_bytes(key_e); |
| size_mod = BN_num_bytes(key_n); |
| size_seq = 4 + size_mod + 4 + size_exp; |
| |
| if (size_mod > 256) { |
| fprintf(stderr, "export pk failed: wrong mod size: %d\n", |
| size_mod); |
| fprintf(stderr, errmsg, keyname); |
| return -EINVAL; |
| } |
| |
| if (4 + size_seq > sizeof(dst->key)) { |
| fprintf(stderr, "export pk failed: seq too large (%d, %zu)\n", |
| 4 + size_seq, sizeof(dst->key)); |
| fprintf(stderr, errmsg, keyname); |
| return -ENOBUFS; |
| } |
| |
| cur = dst->key; |
| |
| /* PKCS#1 (RFC3447) RSAPublicKey structure */ |
| *cur++ = 0x30; /* SEQUENCE */ |
| *cur++ = 0x82; |
| *cur++ = (size_seq >> 8) & 0xFF; |
| *cur++ = size_seq & 0xFF; |
| /* Modulus */ |
| *cur++ = 0x02; /* INTEGER */ |
| *cur++ = 0x82; |
| *cur++ = (size_mod >> 8) & 0xFF; |
| *cur++ = size_mod & 0xFF; |
| BN_bn2bin(key_n, cur); |
| cur += size_mod; |
| /* Exponent */ |
| *cur++ = 0x02; /* INTEGER */ |
| *cur++ = 0x82; |
| *cur++ = (size_exp >> 8) & 0xFF; |
| *cur++ = size_exp & 0xFF; |
| BN_bn2bin(key_e, cur); |
| |
| if (hashf) { |
| struct hash_v1 pk_hash; |
| int i; |
| int ret = 0; |
| |
| ret = kwb_compute_pubkey_hash(dst, &pk_hash); |
| if (ret < 0) { |
| fprintf(stderr, errmsg, keyname); |
| return ret; |
| } |
| |
| fprintf(hashf, "SHA256 = "); |
| for (i = 0 ; i < sizeof(pk_hash.hash); ++i) |
| fprintf(hashf, "%02X", pk_hash.hash[i]); |
| fprintf(hashf, "\n"); |
| } |
| |
| return 0; |
| } |
| |
| static int kwb_sign(RSA *key, void *data, int datasz, struct sig_v1 *sig, |
| char *signame) |
| { |
| EVP_PKEY *evp_key; |
| EVP_MD_CTX *ctx; |
| unsigned int sig_size; |
| int size; |
| int ret = 0; |
| |
| evp_key = EVP_PKEY_new(); |
| if (!evp_key) |
| return openssl_err("EVP_PKEY object creation failed"); |
| |
| if (!EVP_PKEY_set1_RSA(evp_key, key)) { |
| ret = openssl_err("EVP key setup failed"); |
| goto err_key; |
| } |
| |
| size = EVP_PKEY_size(evp_key); |
| if (size > sizeof(sig->sig)) { |
| fprintf(stderr, "Buffer to small for signature (%d bytes)\n", |
| size); |
| ret = -ENOBUFS; |
| goto err_key; |
| } |
| |
| ctx = EVP_MD_CTX_create(); |
| if (!ctx) { |
| ret = openssl_err("EVP context creation failed"); |
| goto err_key; |
| } |
| EVP_MD_CTX_init(ctx); |
| if (!EVP_SignInit(ctx, EVP_sha256())) { |
| ret = openssl_err("Signer setup failed"); |
| goto err_ctx; |
| } |
| |
| if (!EVP_SignUpdate(ctx, data, datasz)) { |
| ret = openssl_err("Signing data failed"); |
| goto err_ctx; |
| } |
| |
| if (!EVP_SignFinal(ctx, sig->sig, &sig_size, evp_key)) { |
| ret = openssl_err("Could not obtain signature"); |
| goto err_ctx; |
| } |
| |
| EVP_MD_CTX_cleanup(ctx); |
| EVP_MD_CTX_destroy(ctx); |
| EVP_PKEY_free(evp_key); |
| |
| return 0; |
| |
| err_ctx: |
| EVP_MD_CTX_destroy(ctx); |
| err_key: |
| EVP_PKEY_free(evp_key); |
| fprintf(stderr, "Failed to create %s signature\n", signame); |
| return ret; |
| } |
| |
| static int kwb_verify(RSA *key, void *data, int datasz, struct sig_v1 *sig, |
| char *signame) |
| { |
| EVP_PKEY *evp_key; |
| EVP_MD_CTX *ctx; |
| int size; |
| int ret = 0; |
| |
| evp_key = EVP_PKEY_new(); |
| if (!evp_key) |
| return openssl_err("EVP_PKEY object creation failed"); |
| |
| if (!EVP_PKEY_set1_RSA(evp_key, key)) { |
| ret = openssl_err("EVP key setup failed"); |
| goto err_key; |
| } |
| |
| size = EVP_PKEY_size(evp_key); |
| if (size > sizeof(sig->sig)) { |
| fprintf(stderr, "Invalid signature size (%d bytes)\n", |
| size); |
| ret = -EINVAL; |
| goto err_key; |
| } |
| |
| ctx = EVP_MD_CTX_create(); |
| if (!ctx) { |
| ret = openssl_err("EVP context creation failed"); |
| goto err_key; |
| } |
| EVP_MD_CTX_init(ctx); |
| if (!EVP_VerifyInit(ctx, EVP_sha256())) { |
| ret = openssl_err("Verifier setup failed"); |
| goto err_ctx; |
| } |
| |
| if (!EVP_VerifyUpdate(ctx, data, datasz)) { |
| ret = openssl_err("Hashing data failed"); |
| goto err_ctx; |
| } |
| |
| if (EVP_VerifyFinal(ctx, sig->sig, sizeof(sig->sig), evp_key) != 1) { |
| ret = openssl_err("Could not verify signature"); |
| goto err_ctx; |
| } |
| |
| EVP_MD_CTX_cleanup(ctx); |
| EVP_MD_CTX_destroy(ctx); |
| EVP_PKEY_free(evp_key); |
| |
| return 0; |
| |
| err_ctx: |
| EVP_MD_CTX_destroy(ctx); |
| err_key: |
| EVP_PKEY_free(evp_key); |
| fprintf(stderr, "Failed to verify %s signature\n", signame); |
| return ret; |
| } |
| |
| static int kwb_sign_and_verify(RSA *key, void *data, int datasz, |
| struct sig_v1 *sig, char *signame) |
| { |
| if (kwb_sign(key, data, datasz, sig, signame) < 0) |
| return -1; |
| |
| if (kwb_verify(key, data, datasz, sig, signame) < 0) |
| return -1; |
| |
| return 0; |
| } |
| |
| static int kwb_dump_fuse_cmds_38x(FILE *out, struct secure_hdr_v1 *sec_hdr) |
| { |
| struct hash_v1 kak_pub_hash; |
| struct image_cfg_element *e; |
| unsigned int fuse_line; |
| int i, idx; |
| uint8_t *ptr; |
| uint32_t val; |
| int ret = 0; |
| |
| if (!out || !sec_hdr) |
| return -EINVAL; |
| |
| ret = kwb_compute_pubkey_hash(&sec_hdr->kak, &kak_pub_hash); |
| if (ret < 0) |
| goto done; |
| |
| fprintf(out, "# burn KAK pub key hash\n"); |
| ptr = kak_pub_hash.hash; |
| for (fuse_line = 26; fuse_line <= 30; ++fuse_line) { |
| fprintf(out, "fuse prog -y %u 0 ", fuse_line); |
| |
| for (i = 4; i-- > 0;) |
| fprintf(out, "%02hx", (ushort)ptr[i]); |
| ptr += 4; |
| fprintf(out, " 00"); |
| |
| if (fuse_line < 30) { |
| for (i = 3; i-- > 0;) |
| fprintf(out, "%02hx", (ushort)ptr[i]); |
| ptr += 3; |
| } else { |
| fprintf(out, "000000"); |
| } |
| |
| fprintf(out, " 1\n"); |
| } |
| |
| fprintf(out, "# burn CSK selection\n"); |
| |
| idx = image_get_csk_index(); |
| if (idx < 0 || idx > 15) { |
| ret = -EINVAL; |
| goto done; |
| } |
| if (idx > 0) { |
| for (fuse_line = 31; fuse_line < 31 + idx; ++fuse_line) |
| fprintf(out, "fuse prog -y %u 0 00000001 00000000 1\n", |
| fuse_line); |
| } else { |
| fprintf(out, "# CSK index is 0; no mods needed\n"); |
| } |
| |
| e = image_find_option(IMAGE_CFG_BOX_ID); |
| if (e) { |
| fprintf(out, "# set box ID\n"); |
| fprintf(out, "fuse prog -y 48 0 %08x 00000000 1\n", e->boxid); |
| } |
| |
| e = image_find_option(IMAGE_CFG_FLASH_ID); |
| if (e) { |
| fprintf(out, "# set flash ID\n"); |
| fprintf(out, "fuse prog -y 47 0 %08x 00000000 1\n", e->flashid); |
| } |
| |
| fprintf(out, "# enable secure mode "); |
| fprintf(out, "(must be the last fuse line written)\n"); |
| |
| val = 1; |
| e = image_find_option(IMAGE_CFG_SEC_BOOT_DEV); |
| if (!e) { |
| fprintf(stderr, "ERROR: secured mode boot device not given\n"); |
| ret = -EINVAL; |
| goto done; |
| } |
| |
| if (e->sec_boot_dev > 0xff) { |
| fprintf(stderr, "ERROR: secured mode boot device invalid\n"); |
| ret = -EINVAL; |
| goto done; |
| } |
| |
| val |= (e->sec_boot_dev << 8); |
| |
| fprintf(out, "fuse prog -y 24 0 %08x 0103e0a9 1\n", val); |
| |
| fprintf(out, "# lock (unused) fuse lines (0-23)s\n"); |
| for (fuse_line = 0; fuse_line < 24; ++fuse_line) |
| fprintf(out, "fuse prog -y %u 2 1\n", fuse_line); |
| |
| fprintf(out, "# OK, that's all :-)\n"); |
| |
| done: |
| return ret; |
| } |
| |
| static int kwb_dump_fuse_cmds(struct secure_hdr_v1 *sec_hdr) |
| { |
| int ret = 0; |
| struct image_cfg_element *e; |
| |
| e = image_find_option(IMAGE_CFG_SEC_FUSE_DUMP); |
| if (!e) |
| return 0; |
| |
| if (!strcmp(e->name, "a38x")) { |
| FILE *out = fopen("kwb_fuses_a38x.txt", "w+"); |
| |
| if (!out) { |
| fprintf(stderr, "Couldn't open eFuse settings: '%s': %s\n", |
| "kwb_fuses_a38x.txt", strerror(errno)); |
| return -ENOENT; |
| } |
| |
| kwb_dump_fuse_cmds_38x(out, sec_hdr); |
| fclose(out); |
| goto done; |
| } |
| |
| ret = -ENOSYS; |
| |
| done: |
| return ret; |
| } |
| |
| static int image_fill_xip_header(void *image, struct image_tool_params *params) |
| { |
| struct main_hdr_v1 *main_hdr = image; /* kwbimage v0 and v1 have same XIP members */ |
| int version = kwbimage_version(image); |
| uint32_t srcaddr = le32_to_cpu(main_hdr->srcaddr); |
| uint32_t startaddr = 0; |
| |
| if (main_hdr->blockid != IBR_HDR_SPI_ID) { |
| fprintf(stderr, "XIP is supported only for SPI images\n"); |
| return 0; |
| } |
| |
| if (version == 0 && |
| params->addr >= 0xE8000000 && params->addr < 0xEFFFFFFF && |
| params->ep >= 0xE8000000 && params->ep < 0xEFFFFFFF) { |
| /* Load and Execute address is in SPI address space (kwbimage v0) */ |
| startaddr = 0xE8000000; |
| } else if (version != 0 && |
| params->addr >= 0xD4000000 && params->addr < 0xD7FFFFFF && |
| params->ep >= 0xD4000000 && params->ep < 0xD7FFFFFF) { |
| /* Load and Execute address is in SPI address space (kwbimage v1) */ |
| startaddr = 0xD4000000; |
| } else if (version != 0 && |
| params->addr >= 0xD8000000 && params->addr < 0xDFFFFFFF && |
| params->ep >= 0xD8000000 && params->ep < 0xDFFFFFFF) { |
| /* Load and Execute address is in Device bus space (kwbimage v1) */ |
| startaddr = 0xD8000000; |
| } else if (params->addr != 0x0) { |
| /* Load address is non-zero */ |
| if (version == 0) |
| fprintf(stderr, "XIP Load Address or XIP Entry Point is not in SPI address space\n"); |
| else |
| fprintf(stderr, "XIP Load Address or XIP Entry Point is not in SPI nor in Device bus address space\n"); |
| return 0; |
| } |
| |
| /* |
| * For XIP destaddr must be set to 0xFFFFFFFF and |
| * execaddr relative to the start of XIP memory address space. |
| */ |
| main_hdr->destaddr = cpu_to_le32(0xFFFFFFFF); |
| |
| if (startaddr == 0) { |
| /* |
| * mkimage's --load-address 0x0 means that binary is Position |
| * Independent and in this case mkimage's --entry-point address |
| * is relative offset from beginning of the data part of image. |
| */ |
| main_hdr->execaddr = cpu_to_le32(srcaddr + params->ep); |
| } else { |
| /* The lowest possible load address is after the header at srcaddr. */ |
| if (params->addr - startaddr < srcaddr) { |
| fprintf(stderr, |
| "Invalid XIP Load Address 0x%08x.\n" |
| "The lowest address for this configuration is 0x%08x.\n", |
| params->addr, (unsigned)(startaddr + srcaddr)); |
| return 0; |
| } |
| main_hdr->srcaddr = cpu_to_le32(params->addr - startaddr); |
| main_hdr->execaddr = cpu_to_le32(params->ep - startaddr); |
| } |
| |
| return 1; |
| } |
| |
| static unsigned int image_get_satablksz(void) |
| { |
| struct image_cfg_element *e; |
| e = image_find_option(IMAGE_CFG_SATA_BLKSZ); |
| return e ? e->satablksz : 512; |
| } |
| |
| static size_t image_headersz_align(size_t headersz, uint8_t blockid) |
| { |
| /* |
| * Header needs to be 4-byte aligned, which is already ensured by code |
| * above. Moreover UART images must have header aligned to 128 bytes |
| * (xmodem block size), NAND images to 256 bytes (ECC calculation), |
| * SDIO images to 512 bytes (SDHC/SDXC fixed block size) and SATA |
| * images to specified storage block size (default 512 bytes). |
| * Note that SPI images do not have to have header size aligned |
| * to 256 bytes because it is possible to read from SPI storage from |
| * any offset (read offset does not have to be aligned to block size). |
| */ |
| if (blockid == IBR_HDR_UART_ID) |
| return ALIGN(headersz, 128); |
| else if (blockid == IBR_HDR_NAND_ID) |
| return ALIGN(headersz, 256); |
| else if (blockid == IBR_HDR_SDIO_ID) |
| return ALIGN(headersz, 512); |
| else if (blockid == IBR_HDR_SATA_ID) |
| return ALIGN(headersz, image_get_satablksz()); |
| else |
| return headersz; |
| } |
| |
| static size_t image_headersz_v0(int *hasext) |
| { |
| size_t headersz; |
| |
| headersz = sizeof(struct main_hdr_v0); |
| if (image_count_options(IMAGE_CFG_DATA) > 0) { |
| headersz += sizeof(struct ext_hdr_v0); |
| if (hasext) |
| *hasext = 1; |
| } |
| |
| return headersz; |
| } |
| |
| static void *image_create_v0(size_t *dataoff, struct image_tool_params *params, |
| int payloadsz) |
| { |
| struct image_cfg_element *e; |
| size_t headersz; |
| struct main_hdr_v0 *main_hdr; |
| uint8_t *image; |
| int has_ext = 0; |
| |
| /* |
| * Calculate the size of the header and the offset of the |
| * payload |
| */ |
| headersz = image_headersz_v0(&has_ext); |
| *dataoff = image_headersz_align(headersz, image_get_bootfrom()); |
| |
| image = malloc(headersz); |
| if (!image) { |
| fprintf(stderr, "Cannot allocate memory for image\n"); |
| return NULL; |
| } |
| |
| memset(image, 0, headersz); |
| |
| main_hdr = (struct main_hdr_v0 *)image; |
| |
| /* Fill in the main header */ |
| main_hdr->blocksize = |
| cpu_to_le32(payloadsz); |
| main_hdr->srcaddr = cpu_to_le32(*dataoff); |
| main_hdr->ext = has_ext; |
| main_hdr->version = 0; |
| main_hdr->destaddr = cpu_to_le32(params->addr); |
| main_hdr->execaddr = cpu_to_le32(params->ep); |
| main_hdr->blockid = image_get_bootfrom(); |
| |
| e = image_find_option(IMAGE_CFG_NAND_ECC_MODE); |
| if (e) |
| main_hdr->nandeccmode = e->nandeccmode; |
| e = image_find_option(IMAGE_CFG_NAND_BLKSZ); |
| if (e) |
| main_hdr->nandblocksize = e->nandblksz / (64 * 1024); |
| e = image_find_option(IMAGE_CFG_NAND_PAGESZ); |
| if (e) |
| main_hdr->nandpagesize = cpu_to_le16(e->nandpagesz); |
| e = image_find_option(IMAGE_CFG_NAND_BADBLK_LOCATION); |
| if (e) |
| main_hdr->nandbadblklocation = e->nandbadblklocation; |
| |
| /* For SATA srcaddr is specified in number of sectors. */ |
| if (main_hdr->blockid == IBR_HDR_SATA_ID) { |
| params->bl_len = image_get_satablksz(); |
| main_hdr->srcaddr = cpu_to_le32(le32_to_cpu(main_hdr->srcaddr) / params->bl_len); |
| } |
| |
| /* For PCIe srcaddr is not used and must be set to 0xFFFFFFFF. */ |
| if (main_hdr->blockid == IBR_HDR_PEX_ID) |
| main_hdr->srcaddr = cpu_to_le32(0xFFFFFFFF); |
| |
| if (params->xflag) { |
| if (!image_fill_xip_header(main_hdr, params)) { |
| free(image); |
| return NULL; |
| } |
| *dataoff = le32_to_cpu(main_hdr->srcaddr); |
| } |
| |
| /* Generate the ext header */ |
| if (has_ext) { |
| struct ext_hdr_v0 *ext_hdr; |
| int cfgi, datai; |
| |
| ext_hdr = (struct ext_hdr_v0 *) |
| (image + sizeof(struct main_hdr_v0)); |
| ext_hdr->offset = cpu_to_le32(0x40); |
| |
| for (cfgi = 0, datai = 0; cfgi < cfgn; cfgi++) { |
| e = &image_cfg[cfgi]; |
| if (e->type != IMAGE_CFG_DATA) |
| continue; |
| |
| ext_hdr->rcfg[datai].raddr = |
| cpu_to_le32(e->regdata.raddr); |
| ext_hdr->rcfg[datai].rdata = |
| cpu_to_le32(e->regdata.rdata); |
| datai++; |
| } |
| |
| ext_hdr->checksum = image_checksum8(ext_hdr, |
| sizeof(struct ext_hdr_v0)); |
| } |
| |
| main_hdr->checksum = image_checksum8(image, |
| sizeof(struct main_hdr_v0)); |
| |
| return image; |
| } |
| |
| static size_t image_headersz_v1(int *hasext) |
| { |
| struct image_cfg_element *e; |
| unsigned int count; |
| size_t headersz; |
| int cpu_sheeva; |
| struct stat s; |
| int cfgi; |
| int ret; |
| |
| headersz = sizeof(struct main_hdr_v1); |
| |
| if (image_get_csk_index() >= 0) { |
| headersz += sizeof(struct secure_hdr_v1); |
| if (hasext) |
| *hasext = 1; |
| } |
| |
| cpu_sheeva = image_is_cpu_sheeva(); |
| |
| count = 0; |
| for (cfgi = 0; cfgi < cfgn; cfgi++) { |
| e = &image_cfg[cfgi]; |
| |
| if (e->type == IMAGE_CFG_DATA) |
| count++; |
| |
| if (e->type == IMAGE_CFG_DATA_DELAY || |
| (e->type == IMAGE_CFG_BINARY && count > 0)) { |
| headersz += sizeof(struct register_set_hdr_v1) + 8 * count + 4; |
| count = 0; |
| } |
| |
| if (e->type != IMAGE_CFG_BINARY) |
| continue; |
| |
| ret = stat(e->binary.file, &s); |
| if (ret < 0) { |
| char cwd[PATH_MAX]; |
| char *dir = cwd; |
| |
| memset(cwd, 0, sizeof(cwd)); |
| if (!getcwd(cwd, sizeof(cwd))) { |
| dir = "current working directory"; |
| perror("getcwd() failed"); |
| } |
| |
| fprintf(stderr, |
| "Didn't find the file '%s' in '%s' which is mandatory to generate the image\n" |
| "This file generally contains the DDR3 training code, and should be extracted from an existing bootable\n" |
| "image for your board. Use 'dumpimage -T kwbimage -p 1' to extract it from an existing image.\n", |
| e->binary.file, dir); |
| return 0; |
| } |
| |
| headersz += sizeof(struct opt_hdr_v1) + sizeof(uint32_t) + |
| (e->binary.nargs) * sizeof(uint32_t); |
| |
| if (e->binary.loadaddr) { |
| /* |
| * BootROM loads kwbimage header (in which the |
| * executable code is also stored) to address |
| * 0x40004000 or 0x40000000. Thus there is |
| * restriction for the load address of the N-th |
| * BINARY image. |
| */ |
| unsigned int base_addr, low_addr, high_addr; |
| |
| base_addr = cpu_sheeva ? 0x40004000 : 0x40000000; |
| low_addr = base_addr + headersz; |
| high_addr = low_addr + |
| (BINARY_MAX_ARGS - e->binary.nargs) * sizeof(uint32_t); |
| |
| if (cpu_sheeva && e->binary.loadaddr % 16) { |
| fprintf(stderr, |
| "Invalid LOAD_ADDRESS 0x%08x for BINARY %s with %d args.\n" |
| "Address for CPU SHEEVA must be 16-byte aligned.\n", |
| e->binary.loadaddr, e->binary.file, e->binary.nargs); |
| return 0; |
| } |
| |
| if (e->binary.loadaddr % 4 || e->binary.loadaddr < low_addr || |
| e->binary.loadaddr > high_addr) { |
| fprintf(stderr, |
| "Invalid LOAD_ADDRESS 0x%08x for BINARY %s with %d args.\n" |
| "Address must be 4-byte aligned and in range 0x%08x-0x%08x.\n", |
| e->binary.loadaddr, e->binary.file, |
| e->binary.nargs, low_addr, high_addr); |
| return 0; |
| } |
| headersz = e->binary.loadaddr - base_addr; |
| } else if (cpu_sheeva) { |
| headersz = ALIGN(headersz, 16); |
| } else { |
| headersz = ALIGN(headersz, 4); |
| } |
| |
| headersz += ALIGN(s.st_size, 4) + sizeof(uint32_t); |
| if (hasext) |
| *hasext = 1; |
| } |
| |
| if (count > 0) |
| headersz += sizeof(struct register_set_hdr_v1) + 8 * count + 4; |
| |
| /* |
| * For all images except UART, headersz stored in header itself should |
| * contains header size without padding. For UART image BootROM rounds |
| * down headersz to multiply of 128 bytes. Therefore align UART headersz |
| * to multiply of 128 bytes to ensure that remaining UART header bytes |
| * are not ignored by BootROM. |
| */ |
| if (image_get_bootfrom() == IBR_HDR_UART_ID) |
| headersz = ALIGN(headersz, 128); |
| |
| return headersz; |
| } |
| |
| static int add_binary_header_v1(uint8_t **cur, uint8_t **next_ext, |
| struct image_cfg_element *binarye, |
| struct main_hdr_v1 *main_hdr) |
| { |
| struct opt_hdr_v1 *hdr = (struct opt_hdr_v1 *)*cur; |
| uint32_t base_addr; |
| uint32_t add_args; |
| uint32_t offset; |
| uint32_t *args; |
| size_t binhdrsz; |
| int cpu_sheeva; |
| struct stat s; |
| int argi; |
| FILE *bin; |
| int ret; |
| |
| hdr->headertype = OPT_HDR_V1_BINARY_TYPE; |
| |
| bin = fopen(binarye->binary.file, "r"); |
| if (!bin) { |
| fprintf(stderr, "Cannot open binary file %s\n", |
| binarye->binary.file); |
| return -1; |
| } |
| |
| if (fstat(fileno(bin), &s)) { |
| fprintf(stderr, "Cannot stat binary file %s\n", |
| binarye->binary.file); |
| goto err_close; |
| } |
| |
| *cur += sizeof(struct opt_hdr_v1); |
| |
| args = (uint32_t *)*cur; |
| *args = cpu_to_le32(binarye->binary.nargs); |
| args++; |
| for (argi = 0; argi < binarye->binary.nargs; argi++) |
| args[argi] = cpu_to_le32(binarye->binary.args[argi]); |
| |
| *cur += (binarye->binary.nargs + 1) * sizeof(uint32_t); |
| |
| /* |
| * ARM executable code inside the BIN header on platforms with Sheeva |
| * CPU (A370 and AXP) must always be aligned with the 128-bit boundary. |
| * In the case when this code is not position independent (e.g. ARM |
| * SPL), it must be placed at fixed load and execute address. |
| * This requirement can be met by inserting dummy arguments into |
| * BIN header, if needed. |
| */ |
| cpu_sheeva = image_is_cpu_sheeva(); |
| base_addr = cpu_sheeva ? 0x40004000 : 0x40000000; |
| offset = *cur - (uint8_t *)main_hdr; |
| if (binarye->binary.loadaddr) |
| add_args = (binarye->binary.loadaddr - base_addr - offset) / sizeof(uint32_t); |
| else if (cpu_sheeva) |
| add_args = ((16 - offset % 16) % 16) / sizeof(uint32_t); |
| else |
| add_args = 0; |
| if (add_args) { |
| *(args - 1) = cpu_to_le32(binarye->binary.nargs + add_args); |
| *cur += add_args * sizeof(uint32_t); |
| } |
| |
| ret = fread(*cur, s.st_size, 1, bin); |
| if (ret != 1) { |
| fprintf(stderr, |
| "Could not read binary image %s\n", |
| binarye->binary.file); |
| goto err_close; |
| } |
| |
| fclose(bin); |
| |
| *cur += ALIGN(s.st_size, 4); |
| |
| *((uint32_t *)*cur) = 0x00000000; |
| **next_ext = 1; |
| *next_ext = *cur; |
| |
| *cur += sizeof(uint32_t); |
| |
| binhdrsz = sizeof(struct opt_hdr_v1) + |
| (binarye->binary.nargs + add_args + 2) * sizeof(uint32_t) + |
| ALIGN(s.st_size, 4); |
| hdr->headersz_lsb = cpu_to_le16(binhdrsz & 0xFFFF); |
| hdr->headersz_msb = (binhdrsz & 0xFFFF0000) >> 16; |
| |
| return 0; |
| |
| err_close: |
| fclose(bin); |
| |
| return -1; |
| } |
| |
| static int export_pub_kak_hash(RSA *kak, struct secure_hdr_v1 *secure_hdr) |
| { |
| FILE *hashf; |
| int res; |
| |
| hashf = fopen("pub_kak_hash.txt", "w"); |
| if (!hashf) { |
| fprintf(stderr, "Couldn't open hash file: '%s': %s\n", |
| "pub_kak_hash.txt", strerror(errno)); |
| return 1; |
| } |
| |
| res = kwb_export_pubkey(kak, &secure_hdr->kak, hashf, "KAK"); |
| |
| fclose(hashf); |
| |
| return res < 0 ? 1 : 0; |
| } |
| |
| static int kwb_sign_csk_with_kak(struct image_tool_params *params, |
| struct secure_hdr_v1 *secure_hdr, RSA *csk) |
| { |
| RSA *kak = NULL; |
| RSA *kak_pub = NULL; |
| int csk_idx = image_get_csk_index(); |
| struct sig_v1 tmp_sig; |
| |
| if (csk_idx < 0 || csk_idx > 15) { |
| fprintf(stderr, "Invalid CSK index %d\n", csk_idx); |
| return 1; |
| } |
| |
| if (kwb_load_kak(params, &kak) < 0) |
| return 1; |
| |
| if (export_pub_kak_hash(kak, secure_hdr)) |
| return 1; |
| |
| if (kwb_import_pubkey(&kak_pub, &secure_hdr->kak, "KAK") < 0) |
| return 1; |
| |
| if (kwb_export_pubkey(csk, &secure_hdr->csk[csk_idx], NULL, "CSK") < 0) |
| return 1; |
| |
| if (kwb_sign_and_verify(kak, &secure_hdr->csk, |
| sizeof(secure_hdr->csk) + |
| sizeof(secure_hdr->csksig), |
| &tmp_sig, "CSK") < 0) |
| return 1; |
| |
| if (kwb_verify(kak_pub, &secure_hdr->csk, |
| sizeof(secure_hdr->csk) + |
| sizeof(secure_hdr->csksig), |
| &tmp_sig, "CSK (2)") < 0) |
| return 1; |
| |
| secure_hdr->csksig = tmp_sig; |
| |
| return 0; |
| } |
| |
| static int add_secure_header_v1(struct image_tool_params *params, uint8_t *image_ptr, |
| size_t image_size, uint8_t *header_ptr, size_t headersz, |
| struct secure_hdr_v1 *secure_hdr) |
| { |
| struct image_cfg_element *e_jtagdelay; |
| struct image_cfg_element *e_boxid; |
| struct image_cfg_element *e_flashid; |
| RSA *csk = NULL; |
| struct sig_v1 tmp_sig; |
| bool specialized_img = image_get_spezialized_img(); |
| |
| kwb_msg("Create secure header content\n"); |
| |
| e_jtagdelay = image_find_option(IMAGE_CFG_JTAG_DELAY); |
| e_boxid = image_find_option(IMAGE_CFG_BOX_ID); |
| e_flashid = image_find_option(IMAGE_CFG_FLASH_ID); |
| |
| if (kwb_load_csk(params, &csk) < 0) |
| return 1; |
| |
| secure_hdr->headertype = OPT_HDR_V1_SECURE_TYPE; |
| secure_hdr->headersz_msb = 0; |
| secure_hdr->headersz_lsb = cpu_to_le16(sizeof(struct secure_hdr_v1)); |
| if (e_jtagdelay) |
| secure_hdr->jtag_delay = e_jtagdelay->jtag_delay; |
| if (e_boxid && specialized_img) |
| secure_hdr->boxid = cpu_to_le32(e_boxid->boxid); |
| if (e_flashid && specialized_img) |
| secure_hdr->flashid = cpu_to_le32(e_flashid->flashid); |
| |
| if (kwb_sign_csk_with_kak(params, secure_hdr, csk)) |
| return 1; |
| |
| if (kwb_sign_and_verify(csk, image_ptr, image_size - 4, |
| &secure_hdr->imgsig, "image") < 0) |
| return 1; |
| |
| if (kwb_sign_and_verify(csk, header_ptr, headersz, &tmp_sig, "header") < 0) |
| return 1; |
| |
| secure_hdr->hdrsig = tmp_sig; |
| |
| kwb_dump_fuse_cmds(secure_hdr); |
| |
| return 0; |
| } |
| |
| static void finish_register_set_header_v1(uint8_t **cur, uint8_t **next_ext, |
| struct register_set_hdr_v1 *register_set_hdr, |
| int *datai, uint8_t delay) |
| { |
| int size = sizeof(struct register_set_hdr_v1) + 8 * (*datai) + 4; |
| |
| register_set_hdr->headertype = OPT_HDR_V1_REGISTER_TYPE; |
| register_set_hdr->headersz_lsb = cpu_to_le16(size & 0xFFFF); |
| register_set_hdr->headersz_msb = size >> 16; |
| register_set_hdr->data[*datai].last_entry.delay = delay; |
| *cur += size; |
| **next_ext = 1; |
| *next_ext = ®ister_set_hdr->data[*datai].last_entry.next; |
| *datai = 0; |
| } |
| |
| static void *image_create_v1(size_t *dataoff, struct image_tool_params *params, |
| uint8_t *ptr, int payloadsz) |
| { |
| struct image_cfg_element *e; |
| struct main_hdr_v1 *main_hdr; |
| struct register_set_hdr_v1 *register_set_hdr; |
| struct secure_hdr_v1 *secure_hdr = NULL; |
| size_t headersz; |
| uint8_t *image, *cur; |
| int hasext = 0; |
| uint8_t *next_ext = NULL; |
| int cfgi, datai; |
| uint8_t delay; |
| |
| /* |
| * Calculate the size of the header and the offset of the |
| * payload |
| */ |
| headersz = image_headersz_v1(&hasext); |
| if (headersz == 0) |
| return NULL; |
| *dataoff = image_headersz_align(headersz, image_get_bootfrom()); |
| |
| image = malloc(headersz); |
| if (!image) { |
| fprintf(stderr, "Cannot allocate memory for image\n"); |
| return NULL; |
| } |
| |
| memset(image, 0, headersz); |
| |
| main_hdr = (struct main_hdr_v1 *)image; |
| cur = image; |
| cur += sizeof(struct main_hdr_v1); |
| next_ext = &main_hdr->ext; |
| |
| /* Fill the main header */ |
| main_hdr->blocksize = |
| cpu_to_le32(payloadsz); |
| main_hdr->headersz_lsb = cpu_to_le16(headersz & 0xFFFF); |
| main_hdr->headersz_msb = (headersz & 0xFFFF0000) >> 16; |
| main_hdr->destaddr = cpu_to_le32(params->addr); |
| main_hdr->execaddr = cpu_to_le32(params->ep); |
| main_hdr->srcaddr = cpu_to_le32(*dataoff); |
| main_hdr->ext = hasext; |
| main_hdr->version = 1; |
| main_hdr->blockid = image_get_bootfrom(); |
| |
| e = image_find_option(IMAGE_CFG_NAND_BLKSZ); |
| if (e) |
| main_hdr->nandblocksize = e->nandblksz / (64 * 1024); |
| e = image_find_option(IMAGE_CFG_NAND_PAGESZ); |
| if (e) |
| main_hdr->nandpagesize = cpu_to_le16(e->nandpagesz); |
| e = image_find_option(IMAGE_CFG_NAND_BADBLK_LOCATION); |
| if (e) |
| main_hdr->nandbadblklocation = e->nandbadblklocation; |
| e = image_find_option(IMAGE_CFG_BAUDRATE); |
| if (e) |
| main_hdr->options |= baudrate_to_option(e->baudrate); |
| e = image_find_option(IMAGE_CFG_UART_PORT); |
| if (e) |
| main_hdr->options |= (e->uart_port & 3) << 3; |
| e = image_find_option(IMAGE_CFG_UART_MPP); |
| if (e) |
| main_hdr->options |= (e->uart_mpp & 7) << 5; |
| e = image_find_option(IMAGE_CFG_DEBUG); |
| if (e) |
| main_hdr->flags = e->debug ? 0x1 : 0; |
| |
| /* For SATA srcaddr is specified in number of sectors. */ |
| if (main_hdr->blockid == IBR_HDR_SATA_ID) { |
| params->bl_len = image_get_satablksz(); |
| main_hdr->srcaddr = cpu_to_le32(le32_to_cpu(main_hdr->srcaddr) / params->bl_len); |
| } |
| |
| /* For PCIe srcaddr is not used and must be set to 0xFFFFFFFF. */ |
| if (main_hdr->blockid == IBR_HDR_PEX_ID) |
| main_hdr->srcaddr = cpu_to_le32(0xFFFFFFFF); |
| |
| if (params->xflag) { |
| if (!image_fill_xip_header(main_hdr, params)) { |
| free(image); |
| return NULL; |
| } |
| *dataoff = le32_to_cpu(main_hdr->srcaddr); |
| } |
| |
| if (image_get_csk_index() >= 0) { |
| /* |
| * only reserve the space here; we fill the header later since |
| * we need the header to be complete to compute the signatures |
| */ |
| secure_hdr = (struct secure_hdr_v1 *)cur; |
| cur += sizeof(struct secure_hdr_v1); |
| *next_ext = 1; |
| next_ext = &secure_hdr->next; |
| } |
| |
| datai = 0; |
| for (cfgi = 0; cfgi < cfgn; cfgi++) { |
| e = &image_cfg[cfgi]; |
| if (e->type != IMAGE_CFG_DATA && |
| e->type != IMAGE_CFG_DATA_DELAY && |
| e->type != IMAGE_CFG_BINARY) |
| continue; |
| |
| if (datai == 0) |
| register_set_hdr = (struct register_set_hdr_v1 *)cur; |
| |
| /* If delay is not specified, use the smallest possible value. */ |
| if (e->type == IMAGE_CFG_DATA_DELAY) |
| delay = e->regdata_delay; |
| else |
| delay = REGISTER_SET_HDR_OPT_DELAY_MS(0); |
| |
| /* |
| * DATA_DELAY command is the last entry in the register set |
| * header and BINARY command inserts new binary header. |
| * Therefore BINARY command requires to finish register set |
| * header if some DATA command was specified. And DATA_DELAY |
| * command automatically finish register set header even when |
| * there was no DATA command. |
| */ |
| if (e->type == IMAGE_CFG_DATA_DELAY || |
| (e->type == IMAGE_CFG_BINARY && datai != 0)) |
| finish_register_set_header_v1(&cur, &next_ext, register_set_hdr, |
| &datai, delay); |
| |
| if (e->type == IMAGE_CFG_DATA) { |
| register_set_hdr->data[datai].entry.address = |
| cpu_to_le32(e->regdata.raddr); |
| register_set_hdr->data[datai].entry.value = |
| cpu_to_le32(e->regdata.rdata); |
| datai++; |
| } |
| |
| if (e->type == IMAGE_CFG_BINARY) { |
| if (add_binary_header_v1(&cur, &next_ext, e, main_hdr)) |
| return NULL; |
| } |
| } |
| if (datai != 0) { |
| /* Set delay to the smallest possible value. */ |
| delay = REGISTER_SET_HDR_OPT_DELAY_MS(0); |
| finish_register_set_header_v1(&cur, &next_ext, register_set_hdr, |
| &datai, delay); |
| } |
| |
| if (secure_hdr && add_secure_header_v1(params, ptr + *dataoff, payloadsz, |
| image, headersz, secure_hdr)) |
| return NULL; |
| |
| /* Calculate and set the header checksum */ |
| main_hdr->checksum = image_checksum8(main_hdr, headersz); |
| |
| return image; |
| } |
| |
| static int recognize_keyword(char *keyword) |
| { |
| int kw_id; |
| |
| for (kw_id = 1; kw_id < IMAGE_CFG_COUNT; ++kw_id) |
| if (!strcmp(keyword, id_strs[kw_id])) |
| return kw_id; |
| |
| return 0; |
| } |
| |
| static int image_create_config_parse_oneline(char *line, |
| struct image_cfg_element *el) |
| { |
| char *keyword, *saveptr, *value1, *value2; |
| char delimiters[] = " \t"; |
| int keyword_id, ret, argi; |
| char *unknown_msg = "Ignoring unknown line '%s'\n"; |
| |
| keyword = strtok_r(line, delimiters, &saveptr); |
| keyword_id = recognize_keyword(keyword); |
| |
| if (!keyword_id) { |
| fprintf(stderr, unknown_msg, line); |
| return 0; |
| } |
| |
| el->type = keyword_id; |
| |
| value1 = strtok_r(NULL, delimiters, &saveptr); |
| |
| if (!value1) { |
| fprintf(stderr, "Parameter missing in line '%s'\n", line); |
| return -1; |
| } |
| |
| switch (keyword_id) { |
| case IMAGE_CFG_VERSION: |
| el->version = atoi(value1); |
| break; |
| case IMAGE_CFG_CPU: |
| if (strcmp(value1, "FEROCEON") == 0) |
| el->cpu_sheeva = 0; |
| else if (strcmp(value1, "SHEEVA") == 0) |
| el->cpu_sheeva = 1; |
| else if (strcmp(value1, "A9") == 0) |
| el->cpu_sheeva = 0; |
| else { |
| fprintf(stderr, "Invalid CPU %s\n", value1); |
| return -1; |
| } |
| break; |
| case IMAGE_CFG_BOOT_FROM: |
| ret = image_boot_mode_id(value1); |
| |
| if (ret < 0) { |
| fprintf(stderr, "Invalid boot media '%s'\n", value1); |
| return -1; |
| } |
| el->bootfrom = ret; |
| break; |
| case IMAGE_CFG_NAND_BLKSZ: |
| el->nandblksz = strtoul(value1, NULL, 16); |
| break; |
| case IMAGE_CFG_NAND_BADBLK_LOCATION: |
| el->nandbadblklocation = strtoul(value1, NULL, 16); |
| break; |
| case IMAGE_CFG_NAND_ECC_MODE: |
| ret = image_nand_ecc_mode_id(value1); |
| |
| if (ret < 0) { |
| fprintf(stderr, "Invalid NAND ECC mode '%s'\n", value1); |
| return -1; |
| } |
| el->nandeccmode = ret; |
| break; |
| case IMAGE_CFG_NAND_PAGESZ: |
| el->nandpagesz = strtoul(value1, NULL, 16); |
| break; |
| case IMAGE_CFG_SATA_BLKSZ: |
| el->satablksz = strtoul(value1, NULL, 0); |
| if (el->satablksz & (el->satablksz-1)) { |
| fprintf(stderr, "Invalid SATA block size '%s'\n", value1); |
| return -1; |
| } |
| break; |
| case IMAGE_CFG_BINARY: |
| argi = 0; |
| |
| el->binary.file = strdup(value1); |
| while (1) { |
| char *value = strtok_r(NULL, delimiters, &saveptr); |
| char *endptr; |
| |
| if (!value) |
| break; |
| |
| if (!strcmp(value, "LOAD_ADDRESS")) { |
| value = strtok_r(NULL, delimiters, &saveptr); |
| if (!value) { |
| fprintf(stderr, |
| "Missing address argument for BINARY LOAD_ADDRESS\n"); |
| return -1; |
| } |
| el->binary.loadaddr = strtoul(value, &endptr, 16); |
| if (*endptr) { |
| fprintf(stderr, |
| "Invalid argument '%s' for BINARY LOAD_ADDRESS\n", |
| value); |
| return -1; |
| } |
| value = strtok_r(NULL, delimiters, &saveptr); |
| if (value) { |
| fprintf(stderr, |
| "Unexpected argument '%s' after BINARY LOAD_ADDRESS\n", |
| value); |
| return -1; |
| } |
| break; |
| } |
| |
| el->binary.args[argi] = strtoul(value, &endptr, 16); |
| if (*endptr) { |
| fprintf(stderr, "Invalid argument '%s' for BINARY\n", value); |
| return -1; |
| } |
| argi++; |
| if (argi >= BINARY_MAX_ARGS) { |
| fprintf(stderr, |
| "Too many arguments for BINARY\n"); |
| return -1; |
| } |
| } |
| el->binary.nargs = argi; |
| break; |
| case IMAGE_CFG_DATA: |
| value2 = strtok_r(NULL, delimiters, &saveptr); |
| |
| if (!value1 || !value2) { |
| fprintf(stderr, |
| "Invalid number of arguments for DATA\n"); |
| return -1; |
| } |
| |
| el->regdata.raddr = strtoul(value1, NULL, 16); |
| el->regdata.rdata = strtoul(value2, NULL, 16); |
| break; |
| case IMAGE_CFG_DATA_DELAY: |
| if (!strcmp(value1, "SDRAM_SETUP")) |
| el->regdata_delay = REGISTER_SET_HDR_OPT_DELAY_SDRAM_SETUP; |
| else |
| el->regdata_delay = REGISTER_SET_HDR_OPT_DELAY_MS(strtoul(value1, NULL, 10)); |
| if (el->regdata_delay > 255) { |
| fprintf(stderr, "Maximal DATA_DELAY is 255\n"); |
| return -1; |
| } |
| break; |
| case IMAGE_CFG_BAUDRATE: |
| el->baudrate = strtoul(value1, NULL, 10); |
| break; |
| case IMAGE_CFG_UART_PORT: |
| el->uart_port = strtoul(value1, NULL, 16); |
| break; |
| case IMAGE_CFG_UART_MPP: |
| el->uart_mpp = strtoul(value1, NULL, 16); |
| break; |
| case IMAGE_CFG_DEBUG: |
| el->debug = strtoul(value1, NULL, 10); |
| break; |
| case IMAGE_CFG_KAK: |
| el->key_name = strdup(value1); |
| break; |
| case IMAGE_CFG_CSK: |
| el->key_name = strdup(value1); |
| break; |
| case IMAGE_CFG_CSK_INDEX: |
| el->csk_idx = strtol(value1, NULL, 0); |
| break; |
| case IMAGE_CFG_JTAG_DELAY: |
| el->jtag_delay = strtoul(value1, NULL, 0); |
| break; |
| case IMAGE_CFG_BOX_ID: |
| el->boxid = strtoul(value1, NULL, 0); |
| break; |
| case IMAGE_CFG_FLASH_ID: |
| el->flashid = strtoul(value1, NULL, 0); |
| break; |
| case IMAGE_CFG_SEC_SPECIALIZED_IMG: |
| el->sec_specialized_img = true; |
| break; |
| case IMAGE_CFG_SEC_COMMON_IMG: |
| el->sec_specialized_img = false; |
| break; |
| case IMAGE_CFG_SEC_BOOT_DEV: |
| el->sec_boot_dev = strtoul(value1, NULL, 0); |
| break; |
| case IMAGE_CFG_SEC_FUSE_DUMP: |
| el->name = strdup(value1); |
| break; |
| default: |
| fprintf(stderr, unknown_msg, line); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Parse the configuration file 'fcfg' into the array of configuration |
| * elements 'image_cfg', and return the number of configuration |
| * elements in 'cfgn'. |
| */ |
| static int image_create_config_parse(FILE *fcfg) |
| { |
| int ret; |
| int cfgi = 0; |
| |
| /* Parse the configuration file */ |
| while (!feof(fcfg)) { |
| char *line; |
| char buf[256]; |
| |
| /* Read the current line */ |
| memset(buf, 0, sizeof(buf)); |
| line = fgets(buf, sizeof(buf), fcfg); |
| if (!line) |
| break; |
| |
| /* Ignore useless lines */ |
| if (line[0] == '\n' || line[0] == '#') |
| continue; |
| |
| /* Strip final newline */ |
| if (line[strlen(line) - 1] == '\n') |
| line[strlen(line) - 1] = 0; |
| |
| /* Parse the current line */ |
| ret = image_create_config_parse_oneline(line, |
| &image_cfg[cfgi]); |
| if (ret) |
| return ret; |
| |
| cfgi++; |
| |
| if (cfgi >= IMAGE_CFG_ELEMENT_MAX) { |
| fprintf(stderr, |
| "Too many configuration elements in .cfg file\n"); |
| return -1; |
| } |
| } |
| |
| cfgn = cfgi; |
| return 0; |
| } |
| |
| static int image_get_version(void) |
| { |
| struct image_cfg_element *e; |
| |
| e = image_find_option(IMAGE_CFG_VERSION); |
| if (!e) |
| return -1; |
| |
| return e->version; |
| } |
| |
| static void kwbimage_set_header(void *ptr, struct stat *sbuf, int ifd, |
| struct image_tool_params *params) |
| { |
| FILE *fcfg; |
| void *image = NULL; |
| int version; |
| size_t dataoff = 0; |
| size_t datasz; |
| uint32_t checksum; |
| struct stat s; |
| int ret; |
| |
| params->bl_len = 1; |
| |
| /* |
| * Do not use sbuf->st_size as it contains size with padding. |
| * We need original image data size, so stat original file. |
| */ |
| if (params->skipcpy) { |
| s.st_size = 0; |
| } else if (stat(params->datafile, &s)) { |
| fprintf(stderr, "Could not stat data file %s: %s\n", |
| params->datafile, strerror(errno)); |
| exit(EXIT_FAILURE); |
| } |
| datasz = ALIGN(s.st_size, 4); |
| |
| fcfg = fopen(params->imagename, "r"); |
| if (!fcfg) { |
| fprintf(stderr, "Could not open input file %s\n", |
| params->imagename); |
| exit(EXIT_FAILURE); |
| } |
| |
| image_cfg = malloc(IMAGE_CFG_ELEMENT_MAX * |
| sizeof(struct image_cfg_element)); |
| if (!image_cfg) { |
| fprintf(stderr, "Cannot allocate memory\n"); |
| fclose(fcfg); |
| exit(EXIT_FAILURE); |
| } |
| |
| memset(image_cfg, 0, |
| IMAGE_CFG_ELEMENT_MAX * sizeof(struct image_cfg_element)); |
| rewind(fcfg); |
| |
| ret = image_create_config_parse(fcfg); |
| fclose(fcfg); |
| if (ret) { |
| free(image_cfg); |
| exit(EXIT_FAILURE); |
| } |
| |
| version = image_get_version(); |
| switch (version) { |
| /* |
| * Fallback to version 0 if no version is provided in the |
| * cfg file |
| */ |
| case -1: |
| case 0: |
| image = image_create_v0(&dataoff, params, datasz + 4); |
| break; |
| |
| case 1: |
| image = image_create_v1(&dataoff, params, ptr, datasz + 4); |
| break; |
| |
| default: |
| fprintf(stderr, "Unsupported version %d\n", version); |
| free(image_cfg); |
| exit(EXIT_FAILURE); |
| } |
| |
| if (!image) { |
| fprintf(stderr, "Could not create image\n"); |
| free(image_cfg); |
| exit(EXIT_FAILURE); |
| } |
| |
| free(image_cfg); |
| |
| /* Build and add image data checksum */ |
| checksum = cpu_to_le32(image_checksum32((uint8_t *)ptr + dataoff, |
| datasz)); |
| memcpy((uint8_t *)ptr + dataoff + datasz, &checksum, sizeof(uint32_t)); |
| |
| /* Finally copy the header into the image area */ |
| memcpy(ptr, image, kwbheader_size(image)); |
| |
| free(image); |
| } |
| |
| static void kwbimage_print_header(const void *ptr, struct image_tool_params *params) |
| { |
| struct main_hdr_v0 *mhdr = (struct main_hdr_v0 *)ptr; |
| struct bin_hdr_v0 *bhdr; |
| struct opt_hdr_v1 *ohdr; |
| |
| printf("Image Type: MVEBU Boot from %s Image\n", |
| image_boot_mode_name(mhdr->blockid)); |
| printf("Image version:%d\n", kwbimage_version(ptr)); |
| |
| for_each_opt_hdr_v1 (ohdr, mhdr) { |
| if (ohdr->headertype == OPT_HDR_V1_BINARY_TYPE) { |
| printf("BIN Img Size: "); |
| genimg_print_size(opt_hdr_v1_size(ohdr) - 12 - |
| 4 * ohdr->data[0]); |
| printf("BIN Img Offs: "); |
| genimg_print_size(((uint8_t *)ohdr - (uint8_t *)mhdr) + |
| 8 + 4 * ohdr->data[0]); |
| } |
| } |
| |
| for_each_bin_hdr_v0(bhdr, mhdr) { |
| printf("BIN Img Size: "); |
| genimg_print_size(le32_to_cpu(bhdr->size)); |
| printf("BIN Img Addr: %08x\n", le32_to_cpu(bhdr->destaddr)); |
| printf("BIN Img Entr: %08x\n", le32_to_cpu(bhdr->execaddr)); |
| } |
| |
| printf("Data Size: "); |
| genimg_print_size(le32_to_cpu(mhdr->blocksize) - sizeof(uint32_t)); |
| printf("Data Offset: "); |
| if (mhdr->blockid == IBR_HDR_SATA_ID) |
| printf("%u Sector%s (LBA) = ", le32_to_cpu(mhdr->srcaddr), |
| le32_to_cpu(mhdr->srcaddr) != 1 ? "s" : ""); |
| genimg_print_size(le32_to_cpu(mhdr->srcaddr) * params->bl_len); |
| if (mhdr->blockid == IBR_HDR_SATA_ID) |
| printf("Sector Size: %u Bytes\n", params->bl_len); |
| if (mhdr->blockid == IBR_HDR_SPI_ID && le32_to_cpu(mhdr->destaddr) == 0xFFFFFFFF) { |
| printf("Load Address: XIP\n"); |
| printf("Execute Offs: %08x\n", le32_to_cpu(mhdr->execaddr)); |
| } else { |
| printf("Load Address: %08x\n", le32_to_cpu(mhdr->destaddr)); |
| printf("Entry Point: %08x\n", le32_to_cpu(mhdr->execaddr)); |
| } |
| } |
| |
| static int kwbimage_check_image_types(uint8_t type) |
| { |
| if (type == IH_TYPE_KWBIMAGE) |
| return EXIT_SUCCESS; |
| |
| return EXIT_FAILURE; |
| } |
| |
| static int kwbimage_verify_header(unsigned char *ptr, int image_size, |
| struct image_tool_params *params) |
| { |
| size_t header_size = kwbheader_size(ptr); |
| uint8_t blockid; |
| uint32_t offset; |
| uint32_t size; |
| uint8_t csum; |
| int blksz; |
| |
| if (header_size > 192*1024) |
| return -FDT_ERR_BADSTRUCTURE; |
| |
| if (header_size > image_size) |
| return -FDT_ERR_BADSTRUCTURE; |
| |
| if (!main_hdr_checksum_ok(ptr)) |
| return -FDT_ERR_BADSTRUCTURE; |
| |
| /* Only version 0 extended header has checksum */ |
| if (kwbimage_version(ptr) == 0) { |
| struct main_hdr_v0 *mhdr = (struct main_hdr_v0 *)ptr; |
| struct ext_hdr_v0 *ext_hdr; |
| struct bin_hdr_v0 *bhdr; |
| |
| for_each_ext_hdr_v0(ext_hdr, ptr) { |
| csum = image_checksum8(ext_hdr, sizeof(*ext_hdr) - 1); |
| if (csum != ext_hdr->checksum) |
| return -FDT_ERR_BADSTRUCTURE; |
| } |
| |
| for_each_bin_hdr_v0(bhdr, ptr) { |
| csum = image_checksum8(bhdr, (uint8_t *)&bhdr->checksum - (uint8_t *)bhdr - 1); |
| if (csum != bhdr->checksum) |
| return -FDT_ERR_BADSTRUCTURE; |
| |
| if (bhdr->offset > sizeof(*bhdr) || bhdr->offset % 4 != 0) |
| return -FDT_ERR_BADSTRUCTURE; |
| |
| if (bhdr->offset + bhdr->size + 4 > sizeof(*bhdr) || bhdr->size % 4 != 0) |
| return -FDT_ERR_BADSTRUCTURE; |
| |
| if (image_checksum32((uint8_t *)bhdr + bhdr->offset, bhdr->size) != |
| *(uint32_t *)((uint8_t *)bhdr + bhdr->offset + bhdr->size)) |
| return -FDT_ERR_BADSTRUCTURE; |
| } |
| |
| blockid = mhdr->blockid; |
| offset = le32_to_cpu(mhdr->srcaddr); |
| size = le32_to_cpu(mhdr->blocksize); |
| } else if (kwbimage_version(ptr) == 1) { |
| struct main_hdr_v1 *mhdr = (struct main_hdr_v1 *)ptr; |
| const uint8_t *mhdr_end; |
| struct opt_hdr_v1 *ohdr; |
| |
| mhdr_end = (uint8_t *)mhdr + header_size; |
| for_each_opt_hdr_v1 (ohdr, ptr) |
| if (!opt_hdr_v1_valid_size(ohdr, mhdr_end)) |
| return -FDT_ERR_BADSTRUCTURE; |
| |
| blockid = mhdr->blockid; |
| offset = le32_to_cpu(mhdr->srcaddr); |
| size = le32_to_cpu(mhdr->blocksize); |
| } else { |
| return -FDT_ERR_BADSTRUCTURE; |
| } |
| |
| if (size < 4 || size % 4 != 0) |
| return -FDT_ERR_BADSTRUCTURE; |
| |
| /* |
| * For SATA srcaddr is specified in number of sectors. |
| * Try all possible sector sizes which are power of two, |
| * at least 512 bytes and up to the 32 kB. |
| */ |
| if (blockid == IBR_HDR_SATA_ID) { |
| for (blksz = 512; blksz < 0x10000; blksz *= 2) { |
| if (offset * blksz > image_size || offset * blksz + size > image_size) |
| break; |
| |
| if (image_checksum32(ptr + offset * blksz, size - 4) == |
| *(uint32_t *)(ptr + offset * blksz + size - 4)) { |
| params->bl_len = blksz; |
| return 0; |
| } |
| } |
| |
| return -FDT_ERR_BADSTRUCTURE; |
| } |
| |
| /* |
| * For PCIe srcaddr is always set to 0xFFFFFFFF. |
| * This expects that data starts after all headers. |
| */ |
| if (blockid == IBR_HDR_PEX_ID && offset == 0xFFFFFFFF) |
| offset = header_size; |
| |
| if (offset % 4 != 0 || offset > image_size || offset + size > image_size) |
| return -FDT_ERR_BADSTRUCTURE; |
| |
| if (image_checksum32(ptr + offset, size - 4) != |
| *(uint32_t *)(ptr + offset + size - 4)) |
| return -FDT_ERR_BADSTRUCTURE; |
| |
| params->bl_len = 1; |
| return 0; |
| } |
| |
| static int kwbimage_generate(struct image_tool_params *params, |
| struct image_type_params *tparams) |
| { |
| FILE *fcfg; |
| struct stat s; |
| int alloc_len; |
| int bootfrom; |
| int version; |
| void *hdr; |
| int ret; |
| int align, size; |
| unsigned int satablksz; |
| |
| fcfg = fopen(params->imagename, "r"); |
| if (!fcfg) { |
| fprintf(stderr, "Could not open input file %s\n", |
| params->imagename); |
| exit(EXIT_FAILURE); |
| } |
| |
| if (params->skipcpy) { |
| s.st_size = 0; |
| } else if (stat(params->datafile, &s)) { |
| fprintf(stderr, "Could not stat data file %s: %s\n", |
| params->datafile, strerror(errno)); |
| exit(EXIT_FAILURE); |
| } |
| |
| image_cfg = malloc(IMAGE_CFG_ELEMENT_MAX * |
| sizeof(struct image_cfg_element)); |
| if (!image_cfg) { |
| fprintf(stderr, "Cannot allocate memory\n"); |
| fclose(fcfg); |
| exit(EXIT_FAILURE); |
| } |
| |
| memset(image_cfg, 0, |
| IMAGE_CFG_ELEMENT_MAX * sizeof(struct image_cfg_element)); |
| rewind(fcfg); |
| |
| ret = image_create_config_parse(fcfg); |
| fclose(fcfg); |
| if (ret) { |
| free(image_cfg); |
| exit(EXIT_FAILURE); |
| } |
| |
| bootfrom = image_get_bootfrom(); |
| version = image_get_version(); |
| satablksz = image_get_satablksz(); |
| switch (version) { |
| /* |
| * Fallback to version 0 if no version is provided in the |
| * cfg file |
| */ |
| case -1: |
| case 0: |
| alloc_len = image_headersz_v0(NULL); |
| break; |
| |
| case 1: |
| alloc_len = image_headersz_v1(NULL); |
| if (!alloc_len) { |
| free(image_cfg); |
| exit(EXIT_FAILURE); |
| } |
| if (alloc_len > 192*1024) { |
| fprintf(stderr, "Header is too big (%u bytes), maximal kwbimage header size is %u bytes\n", alloc_len, 192*1024); |
| free(image_cfg); |
| exit(EXIT_FAILURE); |
| } |
| break; |
| |
| default: |
| fprintf(stderr, "Unsupported version %d\n", version); |
| free(image_cfg); |
| exit(EXIT_FAILURE); |
| } |
| |
| alloc_len = image_headersz_align(alloc_len, image_get_bootfrom()); |
| |
| free(image_cfg); |
| |
| hdr = malloc(alloc_len); |
| if (!hdr) { |
| fprintf(stderr, "%s: malloc return failure: %s\n", |
| params->cmdname, strerror(errno)); |
| exit(EXIT_FAILURE); |
| } |
| |
| memset(hdr, 0, alloc_len); |
| tparams->header_size = alloc_len; |
| tparams->hdr = hdr; |
| |
| /* |
| * Final SATA images must be aligned to disk block size. |
| * Final SDIO images must be aligned to 512 bytes. |
| * Final SPI and NAND images must be aligned to 256 bytes. |
| * Final UART image must be aligned to 128 bytes. |
| */ |
| if (bootfrom == IBR_HDR_SATA_ID) |
| align = satablksz; |
| else if (bootfrom == IBR_HDR_SDIO_ID) |
| align = 512; |
| else if (bootfrom == IBR_HDR_SPI_ID || bootfrom == IBR_HDR_NAND_ID) |
| align = 256; |
| else if (bootfrom == IBR_HDR_UART_ID) |
| align = 128; |
| else |
| align = 4; |
| |
| /* |
| * The resulting image needs to be 4-byte aligned. At least |
| * the Marvell hdrparser tool complains if its unaligned. |
| * After the image data is stored 4-byte checksum. |
| */ |
| size = 4 + (align - (alloc_len + s.st_size + 4) % align) % align; |
| |
| /* |
| * This function should return aligned size of the datafile. |
| * When skipcpy is set (datafile is skipped) then return value of this |
| * function is ignored, so we have to put required kwbimage aligning |
| * into the preallocated header size. |
| */ |
| if (params->skipcpy) { |
| tparams->header_size += size; |
| return 0; |
| } else { |
| return size; |
| } |
| } |
| |
| static int kwbimage_generate_config(void *ptr, struct image_tool_params *params) |
| { |
| struct main_hdr_v0 *mhdr0 = (struct main_hdr_v0 *)ptr; |
| struct main_hdr_v1 *mhdr = (struct main_hdr_v1 *)ptr; |
| size_t header_size = kwbheader_size(ptr); |
| struct register_set_hdr_v1 *regset_hdr; |
| struct ext_hdr_v0_reg *regdata; |
| struct ext_hdr_v0 *ehdr0; |
| struct bin_hdr_v0 *bhdr0; |
| struct opt_hdr_v1 *ohdr; |
| int regset_count; |
| int params_count; |
| unsigned offset; |
| int is_v0_ext; |
| int cur_idx; |
| int version; |
| FILE *f; |
| int i; |
| |
| f = fopen(params->outfile, "w"); |
| if (!f) { |
| fprintf(stderr, "Can't open \"%s\": %s\n", params->outfile, strerror(errno)); |
| return -1; |
| } |
| |
| version = kwbimage_version(ptr); |
| |
| is_v0_ext = 0; |
| if (version == 0) { |
| if (mhdr0->ext > 1 || mhdr0->bin || |
| ((ehdr0 = ext_hdr_v0_first(ptr)) && |
| (ehdr0->match_addr || ehdr0->match_mask || ehdr0->match_value))) |
| is_v0_ext = 1; |
| } |
| |
| if (version != 0) |
| fprintf(f, "VERSION %d\n", version); |
| |
| fprintf(f, "BOOT_FROM %s\n", image_boot_mode_name(mhdr->blockid) ?: "<unknown>"); |
| |
| if (version == 0 && mhdr->blockid == IBR_HDR_NAND_ID) |
| fprintf(f, "NAND_ECC_MODE %s\n", image_nand_ecc_mode_name(mhdr0->nandeccmode)); |
| |
| if (mhdr->blockid == IBR_HDR_NAND_ID) |
| fprintf(f, "NAND_PAGE_SIZE 0x%x\n", (unsigned)le16_to_cpu(mhdr->nandpagesize)); |
| |
| if (mhdr->blockid == IBR_HDR_NAND_ID && (version != 0 || is_v0_ext || mhdr->nandblocksize != 0)) { |
| if (mhdr->nandblocksize != 0) /* block size explicitly set in 64 kB unit */ |
| fprintf(f, "NAND_BLKSZ 0x%x\n", (unsigned)mhdr->nandblocksize * 64*1024); |
| else if (le16_to_cpu(mhdr->nandpagesize) > 512) |
| fprintf(f, "NAND_BLKSZ 0x10000\n"); /* large page NAND flash = 64 kB block size */ |
| else |
| fprintf(f, "NAND_BLKSZ 0x4000\n"); /* small page NAND flash = 16 kB block size */ |
| } |
| |
| if (mhdr->blockid == IBR_HDR_NAND_ID && (version != 0 || is_v0_ext)) |
| fprintf(f, "NAND_BADBLK_LOCATION 0x%x\n", (unsigned)mhdr->nandbadblklocation); |
| |
| if (version == 0 && mhdr->blockid == IBR_HDR_SATA_ID) |
| fprintf(f, "SATA_PIO_MODE %u\n", (unsigned)mhdr0->satapiomode); |
| |
| if (mhdr->blockid == IBR_HDR_SATA_ID) |
| fprintf(f, "SATA_BLKSZ %u\n", params->bl_len); |
| |
| /* |
| * Addresses and sizes which are specified by mkimage command line |
| * arguments and not in kwbimage config file |
| */ |
| |
| if (version != 0) |
| fprintf(f, "#HEADER_SIZE 0x%x\n", |
| ((unsigned)mhdr->headersz_msb << 8) | le16_to_cpu(mhdr->headersz_lsb)); |
| |
| fprintf(f, "#SRC_ADDRESS 0x%x\n", le32_to_cpu(mhdr->srcaddr)); |
| fprintf(f, "#BLOCK_SIZE 0x%x\n", le32_to_cpu(mhdr->blocksize)); |
| fprintf(f, "#DEST_ADDRESS 0x%08x\n", le32_to_cpu(mhdr->destaddr)); |
| fprintf(f, "#EXEC_ADDRESS 0x%08x\n", le32_to_cpu(mhdr->execaddr)); |
| |
| if (version != 0) { |
| if (options_to_baudrate(mhdr->options)) |
| fprintf(f, "BAUDRATE %u\n", options_to_baudrate(mhdr->options)); |
| if (options_to_baudrate(mhdr->options) || |
| ((mhdr->options >> 3) & 0x3) || ((mhdr->options >> 5) & 0x7)) { |
| fprintf(f, "UART_PORT %u\n", (unsigned)((mhdr->options >> 3) & 0x3)); |
| fprintf(f, "UART_MPP 0x%x\n", (unsigned)((mhdr->options >> 5) & 0x7)); |
| } |
| if (mhdr->flags & 0x1) |
| fprintf(f, "DEBUG 1\n"); |
| } |
| |
| cur_idx = 1; |
| for_each_opt_hdr_v1(ohdr, ptr) { |
| if (ohdr->headertype == OPT_HDR_V1_SECURE_TYPE) { |
| fprintf(f, "#SECURE_HEADER\n"); |
| } else if (ohdr->headertype == OPT_HDR_V1_BINARY_TYPE) { |
| fprintf(f, "BINARY binary%d.bin", cur_idx); |
| for (i = 0; i < ohdr->data[0]; i++) |
| fprintf(f, " 0x%x", le32_to_cpu(((uint32_t *)ohdr->data)[i + 1])); |
| offset = (unsigned)((uint8_t *)ohdr - (uint8_t *)mhdr) + 8 + 4 * ohdr->data[0]; |
| fprintf(f, " LOAD_ADDRESS 0x%08x\n", 0x40000000 + offset); |
| fprintf(f, " # for CPU SHEEVA: LOAD_ADDRESS 0x%08x\n", 0x40004000 + offset); |
| cur_idx++; |
| } else if (ohdr->headertype == OPT_HDR_V1_REGISTER_TYPE) { |
| regset_hdr = (struct register_set_hdr_v1 *)ohdr; |
| if (opt_hdr_v1_size(ohdr) > sizeof(*ohdr)) |
| regset_count = (opt_hdr_v1_size(ohdr) - sizeof(*ohdr)) / |
| sizeof(regset_hdr->data[0].entry); |
| else |
| regset_count = 0; |
| for (i = 0; i < regset_count; i++) |
| fprintf(f, "DATA 0x%08x 0x%08x\n", |
| le32_to_cpu(regset_hdr->data[i].entry.address), |
| le32_to_cpu(regset_hdr->data[i].entry.value)); |
| if (regset_count > 0) { |
| if (regset_hdr->data[regset_count-1].last_entry.delay != |
| REGISTER_SET_HDR_OPT_DELAY_SDRAM_SETUP) |
| fprintf(f, "DATA_DELAY %u\n", |
| (unsigned)regset_hdr->data[regset_count-1].last_entry.delay); |
| else |
| fprintf(f, "DATA_DELAY SDRAM_SETUP\n"); |
| } |
| } |
| } |
| |
| if (version == 0 && !is_v0_ext && le16_to_cpu(mhdr0->ddrinitdelay)) |
| fprintf(f, "DDR_INIT_DELAY %u\n", (unsigned)le16_to_cpu(mhdr0->ddrinitdelay)); |
| |
| for_each_ext_hdr_v0(ehdr0, ptr) { |
| if (is_v0_ext) { |
| fprintf(f, "\nMATCH ADDRESS 0x%08x MASK 0x%08x VALUE 0x%08x\n", |
| le32_to_cpu(ehdr0->match_addr), |
| le32_to_cpu(ehdr0->match_mask), |
| le32_to_cpu(ehdr0->match_value)); |
| if (ehdr0->rsvd1[0] || ehdr0->rsvd1[1] || ehdr0->rsvd1[2] || |
| ehdr0->rsvd1[3] || ehdr0->rsvd1[4] || ehdr0->rsvd1[5] || |
| ehdr0->rsvd1[6] || ehdr0->rsvd1[7]) |
| fprintf(f, "#DDR_RSVD1 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x\n", |
| ehdr0->rsvd1[0], ehdr0->rsvd1[1], ehdr0->rsvd1[2], |
| ehdr0->rsvd1[3], ehdr0->rsvd1[4], ehdr0->rsvd1[5], |
| ehdr0->rsvd1[6], ehdr0->rsvd1[7]); |
| if (ehdr0->rsvd2[0] || ehdr0->rsvd2[1] || ehdr0->rsvd2[2] || |
| ehdr0->rsvd2[3] || ehdr0->rsvd2[4] || ehdr0->rsvd2[5] || |
| ehdr0->rsvd2[6]) |
| fprintf(f, "#DDR_RSVD2 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x\n", |
| ehdr0->rsvd2[0], ehdr0->rsvd2[1], ehdr0->rsvd2[2], |
| ehdr0->rsvd2[3], ehdr0->rsvd2[4], ehdr0->rsvd2[5], |
| ehdr0->rsvd2[6]); |
| if (ehdr0->ddrwritetype) |
| fprintf(f, "DDR_WRITE_TYPE %u\n", (unsigned)ehdr0->ddrwritetype); |
| if (ehdr0->ddrresetmpp) |
| fprintf(f, "DDR_RESET_MPP 0x%x\n", (unsigned)ehdr0->ddrresetmpp); |
| if (ehdr0->ddrclkenmpp) |
| fprintf(f, "DDR_CLKEN_MPP 0x%x\n", (unsigned)ehdr0->ddrclkenmpp); |
| if (ehdr0->ddrinitdelay) |
| fprintf(f, "DDR_INIT_DELAY %u\n", (unsigned)ehdr0->ddrinitdelay); |
| } |
| |
| if (ehdr0->offset) { |
| for (regdata = (struct ext_hdr_v0_reg *)((uint8_t *)ptr + ehdr0->offset); |
| (uint8_t *)regdata < (uint8_t *)ptr + header_size && |
| (regdata->raddr || regdata->rdata); |
| regdata++) |
| fprintf(f, "DATA 0x%08x 0x%08x\n", le32_to_cpu(regdata->raddr), |
| le32_to_cpu(regdata->rdata)); |
| if ((uint8_t *)regdata != (uint8_t *)ptr + ehdr0->offset) |
| fprintf(f, "DATA 0x0 0x0\n"); |
| } |
| |
| if (le32_to_cpu(ehdr0->enddelay)) |
| fprintf(f, "DATA_DELAY %u\n", le32_to_cpu(ehdr0->enddelay)); |
| else if (is_v0_ext) |
| fprintf(f, "DATA_DELAY SDRAM_SETUP\n"); |
| } |
| |
| cur_idx = 1; |
| for_each_bin_hdr_v0(bhdr0, ptr) { |
| fprintf(f, "\nMATCH ADDRESS 0x%08x MASK 0x%08x VALUE 0x%08x\n", |
| le32_to_cpu(bhdr0->match_addr), |
| le32_to_cpu(bhdr0->match_mask), |
| le32_to_cpu(bhdr0->match_value)); |
| |
| fprintf(f, "BINARY binary%d.bin", cur_idx); |
| params_count = fls4(bhdr0->params_flags & 0xF); |
| for (i = 0; i < params_count; i++) |
| fprintf(f, " 0x%x", (bhdr0->params[i] & (1 << i)) ? bhdr0->params[i] : 0); |
| fprintf(f, " LOAD_ADDRESS 0x%08x", le32_to_cpu(bhdr0->destaddr)); |
| fprintf(f, " EXEC_ADDRESS 0x%08x", le32_to_cpu(bhdr0->execaddr)); |
| fprintf(f, "\n"); |
| |
| fprintf(f, "#BINARY_OFFSET 0x%x\n", le32_to_cpu(bhdr0->offset)); |
| fprintf(f, "#BINARY_SIZE 0x%x\n", le32_to_cpu(bhdr0->size)); |
| |
| if (bhdr0->rsvd1) |
| fprintf(f, "#BINARY_RSVD1 0x%x\n", (unsigned)bhdr0->rsvd1); |
| if (bhdr0->rsvd2) |
| fprintf(f, "#BINARY_RSVD2 0x%x\n", (unsigned)bhdr0->rsvd2); |
| |
| cur_idx++; |
| } |
| |
| /* Undocumented reserved fields */ |
| |
| if (version == 0 && (mhdr0->rsvd1[0] || mhdr0->rsvd1[1] || mhdr0->rsvd1[2])) |
| fprintf(f, "#RSVD1 0x%x 0x%x 0x%x\n", (unsigned)mhdr0->rsvd1[0], |
| (unsigned)mhdr0->rsvd1[1], (unsigned)mhdr0->rsvd1[2]); |
| |
| if (version == 0 && le16_to_cpu(mhdr0->rsvd2)) |
| fprintf(f, "#RSVD2 0x%x\n", (unsigned)le16_to_cpu(mhdr0->rsvd2)); |
| |
| if (version != 0 && mhdr->reserved4) |
| fprintf(f, "#RESERVED4 0x%x\n", (unsigned)mhdr->reserved4); |
| |
| if (version != 0 && mhdr->reserved5) |
| fprintf(f, "#RESERVED5 0x%x\n", (unsigned)le16_to_cpu(mhdr->reserved5)); |
| |
| fclose(f); |
| |
| return 0; |
| } |
| |
| static int kwbimage_extract_subimage(void *ptr, struct image_tool_params *params) |
| { |
| struct main_hdr_v1 *mhdr = (struct main_hdr_v1 *)ptr; |
| size_t header_size = kwbheader_size(ptr); |
| struct bin_hdr_v0 *bhdr; |
| struct opt_hdr_v1 *ohdr; |
| int idx = params->pflag; |
| int cur_idx; |
| uint32_t offset; |
| ulong image; |
| ulong size; |
| |
| /* Generate kwbimage config file when '-p -1' is specified */ |
| if (idx == -1) |
| return kwbimage_generate_config(ptr, params); |
| |
| image = 0; |
| size = 0; |
| |
| if (idx == 0) { |
| /* Extract data image when -p is not specified or when '-p 0' is specified */ |
| offset = le32_to_cpu(mhdr->srcaddr); |
| |
| if (mhdr->blockid == IBR_HDR_SATA_ID) |
| offset *= params->bl_len; |
| |
| if (mhdr->blockid == IBR_HDR_PEX_ID && offset == 0xFFFFFFFF) |
| offset = header_size; |
| |
| image = (ulong)((uint8_t *)ptr + offset); |
| size = le32_to_cpu(mhdr->blocksize) - 4; |
| } else { |
| /* Extract N-th binary header executabe image when other '-p N' is specified */ |
| cur_idx = 1; |
| for_each_opt_hdr_v1(ohdr, ptr) { |
| if (ohdr->headertype != OPT_HDR_V1_BINARY_TYPE) |
| continue; |
| |
| if (idx == cur_idx) { |
| image = (ulong)&ohdr->data[4 + 4 * ohdr->data[0]]; |
| size = opt_hdr_v1_size(ohdr) - 12 - 4 * ohdr->data[0]; |
| break; |
| } |
| |
| ++cur_idx; |
| } |
| for_each_bin_hdr_v0(bhdr, ptr) { |
| if (idx == cur_idx) { |
| image = (ulong)bhdr + bhdr->offset; |
| size = bhdr->size; |
| break; |
| } |
| ++cur_idx; |
| } |
| |
| if (!image) { |
| fprintf(stderr, "Argument -p %d is invalid\n", idx); |
| fprintf(stderr, "Available subimages:\n"); |
| fprintf(stderr, " -p -1 - kwbimage config file\n"); |
| fprintf(stderr, " -p 0 - data image\n"); |
| if (cur_idx - 1 > 0) |
| fprintf(stderr, " -p N - Nth binary header image (totally: %d)\n", |
| cur_idx - 1); |
| return -1; |
| } |
| } |
| |
| return imagetool_save_subimage(params->outfile, image, size); |
| } |
| |
| static int kwbimage_check_params(struct image_tool_params *params) |
| { |
| if (!params->lflag && !params->iflag && !params->pflag && |
| (!params->imagename || !strlen(params->imagename))) { |
| char *msg = "Configuration file for kwbimage creation omitted"; |
| |
| fprintf(stderr, "Error:%s - %s\n", params->cmdname, msg); |
| return 1; |
| } |
| |
| return (params->dflag && (params->fflag || params->lflag || params->skipcpy)) || |
| (params->fflag) || |
| (params->lflag && (params->dflag || params->fflag)); |
| } |
| |
| /* |
| * kwbimage type parameters definition |
| */ |
| U_BOOT_IMAGE_TYPE( |
| kwbimage, |
| "Marvell MVEBU Boot Image support", |
| 0, |
| NULL, |
| kwbimage_check_params, |
| kwbimage_verify_header, |
| kwbimage_print_header, |
| kwbimage_set_header, |
| kwbimage_extract_subimage, |
| kwbimage_check_image_types, |
| NULL, |
| kwbimage_generate |
| ); |