| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * EFI application memory management |
| * |
| * Copyright (c) 2016 Alexander Graf |
| */ |
| |
| #define LOG_CATEGORY LOGC_EFI |
| |
| #include <efi_loader.h> |
| #include <init.h> |
| #include <lmb.h> |
| #include <log.h> |
| #include <malloc.h> |
| #include <mapmem.h> |
| #include <watchdog.h> |
| #include <asm/cache.h> |
| #include <asm/global_data.h> |
| #include <asm/sections.h> |
| #include <linux/list_sort.h> |
| #include <linux/sizes.h> |
| |
| DECLARE_GLOBAL_DATA_PTR; |
| |
| /* Magic number identifying memory allocated from pool */ |
| #define EFI_ALLOC_POOL_MAGIC 0x1fe67ddf6491caa2 |
| |
| efi_uintn_t efi_memory_map_key; |
| |
| struct efi_mem_list { |
| struct list_head link; |
| struct efi_mem_desc desc; |
| }; |
| |
| #define EFI_CARVE_NO_OVERLAP -1 |
| #define EFI_CARVE_LOOP_AGAIN -2 |
| #define EFI_CARVE_OVERLAPS_NONRAM -3 |
| #define EFI_CARVE_OUT_OF_RESOURCES -4 |
| |
| /* This list contains all memory map items */ |
| static LIST_HEAD(efi_mem); |
| |
| #ifdef CONFIG_EFI_LOADER_BOUNCE_BUFFER |
| void *efi_bounce_buffer; |
| #endif |
| |
| /** |
| * struct efi_pool_allocation - memory block allocated from pool |
| * |
| * @num_pages: number of pages allocated |
| * @checksum: checksum |
| * @data: allocated pool memory |
| * |
| * U-Boot services each UEFI AllocatePool() request as a separate |
| * (multiple) page allocation. We have to track the number of pages |
| * to be able to free the correct amount later. |
| * |
| * The checksum calculated in function checksum() is used in FreePool() to avoid |
| * freeing memory not allocated by AllocatePool() and duplicate freeing. |
| * |
| * EFI requires 8 byte alignment for pool allocations, so we can |
| * prepend each allocation with these header fields. |
| */ |
| struct efi_pool_allocation { |
| u64 num_pages; |
| u64 checksum; |
| char data[] __aligned(ARCH_DMA_MINALIGN); |
| }; |
| |
| /** |
| * checksum() - calculate checksum for memory allocated from pool |
| * |
| * @alloc: allocation header |
| * Return: checksum, always non-zero |
| */ |
| static u64 checksum(struct efi_pool_allocation *alloc) |
| { |
| u64 addr = (uintptr_t)alloc; |
| u64 ret = (addr >> 32) ^ (addr << 32) ^ alloc->num_pages ^ |
| EFI_ALLOC_POOL_MAGIC; |
| if (!ret) |
| ++ret; |
| return ret; |
| } |
| |
| /** |
| * efi_mem_cmp() - comparator function for sorting memory map |
| * |
| * Sorts the memory list from highest address to lowest address |
| * |
| * When allocating memory we should always start from the highest |
| * address chunk, so sort the memory list such that the first list |
| * iterator gets the highest address and goes lower from there. |
| * |
| * @priv: unused |
| * @a: first memory area |
| * @b: second memory area |
| * Return: 1 if @a is before @b, -1 if @b is before @a, 0 if equal |
| */ |
| static int efi_mem_cmp(void *priv, struct list_head *a, struct list_head *b) |
| { |
| struct efi_mem_list *mema = list_entry(a, struct efi_mem_list, link); |
| struct efi_mem_list *memb = list_entry(b, struct efi_mem_list, link); |
| |
| if (mema->desc.physical_start == memb->desc.physical_start) |
| return 0; |
| else if (mema->desc.physical_start < memb->desc.physical_start) |
| return 1; |
| else |
| return -1; |
| } |
| |
| /** |
| * desc_get_end() - get end address of memory area |
| * |
| * @desc: memory descriptor |
| * Return: end address + 1 |
| */ |
| static uint64_t desc_get_end(struct efi_mem_desc *desc) |
| { |
| return desc->physical_start + (desc->num_pages << EFI_PAGE_SHIFT); |
| } |
| |
| /** |
| * efi_mem_sort() - sort memory map |
| * |
| * Sort the memory map and then try to merge adjacent memory areas. |
| */ |
| static void efi_mem_sort(void) |
| { |
| struct efi_mem_list *lmem; |
| struct efi_mem_list *prevmem = NULL; |
| bool merge_again = true; |
| |
| list_sort(NULL, &efi_mem, efi_mem_cmp); |
| |
| /* Now merge entries that can be merged */ |
| while (merge_again) { |
| merge_again = false; |
| list_for_each_entry(lmem, &efi_mem, link) { |
| struct efi_mem_desc *prev; |
| struct efi_mem_desc *cur; |
| uint64_t pages; |
| |
| if (!prevmem) { |
| prevmem = lmem; |
| continue; |
| } |
| |
| cur = &lmem->desc; |
| prev = &prevmem->desc; |
| |
| if ((desc_get_end(cur) == prev->physical_start) && |
| (prev->type == cur->type) && |
| (prev->attribute == cur->attribute)) { |
| /* There is an existing map before, reuse it */ |
| pages = cur->num_pages; |
| prev->num_pages += pages; |
| prev->physical_start -= pages << EFI_PAGE_SHIFT; |
| prev->virtual_start -= pages << EFI_PAGE_SHIFT; |
| list_del(&lmem->link); |
| free(lmem); |
| |
| merge_again = true; |
| break; |
| } |
| |
| prevmem = lmem; |
| } |
| } |
| } |
| |
| /** |
| * efi_mem_carve_out() - unmap memory region |
| * |
| * @map: memory map |
| * @carve_desc: memory region to unmap |
| * @overlap_conventional: the carved out region may only overlap free, |
| * or conventional memory |
| * Return: the number of overlapping pages which have been |
| * removed from the map, |
| * EFI_CARVE_NO_OVERLAP, if the regions don't |
| * overlap, EFI_CARVE_OVERLAPS_NONRAM, if the carve |
| * and map overlap, and the map contains anything |
| * but free ram(only when overlap_conventional is |
| * true), |
| * EFI_CARVE_LOOP_AGAIN, if the mapping list should |
| * be traversed again, as it has been altered. |
| * |
| * Unmaps all memory occupied by the carve_desc region from the list entry |
| * pointed to by map. |
| * |
| * In case of EFI_CARVE_OVERLAPS_NONRAM it is the callers responsibility |
| * to re-add the already carved out pages to the mapping. |
| */ |
| static s64 efi_mem_carve_out(struct efi_mem_list *map, |
| struct efi_mem_desc *carve_desc, |
| bool overlap_conventional) |
| { |
| struct efi_mem_list *newmap; |
| struct efi_mem_desc *map_desc = &map->desc; |
| uint64_t map_start = map_desc->physical_start; |
| uint64_t map_end = map_start + (map_desc->num_pages << EFI_PAGE_SHIFT); |
| uint64_t carve_start = carve_desc->physical_start; |
| uint64_t carve_end = carve_start + |
| (carve_desc->num_pages << EFI_PAGE_SHIFT); |
| |
| /* check whether we're overlapping */ |
| if ((carve_end <= map_start) || (carve_start >= map_end)) |
| return EFI_CARVE_NO_OVERLAP; |
| |
| /* We're overlapping with non-RAM, warn the caller if desired */ |
| if (overlap_conventional && (map_desc->type != EFI_CONVENTIONAL_MEMORY)) |
| return EFI_CARVE_OVERLAPS_NONRAM; |
| |
| /* Sanitize carve_start and carve_end to lie within our bounds */ |
| carve_start = max(carve_start, map_start); |
| carve_end = min(carve_end, map_end); |
| |
| /* Carving at the beginning of our map? Just move it! */ |
| if (carve_start == map_start) { |
| if (map_end == carve_end) { |
| /* Full overlap, just remove map */ |
| list_del(&map->link); |
| free(map); |
| } else { |
| map->desc.physical_start = carve_end; |
| map->desc.virtual_start = carve_end; |
| map->desc.num_pages = (map_end - carve_end) |
| >> EFI_PAGE_SHIFT; |
| } |
| |
| return (carve_end - carve_start) >> EFI_PAGE_SHIFT; |
| } |
| |
| /* |
| * Overlapping maps, just split the list map at carve_start, |
| * it will get moved or removed in the next iteration. |
| * |
| * [ map_desc |__carve_start__| newmap ] |
| */ |
| |
| /* Create a new map from [ carve_start ... map_end ] */ |
| newmap = calloc(1, sizeof(*newmap)); |
| if (!newmap) |
| return EFI_CARVE_OUT_OF_RESOURCES; |
| newmap->desc = map->desc; |
| newmap->desc.physical_start = carve_start; |
| newmap->desc.virtual_start = carve_start; |
| newmap->desc.num_pages = (map_end - carve_start) >> EFI_PAGE_SHIFT; |
| /* Insert before current entry (descending address order) */ |
| list_add_tail(&newmap->link, &map->link); |
| |
| /* Shrink the map to [ map_start ... carve_start ] */ |
| map_desc->num_pages = (carve_start - map_start) >> EFI_PAGE_SHIFT; |
| |
| return EFI_CARVE_LOOP_AGAIN; |
| } |
| |
| /** |
| * efi_add_memory_map_pg() - add pages to the memory map |
| * |
| * @start: start address, must be a multiple of |
| * EFI_PAGE_SIZE |
| * @pages: number of pages to add |
| * @memory_type: type of memory added |
| * @overlap_conventional: region may only overlap free(conventional) |
| * memory |
| * Return: status code |
| */ |
| efi_status_t efi_add_memory_map_pg(u64 start, u64 pages, |
| int memory_type, |
| bool overlap_conventional) |
| { |
| struct efi_mem_list *lmem; |
| struct efi_mem_list *newlist; |
| bool carve_again; |
| uint64_t carved_pages = 0; |
| struct efi_event *evt; |
| |
| EFI_PRINT("%s: 0x%llx 0x%llx %d %s\n", __func__, |
| start, pages, memory_type, overlap_conventional ? |
| "yes" : "no"); |
| |
| if (memory_type >= EFI_MAX_MEMORY_TYPE) |
| return EFI_INVALID_PARAMETER; |
| |
| if (!pages) |
| return EFI_SUCCESS; |
| |
| ++efi_memory_map_key; |
| newlist = calloc(1, sizeof(*newlist)); |
| if (!newlist) |
| return EFI_OUT_OF_RESOURCES; |
| newlist->desc.type = memory_type; |
| newlist->desc.physical_start = start; |
| newlist->desc.virtual_start = start; |
| newlist->desc.num_pages = pages; |
| |
| switch (memory_type) { |
| case EFI_RUNTIME_SERVICES_CODE: |
| case EFI_RUNTIME_SERVICES_DATA: |
| newlist->desc.attribute = EFI_MEMORY_WB | EFI_MEMORY_RUNTIME; |
| break; |
| case EFI_MMAP_IO: |
| newlist->desc.attribute = EFI_MEMORY_RUNTIME; |
| break; |
| default: |
| newlist->desc.attribute = EFI_MEMORY_WB; |
| break; |
| } |
| |
| /* Add our new map */ |
| do { |
| carve_again = false; |
| list_for_each_entry(lmem, &efi_mem, link) { |
| s64 r; |
| |
| r = efi_mem_carve_out(lmem, &newlist->desc, |
| overlap_conventional); |
| switch (r) { |
| case EFI_CARVE_OUT_OF_RESOURCES: |
| free(newlist); |
| return EFI_OUT_OF_RESOURCES; |
| case EFI_CARVE_OVERLAPS_NONRAM: |
| /* |
| * The user requested to only have RAM overlaps, |
| * but we hit a non-RAM region. Error out. |
| */ |
| free(newlist); |
| return EFI_NO_MAPPING; |
| case EFI_CARVE_NO_OVERLAP: |
| /* Just ignore this list entry */ |
| break; |
| case EFI_CARVE_LOOP_AGAIN: |
| /* |
| * We split an entry, but need to loop through |
| * the list again to actually carve it. |
| */ |
| carve_again = true; |
| break; |
| default: |
| /* We carved a number of pages */ |
| carved_pages += r; |
| carve_again = true; |
| break; |
| } |
| |
| if (carve_again) { |
| /* The list changed, we need to start over */ |
| break; |
| } |
| } |
| } while (carve_again); |
| |
| if (overlap_conventional && (carved_pages != pages)) { |
| /* |
| * The payload wanted to have RAM overlaps, but we overlapped |
| * with an unallocated region. Error out. |
| */ |
| free(newlist); |
| return EFI_NO_MAPPING; |
| } |
| |
| /* Add our new map */ |
| list_add_tail(&newlist->link, &efi_mem); |
| |
| /* And make sure memory is listed in descending order */ |
| efi_mem_sort(); |
| |
| /* Notify that the memory map was changed */ |
| list_for_each_entry(evt, &efi_events, link) { |
| if (evt->group && |
| !guidcmp(evt->group, |
| &efi_guid_event_group_memory_map_change)) { |
| efi_signal_event(evt); |
| break; |
| } |
| } |
| |
| return EFI_SUCCESS; |
| } |
| |
| /** |
| * efi_add_memory_map() - add memory area to the memory map |
| * |
| * @start: start address of the memory area |
| * @size: length in bytes of the memory area |
| * @memory_type: type of memory added |
| * |
| * Return: status code |
| * |
| * This function automatically aligns the start and size of the memory area |
| * to EFI_PAGE_SIZE. |
| */ |
| efi_status_t efi_add_memory_map(u64 start, u64 size, int memory_type) |
| { |
| u64 pages; |
| |
| pages = efi_size_in_pages(size + (start & EFI_PAGE_MASK)); |
| start &= ~EFI_PAGE_MASK; |
| |
| return efi_add_memory_map_pg(start, pages, memory_type, false); |
| } |
| |
| /** |
| * efi_check_allocated() - validate address to be freed |
| * |
| * Check that the address is within allocated memory: |
| * |
| * * The address must be in a range of the memory map. |
| * * The address may not point to EFI_CONVENTIONAL_MEMORY. |
| * |
| * Page alignment is not checked as this is not a requirement of |
| * efi_free_pool(). |
| * |
| * @addr: address of page to be freed |
| * @must_be_allocated: return success if the page is allocated |
| * Return: status code |
| */ |
| static efi_status_t efi_check_allocated(u64 addr, bool must_be_allocated) |
| { |
| struct efi_mem_list *item; |
| |
| list_for_each_entry(item, &efi_mem, link) { |
| u64 start = item->desc.physical_start; |
| u64 end = start + (item->desc.num_pages << EFI_PAGE_SHIFT); |
| |
| if (addr >= start && addr < end) { |
| if (must_be_allocated ^ |
| (item->desc.type == EFI_CONVENTIONAL_MEMORY)) |
| return EFI_SUCCESS; |
| else |
| return EFI_NOT_FOUND; |
| } |
| } |
| |
| return EFI_NOT_FOUND; |
| } |
| |
| /** |
| * efi_allocate_pages - allocate memory pages |
| * |
| * @type: type of allocation to be performed |
| * @memory_type: usage type of the allocated memory |
| * @pages: number of pages to be allocated |
| * @memory: allocated memory |
| * Return: status code |
| */ |
| efi_status_t efi_allocate_pages(enum efi_allocate_type type, |
| enum efi_memory_type memory_type, |
| efi_uintn_t pages, uint64_t *memory) |
| { |
| u64 len; |
| uint flags; |
| efi_status_t ret; |
| phys_addr_t addr; |
| |
| /* Check import parameters */ |
| if (memory_type >= EFI_PERSISTENT_MEMORY_TYPE && |
| memory_type <= 0x6FFFFFFF) |
| return EFI_INVALID_PARAMETER; |
| if (!memory) |
| return EFI_INVALID_PARAMETER; |
| len = (u64)pages << EFI_PAGE_SHIFT; |
| /* Catch possible overflow on 64bit systems */ |
| if (sizeof(efi_uintn_t) == sizeof(u64) && |
| (len >> EFI_PAGE_SHIFT) != (u64)pages) |
| return EFI_OUT_OF_RESOURCES; |
| |
| flags = LMB_NOOVERWRITE | LMB_NONOTIFY; |
| switch (type) { |
| case EFI_ALLOCATE_ANY_PAGES: |
| /* Any page */ |
| addr = (u64)lmb_alloc_base_flags(len, EFI_PAGE_SIZE, |
| LMB_ALLOC_ANYWHERE, flags); |
| if (!addr) |
| return EFI_OUT_OF_RESOURCES; |
| break; |
| case EFI_ALLOCATE_MAX_ADDRESS: |
| /* Max address */ |
| addr = map_to_sysmem((void *)(uintptr_t)*memory); |
| addr = (u64)lmb_alloc_base_flags(len, EFI_PAGE_SIZE, addr, |
| flags); |
| if (!addr) |
| return EFI_OUT_OF_RESOURCES; |
| break; |
| case EFI_ALLOCATE_ADDRESS: |
| if (*memory & EFI_PAGE_MASK) |
| return EFI_NOT_FOUND; |
| |
| addr = map_to_sysmem((void *)(uintptr_t)*memory); |
| addr = (u64)lmb_alloc_addr_flags(addr, len, flags); |
| if (!addr) |
| return EFI_NOT_FOUND; |
| break; |
| default: |
| /* UEFI doesn't specify other allocation types */ |
| return EFI_INVALID_PARAMETER; |
| } |
| |
| addr = (u64)(uintptr_t)map_sysmem(addr, 0); |
| /* Reserve that map in our memory maps */ |
| ret = efi_add_memory_map_pg(addr, pages, memory_type, true); |
| if (ret != EFI_SUCCESS) |
| /* Map would overlap, bail out */ |
| return EFI_OUT_OF_RESOURCES; |
| |
| *memory = addr; |
| |
| return EFI_SUCCESS; |
| } |
| |
| /** |
| * efi_free_pages() - free memory pages |
| * |
| * @memory: start of the memory area to be freed |
| * @pages: number of pages to be freed |
| * Return: status code |
| */ |
| efi_status_t efi_free_pages(uint64_t memory, efi_uintn_t pages) |
| { |
| u64 len; |
| long status; |
| efi_status_t ret; |
| |
| ret = efi_check_allocated(memory, true); |
| if (ret != EFI_SUCCESS) |
| return ret; |
| |
| /* Sanity check */ |
| if (!memory || (memory & EFI_PAGE_MASK) || !pages) { |
| printf("%s: illegal free 0x%llx, 0x%zx\n", __func__, |
| memory, pages); |
| return EFI_INVALID_PARAMETER; |
| } |
| |
| len = (u64)pages << EFI_PAGE_SHIFT; |
| /* |
| * The 'memory' variable for sandbox holds a pointer which has already |
| * been mapped with map_sysmem() from efi_allocate_pages(). Convert |
| * it back to an address LMB understands |
| */ |
| status = lmb_free_flags(map_to_sysmem((void *)(uintptr_t)memory), len, |
| LMB_NOOVERWRITE); |
| if (status) |
| return EFI_NOT_FOUND; |
| |
| return ret; |
| } |
| |
| /** |
| * efi_alloc_aligned_pages() - allocate aligned memory pages |
| * |
| * @len: len in bytes |
| * @memory_type: usage type of the allocated memory |
| * @align: alignment in bytes |
| * Return: aligned memory or NULL |
| */ |
| void *efi_alloc_aligned_pages(u64 len, int memory_type, size_t align) |
| { |
| u64 req_pages = efi_size_in_pages(len); |
| u64 true_pages = req_pages + efi_size_in_pages(align) - 1; |
| u64 free_pages; |
| u64 aligned_mem; |
| efi_status_t r; |
| u64 mem; |
| |
| /* align must be zero or a power of two */ |
| if (align & (align - 1)) |
| return NULL; |
| |
| /* Check for overflow */ |
| if (true_pages < req_pages) |
| return NULL; |
| |
| if (align < EFI_PAGE_SIZE) { |
| r = efi_allocate_pages(EFI_ALLOCATE_ANY_PAGES, memory_type, |
| req_pages, &mem); |
| return (r == EFI_SUCCESS) ? (void *)(uintptr_t)mem : NULL; |
| } |
| |
| r = efi_allocate_pages(EFI_ALLOCATE_ANY_PAGES, memory_type, |
| true_pages, &mem); |
| if (r != EFI_SUCCESS) |
| return NULL; |
| |
| aligned_mem = ALIGN(mem, align); |
| /* Free pages before alignment */ |
| free_pages = efi_size_in_pages(aligned_mem - mem); |
| if (free_pages) |
| efi_free_pages(mem, free_pages); |
| |
| /* Free trailing pages */ |
| free_pages = true_pages - (req_pages + free_pages); |
| if (free_pages) { |
| mem = aligned_mem + req_pages * EFI_PAGE_SIZE; |
| efi_free_pages(mem, free_pages); |
| } |
| |
| return (void *)(uintptr_t)aligned_mem; |
| } |
| |
| /** |
| * efi_allocate_pool - allocate memory from pool |
| * |
| * @pool_type: type of the pool from which memory is to be allocated |
| * @size: number of bytes to be allocated |
| * @buffer: allocated memory |
| * Return: status code |
| */ |
| efi_status_t efi_allocate_pool(enum efi_memory_type pool_type, efi_uintn_t size, void **buffer) |
| { |
| efi_status_t r; |
| u64 addr; |
| struct efi_pool_allocation *alloc; |
| u64 num_pages = efi_size_in_pages(size + |
| sizeof(struct efi_pool_allocation)); |
| |
| if (!buffer) |
| return EFI_INVALID_PARAMETER; |
| |
| if (size == 0) { |
| *buffer = NULL; |
| return EFI_SUCCESS; |
| } |
| |
| r = efi_allocate_pages(EFI_ALLOCATE_ANY_PAGES, pool_type, num_pages, |
| &addr); |
| if (r == EFI_SUCCESS) { |
| alloc = (struct efi_pool_allocation *)(uintptr_t)addr; |
| alloc->num_pages = num_pages; |
| alloc->checksum = checksum(alloc); |
| *buffer = alloc->data; |
| } |
| |
| return r; |
| } |
| |
| /** |
| * efi_alloc() - allocate boot services data pool memory |
| * |
| * Allocate memory from pool and zero it out. |
| * |
| * @size: number of bytes to allocate |
| * Return: pointer to allocated memory or NULL |
| */ |
| void *efi_alloc(size_t size) |
| { |
| void *buf; |
| |
| if (efi_allocate_pool(EFI_BOOT_SERVICES_DATA, size, &buf) != |
| EFI_SUCCESS) { |
| log_err("out of memory\n"); |
| return NULL; |
| } |
| memset(buf, 0, size); |
| |
| return buf; |
| } |
| |
| /** |
| * efi_free_pool() - free memory from pool |
| * |
| * @buffer: start of memory to be freed |
| * Return: status code |
| */ |
| efi_status_t efi_free_pool(void *buffer) |
| { |
| efi_status_t ret; |
| struct efi_pool_allocation *alloc; |
| |
| if (!buffer) |
| return EFI_INVALID_PARAMETER; |
| |
| ret = efi_check_allocated((uintptr_t)buffer, true); |
| if (ret != EFI_SUCCESS) |
| return ret; |
| |
| alloc = container_of(buffer, struct efi_pool_allocation, data); |
| |
| /* Check that this memory was allocated by efi_allocate_pool() */ |
| if (((uintptr_t)alloc & EFI_PAGE_MASK) || |
| alloc->checksum != checksum(alloc)) { |
| printf("%s: illegal free 0x%p\n", __func__, buffer); |
| return EFI_INVALID_PARAMETER; |
| } |
| /* Avoid double free */ |
| alloc->checksum = 0; |
| |
| ret = efi_free_pages((uintptr_t)alloc, alloc->num_pages); |
| |
| return ret; |
| } |
| |
| /** |
| * efi_get_memory_map() - get map describing memory usage. |
| * |
| * @memory_map_size: on entry the size, in bytes, of the memory map buffer, |
| * on exit the size of the copied memory map |
| * @memory_map: buffer to which the memory map is written |
| * @map_key: key for the memory map |
| * @descriptor_size: size of an individual memory descriptor |
| * @descriptor_version: version number of the memory descriptor structure |
| * Return: status code |
| */ |
| efi_status_t efi_get_memory_map(efi_uintn_t *memory_map_size, |
| struct efi_mem_desc *memory_map, |
| efi_uintn_t *map_key, |
| efi_uintn_t *descriptor_size, |
| uint32_t *descriptor_version) |
| { |
| size_t map_entries; |
| efi_uintn_t map_size = 0; |
| struct efi_mem_list *lmem; |
| efi_uintn_t provided_map_size; |
| |
| if (!memory_map_size) |
| return EFI_INVALID_PARAMETER; |
| |
| provided_map_size = *memory_map_size; |
| |
| map_entries = list_count_nodes(&efi_mem); |
| |
| map_size = map_entries * sizeof(struct efi_mem_desc); |
| |
| *memory_map_size = map_size; |
| |
| if (descriptor_size) |
| *descriptor_size = sizeof(struct efi_mem_desc); |
| |
| if (descriptor_version) |
| *descriptor_version = EFI_MEMORY_DESCRIPTOR_VERSION; |
| |
| if (provided_map_size < map_size) |
| return EFI_BUFFER_TOO_SMALL; |
| |
| if (!memory_map) |
| return EFI_INVALID_PARAMETER; |
| |
| /* Copy list into array */ |
| /* Return the list in ascending order */ |
| memory_map = &memory_map[map_entries - 1]; |
| list_for_each_entry(lmem, &efi_mem, link) { |
| *memory_map = lmem->desc; |
| memory_map--; |
| } |
| |
| if (map_key) |
| *map_key = efi_memory_map_key; |
| |
| return EFI_SUCCESS; |
| } |
| |
| /** |
| * efi_get_memory_map_alloc() - allocate map describing memory usage |
| * |
| * The caller is responsible for calling FreePool() if the call succeeds. |
| * |
| * @map_size: size of the memory map |
| * @memory_map: buffer to which the memory map is written |
| * Return: status code |
| */ |
| efi_status_t efi_get_memory_map_alloc(efi_uintn_t *map_size, |
| struct efi_mem_desc **memory_map) |
| { |
| efi_status_t ret; |
| |
| *memory_map = NULL; |
| *map_size = 0; |
| ret = efi_get_memory_map(map_size, *memory_map, NULL, NULL, NULL); |
| if (ret == EFI_BUFFER_TOO_SMALL) { |
| *map_size += sizeof(struct efi_mem_desc); /* for the map */ |
| ret = efi_allocate_pool(EFI_BOOT_SERVICES_DATA, *map_size, |
| (void **)memory_map); |
| if (ret != EFI_SUCCESS) |
| return ret; |
| ret = efi_get_memory_map(map_size, *memory_map, |
| NULL, NULL, NULL); |
| if (ret != EFI_SUCCESS) { |
| efi_free_pool(*memory_map); |
| *memory_map = NULL; |
| } |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * efi_add_known_memory() - add memory types to the EFI memory map |
| * |
| * This function is to be used to add different memory types other |
| * than EFI_CONVENTIONAL_MEMORY to the EFI memory map. The conventional |
| * memory is handled by the LMB module and gets added to the memory |
| * map through the LMB module. |
| * |
| * This function may be overridden for architectures specific purposes. |
| */ |
| __weak void efi_add_known_memory(void) |
| { |
| } |
| |
| /** |
| * add_u_boot_and_runtime() - add U-Boot code to memory map |
| * |
| * Add memory regions for U-Boot's memory and for the runtime services code. |
| */ |
| static void add_u_boot_and_runtime(void) |
| { |
| unsigned long runtime_start, runtime_end, runtime_pages; |
| unsigned long runtime_mask = EFI_PAGE_MASK; |
| |
| #if defined(__aarch64__) |
| /* |
| * Runtime Services must be 64KiB aligned according to the |
| * "AArch64 Platforms" section in the UEFI spec (2.7+). |
| */ |
| |
| runtime_mask = SZ_64K - 1; |
| #endif |
| |
| /* |
| * Add Runtime Services. We mark surrounding boottime code as runtime as |
| * well to fulfill the runtime alignment constraints but avoid padding. |
| */ |
| runtime_start = (uintptr_t)__efi_runtime_start & ~runtime_mask; |
| runtime_end = (uintptr_t)__efi_runtime_stop; |
| runtime_end = (runtime_end + runtime_mask) & ~runtime_mask; |
| runtime_pages = (runtime_end - runtime_start) >> EFI_PAGE_SHIFT; |
| efi_add_memory_map_pg(runtime_start, runtime_pages, |
| EFI_RUNTIME_SERVICES_CODE, false); |
| } |
| |
| int efi_memory_init(void) |
| { |
| efi_add_known_memory(); |
| |
| add_u_boot_and_runtime(); |
| |
| #ifdef CONFIG_EFI_LOADER_BOUNCE_BUFFER |
| /* Request a 32bit 64MB bounce buffer region */ |
| uint64_t efi_bounce_buffer_addr = 0xffffffff; |
| |
| if (efi_allocate_pages(EFI_ALLOCATE_MAX_ADDRESS, EFI_BOOT_SERVICES_DATA, |
| (64 * 1024 * 1024) >> EFI_PAGE_SHIFT, |
| &efi_bounce_buffer_addr) != EFI_SUCCESS) |
| return -1; |
| |
| efi_bounce_buffer = (void*)(uintptr_t)efi_bounce_buffer_addr; |
| #endif |
| |
| return 0; |
| } |